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ABSTRACT. Palynostratigraphic and palynofacies analysis have been performed on hydrocarbon seep carbon-
ate, carbonate nodule and mudstone samples from the Early Cretaceous Kuhnpasset Beds in the Kuhnpasset 
area of Wollaston Forland, Northeast Greenland. Three informal palynostratigraphic zones have been defined 
based on dinoflagellate cyst occurrences. The zones range from ?early Barremian to early Aptian in age, and cor-
relate with previously defined dinoflagellate cyst zones in Northeast Greenland. These zones indicate hydrocar-
bon seepage in Kuhnpasset spanned the ?early–late Barremian age range, but did not continue into the Aptian, 
and thus seep activity continued for as much as three million years. Palynofacies analysis is used to interpret 
the depositional environment of the Kuhnpasset Beds and indicate that the hydrocarbon seeps and associated 
mudstones from this sedimentary sequence were deposited in a proximal shelf setting.

KEYWORDS: Palynostratigraphy, dinoflagellate cysts, palynofacies, hydrocarbon seep carbonates, Early Cretaceous, North-
east Greenland

INTRODUCTION

e-ISSN 2082-0259
ISSN 0001-6594

Hydrocarbon seeps are places on the conti-
nental margins where fluids rich in hydrocar-
bons, principally methane, flow on to the sea-
floor (Sibuet and Olu, 1998). First discovered 
in 1984, they are now found in all the World’s 
oceans. Hydrocarbon seeps support highly 
unusual biotic communities, which, together 
with the similarly structured hydrothermal 
vent communities, have altered our view of life 
in the deep sea, in part because the primary 
energy source for these ecosystems is not solar, 
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but geochemical (Levin, 2005). In the shallow 
subsurface at seep sites methane is utilized by 
a consortium of methanotrophic archaea and 
sulphate-reducing bacteria in the anaerobic 
oxidation of methane reaction (e.g. Hinrichs 
et al., 1999; Boetius et al., 2000; Reitner et al., 
2005), leading to the supersaturation of pore 
fluids with respect to carbonate ions and result-
ing in the formation of distinctive authigenic 
carbonate deposits with multi-phase carbonate 
cements and very negative δ13C values (e.g. 
Ritger et al., 1987; Aloisi et al., 2000; Naehr 
et al., 2007; Haas et al., 2010). Seep carbonates *	 Corresponding author
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have a wide variety of morphologies (e.g. nod-
ules, tubular/tabular concretions, cemented 
breccias and pavements) and sizes (e.g. Camp-
bell, 2006), and because of rapid precipitation 
commonly contain well-preserved macrofossils 
and microfossils, including palynomorphs (e.g. 
Kiel et al., 2013; Dalseg et al., 2016a, b).

The Mesozoic is a crucial time in the evolu-
tionary history of seep faunas, with a change 
from brachiopod dominated communities of 
the Triassic, Jurassic and Early Cretaceous 
to bivalve dominated communities of the Late 
Cretaceous (Sandy, 2010). Palaeobathymetric 
controls on Mesozoic seep faunas occurred in 
seep communities in the Cretaceous, as in mod-
ern seeps, with the number of obligate species 
decreasing from the slope and deep shelf to the 
shallow shelves (Kiel, 2010). Compared to the 
Cenozoic, the Mesozoic fossil record of hydro-
carbon seep communities is relatively sparse 
and comes largely from the circum-Pacific area 
(e.g. Japan and Western USA) and sites that 
were in the Tethys Ocean (principally Southern 
to Eastern Europe; Kiel et al., 2008; Kaim et al., 
2013). Four areas of Jurassic to Cretaceous 
aged hydrocarbon seepage are known from the 
present-day Arctic region, including two sites in 
Northeast Greenland: one Barremian (Kuhn-
passet, Wollaston Forland; Kelly et al., 2000) 

and one Campanian (Leitch Bjerg, Geographi-
cal Society Ø); Svalbard (Jurassic–Cretaceous 
boundary; Hammer et al., 2011); Arctic Can-
ada (Albian of Prince Patrick Island and Ellef 
Ringnes Island; Beauchamp and Savard, 1992; 
Williscroft et al., 2017) and Novaya Zemlya 
(three ages of seepage: late Oxfordian–early 
Kimmeridgian, late Tithonian and latest Ber-
riasian–early Valanginian; Hryniewicz et al., 
2015). In the Mesozoic, the latter three areas 
were part of the Boreal Ocean, which was a rel-
atively isolated sea with limited marine connec-
tions with the Tethys and ancient Pacific (Pan-
thalassic) Oceans (Zakharov et al., 2002). The 
Northeast Greenland seeps occurred in a more 
southerly position in a narrow seaway that 
linked the Boreal Ocean to the Tethys, through 
Northwest Europe.

The seeps in Kuhnpasset have been 
described by Kelly et al. (2000) and com-
prise over 30 exposed carbonate mounds (27 
individually numbered) on the eastern side 
of Kuhnpasset, below the western flank of 
Aucellabjerget Mountain (Fig. 1). All but one 
of these are concentrated along a ridge in 
an area of ~1 km2 (Kelly et al., 2000: fig. 4). 
The individual seep carbonates are subcircu-
lar to suboval in plan view, with relatively 
flat bases, where these can be seen. They 
vary in size from 1 to 3 m in diameter and 
are up to 1.8 m in height. The host rocks to 
the carbonate bodies are silty to sandy mud-
stones, and subordinate thin sandstone beds 
(Fig. 2). Kelly et al. (2000) erected the name 
Kuhnpasset Beds for this sequence and sug-
gested a late Barremian age for it, based 
on the occurrence of the ammonite genera 
Audouliceras, Epicheloniceras and Sanmar­
tinoceras, and the presence of dinoflagellate 
cysts indicative of the Pseudoceratium toveae 
Subzone (Nøhr-Hansen, 1993). Subsequently, 
Bjerager et al. (2020) incorporated the Kuhn-
passet Beds into their Stratumbjerg Forma-
tion of the Brorson Halvø Group. Bjerager 
et al. (2020) suggested that the Stratumbjerg 
Formation was predominantly deposited in 
slope and basin-floor settings, with local pas-
sive infill of submarine gullies and shallow 
marine deposition. The latter facies is repre-
sented in the Kuhnpasset-Aucellabjerg area 
by the cross-bedded sandstones that overly 
the seep bearing mudstone sequence (Fig. 2). 
Bjerager et al. (2020) named these sandstones 
the Aucellabjerg Member, and this is thought 

Figure 1. A. Geological locality map with field locality indi-
cated. Map modified from Bjerager et al. (2020). Insert B. 
Map of Greenland with area of map A highlighted in red. 
White shows the extent of the Greenland icecap
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to be late early Aptian in age, based on dino-
flagellates (Nøhr-Hansen et al., 2020) and the 
occurrence of the ammonite genus Deshayesi­
tes (Kelly et al., 2000).

In this paper we present a detailed inves-
tigation of the palynofloras from the seep-
bearing sedimentary sequence from Kuhnpas-
set, including, for the first time, from the seep 
carbonates themselves. Our aims are to better 

refine the age of the seep carbonates and the 
duration of hydrocarbon seepage in the area 
by comparing local palynostratigraphic zones 
with established Cretaceous dinoflagellate cyst 
zonations from Greenland and other areas 
from the Boreal realm. In addition, we perform 
a palynofacies analysis to interpret the deposi-
tional environment during the formation of the 
seeps in Kuhnpasset.

Figure 2. Lithological log with sample levels indicated (red boxes). Lithostratigraphy from Bjerager et al. (2020)
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MATERIALS AND METHODS

The material for this study was collected during 
fieldwork to Kuhnpasset between the 2nd and 12th 
August 2019 by Crispin T.S. Little, Hans Arne Nakrem, 
and Simon R.A. Kelly under Prospecting License No. 
2017/15 from the Ministry of Industry, Energy and 
Research, Government of Greenland. A sedimentary 
log was made from seep carbonate number 27 of Kelly 
et al. (2000) at the base, to the sandstones of the 
Aucellabjerg Member at the top of the section (Fig. 2). 
We selected 13 mudstone samples from this section, 
one carbonate nodule and six seep carbonates for sub-
sequent analysis (Supplementary File 11).

Between 700 and 2000 g of carbonate nodule and 
seep carbonate samples were treated with 10–15% 
acetic acid at the University of Oslo. After five days, 
the acid had neutralized and the resulting residues 
were sieved. The <63 μm fraction was retained and 
sent with the mudstone samples (approximately 
100 g per sample) to Applied Petroleum Technology 
A/S (APT), Oslo for standard processing onto palyno-
logical slides. These slides were studied by Emil Bang 
at the University of Oslo using a Leica DMPL micro-
scope. Photomicrographs of palynomorphs were taken 
with a Leica camera MC170HD and Leica Applica-
tion Suite v. 3.4.0 – LAS software. The images were 
stacked in Helicon Focus v.7.0 and edited in ACD-
see Ultimate 8 and Adobe Photoshop CS6 software. 
The dinoflagellate cysts in the slides were identified 
based on shape, location of archaeopyle, and shape of 
processes (if present) using works by Davey (1982), 
Heilmann-Clausen and Birkelund (1987), Nøhr-Han-
sen (1993), Nøhr-Hansen et al. (2020) and Śliwińska 
et al. (2020).

Dinoflagellate cyst abundance was calculated as 
individuals of each taxon per total individuals in each 
sample. The abundances were sorted into four abun-
dance groups: Rare (0–0.99%), Common (1.0–9.9%), 
Abundant (10.0–24.9%) and Dominant (25.0–100%). 
For each sample 300 specimens were counted. For 
dinoflagellate cyst diversity indices Simpson 1-D 
index, Shannon index (Shannon-Wiener index) and 
Fisher-α index were calculated. The calculations were 
performed using PAST software ver. 4.06 (Hammer 
et al., 2001; Hammer, 2021). For the palynofacies 
analysis, approximately 300 organic particles were 
counted for each sample. Ideally 500 organic particles 
should be counted (Tyson, 1995), but many of our 
slides contained fewer than this, therefore we consider 
300 organic particles to be adequate for our analyses. 
The counts were divided into the following groups: 
structured organic matter (spores, pollen grains, dino-
flagellate cysts, cuticles, coaly phytoclasts, woody phy-
toclasts, other plant debris) and structureless organic 
matter (amorphous organic matter; AOM). Cuticles, 
coaly phytoclasts, woody phytoclasts and other plant 
debris are furthermore grouped in phytoclasts.

Figured specimens (Pl. 1) are curated in the Natu-
ral History Museum, University of Oslo, abbreviated 
PMO (former Paleontologisk Museum Oslo). The taxo-
nomy used here follows that of Williams et al. (2017).

1	 Supplementary File 1: Sample list and weights

RESULTS

The preservation of palynomorphs in the 
samples was very good throughout all sam-
ples, with seemingly no difference between 
the seep carbonate and mudstone samples. 
However, palynomorphs in the uppermost 
two samples were less well preserved than 
those in the other samples. This material also 
had a darker color (TAI 2/2+) than the other 
samples, which generally had a bright yellow 
coloration (TAI 1/1+). In total, 99 different 
dinoflagellate cyst taxa were identified from 
the carbonate and mudstone samples (Pl. 1, 
Supplementary File 22). This included 41 gen-
era, 54 species, one affinity (aff.) to a species, 
four confers (cf.) to a species and five confers 
to a genus; four were primarily identified to 
genus level (Gonyaulacysta sp., Kiokansium 
sp., Spiniferites sp., Subtilisphaera sp.). From 
the mudstone samples a total of 84 taxa were 
identified, including 48 which were identified to 
species level. The remaining taxa were placed 
in open nomenclature. For the carbonate sam-
ples a total of 69 taxa were identified, 39 to 
species level, 30 in open nomenclature. The 
terrestrial palynomorphs observed in the sam-
ples were not identified more specifically than 
general groups of spores or pollen. In addition, 
some freshwater algae were observed. Only 
two observed palynomorphs were identified as 
being reworked. These were a Jurassic dino-
flagellate cysts of the genus Rigaudella Below 
1982 (sensu Nøhr-Hansen, 1993) in Seep 3A 
(90.8 m level), and the Permian bisaccate pol-
len Protohaploxypinus sp. in the carbonate 
nodule sample (78.3 m level).

PALYNOSTRATIGRAPHIC ANALYSIS 

The stratigraphic distribution of identified 
dinoflagellate cyst taxa is presented in Figs 
3 and 4. Using these stratigraphic ranges we 
divide our Kuhnpasset section into three infor-
mal zones based on first occurrences (FO) and 
last occurrences (LO) of selected dinoflagellate 
cyst species (Fig. 4). An informal zoning is 
preferred as the materials in this study were 
not collected with regular sampling intervals; 
rather, sampling was adjusted to the seep 

2	 Supplementary File 2: Dinoflagellate cyst taxa counts per 
sample.

https://acpa.botany.pl/SuppFile/148130/5860/ce2e467bb626fd8d4e40ec62e6ad0f97/
https://acpa.botany.pl/SuppFile/148130/5861/5d7d43cf96fc69804088adb098215b08/
https://acpa.botany.pl/SuppFile/148130/5861/5d7d43cf96fc69804088adb098215b08/
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Plate 1. Representative dinoflagellate cyst species from the Kuhnpasset samples. 1. Vesperopsis longicornis (Batten and Lis-
ter, 1988) Harding 1990a, 85.80 m level, PMO 222.088C, EF W23 (EF: England finder coordinate); 2. Batioladinium exiguum 
(Alberti, 1961) Brideaux, 1975, 85.80 m level, PMO 222.088, EF J39; 3. Sirmiodinium grossii Alberti, 1961 emend. Warren, 1973, 
carbonate nodule, 78.30 m level, PMO 222.109, EF R33; 4. Subtilisphaera perlucida (Alberti, 1959) Jain and Millepied, 1973 
(Jain and Millepied, 1973), 101 m level, PMO 222.091, EF D23; 5. Hystrichosphaerina schindewolfii Alberti, 1961, Seep 26, PMO 
222.107, EF E37; 6. Muderongia sp., 85.80 m level, PMO 222.089, EF J31; 7. Odontochitina nuda (Gocht, 1957) Dörhöfer and 
Davies, 1980, 86.60 m level, PMO 222.086C, EF C31; 8. Pseudoceratium toveae Nøhr-Hansen, 1993, carbonate nodule, 78.30 m 
level, PMO 222.109C, EF X21; 9. Palaeoperidinium cretaceum (Pocock, 1962 ex Davey, 1970) Lentin and Williams, 1975, Seep 
26, PMO 222.107, EF P21; 10. Hystrichosphaeridium arborispinum Davey and Williams, 1966, 85.80 m level, PMO 222.088, 
EF U37; 11. Gardodinium traberculosum (Gocht, 1959) Davey, 1978 emend. Harding, 1996, Seep 8, PMO 222.106, EF T23; 12. 
Pseudoceratium anaphrissum (Sarjeant, 1966) Bint, 1986 emend. Harding, 1990b, Seep 4, PMO 222.105, EF C35; 13. Batiola­
dinium longicornutum (Alberti, 1961) Brideaux, 1975, 86.70 m level, PMO 222.085, EF K29; 14. ?Endoscrinium sp., Seep 27, 
PMO 222.110, EF M35. Scale bar 20 μm in 1–6, 8–12 and 14; scale bar 50 μm in 7 and 13
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carbonate and adjacent mudstone intervals. 
Our informal zones are defined as follows, 
from base upwards:

Zone 1. This encompasses all samples from 
Seep 27 up to Seep 26, at 97.6 m in the sec-
tion. The upper zone boundary is defined at the 
LO of Hystrichosphaerina schindewolfii and the 
FO of Palaeoperidinium cretaceum. The lower 
boundary of the zone is left open. Batioladi­
nium exiguum, Endoscrinium campanula and 
Hystrichosphaeridium arborispinum have their 
first and last occurrences within this zone. 

Zone 2. This spans the interval from Seep 
26 to the uppermost mudstone sample above 
New Seep 2019, at 104.6 m in the section. The 
zone is transitional with stepwise LOs of differ-
ent species through the zone. The lower bound-
ary is placed at the LO of Hystrichosphaerina 
schindewolfii, and the upper boundary at the 
LO of Pseudoceratium anaphrissum, Chla­
mydophorella nyei and Gardodinium trabeculo­
sum. The zone boundaries coincide with the FO 
and LO of Palaeoperidinium cretaceum.

Zone 3. This comprises the two uppermost 
samples in the section (115.0 and 116.3 m lev-
els). The lower boundary of the zone is defined 
by the LO of Chlamydophorella nyei, Gardo­
dinium trabeculosum and Palaeoperidinium 
cretaceum. No upper boundary is defined here.

Our informal zones 1–3 can be roughly corre-
lated with the Northeast Greenland dinoflagel-
late zones defined by Nøhr-Hansen (1993) and 
Nøhr-Hansen et al. (2020). The oldest possible 
age for zone 1 is early Barremian as Pseudo­
ceratium anaphrissum is present throughout 
the entire zone. According to Nøhr-Hansen 
(1993), P. anaphrissum has its uppermost 
occurrence in the early Barremian Pseudocera­
tium anaphrissum Subzone. In our study Pseu­
doceratium toveae occurs as a dominant species 
at 86.6 m. This may correlate with the acme 
of this species recorded in the Pseudoceratium 
toveae Subzone by Nøhr-Hansen (1993). How-
ever, this subzone was defined above the LO of 
P. anaphrissum and dated as late Barremian 
(Nøhr-Hansen, 1993). If so, it suggests that our 

Figure 3. Dinoflagellate cyst generic range chart, with abundance data and informal zones 1–3
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Figure 4. Dinoflagellate cyst species range chart, with abundance data and informal zones 1–3
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zone 1 is of early-late Barremian age. It is also 
possible that P. anaphrissum is reworked, but 
the common occurrence of this species at the 
top of subzone 1 makes this unlikely. Our zones 
1 and 2 could represent the transition from 
the P. anaphrissum Subzone to the P. toveae 
Subzone, but a more detailed investigation is 
needed to address this question. Within our 
zone 2, Batioladinium longicornutum has its 
LO, suggesting that this zone has a latest Bar-
remian age. This is based on correlation with 
the Batioladinium longicornutum zone rede-
fined by Nøhr-Hansen et al. (2020), which is 
recognized on the basis of the FO and LO of 
Batioladinium longicornutum. With Odonto­
chitina nuda present in our zone 3, and the 
LO of Batioladinium longicornutum in our 
zone 2, zone 3 is likely of early Aptian age. 
This is based on correlation with the Odonto­
chitina nuda Zone of early Aptian age in the 
work of Nøhr-Hansen (1993), the lower bound-
ary of which is defined on the basis of the 
LO of Batioladinium longicornutum and the 
upper boundary at the LO of Odontochitina 
nuda. Thus, seepage in Kuhnpasset spanned 
the early–late Barremian age range, but did 
not continue into the Aptian. This extends the 
duration for seepage suggested by Kelly et al. 
(2000) from the late to the early Barremian, 
and indicates that there was seep activity 
over some extended period of time, possibly as 
much as three million years, beginning with 
the formation of Seep 27 and ending at New 
Seep 2019. Saying that, the majority of seepage 
would have occurred over a shorter period of 
time, perhaps confined to the late Barremian, 
as the majority of seep deposits are confined to 
20 m of the Kuhnpasset section (Fig. 2).

In addition to the key species listed above, 
the occurrence of Pseudoceratium anaphris­
sum (Late Hauterivian–late early Barremian) 
and Vesperopsis longicornis (late Barremian–
early Albian) in our material is also of bio-
stratigraphic significance. In our study we 
found Batioladinium longicornutum had an 
LO before that of Pseudoceratium anaphris­
sum. This contrasts with the Northeast Green-
land dinoflagellate cyst biostratigraphy of 
Nøhr-Hansen (1993) and Nøhr-Hansen et al. 
(2020), where the late Barremian Pseudocera­
tium toveae Subzone is defined from the LO 
of Pseudoceratium anaphrissum to the LO of 
Batioladinium longicornutum. An explana-
tion for this difference could be that the LO 

of Batioladinium longicornutum is within the 
upper part of the section, from which we did 
not collect samples for palynomorph study 
(between 104.8 and 115.0 m), or because of 
reworking, as we found reworked Permian and 
Jurassic palynomorphs in some of our samples.

Although not the subject of this study, the 
Kuhnpasset Beds have a rich ammonite fauna, 
dominated by lytoceratids, but also including 
aconeceratids, cheloniceratids and hetero-
morphs. These are currently undescribed, but 
based on preliminary investigation, compare 
with some of Rosenkrantz’s (1934) material 
from Kuhn Ø and Frebold’s (1935) from Storre 
Koldewey, both of stated Aptian age. However, 
the earliest reliably dated ammonite which we 
discovered in 2019 at Kuhnpasset was a speci-
men of Deshayesites boegvadi Rosenkrantz 
(1934), from about 2 m above the base of the 
Aucellabjerg Member (122 m on Fig. 2). This 
ammonite was taken as an indicator for the 
mid early Aptian in Hold with Hope (Kelly and 
Whitham, 1999) and confirms an early Aptian 
age for the strata above the Kuhnpasset seeps. 
Further work to reconcile ammonite and dino-
flagellate cyst biostratigraphy in Kuhnpasset 
specifically and Northeast Greenland in gen-
eral would be beneficial.

DINOFLAGELLATE CYST DIVERSITY

Within our zone 1, the number of taxa per 
sample varies between 27 and 46, in zone 2, 
between 29 and 37. In zone 3, the number var-
ies between 19 and 20. Our diversity data cor-
responds well with the observations of Nøhr-
Hansen (1993) who reported similar diversities 
in the Barremian samples, and a lower diver-
sity in the late early Aptian – early Albian sam-
ples. Note that Nøhr-Hansen (1993) recorded 
diversity as the number of species, whereas 
here diversity is recorded as the total number 
of taxa, therefore a direct comparison of the 
actual number of species is not possible.

Our statistical analyses indicate that in 
the mudstone samples the Simpson 1-D index 
averages at 0.9 and varies between 0.9 and 
1.0. In the carbonates the Simpson 1-D also 
averages at 0.9, with no variation. The Shan-
non H index in the carbonate samples has 
the lowest value at 2.9 and highest at 3.2, 
averaging at 3.0. This is slightly lower than 
the mudstone samples averaging at 3.1. The 
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mudstone samples also have larger outliers, 
with lowest H at 2.4 and highest at 3.5. The 
Fisher-α averages at 10.8 in the mudstone 
samples and 9.8 in the carbonates. The low-
est value for Fisher-α in the mudstones is 5.8 
and 8.9 for the carbonates. The highest value 
for the latter is 11.1 while for the mudstones 
it is 15.0. The variation between sample types 
and diversity indices is presented in Fig. 5. In 
general, our recorded diversity indices show 
a relatively stable Simpson 1-D value for all 
samples, whereas the Fisher-α and Shannon 
H values have larger variation. According to 
this, it seems that the dinoflagellate cyst diver-
sity in general is quite high, but with a slightly 
lower diversity in the seep carbonates. This 
could be the result of a changing environment 
when hydrocarbon seepage took place, which 
impacted the water column around the area 
of seepage, or due to differential preservation 
in the sediment due to the anaerobic oxidation 
of methane producing chemical gradients not 
conducive to the preservation of organic mat-
ter. There is also a decreasing trend in diver-
sity in the two uppermost mudstone samples. 
This may be partly due to the poorer preserva-
tion observed in these samples.

PALYNOFACIES ANALYSIS

Results of the palynofacies analyses are 
presented in Figs 6 and 7 which shows the 
relative percentage of AOM, phytoclasts and 
palynomorphs (both marine and terrestrial) in 
each sample as single points in Tyson’s Ter-
nary Diagram (Tyson, 1995; Miles, 2021; Sup-
plementary Files 3 and 43). The dinoflagellate 
cyst contribution in the carbonates is gener-
ally low, varying between 0.3% and 3.2%. This 
is also the case with cuticles (0.3–2.9%) and 
AOM (0.9–4.2%). For spores the general trend 
lies between ~10% and ~20%, and for pollen 
grains it is ~3–15%. Both spores and pollen 
grains have a similar outlier in Seep 8, where 
they comprise only 1.0% of the total counts. 
The Seep 8 sample also differs from the other 
carbonate samples in containing 47.7% coaly 
particles counting in the total assemblage. In 
the remaining carbonate samples coaly parti-
cles comprise between ~18% and ~33%. In the 
Seep 4 sample, the plant debris constitutes 
51.0% of the palynomorph assemblage. For the 
other carbonate samples this value is between 
~15% and ~27%. Woody particles in the car-
bonate samples vary between ~15–30%, apart 
from a lower outlier in Seep 4 with only 9.4%.

In the mudstone samples (85.8–87.6 m 
interval) below Seep 4, spores contribute 
between ~ 6% and ~18%, pollen grains ~5–10% 
with a higher value at level 86.7 m with 18.4%. 
Dinoflagellate cysts contribute between ~1% 
and ~3%, with an outlier at level 86.3 m with 
4.5%. The proportion of cuticles is ~1.7% in 
these samples, with a higher contribution at 
level 86.3 m, where they contribute 4.2%. Most 
of the samples have a larger portion of woody 
particles than coaly particles, except for the 
sample level 86.9 m, where the coaly material 
counts for 26.1% and woody particles only for 
21.7%. The palynomorph group that makes up 
the most of these mudstone samples is plant 
debris, varying between ~25% and ~35%. AOM 
is generally equal in the samples, ~3.7%.

At sample level 86.9 m, the palynomorph 
groups that dominate the palynofacies assem-
blage are coal (20.8–25.9%), woody particles 
(20.8–23.3%) and plant debris (30.6–33.7%). 
AOM, cuticles and dinoflagellate cysts each 
make up less than 5% of the total assemblage. 

3	 Supplementary File 3: Palynology similarity indices; Sup-
plementary File 4: Palynofacies organic particle data

Figure 5. Variation in diversity indices (A. Fisher-α; B. Shan
non-H; C. Simpson-1-D) for three sample material types 
(mudstones, seep carbonates, and carbonate nodule)

https://acpa.botany.pl/SuppFile/148130/5862/5198f0da295b5ba88c8a5b09c45c0f7e/
https://acpa.botany.pl/SuppFile/148130/5863/682100dfccd5ef2c66559859d46f540e/
https://acpa.botany.pl/SuppFile/148130/5863/682100dfccd5ef2c66559859d46f540e/
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Spore contents vary between 10.6% at 103.3 m 
and 9.1% at 104.8 m. In the upper of the two 
mudstone samples in our zone 3 (at 116.3 m), 
coaly particles make up the largest part with 
37.6%, while plant debris and woody particles 
make up 27.4% and 20.2% respectively. The 
same groups dominate in the lower sample 

from zone 3 (at 115.0 m), but in this plant 
debris makes up the largest fraction with 
24.9%. Woody and coaly particles both make 
up ~20% of this sample. The dinoflagellate cyst 
fraction is very low in the zone 3 samples, with 
0.6% in the upper sample, while in the lower 
sample the value reaches 3.4%. AOM is close 
to the same value in both samples (4.4% and 
4.8%) and cuticles in the lower sample consti-
tute 4.0% while being only 1.9% in the upper 
sample. Spores and pollen make up a larger 
part in the lower sample, with 9.3% and 12.8% 
respectively, than in the upper sample where 
they are 2.9% and 4.8%.

We use the results of the palynofacies 
analyses to interpret the possible depositional 
environment of the carbonate seeps and mud-
stones in our section. Palynofacies alone is not 
a definitive way to determine a depositional 
environment, but it is useful as a supplement 
to other paleontological and sedimentological 
observations (Batten and Stead, 2005). The 
carbonate samples and the mudstone sam-
ples all plot within palynofacies fields I and 
III (Fig. 6), which correspond to “highly proxi-
mal shelf or basin” and “heterolithic oxic shelf 
(proximal shelf)” of Tyson (1995) respectively. 
The carbonate samples have a slightly greater 
spread in the diagram. With respect to kerogen 
type, the palynofacies field I represents kerogen 
type III which is gas prone, and palynofacies 
field III represents kerogen type III or IV, both 
are gas prone kerogen. Based on the position of 
the samples in the ternary diagram and vari-
ations in terrestrial vs. marine palynomorphs, 
we interpret that the seep containing sedimen-
tary sequence at Kuhnpasset was deposited in 
a proximal shelf environment, shallower than 
the majority of the Stratumbjerg Formation 
in Northeast Greenland, which Bjerager et al. 
(2020) suggested was predominantly deposited 
in a basin-floor and slope environment.

CONCLUSIONS

From the palynostratigraphic and palyno-
facies analyses performed on six hydrocarbon 
seep carbonates, one carbonate nodule and 13 
associated mudstone samples from the Kuhn-
passet Beds, Wollaston Forland, Northeast 
Greenland, we draw the following conclusions: 

–– We propose three informal dinoflagel-
late cyst zones from the samples. Based on 

Figure 6. Tyson palynofacies ternary diagram for the Kuhn-
passet samples, grouped into four types. AOM – amorphous 
organic matter; I – highly proximal shelf or basin; II – mar-
ginal dysoxic-anoxic basin; III – heterolithic oxic shelf (distal 
shelf); IVa – shelf to basin transition (dysoxic); IVb – shelf 
to basin transition (anoxic); V – mud dominated oxic shelf 
(distal shelf); VI – proximal suboxic-anoxic shelf; VII – distal 
dysoxic-anoxic shelf; VIII – distal dysoxic-suboxic shelf; IX – 
distal suboxic-anoxic shelf

Figure 7. Contents of organic particles through the Kuhnpas-
set samples. Stippled pattern indicates non-sampled interval
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stratigraphically important species, our lower 
zone 1 is assigned an ?early–late Barremian 
age, our middle zone 2 is late Barremian and 
our upper zone 3 is early Aptian in age.

–– Based on dinoflagellate cyst biostratigra-
phy, hydrocarbon seepage in the Kuhnpasset 
area spanned the early – late Barremian age 
range, but did not continue into the Aptian. 
This indicates seep activity continued for as 
much as three million years, although the 
majority of seepage would have occurred over 
a shorter period of time, perhaps confined to 
the late Barremian.

–– Statistical analysis shows a generally 
high dinoflagellate cyst diversity with a slightly 
lower diversity in the carbonate samples com-
pared to the mudstone samples. The two upper-
most mudstone samples differ from the rest 
of the studied material by yielding the lowest 
diversity and poorest preservation of dinoflagel-
late cysts.

–– The dinoflagellate cyst assemblages 
recorded in this study show close similarities 
with other assemblages of similar age recorded 
in the Arctic/Boreal region.

–– Based on the observed palynofacies 
material and relative proportions of marine 
and terrestrial palynomorphs, the carbonates 
and mudstones analyzed in this study were 
deposited in a proximal shelf setting.
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