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Abstract

1. Integral projection models (IPMs) are an important tool for studying the dynamics 
of populations structured by one or more continuous traits (e.g. size, height, body 
mass). Researchers use IPMs to investigate questions ranging from linking drivers 
to population dynamics, planning conservation and management strategies, and 
quantifying selective pressures in natural populations. The popularity of stage- 
structured population models has been supported by R scripts and packages (e.g. 
IPMpack, popbio, popdemo, lefko3) aimed at ecologists, which have introduced a 
broad repertoire of functionality and outputs. However, pressing ecological, evo-

lutionary and conservation biology topics require developing more complex IPMs, 
and considerably more expertise to implement them. Here, we introduce ipmr, a 
flexible R package for building, analysing and interpreting IPMs.

2. The ipmr framework relies on the mathematical notation of the models to express 
them in code format. Additionally, this package decouples the model parameteri-
zation step from the model implementation step. The latter point substantially in-

creases ipmr's flexibility to model complex life cycles and demographic processes.
3. ipmr can handle a wide variety of models, including those that incorporate density 

dependence, discretely and continuously varying stochastic environments, and 
multiple continuous and/or discrete traits. ipmr can accommodate models with 
individuals cross- classified by age and size. Furthermore, the package provides 
methods for demographic analyses (e.g. asymptotic and stochastic growth rates) 
and visualization (e.g. kernel plotting).

4. ipmr is a flexible R package for integral projection models. The package substan-

tially reduces the amount of time required to implement general IPMs. We also 
provide extensive documentation with six vignettes and help files, accessible from 
an R session and online.

K E Y W O R D S

elasticity, integral projection model, life history, population dynamics, population growth rate, 
sensitivity, structured populations



     |  1827Methods in Ecology and Evolu
onLEVIN Et aL.

1  | INTRODUC TION

Integral projection models (IPMs) are an important and widely used 
tool for ecologists studying structured population dynamics in dis-

crete time. Since the paper introducing IPMs was published over 
two decades ago (Easterling et al., 2000), at least 255 peer- reviewed 
publications on at least 250 plant species and 60 animal species have 
used IPMs (ESM, Table S1; Figure S1). These models have addressed 
questions ranging from invasive species population dynamics (e.g. 
Crandall & Knight, 2017), effect of climate drivers on population 
persistence (e.g. Compagnoni et al., 2021), evolutionary stable strat-
egies (e.g. Childs et al., 2004) and rare/endangered species conser-
vation (e.g. Ferrer- Cervantes et al., 2012).

The IPM was introduced as alternative to matrix population 
models, which model populations structured by discrete traits 
(Caswell, 2001). Some of the advantages of using an IPM include 
(a) the ability to model populations structured by continuously dis-

tributed traits, (b) the ability to flexibly incorporate discrete and 
continuous traits in the same model (e.g. seeds in a seedbank and a 
height- structured plant population, Crandall & Knight, 2017, or num-

ber of females, males and age- 1 recruits for fish species, Erickson 
et al., 2017), (c) efficient parameterization of demographic processes 
with familiar regression methods (Coulson, 2012), and (d) the numer-
ical discretization of continuous kernels (see below) means that the 
tools available for matrix population models are usually also appli-
cable for IPMs. Furthermore, researchers have developed methods 
to incorporate spatial dynamics (Jongejans et al., 2011), environ-

mental stochasticity (Rees & Ellner, 2009) and density/frequency 
dependence into IPMs (Adler et al., 2010; Ellner et al., 2016). These 
developments were accompanied by the creation of software tools 
and guides to assist with IPM parameterization, implementation and 
analysis. These tools range from R scripts with detailed annotations 
(Coulson, 2012; Ellner et al., 2016; Merow et al., 2014) to R packages 
(Metcalf et al., 2013; Shefferson et al., 2020).

Despite the array of resources available to researchers, im-

plementing an IPM is still not a straightforward exercise. For 
example, an IPM that simulates a population for 100 time steps 
requires the user to either write or adapt from published guides 
multiple functions (e.g. to summarize demographic functions into 
the proper format), implement the numerical approximations of 
the model's integrals, ensure that individuals are not accidentally 
sent beyond the integration bounds (‘unintentional eviction’, sensu 
Williams et al., 2012) and track how the population state changes 
over the course of a simulation. Stochastic IPMs present further 
implementation challenges. In addition to the aforementioned el-
ements, users must generate the sequence of environments that 
the population experiences. There are multiple ways of simulating 
environmental stochasticity, each with their own strengths and 
weaknesses (Metcalf et al., 2015).

ipmr manages these key details while providing the user flex-

ibility in their models. ipmr uses the rlang package for metapro-

gramming (Henry & Wickham, 2020), which enables ipmr to 
provide a miniature domain- specific language for implementing 

IPMs. ipmr aims to mimic the mathematical syntax that describes 
IPMs as closely as possible (Figure 1; Box 1; Tables 1 and 2). This R 

package can handle models with individuals classified by a mixture 
of any number of continuously and discretely distributed traits. 
Furthermore, ipmr introduces specific classes and methods to deal 
with both discretely and continuously varying stochastic environ-

ments, density- independent and - dependent models, as well as 
age- structured populations (Case Study 2). ipmr decouples the pa-

rameterization (i.e. regression model fitting) and implementation 
steps (i.e. converting the regression parameters into a full IPM), 
and does not attempt to help users with the parameterization task. 
This provides greater flexibility in modelling trait– demography re-

lationships, and enables users to specify IPMs of any functional 
form that they desire.

2  | TERMINOLOGY AND IPM 
CONSTRUC TION

An IPM describes how the abundance and distribution of trait values 
(also called state variables/states, denoted z and z′) for a population 
changes in discrete time. The distribution of trait values in a popula-

tion at time t is given by the function n (z, t). A simple IPM for the 
trait distribution z′ at time t + 1 is then

K
(

z′, z
)

, known as the projection kernel, describes all possible 
transitions of existing individuals and recruitment of new individuals 
from t to t + 1, generating a new trait distribution n

(

z′, t + 1
)

. L,U 

are the lower and upper bounds for values that the trait z can have, 
which defines the domain over which the integration is performed. 
The integral ∫ U

L
n (z, t) dz gives the total population size at time t.

To make the model more biologically interpretable, the projec-

tion kernel K
(

z′, z
)

 is usually split into sub- kernels (Equation 2). For 
example, a projection kernel to describe a life cycle where individ-

uals can survive, transition to different state values, and reproduce 
via sexual and asexual pathways, can be split as follows.

where P
(

z′, z
)

 is a sub- kernel describing transitions due to survival 
and trait changes of existing individuals, F

(

z′, z
)

 is a sub- kernel de-

scribing per- capita sexual contributions of existing individuals to re-

cruitment and C
(

z′, z
)

 is a sub- kernel describing per- capita asexual 
contributions of existing individuals to recruitment. The sub- kernels 
are typically comprised of functions derived from regression mod-

els that relate an individual's trait value z at time t to a new trait 
value z′ at t + 1. For example, the P kernel for Soay sheep Ovis aries 

on St. Kilda (Equation 3) may contain two regression models: (a) a 
logistic regression of survival on log body mass (Equation 4) and (b) 

(1)n
(

z
′, t + 1

)

=

U

∫
L

K
(

z
′, z

)

n (z, t) dz.

(2)K
(

z
′, z

)

= P
(

z
′, z

)

+ F
(

z
′, z

)

+ C
(

z
′, z

)

,
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a linear regression of log body mass at t + 1 on log body mass at t 
(Equations 5– 6). In this example, fG is a normal probability density 
function with �G given by the linear predictor of the mean, and with 
�G computed from the standard deviation of the residuals from the 
linear regression model.

(3)P
(

z
′, z

)

= s (z) ∗ G
(

z
′, z

)

,

(4)Logit (s (z)) = �s + �s ∗ z,

(5)G
(

z′, z
)

= fG
(

z′, �G , �G
)

,

F I G U R E  1   There are generally six steps in defining an IPM with ipmr. (1) Vital rate models are fit to demographic data collected from field 
sites. This step requires the use of other packages, as ipmr does not contain facilities for regression modelling. The figure on the left shows 
the fitted relationship between size at t and t + 1 for Carpobrotus spp. in Case Study 1. (2) The next step is deciding what type of IPM is 
needed. This is determined by both the research question and the data used to parameterize the regression models. This process is initiated 
with init_ipm(). In step (3), kernels are defined using ipmr's syntax to represent kernels and vital rate functions. (4) Having defined symbolic 
representations of the model, the numerical definition is given. Here, the integration rule, domain bounds and initial population conditions 
are defined. For some models, initial environmental conditions can also be defined. (5) make_ipm() numerically implements the proto_ipm 
object, (6) which can then be analysed further. The figure at the bottom left shows a K

(

z′, z
)

 kernel created by make_ipm() and make_iter_
kernel(). The line plots above and to the right display the left and right eigenvectors, extracted with left_ev() and right_ev(), respectively
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BOX 1 Code to implement a simple IPM from parameter estimates in ipmr. Because ipmr does not include 
functions to assist with regression modelling, this example skips the step of working with actual data and instead 

uses hypothetical parameter values. We see that given this set of conditions, if nothing were to change, the 

population would increase by ~2% each year. The case studies provide details on further use cases and analyses that 

are possible with ipmr.

library(ipmr) 

 # This section produces the result of Step 1 in Figure 1.

data_list <-  list(
 s_i = - 0.65,     # Intercept of the survival model (Logistic regression)

  s_z = 0.75,   # Slope of the survival model

  G_i = 0.96,    # Intercept of the growth model (Gaussian regression)

  G_z = 0.66,   # Slope of the growth model

  sd_G = 0.67,  # Standard deviation of residuals of growth model

  mu_r = - 0.08,  # Mean of the recruit size distribution 

  sd_r = 0.76,   # Standard deviation of the recruit size distribution

  r_n_i = - 1,    # Intercept of recruit production model (Poisson regression)

  r_n_z = 0.3    # Slope of recruit production model.

)

 #  Step 2 in Figure 1. This is how ipmr initializes a model object.

 #  All functions prefixed with define_* generate proto_ipm objects. These 

 #  are converted into IPMs using the make_ipm() function in step 5. 

example_proto_ipm <-  init_ipm(sim_gen     = "simple", 
        di_dd         = "di", 
        det_stoch = "det") 

 # Step 3 in Figure 1. Note the link between how the model was defined

 # mathematically and how it is defined here. 

example_proto_ipm <-  define_kernel(
  example_proto_ipm,
  name                   = "P",
 formula               = surv * Grow,
  surv                     = plogis(s_i + s_z * z_1),
 Grow                   = dnorm(z_2, mu_G, sd_G),
  mu_G                  = G_i + G_z * z_1,
  data_list              = data_list,
  states                  = list(c("z"))
)

example_proto_ipm <-  define_kernel(
 example_proto_ipm,
  name                  = "F",
  formula              = recr_number * recr_size,
  recr_number     = exp(r_n_i + r_n_z * z_1),
  recr_size            = dnorm(z_2, mu_r, sd_r),
  data_list            = data_list,
  states                = list(c("z"))
)
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TA B L E  1   Translations between mathematical notation, R’s formula notation and ipmr's notation for the simplified version of Bogdan et 
al.'s Carpobrotus IPM. The ipmr column contains the expressions used in each kernel's definition. R expressions are not provided for sub- 
kernels and model iteration procedures because they typically require defining functions separately, and there are many ways to do this 
step (examples are in the R code for each case study in the appendix). The plogis() function computes the inverse logit transformation of an 
expression. s corresponds to survival, G corresponds to change in size conditional on survival, rp is the probability of reproducing, rn is the 
number of propagules produced by reproductive individuals and pr is the probability that a propagule becomes a new recruit at t + 1

Math formula R formula ipmr

�G = �G + �G ∗ z size_2 ~ size_1, family =gaussian() mu_G = G_int + G_slope * z

G
(

z′ , z
)

= fG
(

z′ , �G , �G
)

G = dnorm(z_2, mu_G, sd_G) G = dnorm(z_2, mu_G, sd_G)

logit (s (z)) = �s + �s ∗ z surv ~size_1, family = binomial() s = plogis(s_int + s_slope * z)

log
(

rn (z)
)

= �rn + �rn ∗ z fec ~size_1, family = poisson() r_n = exp(r_n_int + r_n_slope * z)

logit
(

rp (z)
)

= �rp + �rp ∗ z repr ~ size_1, family = binomial() r_p = plogis(r_p_int + r_p_slope * z)

rd
(

z′
)

= frd

(

z′ , �rd
, �rd

)

dnorm(z_2, mu_f_d, sigma_f_d) r_d = dnorm(z_2, f_d_mu, f_d_sigma)

pr =
# Recruits(t + 1)

# flowers(t)
p_r = n_new_recruits / n_flowers p_r = n_new / n_flowers

P = s (z) ∗ G
(

z� , z
)

P = s * G

F
(

z′ , z
)

= rp (z) ∗ rn (z) ∗ rd
(

z′
)

∗ pr F = r_p * r_n * r_d * p_r

n
(

z′ , t + 1
)

= ∫ U
L
[P

(

z′ , z
)

+ F
(

z′ , z
)

]n (z, t) dz

 #  Step 4 in Figure 1. These next 3 functions define:

 #  1. The numerical integration rules and how to iterate the

  #    model (define_impl).

 #  2. The range of values the the trait "z" can take on, and the number of

 #     meshpoints to use when dividing the interval (define_domains).

 #  3. The initial population state (define_pop_state).

example_proto_ipm <-  define_impl(
  example_proto_ipm,
  list(
     P = list(int_rule = "midpoint", state_start = "z", state_end = "z"),
        F = list(int_rule = "midpoint", state_start = "z", state_end = "z")
     )
)

example_proto_ipm <-  define_domains(
  example_proto_ipm,
  z = c(- 2.65, 4.5, 250)  # format: c(L, U, m), m is number of meshpoints

)

example_proto_ipm <-  define_pop_state(
  example_proto_ipm,
  n_z = rep(1/250, 250)
) 

 #  Step 5 in Figure 1.

example_ipm <-  make_ipm(example_proto_ipm)

 #  Step 6 in Figure 1. 

lambda(example_ipm)

BOX 1 (Continued)
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Analytical solutions to the integral in Equation 1 are usually not 
possible (Ellner & Rees, 2006). However, numerical approximations 
of these integrals can be constructed using a numerical integration 
rule. A commonly used rule is the midpoint rule (more complicated 
and precise methods are possible and will be implemented, though 
are not yet, see Ellner et al., 2016, Chapter 6). The midpoint rule 
divides the domain 

[

L, U
]

 into m artifical size bins centered at zi 
with width h = (U − L) ∕m. The midpoints zi = L + (i − 0.5) ∗ h for 
i = 1, 2, . . . , m. The midpoint rule approximation for Equation 1 
then becomes:

In practice, the numerical approximation of the integral converts the 
continuous projection kernel into a (large) discretized matrix. A matrix 
multiplication of the discretized projection kernel and the discretized 
trait distribution then generates a new trait distribution, a process re-

ferred to as model iteration (sensu Easterling et al., 2000).
Equations 1 and 2 are an example of a simple IPM. A critical as-

pect of ipmr's functionality is the distinction between simple IPMs 

and general IPMs. A simple IPM incorporates a single continuous 
state variable. Equations 1 and 2 represent a simple IPM because 
there is only one continuous state, z, and no additional discrete 

states. A general IPM models one or more continuous state vari-
ables, and/or discrete states. General IPMs are useful for modelling 
species with more complex life cycles. Many species’ life cycles con-

tain multiple life stages that are not readily described by a single 
state variable. Similarly, individuals with similar trait values may be-

have differently depending on environmental context. For example, 
Bruno et al. (2011) modelled aspergillosis impacts on sea fan coral 
Gorgonia ventalina population dynamics by creating a model where 
colonies were cross classified by tissue area (continuously distrib-

uted) and infection status (a discrete state with two levels— infected 
and uninfected). Coulson et al. (2010) constructed a model for Soay 
sheep where the population was structured by body weight (contin-

uously distributed) and age (discrete state). Mixtures of multiple con-

tinuous and discrete states are also possible. Indeed, the vital rates of 
many species with complex life cycles are often best described with 
multivariate state distributions (Caswell & Salguero- Gómez, 2013). 
A complete definition of the simple/general distinction is given in 
Ellner et al. (2016, Chapter 6).

2.1 | A brief worked example of a simple IPM

Box 1 shows a brief example of how ipmr converts parameter es-

timates into an IPM. Perhaps the most frequently used metric de-

rived from IPMs is the asymptotic per- capita population growth 
rate (�, Caswell, 2001). When � > 1, the population is growing, 

(6)�G = �G + �G ∗ z.

(7)n
(

zj , t + 1
)

= h

m
∑

i=1

K
(

zj , zi
)

n
(

zi , t
)

.

TA B L E  2   Translations between mathematical notation, R’s formula notation and ipmr's notation for Ellner et al. (2016) Ovis aries IPM. The 
ipmr column contains the expressions used in each kernel's definition. R expressions are not provided for sub- kernels and model iteration 
procedures because they typically require defining functions separately, and there are many ways to do this step (examples are in the R 
code for each case study in the appendix). ipmr supports a suffix based syntax to avoid repetitively typing out the levels of discrete grouping 
variables. These are represented as ‘a’ in the Math column, ‘age’ in the R formula column, and are highlighted in bold in the ipmr column. s 
corresponds to survival, G corresponds to change in size conditional on survival, mp is the probability of mating, rp is the probability that a 
mating produces a new recruit at t + 1 and B is the size distribution of new recruits at t + 1 whose mean depends on parent size at time t. Fa is 

divided by 2 because this IPM only tracks females

Math formula R formula ipmr

Logit (s (z, a)) = �s + �s,z ∗ z + �s,a ∗ a surv ~ size_1 + age, family = binomial() s_age = plogis(s_int + s_z * z_1 + s_a * age)

G
(

z′ , z, a
)

= fG
(

z′ , �G (z, a) , �G
)

G = dnorm(size_2, mu_G_age, sigma_G) G_age = dnorm(z_2, mu_G_age, sigma_G)

�G (z, a) = �G + �G,z ∗ z + �G,a ∗ a size_2 ~ size_1 + age, family = gaussian() mu_G_age = G_int + G_z * z + G_a * age

Logit
(

mp (z, a)
)

= �mp
+ �mp ,z

∗ z + �mp ,a
∗ a repr ~size_1 + age, family = binomial() m_p_age = plogis(m_p_int + m_p_z * z + 

m_p_a * age)

Logit
(

rp (a)
)

= �rp + �rp ,a ∗ a recr ~age, family = binomial() r_p_age = plogis(r_p_int + r_p_a * age)

B
(

z′ , z
)

= fB
(

z′ , �B (z) , �B
)

b = dnorm(size_2, mu_rc_size, sigma_rc_size) rc_size = dnorm(z_2, mu_rc_size, 
sigma_rc_size)

�B (z) = �B + �B,z ∗ z rc_size_2 ~ size_1, family = gaussian() mu_rc_size = rc_size_int + rc_size_z * z

Pa

(

z′ , z
)

= s (z, a) ∗ G
(

z′ , z, a
)

P_age = s_age * g_age * d_z

Fa
(

z′ , z
)

= s (z, a) ∗ mp (z, a) ∗ rp (a) ∗ B
(

z′ , z
)

∕2 F_age = s_age * f_p_age * r_p_age * rc_size 
/ 2

n0

(

z′ , t + 1
)

=
∑M+1

a=0
∫ U
L
Fa

(

z′ , z
)

na (z, t) dz

na

(

z′ , t + 1
)

= ∫ U
L
Pa−1

(

z′ , z
)

na−1 (z, t) dz

nM+1

(

z� , t+1
)

= ∫ U
L
[PM+1

(

z� , z
)

nM+1 (z, t)

+PM

(

z� , z
)

nM (z, t) ]dz
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while 𝜆 < 1 indicates population decline. ipmr makes deriving es-

timates of 𝜆 straightforward. Box 1 demonstrates how to param-

eterize a simple, deterministic IPM and estimate 𝜆. The example 
uses a hypothetical species that can survive and grow, and repro-

duce sexually (but not asexually, so C
(

z′, z
)

= 0 in Equation 2). The 
population is structured by size, denoted z and z′, and there is no 
seedbank.

The P
(

z′, z
)

 kernel is given by Equation 3, and the vital rates 
therein by Equations 4– 6. The F

(

z′, z
)

 kernel is given Equation 8:

Equation 9 is a recruit size distribution (where frd denotes a normal 
probability density function), and Equation 10 describes the number of 
new recruits produced by plants as a function of size z.

The code in Box 1 substitutes the actual probability density 
function (dnorm()) for fG and frd, and uses inverse link functions in-

stead of link functions. Otherwise, the math and the code should 
look quite similar.

2.2 | Case study 1: A simple IPM

One use for IPMs is to evaluate potential performance and man-

agement of invasive species in their non- native range (e.g. Erickson 
et al., 2017). Calculating sensitivities and elasticities of 𝜆 to kernel 
perturbations can help identify conservation management strat-
egies (Baxter et al., 2006; Caswell, 2001; de Kroon et al., 1986; 
Ellner et al., 2016). Bogdan et al. (2021) constructed a simple IPM 
for a Carpobrotus species growing north of Tel Aviv, Israel. The 
model includes four regressions, and an estimated recruit size dis-

tribution. Table 1 provides the mathematical formulae, the corre-

sponding R model formulae and the ipmr notation for each one. 
The case study materials also offer an alternative implementation 
that uses the generic predict() function to generate the same out-
put. The final part of the case study provides examples of functions 
that compute kernel sensitivity and elasticity, the per- generation 
growth rate, and generation time for the model, as well as how to 
visualize these results.

2.3 | Case study 2: A general age × size IPM

We use an age-  and size- structured IPM from Ellner et al. (2016) 
to illustrate how to create general IPMs with ipmr. This case study 
demonstrates the suffix syntax for vital rate and kernel expres-

sions, which is a key feature of ipmr (highlighted in bold in the 
‘ipmr’ column in Table 2). The suffixes appended to each variable 
name in the ipmr formulation correspond to the subscript-  and/or 

superscript used in the mathematical formulation. ipmr internally 
expands the model expressions and substitutes the range of ages 
and/or grouping variables in for the suffixes. This allows users to 
specify their model in a way that closely mirrors its mathematical 
notation, and saves users from the potentially error- prone process 
of re- typing model definitions many times or using for loops over 
the range of discrete states. The case study then demonstrates 
how to compute age- specific survival and fertility from the model 
outputs.

3  | DISCUSSION OF ADDITIONAL 
APPLIC ATIONS

We have shown above how ipmr handles a variety of model imple-

mentations that go beyond the capabilities of existing scripts and 
packages. The underlying implementation based on metaprogram-

ming should be able to readily incorporate future developments in 
parameterization methods. Regression modelling is a field that is 
constantly introducing new methods. As long as these new meth-

ods have functional forms for their expected value (or a function to 
compute them, such as predict()), ipmr should be able to implement 
IPMs using them.

Finally, one particularly useful aspect of the package is the 
proto_ipm data structure. The proto_ipm is the common data 
structure used to represent every model class in ipmr and pro-

vides a concise, standardized format for representing IPMs. 
Furthermore, the proto_ipm object is created without any raw 
data, only functional forms and parameters. We are in the pro-

cess of creating the PADRINO IPM database using ipmr and 
proto_ipms as an ‘engine’ to re- build published IPMs using 
only functional forms and parameter estimates. This database 
could act as an IPM equivalent of the popular COMPADRE 
and COMADRE matrix population model databases (Salguero- 
Gómez et al., 2016; Salguero- Gómez et al., 2014). Recent work 
has highlighted the power of syntheses that harness many 
structured population models (Adler et al., 2014; Compagnoni 
et al., 2021; Salguero- Gómez et al., 2016). Despite the wide va-

riety of models that are currently published in the IPM litera-

ture, ipmr's functional approach is able to reproduce nearly all 
of them without requiring any raw data at all.
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