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Motivated by observations of solitary waves in the ocean and atmosphere, this paper

considers the evolution of long weakly nonlinear internal waves in an incompressible

Boussinesq fluid. The motion is restricted to the vertical plane. The basic state consists

of stable horizontal shear flow and density stratification. On a long time scale, the

waves evolve and reach a quasi-steady régime where weak nonlinearity and weak

dispersion are in balance. In many circumstances, this régime is described by a

Korteweg-de-Vries equation. However, when the linear long-wave speed equals the

basic flow velocity at a certain height, the critical level, the traditional assumption

of weak nonlinearity breaks down due to the appearance of a singularity in the

leading-order modal equation, implying a strong modification of the flow in the so-

called critical layer. Since the relevant geophysical flows have high Reynolds and

Péclet numbers, we invoke nonlinear effects to resolve this singularity. Viscosity

and thermal conductivity are considered small but finite. Their presence renders the

nonlinear-critical-layer solution unique. Crucially, the density stratification degree

is assumed small at the critical level; this has the consequence that the leading-

order singularity is then identical to that in an unstratified flow. Thus the asymptotic

methodology employed previously for that case can be adapted to this present study.

In this critical layer, the flow is fully nonlinear but laminar and quasi-steady, with

a strong rearrangement of the buoyancy and vorticity contours. This inner flow is

matched at the edges of the critical layer with the outer flow. The final outcome

for spatially localized solutions is an integro-differential evolution equation, whose

form depends on the critical-layer shape, and especially on the wave polarity, that

is, depression or elevation. For a steady travelling wave, this evolution equation

when expressed in terms of the streamfunction amplitude is not a Korteweg-de Vries

equation, as it contains additional nonlinear terms necessary at a certain order of

the asymptotic expansion when matching with the inner flow. However, this steady

evolution equation can be transformed with an appropriate change of variables into a

Korteweg-de-Vries equation. An analysis of the wave mean flow interaction is given.

The horizontal basic stable flow is altered at the critical level at a slow viscous time

scale by the nonlinear D-wave in the quasi-steady state régime. In most cases, the

mean kinetic energy is likely to decay at the same time scale. The D-wave critical-

layer thickness is found inversely proportional to the amplitude of the leading-order

viscous outer flow. The D-wave critical-layer symmetry vis-à-vis the critical level is

broken; the departure is proportional to the local Richardson number, and so is greater

than the analogous asymmetry encountered in an unstratified shear flow. The mean

flow horizontal momentum and kinetic energy are unchanged by the nonlinear E-wave

in the quasi-steady régime, the exchanges taking place only during the formation of

the critical layer and in the transition régime when the nonlinear E-wave is unsteady.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704815]
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I. INTRODUCTION

Internal gravity waves are frequently observed in the atmosphere and ocean, where they play

an important dynamical role, transporting energy over large distances, can produce strong wind or

current shear, and may generate turbulence. A class of internal gravity waves that is of particular

interest to mesoscale dynamics is the internal solitary wave. This is a nonlinear long localized wave

that can maintain its structure due a balance between the steepening effect of nonlinearity and linear

wave dispersion. This balance allows the solitary wave to emerge as an asymptotic solution for a

large class of initial-value problems. They are a robust feature under stable background conditions

and are then readily observable.1–4

In the atmosphere, solitary waves can be generated by thunderstorm outflows, mid-latitude cold

fronts or tropical sea-breeze fronts.5, 6 Atmospheric internal solitary waves can be divided into two

classes; those for which the waves are confined to the lower few kilometers of the troposphere and

those that occupy the entire troposphere. The Earth’s surface acts as the lower boundary, while the

upper boundary is a low-level inversion in the first class and the tropopause in the second class. In

the ocean, internal solitary waves are often generated by the interaction between tidal currents and

topography.4, 7 Of topical interest, we note that oceanic internal solitary waves can also be induced

by the deformation of a long surface water waves such as a tsunami. When a tsunami approaches

the continental slope, oceanic internal waves may be generated when the pycnocline is displaced by

the tsunami as it propagates up the slope. Moreover tsunami wavelengths are sufficiently long that

a possibility exists that they might generate atmospheric internal gravity waves that propagate up

to the ionosphere, and then create a disturbance travelling coherently with the ocean wave below.

Such ionospheric disturbances can be observed using measurements of ionospheric electron density

by Global Positioning System (GPS) networks. Observations of long ionospheric internal waves

following the 2010 Chilean tsunami have been reported for instance by Hawaii based GPS network.8

Weakly nonlinear, long-wave theories provide good models for internal solitary waves.9 These

theories assume that internal solitary waves propagate in a waveguide, within which the background

stratification and flow vary as a function of height, and which has upper and lower boundaries

which effectively trap the waves, and ensure that only horizontal propagation is allowed. The

Korteweg-de Vries (KdV) equation was derived for internal solitary waves in this weakly nonlinear,

long-wave limit.10, 11 The coefficients of the KdV equation depend on the background properties

of the waveguide. This model and its various extensions are appropriate for the coastal ocean, and

possibly also for the atmosphere when the waveguide consists either of the low-level inversion where

the wave energy is effectively trapped, or of the whole troposphere, above which lies a strongly stable

stratosphere. However, in the deep ocean when the near-surface pynocline lies above a deep weakly

stratified layer, or in the lower atmosphere when a low-level inversion is capped by a deep weakly

stratified atmosphere, it may be more appropriate to use a model equation of the Benjamin-Ono

type.2 Within the framework of these model equations, internal solitary waves are very robust, and

long-lived. Indeed, observations in the ocean and atmosphere confirm these predictions, see the

review articles.12, 13 However, for large amplitudes, these waves may become unstable due to shear

instability, leading to turbulent patches or complete convective overturning.

Another fundamental mechanism, which can lead to the breaking of an internal solitary wave,

is the situation when the solitary wave rides on a background mean flow containing a critical level.

In this case, there is a strong interaction between the wave and the mean flow in the vicinity of the

critical level, and this aspect is the focus of this paper. The “critical layer interaction” is amenable to

a self-consistent analytical theory for that subclass of cases when the breaking zone is very narrow

and occurs around the critical level where the linear-long-wave phase speed equals the velocity of

the background mean flow.14 Here, linear inviscid theory fails, and needs to be replaced by a theory

in which nonlinearity and/or diffusion terms are invoked. In the oceanic and atmospheric context,

nonlinearity is the dominant effect, and so here, we shall present a nonlinear critical-layer theory. In

the asymptotic theory we shall describe, the flow field is wave-like in the adjoining regions outside a

thin critical layer, within which it is essentially nonlinear.15 In the absence of critical layers, it can be

shown that a weakly nonlinear wave does not exchange energy and momentum with the background

flow, and the effect of the background shear is purely kinematic. But when a critical level is present,
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the effect of this shear on the wave is essential to the wave dynamics, which is strongly nonlinear.

However, it transpires diffusion cannot be neglected completely. Although the diffusion terms in

the momentum and buoyancy equations, whether laminar or “turbulent,” are not used to remove the

singularity in the critical layer, as this is achieved through the nonlinear terms, they are needed as

perturbations in order to obtain a viscous secular condition, valid when the viscosity and thermal

conduction go to zero, which selects a unique solution for our vorticity and buoyancy equations in

the critical layer. This is especially the case within the closed region bounded by certain separatrices

(often called the cat’s eye) where we use an extension of the Prandtl-Batchelor theorem. A further

consequence is that the small diffusive terms induce the generations of mean flow and buoyancy on

either side of the critical layer, due to wave-mean flow interactions in the critical layer. This is a

very slow process, and the relevant time scales are proportional to the rescaled viscosity and thermal

conductivity coefficients.

When a finite-period linear internal wave is considered16 propagating vertically and incident on

a critical level, the direction of the energy flux is determined by the local Richardson number Jc at

the critical level for the case when viscosity dominates. When Jc > 1/4, they showed that the wave

energy is absorbed by the background flow near the critical level. For Jc < 1/4, the energy flux can

go in either direction, depending on Jc and the wavelength of the wave. But when nonlinearity is the

dominant mechanism in the critical layer, these results are drastically changed.17–20 In particular,

the energy exchange is strongly influenced by the critical layer-induced mean fields of current and

buoyancy. For the analogous problem of a barotropic Rossby wave, in the long wavelength limit,

the energy flux directions and amplitudes crucially depend on the basic-flow profile.20 However, the

energy and momentum exchanges are reduced in the asymptotic quasi-steady régime following the

formation of the critical layer to the mean shear flow evolution, since the nonlinear Rossby wave

conserves its shape in the frame moving with the constant wave speed.

These same conclusions seem to hold for slightly stratified fluids (Jc ≪ 1). Generally, for strati-

fied flows, the energy exchange during the critical-layer formation depends on the local Richardson

number Jc and the mean flow and buoyancy profiles.17 A steady stratified critical layer partially

reflects and transmits an incident internal wave according to the values of a parameter λ, which

measures the ratio of viscous diffusion to nonlinear advection, and the local Richardson number Jc.

The reflection coefficient |R| decreases as λ and Jc increase and |R| is usually small. The transmis-

sion coefficient |Tr| also decreases as Jc increases and |Tr| tends to exp(−
√

Jc − 1/4 π ) as λ → ∞
conforming with the viscous critical-layer theory. The phase jump φjump asymptotes to −π as Jc

increases. The vorticity jump is of order one when Jc = O(1), and decreases as λ and Jc increase.

The critical-layer pattern is not symmetric vis-à-vis the critical level owing to assumption of a small

but finite viscosity, that is, when λ = O(1). In the quasi-steady régime, the wave is also partially

reflected and transmitted by diffusion boundary layers. The latter are located on either side of the

critical layer and are formed by the critical-layer induced mean flow. They are therefore created

during the formation of the critical layer, but they are still evolving in the asymptotic quasi-steady

state by the slow diffusion of momentum from the critical layer. The wave after passing over the first

diffusion boundary layer, is then partially reflected, absorbed, and transmitted by the critical layer.

The transmitted wave is then scattered from the second diffusion boundary layer through the critical

layer. These diffusion boundary layers evolve in time on the classic diffusion length scale
√

λT

(T is a slow time variable defined later), and consequently, the reflected and transmitted coefficients

also evolve on this slow length scale.18 Similarly, the wave momentum flux and the vorticity jump

also depend on it. If Jc is not close to 1/4, then the final transmission coefficient will be very small.

In the quasi-steady régime, in the inviscid assumption, the internal wave is completely reflected and

no transmission occurs: φjump, Jc and R approach 0−, 1/4+ and −1+, respectively, as λ → 0. When

neither nonlinearity nor viscosity is prevailing, the wave is partially reflected and transmitted.

However, the case of an internal wave packet propagating vertically and incident on a critical

layer is quite different, as absorption then dominates over reflection and transmission.21 The horizon-

tal extent of the packet increases with time in the critical layer. The horizontal-momentum vertical

flux jump does not attain a steady state, but instead decreases and remains positive highlighting

the dominance of absorption over reflection, while the periodic-wave flux oscillates with respect to

zero. A positive jump implies a mean-horizontal-velocity acceleration induced by the wave packet,
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whereas for a periodic wave, the mean flow is alternatively accelerated and decelerated. If the forcing

length is increased, the momentum flux jump decreases and tends to a constant value but never reaches

zero even when the wave packet tends to a monochromatic wave. The absorption rate decreases as

the forcing amplitude diminishes. The local Richardson number never becomes negative in the wave

packet critical layer whereas for the case of an incident periodic wave, the critical layer possesses

substantial regions with 0 < Jc < 1/4 and Jc < 0 at large times, and overturning is evident in the

density contours. The degree of transmission is near zero, as for the averaged horizontal-momentum

vertical flux. Nonlinear-critical-layer steady states can be found as the long-time outcome of a spa-

tially periodic wave propagating and interacting with a nonlinear critical layer.22 These states were

possible when the overall Richardson number was less than a critical value always smaller than one.

The local Richardson number was observed to be significantly decreased and areas of Jc < 1/4 existed

in a thin layer along the lower side of the critical layer. Of course, these solutions may be unstable to

shear instabilities. They also showed that weak stratification allowed a weak transmitted wave but as

Jc increases, there is complete reflection of the primary wave. Similar steady zones have also been

found.23 In numerical simulations, large-amplitude internal waves undergo convective overturning

in the critical layer and three-dimensional convective instabilities emerge leading to break-down.24

The wave amplitude is assumed here, to be sufficiently large to allow for the creation of the critical

layer but nevertheless not so large in order to avoid three-dimensional overturning outside the critical

layer. In the same way, the spanwise wavenumber of our nonlinear neutral internal mode is assumed

very small, smaller than the streamwise wavenumber, which precludes the transverse instability from

occurring inside the critical layer. As three-dimensional convection is triggered by the transverse

instability,24, 25 we will henceforth assume that the flow remains two-dimensional everywhere.

In a stratified two-dimensional flow, the nonlinear critical layer is far more complex than for its

homogeneous counterpart. Instead of a single equation, it is governed by a coupled set of nonlinear

partial differential equations, since now the buoyancy equation is added to the vorticity equation.

Also, the singularity in the resulting modal equation is stronger. A theoretical study of the stratified

nonlinear critical layer is desirable due to the difficulty in achieving high Reynolds numbers in

stratified-flow experimental facilities and in numerical simulations. Generally, many modes are

required in a nonlinear analysis, as it emerges that all harmonics are of the same order of magnitude

as the fundamental neutral mode.

In this paper, we will assume that at the critical level, the flow is only weakly stratified, that

is Jc ≪ 1. This assumption is made essentially to keep the analysis tractable. But it is pertinent to

note that, in practice, in the critical layer, the strong distortion of the buoyancy field could lead to

homogenization of the latter, and hence our assumption has some physical validity. Assuming then

that the neighbourhood of the critical level is weakly stratified leads us to consider two different wave

structures, respectively, outside and inside the critical layer, that are coupled through matching. The

outer flow is the place where a long-wavelength internal mode propagates in essentially the same

way as in the study,26 while the critical layer acts as a vortex wave guide in a similar manner as in the

study27 of a weakly stratified upper ocean. This second wave is indeed due to the vertical gradient

of the background vorticity, and buoyancy affects only the kinematics of the wave. The internal

solitary waves obtained here are thus fundamentally distinct from these cited studies and instead

can be considered as wave-vortex structures. Importantly, the background shear flow considered

here is assumed to be linearly stable, and hence the internal solitary waves we shall describe

differ fundamentally from the long-wave localized structures which might emerge from nonlinear

self-organization from infinitesimally small, but growing, disturbances due to shear instability. For

instance, the development and saturation of the long-wave nonlinear disturbances are examined in

Ref. 28, interacting with the critical layer of a weakly supercritical barotropically unstable zonal

flow.

Previous studies of stratified critical layers have usually considered finite wavenumbers and finite

Richardson numbers.17, 22, 23 As a result, the coupled equations were too complicated for detailed

theoretical analysis even when a steady travelling wave hypothesis was made. Consequently, the more

tractable slightly stratified problem was examined,29 when the local Richardson number is small of

order ǫ1/2, where ǫ is the disturbance amplitude outside the critical layer. As in the homogeneous

case, the logarithmic-phase shift of the disturbance then vanishes. It is also possible to obtain some
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analytical results in the study of the spatio-temporal evolution of a critical layer by considering

weakly supercritical modes instead of neutral singular modes. The problem thus becomes tractable

as the leading-order inner equation is linear.28, 30–32

In this paper, we will develop a weakly nonlinear theory based upon long-wave and long-time

hypotheses, with a weakly stratified critical layer, which will enable us to find analytical solutions for

the critical-layer flow to a non-trivial order in our asymptotic expansion. Technically, the analysis

is similar to our previous study19 for a barotropic Rossby wave. Here, we will consider a free

singular internal wave mode embedded in a vertically stratified shear flow. As already noted, the

assumption of a weakly stratified critical layer is not necessarily restrictive, as the cat’s eye pattern

inside the critical layer, where the streamlines form closed loops, is the location where strong

mixing occurs. As a result, the buoyancy and vorticity gradients may be homogenized there.33 While

our study is motivated by atmospheric and oceanic flows, it is set up as a classical fluid dynamics

problem. Our assumption that, at the critical layer the stratification is weak, is motivated by analytical

considerations, but we believe that this is a realistic scenario when a strongly nonlinear critical layer

has formed, as then the consequent “mixing” would lead to a weak or constant stratification there.

Thus, in possible applications to the atmosphere or ocean, we emphasize that our obtained solutions

are the outcome of a long-time process. Hence, our results may not be directly applicable to observed

atmospheric or oceanic density stratified shear flows, unless these have been present for sufficiently

long times. For instance, the oceanic thermocline is often characterized by a strong density gradient

and strong shear. However, if this is disturbed, then buoyancy mixing may occur, leading to a weaker

stratification, but still with strong shear.

The effect of allowing the wave to coexist with a nonlinear critical layer was studied in a pioneer-

ing study26 of internal solitary waves in stratified shear flows. In the absence of any critical layers,

internal solitary waves satisfy a Korteweg-de Vries equation, whose coefficients are determined by

certain integrals of the relevant modal function over the waveguide. Essentially, they assumed that

this equation is not modified by the presence of a critical layer, except that the coefficients formally

do not exist due to the integrals being singular, and instead need to be obtained by a different proce-

dure. They illustrated their procedure for a three-layer flow, where only the middle layer is stratified

with a constant buoyancy frequency and constant shear, with Jc > 1/4. Their nonlinear-critical-layer

analysis assumed no phase jumps to the two first orders of an asymptotic expansion.

In this present work, the background shear velocity and buoyancy profiles will be specified

arbitrarily. We suppose that the mean flow velocity equals the wave speed at a certain height,

namely the critical level. Then, in the linearized theory, a critical-layer singularity occurs. This

has the consequence that the nonlinearity needs to be invoked, and inter alia the mean flow is

subsequently modified. We examine this modified mean flow at a long time after the formation of

the critical layer, when we also assume that the buoyancy stratification has become small locally,

due to homogenization. The thin region near this level, the so-called critical layer, is studied with an

inner scaling, and for quasi-steady flows, is fully nonlinear.

The inner critical-layer expansion is first analytically determined at each order. Using the method

of matched asymptotic expansions, this inner flow is then matched at the edges of the critical layer

with the outer flow. Certain integration constants of the inviscid part of the flow are determined by

using Redekopp’s averaging technique34 on the diffusive components using the nonlinear critical

layer theory.35 In this approach, the viscosity and thermal conductivity render the inviscid solution

unique. Our main result is that the evolution equation for the modal streamfunction amplitude A has

the general form

∂XC[∂T A, A] = −∂XN (A) − ∂3
X A − μ∂X A , (1)

where C[∂T A, A] is a nonlinear functional of ∂TA and A, and N (A) is a nonlinear function of A.

When N (A) is a quadratic polynomial in A, the right-hand side has the usual KdV form. Here the

left-hand side does not adopt the simple form ∂TA which would then reduce (1) to the usual KdV

equation. Instead, the left-hand side contains integro-differential terms, required at a certain order

of the asymptotic expansion when matching the inner flow on the dividing streamlines.

The resulting evolution equation bears some similarity to another evolution equation found36 for

a certain class of finite-amplitude internal solitary waves. Remarkably, for steady travelling waves,
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with an appropriate change of variables, this evolution equation can be transformed back into a

KdV-type equation. The critical-layer flow is found to be asymmetric with respect to the critical

level.17, 22 However, the asymmetry there was due to the choice of a dissipative (λ = O(1)) and

stable stratified shear flow (Jc > 1/4). Here, the asymmetry is not only caused by the presence of a

density stratification in spite of the fact that Jc < 1/4 but also to some degree by nonlinearity.19, 20

The evolution of the critical layer leads to a strong rearrangement of the streamlines and buoyancy

contours, as breaking theories predict.37 Our asymptotic procedure involves an adaption of the

Prandtl-Batchelor theorem for a slowly evolving, weakly stratified and weakly forced flow within

the cat’s eye, which is exact after an asymptotically long time when the critical layer has settled to

a steady and laminar state.

In forming recirculation regions, the isopycnal curves advected by the shear flow are nearly

closed. Hence, these regions may possess convectively unstable zones. However, the buoyancy

and vorticity gradients are eventually homogenized there due to diffusion and mixing. The resulting

asymptotic quasi-steady state is then a stable configuration,38 where vorticity and density are constant

in space and time. Here we assume the existence of such a quasi-steady state, but due to the necessary

presence of weak horizontal-momentum and buoyancy body forces, the extended Prandtl-Batchelor

theorem yields a cat’s eye characterized by a weak non-constant density field coupled with a weak

non-constant vorticity field.

The plan of the paper is as follows. In Sec. II, we formulate the problem and give the main

assumptions used in our study. Section III displays the equations of the outer flow and gives the local

solutions around the singularity. The critical-layer flow is examined in Sec. IV, where in particular,

the description of this flow is refined by a better parameterization of the streamlines. The flow inside

the defining separatrices within the critical layer (the so-called cat’s eye flow) is analyzed using

an extension of the Prandtl-Batchelor theorem for quasi-steady solitary-wave motions, described in

Appendix A. The outcome is an integro-differential evolution equation. Searching for travelling-

wave solutions in Sec. V, the evolution equation is simplified into a KdV-type equation, whose form

depends on the wave polarity. Solitary-wave solutions are found whose characteristics depend on

the outer flow, the phase jumps across the critical layer and the distortions of the induced mean

flow. We specify some classical mean buoyancy and velocity profiles such as a constant-shear flow.

Section VI focuses on the critical-layer induced mean flow and buoyancy and gives the leading-order

time scales and growth rates of their evolution. It also yields the energy budget in the critical layer

and can predict the heating or cooling of the critical layer according to the various parameters of the

problem. Finally, Sec. VII offers some concluding remarks.

II. FORMULATION

We consider the two-dimensional flow of a stratified, incompressible, viscous, and thermal

conducting fluid. The fluid is located in the (x, y)-plane, where y is the vertical coordinate, and is

confined between two rigid plane boundaries, y = y±, either or both of which may be at infinity. The

basic dimensionless equations of motion are the Navier-Stokes equation, and the density equation

in the Boussinesq approximation,

∂t u + u∇u + ∇ p = � +
1

R
�u + Fu, (2)

∂t� + u∇� =
1

Pr R
�� + Fb, (3)

where u = (u, w) is the velocity field, p the pressure, and � is the buoyancy. The buoyancy is

defined as the variation of the density ρ relative to a reference density ρc, that is as −g(ρ − ρc)/ρc, g

being the constant gravity acceleration. The subscript c characterizes quantities at the critical level.

We use a linear equation of state, ρ = ρc [1 − β(Te − Tc)] connecting the density and temperature

fields. Hence, ρc, Tc denote the basic density, temperature, respectively, at the critical level and β is

the thermal-expansion coefficient. All variables are made dimensionless using a length scale L (the

shear layer thickness), U (the velocity jump across the shear layer), and ρc, Tc. The Reynolds number
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R is assumed large, while the Prandtl number Pr is of order unity. The overall Richardson number

is then Ri = βgTc L/U2. The body forces Fq, b are applied in order to prevent viscous and thermal

diffusions of the basic mean fields and are specified later in Sec. III. As a result, the evolution of the

mean fields is driven by the nonlinear critical layer and not by a laminar diffusion. Relative to the

basic-state shear flow and stratification, we impose a neutral-wave disturbance with a real horizontal

phase speed c. Then, in a reference frame moving with the wave speed c, the total streamfunction �

and buoyancy � are given by

� =
∫ y

yc

[U (ȳ, τ1, τ2, τDB, · · ·) − c] d ȳ + ǫ ψ, � = T (y, τ1, τ2, τDB, · · ·) + ǫ θ . (4)

Here U (y, τ1, τ2, τDB, · · ·) and T (y, τ1, τ2, τDB, · · ·) are the dimensionless basic shear flow and

buoyancy fields, where τ 1 and τ 2 are critical-layer leading-order slow times and τDB is the diffusion

boundary layer slow time whose scalings are to be determined. The disturbance stream function and

buoyancy are ǫ ψ and ǫ θ , respectively, where ǫ is a small parameter. The local Richardson number

is Ri T
′
(y)/U

′
(y)2. The relevant dimensionless equations of motion are the vorticity and buoyancy

equations

{∂t + (U − c)∂x̄ }�ψ + ǫ J (�ψ,ψ) = −∂x̄θ + U
′′
(y)∂x̄ψ +

�2ψ

R
+

U
′′′

(y)

ǫR
+

Fq
′

ǫ
, (5)

{∂t + (U − c)∂x̄ }θ + ǫ J (θ, ψ) = T
′
(y)∂x̄ψ +

�θ

Pr R
+

T
′′
(y)

ǫPr R
+

Fb

ǫ
. (6)

J is the operator Jacobian. The prime denotes a derivate with respect to y. The formulation is

completed by specifying boundary conditions at the remote edges of the waveguide at y = y±. The

Reynolds number being large, the viscous boundary layers at y = y± are very thin and do not interact

with the critical-layer induced flow. Only the inviscid boundary condition will be thus needed here,

which is that ψ = 0 at y = y±. As anticipated above, the mean fields are expanded in the form

U (y, τ1, · · ·) = U0(y) + ǫ
1
2 [U1(y, τ1, · · ·) − Uu,1(y)] + ǫ U2(y, τ1, · · ·) + · · · , (7)

T (y, τ1, · · ·) = T0(y) + ǫ
1
2 T1(y, τ1, · · ·) + ǫ T2(y, τ1, · · ·) + Tind (y, τ1, · · ·) + · · · , (8)

c = c0 + ǫ
1
2 c1 + ǫ c2 + · · · , (9)

where henceforth, we let Û1(y, τ1, · · ·) = U1(y, τ1, · · ·) − Uu,1(y). Here U0(y), T0(y) are the basic

mean fields, Tind(y) is an O(ǫ) mean buoyancy induced at the critical layer by the leading-order

outer viscous flow terms, and the remaining O(ǫ1/2, ǫ, · · ·) terms are to ensure continuity of the

leading-order vorticity and buoyancy fields inside the critical layer, needed here as we do not impose

thin viscous and thermal boundary layers along the separatrices. This additional flow then appears

in the outer flow through small O(ǫ1/2) jumps in mean vorticity and buoyancy at either side of

the critical level.39 Our concern is with the long-time asymptotic régime after the critical-layer

formation stage characterized by the diffusive spreading of the vorticity and buoyancy fields with an

amplitude O(ǫ1/2) throughout the domain. The critical-layer theory will lead eventually to a diffusion

scaling such as the inverse Reynolds number be 1/R = λ ǫ7/4. This small diffusion outwards from

the critical layer generates distorted mean fields of current and buoyancy, first noted in Ref. 40.

As shown in Ref. 19, this O(ǫ1/2) diffusion is only possible by defining the body force so that

Fq = −[U
′′′

0 (y) − ǫ1/2U
′′′

u,1(y)]/R in the vorticity equation. The basic flow U0(y) − ǫ1/2Uu, 1(y) will

remain steady through the evolution of the critical layer, ǫ1/2U1(y, τ 1, · · ·) + ǫ U2(y, τ 1, · · ·) + · · ·,
while additional momentum is created by the critical layer. Outside these diffusion boundary layers,

far away from the critical layer, this new shear distribution will match with ǫ1/2Uu, 1(y), so that the

unperturbed flow far away from the critical layer will be the basic profile U0(y), see Fig. 1. An



056602-8 P. Caillol and R. H. J. Grimshaw Phys. Fluids 24, 056602 (2012)

ε/ν
1/2

U0

UDB1
+

TDB1

+

− c0

 ε
1/2

U
+

1

U1
−

T1

T1
+

−

ya

U0 − c 0

yc

Uε
1/2

u1

U1 −c1ε
1/2

U DB1
TDB1

−
−

FIG. 1. Diagram of the nonlinear critical layer embedded by two diffusion boundary layers, the diffusion wave number is

ν = (λT)1/2/2. The leading-order horizontal mean velocity is U(y) = U0 + [U1(y) − Uu, 1(y)]ǫ1/2. The critical level yc is

located inside the critical layer and does not coincide with the symmetrix axis ya. The critical-layer induced velocity in the

diffusion boundary layers UDB, 1(y) must be matched with the mean flow U1(y) on the edges of the critical layer. The same

matching must be performed for the buoyancy TDB, 1(y) with T1(y).

analogous correction is also needed in the buoyancy equation but for simplicity’s sake, it will not be

formulated explicitly in the equations.

Linearizing and combining (5) and (6), we obtain the steady inviscid modal equation, in the

incompressible Boussinesq limit,

�ψ +
T

′

0(y)

[U0(y) − c0]2
ψ −

U
′′

0 (y)

[U0(y) − c0]
ψ = 0 . (10)

This is separable, and when the x-derivative term is extracted by a Fourier expansion, it reduces to the

well-known Taylor-Goldstein equation. The location yc where the phase speed of the perturbation

equals the given flow velocity, that is U0(yc) = c0, is potentially a singularity, which is of higher

order than that for a homogeneous flow. In the linearized theory, a neutral mode is only possible in

the case when T
′

0(yc) = 0 and T
′′

0 (yc) = U
′

0(yc)U
′′

0 (yc), that is, when the singularity vanishes. Here,

we assume only that T
′

0(yc) = 0 so that the leading-order singularity is merely [U0(y) − c0]−1 as

in an unstratified flow. Note that with T
′

0(yc) = 0 , T
′′

0 (yc) �= 0, the basic buoyancy profile is weakly

convectively unstable in the vicinity of the critical layer, an issue which we shall return to in the

conclusion. Proceeding, the mode is now singular with a critical-layer singularity, so transience,

nonlinearity, viscosity, and conductivity must be reintroduced into the critical-layer leading-order

solution. Here, we select nonlinearity as the principal factor, since this is the case for geophysical

flows with high Reynolds numbers. Nevertheless, viscosity and conductivity are present and render

this inviscid solution unique. The role of long-time transience will be discussed later. The asymptotic

expansion based on the small parameter ǫ will consist of an outer expansion outside the critical layer,

matched at the edges of the critical layer to an inner asymptotic expansion with different scalings

valid in the critical layer. It will transpire that a balance between nonlinearity with linear long-wave
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dispersion in the inner flow is obtained by putting

X = ǫ
1
4 x̄ , T = ǫ

5
4 t , x̄ = x − ct . (11)

Note that the usual scaling for a Korteweg-de Vries equation derivation is, see Ref. 26 for instance,

X = ǫ
1
2 x̄ , T = ǫ

3
2 t . (12)

It turns out that this is not valid here, because the leading-order critical layer matching would

then yield a dispersiveless amplitude equation. Instead, with the scaling (11) we will use, the linear

dispersive terms in the outer flow appear at the correct O(ǫ2) to balance the leading-order nonlinearity.

III. OUTER FLOW

In the outer flow outside the critical layer, the perturbation streamfunction is expanded as

follows:

ψ = ψ (0) + ǫ
1
2 ψ (1) + ǫ ψ (2) + · · · , (13)

with a similar expansion for the perturbation buoyancy. At the leading order, that is O(ǫ), we seek a

solution in the separated form,

ψ (0) = φ(y)A∗(X, T ) , A∗ = U
′

0(yc) A , (14)

such as
L0(φ) = ∂2

yφ +
T

′

0(y)

[U0(y) − c0]2
φ −

U
′′

0 (y)

U0(y) − c0

φ = 0 , (15)

while θ (0) =
T

′

0(y)ψ (0)(y)

U0(y) − c0

.

Equation (15) has two linearly independent solutions, whose Frobenius expansions in terms of

η = y − yc (valid when |η| ≪ 1), are given by

φa = η +
∞

∑

n=2

a0,nη
n , (16)

φb = 1 +
∞

∑

n=2

b0,nη
n + b0φa(η) ln |η∗|. (17)

The first few coefficients are, recalling that T
′

0 = 0,

a0,2 =
1

2
b0, a0,3 =

1

12

(

2
U

′′′

0

U
′

0

+
T

′′2
0

U
′4
0

−
T

′′′

0

U
′2
0

)

,

b0 =
U

′′

0

U
′

0

−
T

′′

0

U
′2
0

, and b0,2 =
1

2

(U
′′′

0

U
′

0

− 2b2
0

)

+
1

4

(T
′′2

0

U
′4
0

−
T

′′′

0

U
′2
0

)

.

The solution φa is regular, but the solution φb has a logarithmic singularity. We denote b̄0 = b0/U
′

0,

and in general, in the sequel, we will introduce an overbar to define a division by U
′

0. The coordinate

η is rescaled to η* = η/η0, where η0 will be determined when matching the outer flow with the

critical-layer flow. Using a superscript ± to distinguish the flow above or below the critical level,

the mode is written on either side of yc as

φ+(y) = a+b0φa + φb, (18)

φ−(y) = a−b0φa + φb .
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The constants a± are determined by the boundary conditions that φ± = 0 at y = y±, respectively.

Proceeding to the next order, that is O(ǫ3/2), the flow is affected by the advection (denoted by the

subscript l) due to the additional mean flow U1 and by dispersion (denoted by d)

L0(ψ (1)) = −
[

L1(φ) −
Û1(y) − c1

U0(y) − c0

M0(φ) + φ∂2
X

]

A∗ , (19)

whereLi (φ) =
Ui (y)−ci

U0(y) − c0

∂2
yφ−

U
′′

i (y)φ

U0(y)−c0

+
T

′

i (y)φ

[U0(y)−c0]2
, Mi (φ)=

T
′

i (y)φ

[U0(y)−c0]2
, i = 1, 2,

while θ (1) =
T

′

0(y)ψ (1)

U0(y) − c0

+
T

′

1(y)ψ (0)

U0(y) − c0

− T
′

0(y)
Û1(y) − c1

[U0(y) − c0]2
ψ (0) + λ

T
′

0(y)φ(1)
v

U0(y) − c0

X.

The behaviour of ψ (1) near the critical level is

ψ (1) = φ
(1)
l A∗(X, T ) + φ

(1)
d ∂2

X A∗(X, T ) + λφ(1)
v X + φ B∗(X, T ) , (20)

where φ
(1)
l = (

∞
∑

n=0

[bl,1,n ln |η∗| + cl,1,n] ηn + αl,1φa + βl,1φb) ,

φ
(1)
d = (

∞
∑

n=2

[cd,1,nη
n] + αd,1φa + βd,1φb) ,

and φ(1)
v = (αv,1φa + βv,1φb) , φ = (ab0φa + φb) .

B*(X, T) is the second-order amplitude of the mode which, like A*(X, T) obeys an amplitude

equation derived at the next order. The coefficients α, β, respectively, are related to the regular,

singular Frobenius solution, and are determined by the boundary conditions that φ
(1)
l,d,v = 0 at y

= y±. Note that the strongest singularity is proportional to b0T
′

1/T
′′

0 ln η∗, and it is stronger than

for unstratified flow, where it is proportional to η ln η*. The necessity for the secular diffusive flow

terms λφ(1)
v X appears later when matching the averaged vertical flux of the horizontal momentum.

At the next order, that is O(ǫ2), ψ (2) and θ (2) are governed by the equations

L0(ψ (2)) = ft (y)∂T X−1 A∗ + fl(y)A∗ +
1

2
fn(y)A∗2 + fd (y)∂2

X A∗ − φ
(1)
d ∂4

X A∗

−L1(φ)B∗ − φ∂2
X B∗ − λL1(φ(1)

v )X +
λ

Pr

[ PrU
′′′

1 (y)

U0(y) − c0

−
T

′′

1 (y)

[U0(y) − c0]2

]

X , (21)

with ft (y) =
[ T

′

0(y)

[U0(y) − c0]3
−

U
′′

0 (y)

[U0(y) − c0]2

]

φ ,

fl(y) = −
{

L1(φ
(1)
l ) + L2(φ) −

Û1(y) − c1

U0(y) − c0

[M1(φ) + M0(φ
(1)
l )]

+
[(Û1(y) − c1

U0(y) − c0

)2

−
U2(y) − c2

U0(y) − c0

]

M0(φ)
}

,

fn(y) =
[( U

′′

0 (y)

U0(y) − c0

)′

[U0(y) − c0] −
( T

′

0(y)

U0(y) − c0

)′] φ2

[U0(y) − c0]2
,

and fd (y) = −
[Û1(y) − c1

U0(y) − c0

[φ + M0(φ
(1)
d )] + φ

(1)
l + L1(φ

(1)
d )

]

.



056602-11 P. Caillol and R. H. J. Grimshaw Phys. Fluids 24, 056602 (2012)

The buoyancy field is then given by

θ (2) = −
T

′

0(y)φ

[U0(y) − c0]2
∂T X−1 A∗ +

( T
′

0(y)

U0(y) − c0

)′ φ2 A∗2

2[U0(y) − c0]

+
T

′

0(y)ψ (2)

U0(y) − c0

+
T

′

1(y)ψ (1)

U0(y) − c0

+
T

′

2(y)ψ (0)

U0(y) − c0

−
Û1(y) − c1

U0(y) − c0

θ (1) −
U2(y) − c2

U0(y) − c0

θ (0)

+ λ
[ T

′

1(y)φ(1)
v

U0(y) − c0

−
Û1(y) − c1

U0(y) − c0

θ (1)
v +

T
′

0(y)ψ (2)
v

U0(y) − c0

]

X +
λ

Pr

T
′′

1 (y)X

U0(y) − c0

. (22)

There are contributions from the time derivative of the modal amplitude A∗
T (denoted by the subscript

t), the quadratic term A*2 (denoted by the subscript n) and the linear dispersive terms ∂2
X A∗ and

∂4
X A∗ (denoted by the subscript f) and a linear term A* corresponding to the advection of ψ (0), θ (0),

ψ (1) and θ (1) by the additional mean flow. Each contribution will affect the coefficients of the final

amplitude equation (1) governing the evolution of A. Next, the solutions are Frobenius-expanded in

the neighbourhood of yc. Thus for instance, we find the corresponding terms in ψ (2) from (21),

ψ (2) = gt (y)∂T X−1 A∗ + gl(y)A∗ +
1

2
gn(y)A∗2 + gd (y)∂2

X A∗ + g f (y)∂4
X A∗

+ (ab0 αb,2φa + φb)J2[A] + βv,1 Pr (αindφa + βindφb)A∗ + λgv(y)X + · · · ,

(23)

with gt (y) =
∞

∑

n=0

[bt,2,n ln |η∗| + ct,2,n]ηn + αt,2φa + βt,2φb ,

gl(y) =
∞

∑

n=0

[al,2,n ln2 |η∗| + bl,2,n ln |η∗| +
cl,2,n

η
]ηn + αl,2φa + βl,2φb ,

gn(y) = (

∞
∑

n=0

[an,2,n ln2 |η∗| + bn,2,n ln |η∗| +
cn,2,n

η
]ηn + αn,2φa + βn,2φb ,

gd (y) =
∞

∑

n=0

[bd,2,n ln |η∗| + cd,2,n]ηn + αd,2φa + βd,2φb ,

g f (y) =
∞

∑

n=0

[c f,2,nη
n] + α f,2φa + β f,2φb ,

and gv(y) =
∞

∑

n=0

[av,2,n ln2 |η∗| + bv,2,n ln |η∗| + cv,2,n]ηn + αv,2φa + βv,2φb .

Note that ψ (2) has stronger singularities than ψ (1). There is an analogous expansion for θ (2).

The presence of a higher-order dispersive term leads to the possible existence in the evolution

equation (1) of a term proportional to ∂5
X A. However, it will transpire that the coefficient of this

term will be zero. J2[A] is a nonlinear term arising from the critical-layer induced flow and will be

displayed at the end of Sec. IV E, but it does not affect the amplitude equation. The term proportional

to βv,1 A is induced by diffusion, corresponding to the secular diffusive terms at O(ǫ3/2) in the outer

flow.

IV. NONLINEAR CRITICAL LAYER FLOW

In this section, we will integrate the vorticity and buoyancy inner equations and we will deter-

mine, up to the sixth order of the inner expansion, the vorticity, streamwise velocity, streamfunction,
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pressure and buoyancy in the critical-layer open and closed streamline flows. Matching with both

flows will yield the mean flow jumps, the streamfunction phase jumps, and ultimately the searched

evolution equation.

In the unstratified nonlinear critical layer, a balance between the linear and advective terms is

achieved by the transformation,

η = y − yc = ǫ
1
2 Y .

The governing vorticity and buoyancy equations are now expressed in terms of the inner variable Y ,

and so the critical-layer equations are

{ǫ
3
2 ∂T + (�Y∂X − �X∂Y )}(∂2

Y + ǫ
3
2 ∂2

X )� + ǫ
3
2 �X = ǫ λ(∂4

Y + 2ǫ
3
2 ∂2

X∂2
Y + ǫ3∂4

X )� + ǫ3 Fq ,

{ ǫ
3
2 ∂T + (�Y∂X − �X∂Y )}� = ǫ

λ

Pr
(∂2

Y + ǫ
3
2 ∂2

X )� + ǫ2 Fb , (24)

where the body force terms are now Fq = −λ[U
′′′

0 (Y) − ǫ
1
2 U

′′′

u,1(Y)] and Fb = −λ/Pr T
′′

0 (Y). The

outer-flow expansion of Sec. III, when expressed using the inner variable Y , shows the manner in

which the inner expansion must proceed,

� = ǫ
{

�(0) + ǫ
1
2 ln ǫ �(1) + ǫ

1
2 �(2) + ǫ ln2 ǫ �(3) + ǫ ln ǫ �(4) + ǫ �(5) + . . .

}

, (25)

while there is an analogous expansion for the buoyancy �. We can now determine explicitly the

analytical expressions for the inner fields (�, �) at each order.

A. O(ǫ) terms

The leading-order equations (24) reduce to the quasi-steady system,

(�
(0)
Y ∂X − �

(0)
X ∂Y )�

(0)
YY = λ∂2

Y�
(0)
YY and (�

(0)
Y ∂X − �

(0)
X ∂Y )�(0) =

λ

Pr
(�

(0)
YY − T

′′

0 ) . (26)

We solve this system in the inviscid limit, λ → 0, and so we search for a solution perturbed by

diffusion terms in the form

�(0) = �
(0)
i + λ�(0)

v + O(λ2) , �(0) = �
(0)
i + λ�(0)

v + O(λ2) . (27)

As in Ref. 19, we employ the zero-order streamfunction as the cross-stream coordinate and so

perform the following change of coordinates

(X,Y, T ) → (ξ = X, S = �̄(0)(X,Y, T ), τ = T ) . (28)

The system (26) then becomes

�
(0)
i,Y�

(0)
i,YYξ = 0 and �

(0)
i,Y�

(0)
i,ξ = 0 . (29)

Note that here, U
′

0S = U
′

0�̄
(0) = �(0). The solutions for �

(0)
i,YY and �

(0)
i are expressed in terms of

arbitrary functions

�
(0)
i,YY = F (0)(S) and �

(0)
i = G(0)(S) . (30)

The related diffusive components are given by the equations

�
(0)
i,Y�

(0)
v,YYξ = ∂2

Y�
(0)
i,YY , Pr�

(0)
i,Y�

(0)
v,ξ = ∂2

Y�
(0)
i − T

′′

0 .

Using Eqs. (30), we get

U
′

0�
(0)
v,YYξ = {SYF

(0)
S }S , PrU

′

0�
(0)
v,ξ = {SYG

(0)
S }S − T

′′

0 S−1
Y . (31)

We now adapt Redekopp’s averaging technique, see Ref. 34. That is, we require that the ξ -averaged

inner-flow diffusive contribution match with its outer-flow diffusive counterpart. This is equivalent

to matching the secular diffusive terms at the edges of the critical layer. These terms form the mean

fields, the horizontally averaged result from the interaction of the internal wave with the basic fields

(U0, T0). For a flow defined by a periodic wave train with wavelength 2π /k, this condition reduces
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to an average over this spatial period. Here, we have then to take the solitary-wave limit k → 0. The

outcome of this procedure is that

F (0)
S =

M (0)

k
2π

∫ π/k

−π/k
SY dξ

and G(0)
S = T

′′

0 +
N (0)

k
2π

∫ π/k

−π/k
SY dξ

,

where M(0) and N(0) are constants. When Y → ∞, [�
(0)
i ,�

(0)
i ] are then matched with the outer

expansions,

�
(0)
i → U

′

0

[

1

2
Y2 + A(X, T )

]

+ (Û1 − c1)Y , �
(0)
i → T

′′

0

[

1

2
Y2 + A(X, T )

]

+ T
′

1Y + T2 .

(32)

The matching is facilitated by putting

Y = Y +
Û1 − c1

U
′

0

. (33)

The outcome is that F (0) = U
′

0 , G(0) = T
′′

0 S + constant where M(0) = 0 and N(0) = 0. Thus, the

leading-order inner streamfunction and buoyancy are given by

�
(0)
i = �(0) = U

′

0

[

1

2
Y 2 + A(X, T )

]

+ constant = U
′

0S + constant , (34)

�
(0)
i = �(0) = T

′′

0 S + T2 −
1

2

T
′2

1

T
′′

0

, (35)

while the first-order wave speed is given by

c1 = Û1 − U
′

0

T
′

1

T
′′

0

. (36)

The validity of the cross-stream coordinate change (33) requires that the secondary mean buoyancy

gradient has no jump, that is T
′+

1 = T
′−

1 , with the consequence that the leading-order rescaled

Richardson number Jc = ¯̄T
′

1ǫ
1/2 is continuous through the critical level.

At this leading order, the critical layer is characterized by a zone of closed streamlines, commonly

called the cat’s eye, which is separated from the remaining part of the flow field by separatrices

whose geometry differs according to the sign of A. Further analysis of the flow field within the cat’s

eye needs to be based on an extended form of the Prandlt-Batchelor theorem. This is described in

Appendix A, and the outcome is that the leading-order vorticity and buoyancy fields in the cat’s

eye are given by the same expressions, that is �(0, ⊙) = �(0) and �(0,⊙) = T
′′

0 S + θ0 . All quantities

within the cat’s eye are denoted by an additional superscript ⊙. Further, continuity of the buoyancy

field requires that T +
2 = T −

2 and θ0 = T2 − T
′2

1 /2T
′′

0 . Note that the buoyancy in the cat’s eye is not

constant due to the presence of the body term Fb, unlike the usual situation, see Ref. 41 for instance.

Indeed, this buoyancy field is convectively unstable in that half of the cat’s eye where T
′′

0 Y < 0, an

issue which we shall return to in the conclusion. The cat’s eye has the classic structure, but is not

centred vis-à-vis the critical level (cf. Fig. 2), as the symmetry axis is shifted to ya = yc − ǫ1/2yδ

with yδ = T
′

1/T
′′

0 . Technically speaking, the singularity located at y = yc in the outer expansions (16,

17, 20, 23) moves to the new level y = ya. Importantly, here our assumption of an infinite period

implies that the pattern depends on the sign of A. Both possible structures are shown in Fig. 2 in the

reference frame moving with the nonlinear wave speed, that is in the coordinates (ζ = X − V T, Y ).

� A > 0: the separatrix is defined by the value S = Sc = A0, with a saddle point at ζ = 0, Y = 0

where A attains its maximum A0, while both centres are located on A = S = 0 as ζ = ±∞.
� A < 0: there is a unique centre at ζ = 0, Y = 0 corresponding to A = S = A0, and the other two

stagnation points are located on A = Sc = 0 as ζ = ±∞.
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(a)

y yc

A

Ζ

Y

(b)

A

Ζ

Y

FIG. 2. Streamline (solid lines) structure in the critical layer according to the sign of A (ζ = X − V T is the streamwise

coordinate on the axis Y = 0 in the frame moving with the nonlinear wave speed). The critical level y = yc is the dashed line

and is located at Y = yδ . The wave A(ζ ) is the long-dashed line for (a) D-wave: A > 0 and (b) E-wave: A < 0, yδ = 0.

Following the terminology,34 the first critical layer is called a depression, while the second is

an elevation. The leading-order pressure inside the critical layer is given by

P = constant − ǫ
1
2

gL

U2
Y + ǫU

′2
0 A + · · · .

Thus a depression (elevation) critical layer is characterized by a positive (negative) anomaly of pres-

sure at ζ = 0. The respective solitary waves are then denoted as D-waves, or E-waves, respectively.

The D-wave streamfunction S increases from S = 0 (or S = A0 for the E-wave) in the centre up to

S = Sc, then S → +∞ at the edges of the critical layer. We will see later on, in Sec. VI, that for the

E wave, yδ = 0.
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B. New strained coordinates

In Subsection IV A, we have determined the flow within the critical layer by using the indepen-

dent variable S = �̄(0) which gives a first approximation to the location of the dividing streamlines.

But an examination of the next orders of the expansion shows that this definition is incomplete. The

cat’s eye is not strictly symmetric with respect to the level ya = yc − yδ ǫ1/2 owing to the distortions

of the mean flow and a better independent variable S̃, a stressed coordinate, is needed in order to

correctly describe the perturbed geometry of the critical layer. Also, it is necessary to ensure that the

streamwise velocity is zero both at the core of the cat’s eye and at the crossing point of the separa-

trices in the frame moving with the wave speed, properties which have previously been overlooked,

see for instance.35 Thus we rescale the order-ǫ streamfunction S using a strained coordinate S̃ of the

following way:

S = S̃ + δϕ(1)(S̃) + ǫ
1
2 ϕ(2)(S̃) + δ2ϕ(3)(S̃) + ǫ

1
2 δ ϕ(4)(S̃) + ǫ ϕ(5)(S̃) + ǫ

1
2 δ2ϕ(6)(S̃) + · · · ,

(37)

where δ = ǫ1/2ln ǫ. The deformation functions ϕ(i) are determined in sequence by ensuring that there

is zero velocity at the stagnation points. It is useful to introduce an analogous strained coordinate Ỹ ,

so that

S̃ =
1

2
Ỹ 2 + A , (38)

Y = Ỹ + δ Y1(Ỹ ) + ǫ
1
2 Y2(Ỹ ) + · · · . (39)

The symmetry line is thus characterized by Ỹ = 0 and the separatrix is then simply defined by

Ỹs = [2(Sc − A)]
1
2 where Sc = A0, D wave , or Sc = 0, E wave . (40)

In terms of these strained coordinates, we obtain the new expansion:

�̃ = ǫ U
′

0 S̃ + ǫ
3
2 �̃(2) + ǫ2 ln2 ǫ �̃(3) + ǫ2 ln ǫ �̃(4) + ǫ2�̃(5) + ǫ

5
2 ln2 ǫ �̃(6) + ǫ

5
2 ln ǫ �̃(7) + · · · .

(41)

At the next orders O(ǫ3/2ln ǫ) and O(ǫ2ln ǫ), using the same technique as that employed in

Sec. IV A, we find that �(1) = b0/2Y A∗ and �(1) = T̄
′′

0 �(1). But then, this order vanishes in

the S̃-expansion, that is, �̃(1) = 0 and �̃(1) = 0 since the first-order correction to S is given by

ϕ(1) = −�̄(1). At the next order O(ǫ2ln ǫ), we find that �̃(3) = −b2
0U

′

0 A2/8 and �̃(3) = −b2
0T

′′

0 A2/8

while ϕ(3) = 0.

C. O(ǫ3/2)

We next consider the terms of order O(ǫ3/2). Here, it is now necessary to consider the flow inside

and outside the separatrices separately. For the flow outside the separatrices, the equations for �
(2)
Y Y

and �(2) are

U
′

0(SY ∂X − SX∂Y )�
(2)
Y Y = −�

(0)
X + λ∂2

Y �
(2)
Y Y ,

U
′

0(SY ∂X − SX∂Y )�(2) + J (�(2),�(0)) = −∂T �(0) +
λ

Pr
[∂2

Y �(2) − (SY − yδ)T
′′′

0 ] , (42)

where J( · , · ) is the operator Jacobian: ∂Y∂X − ∂X∂Y. Hence, the inviscid vorticity and buoyancy are

expressed by

�
(2)
i,Y Y = T̄

′′

0 SY + Q(S) and �
(2)
i = T̄

′′

0 {�(2) − �[SY ]} + G(2)(S) , (43)

where �[SY ] =
∫ ξ

xc

∂T A(x, T )

SY (S, x, T )
dx .
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The lower integration bound xc is the streamwise coordinate of the cat’s eye core, the centre point

for which xc = sign[ζ ] ∞ for a D-wave and xc = V T (ζ c = 0) for a E-wave, when the solution is a

V -speed travelling wave.

The secularity conditions and the matching when S → ∞ yield,

Q(S) = sb0U
′

0

√
2S + Û

′

1 − U
′′

0 yδ, (44)

and

G(2)(S) =
1

6
s(T

′′′

0 − T
′′

0 Ū
′′

0 )(2S)
3
2 + (T

′′

1 − T
′′

0
ˆ̄U

′

1 − yδT
′′′

0 + T
′

1Ū
′′

0 )S

+s(
1

2
T

′′′

0 y2
δ + T

′

2 − T
′′

1 yδ)
√

2S −
1

6
T

′′′

0 y3
δ +

1

2
T

′′

1 y2
δ − T

′

2 yδ + T3, (45)

where s = sgn[Y] (S > 0 for an open streamline). Further integrations with respect to Y and matching

with the outer flow yield explicit expressions for the corresponding velocity, streamfunction and

pressure fields. For instance, the streamwise velocity is given by

ψ
(2)
Y = T̄

′′

0 S + b0G(A, S) + (Û
′s
1 − U

′′

0 yδ)SY + U (2)(A) , (46)

where G(A, S) = U
′

0{A ln[�(A, S)] + [S(S − A)]
1
2 } , U (2)(A) = [b0U

′

0(as +
1

2
) − T̄

′′

0 ]A,

�(A, S) =
∣

∣

∣

S − A

A0

∣

∣

∣

1
2 +

∣

∣

∣

S

A0

∣

∣

∣

1
2

, and SY = Y = s [2(S − A)]
1
2 .

Using the extended Prandtl-Batchelor theorem (see Appendix A), the vorticity in the cat’s eye is

given by

Q(2,⊙) = Q2 + T̄
′′

0 SY , (47)

while the S̃-vorticity fields are unchanged, that is

�̃
(2)
Y Y = Q(S) + T̄

′′

0 S̃Y , �̃
(2,⊙)
Y Y = Q2 + T̄

′′

0 S̃Y . (48)

Since the vorticity should be continuous on the separatrices, by matching (48) on the separatrix

S = Sc, this yields the two conditions

Q2 = Û
′

1 − U
′′

0 yδ and [U
′

1]+− = −2b0U
′

0Y∞. (49)

The cross-stream coordinates of each separatrix (up s = 1, down s = −1) are given by SY(Sc)

= sYs(ξ ). We adopt the following notations, f = ( f + + f −)/2, and [ f ]+− = f + − f − which defines

the jump of f across the critical layer. The constant vorticity Q2 is the first-order additional mean

vorticity evaluated at the core of the cat’s eye at the level: yc − ǫ1/2yδ . Using the appropriate matching

conditions, the second-order mean flow thus possesses a velocity jump across the critical layer

[U2]+− = −2b0U
′

0 yδY∞ ,

while the second-order wave speed is

c2 = U 2 +
(1

2
U

′′

0 yδ − Û
′

1

)

yδ .

The separatrix cross-stream location when ξ tends to infinity, sY∞ takes the following values:

Y∞ = (2A0)1/2, for the D wave and Y∞ = 0, for the E wave. Consequently, the D-wave additional

mean flow is distorted. The latter possesses a vorticity jump through yc whose difference from the

unstratified medium case is contained in the expression for b0, which now depends on T
′′

0 (yc). The

D-wave mean velocity has a O(ǫ) jump proportional to Jc (ǫ A0)1/2.

The S̃-velocity fields are

�̃
(2)
Y = �

(2)
Y +

U
′

0

SY

ϕ(2) = b0G(A, S̃) + (Û
′

1 − U
′′

0 yδ)S̃Y +
1

2
b0U

′

0Y∞Ỹs, �̃
(2,⊙)
Y = Q2 S̃Y + Ũ2(A),
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and the second-order deformation of the streamlines is given by

ϕ(2,s) = S̄Y

(

1

2
b0U

′

0Y∞Ỹs − T̄
′′

0 S̃ − U (2)

)

.

We deduce from matching ϕ(2) with ϕ(2, ⊙) on the separatrices that

ϕ(2,⊙) = S̄Y

(

1

2
b0U

′

0Y∞Ỹs − T̄
′′

0 S̃ − U (2)

)

.

Importantly, we now note the absence of as-jump, that is b0[a]+− = 0, that is the logarithmic phase

shift is zero, as expected, see Ref. 29. Next U (2+) = U (2−), while the matching of �̃
(2)
Y with �̃

(2,⊙)
Y

gives the integration function Ũ2 : Ũ2 = b0 A∗ ln[�(A, Sc)]. The S̃-streamfunctions are

�̃(2) =
2

3
T̄

′′

0 S̃Y (A − S̃) + b0U
′

0[A{S̃Y ln[�(A, S̃)] − s
√

2S̃} +
1

6
s
√

2S̃
3

+
1

2
Y∞Ỹs S̃Y ]

+ (Û
′

1 − U
′′

0 yδ)S̃ + �(2)(ξ, T ),

and �̃(2,⊙) =
2

3
T̄

′′

0 S̃Y (A − S̃) + Q2 S̃ + Ũ2 S̃Y + �̃2(ξ, T ),

with �(2)(ξ, T ) = (cl,1,0 + βl,1 − ˆ̄U
′s

1 + ¯̄T
′

1 − ab0 yδ) A∗ + βd,1∂
2
X A∗ + B∗.

The matching of the streamfunction �̃(2) on the separatrix S = Sc, to within an arbitrary constant,

leads to

�̃(2)(Sc, ξ ) + C (2) = �̃(2,⊙)(Sc, ξ ),

and so �̃2(ξ, T ) = �(2) + C (2) , [C (2)]+− = −
2

3
b0U

′

0Y∞Sc,

[βd,1]+− = 0 and
[ ¯̄T

′′

1]+−
b0

−
[Ū

′′

1 ]+−
b0

+ [βl,1]+− = 2(2b0 − ¯̄T
′′

0)Y∞. (50)

The buoyancy field in the cat’s eye is, from Appendix A,

�̃(2,⊙) = T̄
′′

0 (�̃(2,⊙) − �[S̃Y ] + s�0[S̃]) − (Q̄2T
′′

0 + T
′′′

0 yδ)S̃ + θ2 , (51)

where �0[S] =
∫ ξ (S)

xc

∂T A(x, T )

|SY (S, T, x)|
dx ,

such as the upper integration bound ξ (S) is given by A[ξ , T] = S. The function �0 appears in order

to make the buoyancy continuous on the symmetry axis of the critical layer. We have now to match

�̃(2) on the separatrix. The outcome is that the separatrices are iso-buoyancy contours. Moreover,

we can find the constant in (51)

θ2 =
1

2
T

′′

1(Y 2
∞ + y2

δ ) +
1

2
([T

′

2]+− − [T
′′

1 ]+− yδ)Y∞ − T̄
′′

0 C (2) −
1

6
T

′′′

0 y3
δ − T

′

2 yδ + T 3 , (52)

and the jump [G(2)(Sc)]+− from (43); this last condition provides with a relationship linking various

mean distorted buoyancies at the critical level up to the third order and the nonlinear wave speed V :

1

2
[T

′′

1 ]+−{Y 2
∞ + y2

δ } − [T
′

2]+−yδ + [T3]+−

= 2[(
1

3
¯̄T

′′

0 − b0)T
′′

0 −
1

3
T

′′′

0 ]ScY∞ + 2(T
′′

1 yδ − T
′

2)Y∞ − T
′′′

0 y2
δ Y∞ − 2T̄0V

√

2|A0|. (53)
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The analytical expressions of buoyancy and vorticity in the cat’s eye, obtained through the Prandtl-

Batchelor extended theorem, show that, to the leading orders, the buoyancy is locked onto the

streamfunction, and if we remove the body forces, the buoyancy and vorticity are constant. Our

expressions are the consequence of the body force terms acting through the equations, plus constants

of integration determined from matchings on the separatrix.

D. O(ǫ2ln ǫ)

The equations for the third-order vorticity and buoyancy are

U
′

0(SY ∂X − SX∂Y )�
(4)
Y Y = J (�

(2)
Y Y , �(1)) − ∂X�(1) + λ∂2

Y �
(4)
Y Y ,

U
′

0(SY ∂X − SX∂Y )�(4) + J (�(4),�(0))

= J (�(2), �(1)) + J (�(1), �(2)) − ∂T �(1) +
λ

Pr
∂2

Y �(4) . (54)

The inviscid fields are given, outside the separatrices, by

�
(4)
i,Y Y = �(1) Q̄S + F (4)(S) , (55)

and

�
(4)
i = T̄

′′

0

{

�(4) −
1

2
b0 AT X−1 − �S[SY ]�̄(1)

}

+ �̄(1)G(2)
S (S) + G(4)(S).

Matching with the outer flow shows that F (4) = 0 and G(4) = 0. The E-wave vorticity and buoyancy

are singular on the separatrix since Sc = 0 but, as in the unstratified case, the singularity is removed

by the replacement of the cross-stream coordinate S with S̃, which better models the distortion of

the streamlines in the nonlinear critical layer. Further integrations give the streamwise velocity and

the streamfunction. The S̃-fields are

�̃
(4)
Y Y = −

1

2
b0T̄

′′

0 A, �̃
(4)
i,Y = −

1

2
b0T̄0

′′ S̃Y A, �̃
(4)
i =

1

4
b2

0Y∞ A∗Ys−b0(T̄
′′

0 S̃+U (2))A+�(4)(ξ, T ),

�̃(4) = T̄
′′

0

(

�̃(4) −
1

2
b0 AT X−1

)

,

with ϕ(4) = −SY Ū
(4)(ξ, T ), U (4)(ξ, T ) =

1

2
b0[(βl,1 − Û

′

1 + T̄
′

1)A∗ + βd,1∂
2
X A∗ + B∗] ,

and �(4)(ξ, T ) =
1

2
{(bl,2,0 +

1

2
b2

0 y2
δ − βl,1b0 yδ)A∗ + (bn,2,0 −

1

2
b̄2

0)A∗2

+(bd,2,0 − βd,1b0 yδ)∂2
X A∗ + bt,2,0∂T X−1 A∗ − b0 yδ B∗}.

The vorticity and buoyancy fields within the cat’s eye are given by (see Appendix A),

�̃
(4,⊙)
i,Y Y = Q4 −

1

2
b0T̄0

′′ A,

and

�̃(4,⊙) = T̄
′′

0

(

�̃(4,⊙) −
1

2
b0∂T X−1 A

)

+ G(4,⊙)(S̃).

Next, the streamwise velocity is given by

�̃
(4,⊙)
i,Y = Q4 S̃Y −

1

2
b0T̄0

′′ S̃Y A,

where ϕ(4, ⊙) = ϕ(4). Matching of the velocity yields

Q4 = 0 , [βl,1]+− = −2b0Y∞, (U (4)+ = U (4)−) . (56)
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Hence, we find a new jump for the distorted mean flow,

[U
′′

1 − T̄
′′

1 ]+− = 2b0(T̄
′′

0 − 3b0U
′

0)Y∞. (57)

Matching of the streamfunctions �̃
(4)
i with

�̃(4,⊙) =
1

2
b2

0{Y∞Ys − A ln[�(A, Sc)]}A∗ − b0(T̄
′′

0 S̃ + U (2))A + �̃4(ξ, T )

yields [�(4)]+− = 0 , and �̃4(ξ, T ) =
1

2
b2

0 {A ln[�(A, Sc)] −
1

2
YsY∞}A∗ + �(4) + C (4) ,

from which we can establish that

[T
′

2]+− = −yδ[T
′′

1 ]+− , (58)

and that C(4)s = 0. Matching of the buoyancy is possible if we choose G(4,⊙)(Sc) = 0. From Appendix

A, we then find that the constant θ4 = 0 in Eq. (A7), so that G(4,⊙)(S) is just the zero function in the

case of a D-wave, but has a complex expression for an E-wave.

The assumption of weak stratification in the critical layer has led to lesser importance of

buoyancy effects vis-à-vis the vorticity dynamics since the buoyancy intervenes in the vorticity

equation at a lower order than the vorticity. The vorticity and buoyancy are thus effectively uncoupled,

since, at each order; the vorticity is calculated from the vorticity equation, and then, after a double S-

integration, the streamfunction is determined, and then the buoyancy is calculated from the buoyancy

equation through the newly found streamfunction. Terming the critical layer as a weakly stratified

region must be here thus interpreted as a zone where the vorticity dynamics is weakly coupled with

buoyancy, but not a zone where the local Richardson number is small. The latter is indeed defined

as the product of the overall Richardson number Ri by J. As Ri may have a large value, then Ri Jc

may reach values larger than 0.25.

E. O(ǫ2) terms

We next consider the terms of order O(ǫ2). The equations for �
(5)
Y Y and �(5) are

U
′

0(SY ∂X − SX∂Y )�
(5)
Y Y = J (�

(2)
Y Y , �(2)) − �

(2)
X − �

(2)
Y Y T + λ(∂2

Y �
(5)
Y Y − U

′′′

0 ) ,

U
′

0(SY ∂X − SX∂Y )�(5) + J (�(5),�(0)) = J (�(2), �(2)) − ∂T �(2) +
λ

Pr
(∂2

Y �(5) −
1

2
T I V

0 Y2) .

Using the variables S and ξ , in the inviscid limit and outside the separatrices, they reduce to

�
(5)
i,Y Y = Q̄S{�(2) − �[SY ]} + S̄Y (G(2)

S (S) − T̄
′′

0 �S[SY ]) + F (5)(S), (59)

and

�
(5)
i = T̄

′′

0 �(5) + Ḡ(2)
S (�(2) − �[SY ]) − ¯̄T

′′

0

∫ ξ

xc

�S[SY ]
(

�
(2)
ξ −

∂T A

SY

)

dx

− ¯̄T
′′

0

∫ ξ

xc

�(2)
τ − �τ [SY ]

SY

dx + G(5)(S) . (60)

For the E-wave, these O(ǫ2) vorticity and buoyancy expressions are singular, on the separatrices

as S → Sc = 0. As described in Ref. 20, using the cross-stream coordinate S̃ → Ŝ = S̃/(ǫ1/2 ln ǫ)

enables this singularity to be removed in a zone along the separatrices of width δy = ǫ ln ǫ. The

velocity field �̃
(5)
Y , the stream function �̃(5) and hence �̃(5) can be found explicitly, where constants

of integration are determined by matching with the outer flow and by using the secularity condition.

In particular, matching the buoyancy with the outer flow yields the diffusion-induced mean buoyancy

Tind (y) ∼ ǫ
1

2
βv,1βind Pr T̄

′′

0 (y − yc)2
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+ǫ
3
2 βv,1 Pr [βind T̄

′′

0 yδ +
1

6
T

′′′

0 y3
δ −

1

2
T

′′

1 y2
δ + T

′

2 yδ − T3](y − yc) + · · · , (61)

with βind = (T
′′

1 yδ − T
′′′

0 y2
δ /2 − T

′

2)/T̄
′′

0 , the singular-Frobenius-solution coefficient in Eq. (20). The

vorticity within the closed streamlines is given by

�
(5,⊙)
Y Y = Q(5,⊙)(S) − ¯̄T

′′

0{�S[SY ] − s�0,S[S] + Q2}SY − T̄
′′′

0 yδ SY . (62)

Application of the Prandtl-Batchelor theorem (see Appendix A) determines

Q(5,⊙)(S) = U
′′′

0 S + ω5(S) + Q5 .

For the D-wave, ω5(S) = 0, while the expression ω5(S) for the E-wave is given in Appendix A. One

integration yields the S̃-velocity

�̃
(5,⊙)
Y =

1

3
U

′′′

0 S̃Y (2A + S̃) + Q5 S̃Y − ¯̄T
′′

0{�[S̃Y ] − s�0[S̃] − �[sYs] + s�0[Sc]} + T̄
′′

0 ϕ(2)(S̃)

+{[b0(β
l,1

+ ¯̄T
′

1) − Ū
′′

0
¯̄T

′

1+yδ( ¯̄T
′′2

0 −b2
0)]A∗+b0(β

d,1
∂2

X A∗+B∗)} ln[�(A, Sc)] , (63)

while the buoyancy field within the separatrices is given by

�̃(5,⊙) = T̄
′′

0 {�̃(5,⊙) − �S̃[S̃Y ]ϕ(2)(S̃) − s�0,S̃[S̃]Q2 S̃} − s(Q̄2T̄
′′

0 + T̄
′′′

0 yδ)�0[S̃]

+{s ¯̄T
′′

0�0,S[S̃] − Q̄2T̄
′′

0 − T̄
′′′

0 yδ}{�̃(2,⊙) − �[S̃Y ]} − ¯̄T
′′

0

∫ ξ

xc

�S̃[S̃Y ]
(

�
(2,⊙)
ξ −

∂T A

S̃Y

)

dx

− ¯̄T
′′

0

∫ ξ

xc

(�(2,⊙)
τ − �τ [S̃Y ])

dx

S̃Y

+ G(5,⊙)(S̃) . (64)

To show that �̃(5,⊙) is continuous on the axis of the critical layer at Ỹ = 0 does not seem ob-

vious because of the presence of two integrals. However, both of them are continuous except

−�0,S̃[S̃] �2(ξ ) which emerges from the first integral, but is cancelled by s ¯̄T
′′

0�0,S[S̃]�̃(2,⊙). The

steady-travelling assumption moreover yields a lot of cancellations between both of integrals and

only −s ¯̄T
′′

0�0,S̃[S̃] {�(2,⊙)(S̃, A) − �[S̃Y ] − �(2,⊙)(S̃, 0)} remains, one can then show that the reg-

ularity is assured for S̃ → 0.

The expressions outside the separatrices (given in Appendix B) are then matched with the above

expressions accross the separatrices. Matching the vorticity fields yields the relation

U
′

0

(

�̃
(5)
Y Y (Sc, ξ )−�̃

(5,⊙)
Y Y (Sc, ξ )

)

=
(

�̃
(2,⊙)

Y Y S̃
(Sc, ξ )−�̃

(2)

Y Y S̃
(Sc, ξ )

)(

�̃(2,⊙)(Sc, ζs)−�̃(2,⊙)(Sc, ξ )
)

�= 0.

The moving coordinate ζ s of the stagnation point is ζ s = 0 for a D-wave or ζ s = ±∞ for a E-wave. It

transpires that this cannot be satisfied, as it would yield a dispersiveless amplitude equation. However,

the horizontal velocity, streamfunction, pressure, buoyancy fields and deformation function ϕ(5) can

all be matched continuously, leading to a complete determination of all unknowns, provided that a

certain compatibility condition is satisfied. This, in turn, then yields the desired evolution equation

for the amplitude A:

2

9
b0T̄

′′

0 [(Sc + 6A)Y∞ − (Sc + 2A)Ys] −
2

3
(T̄

′′′

0 − T̄
′′

0 Ū
′′

0 )[(Sc + 2A)Ys − ScY∞]

−
1

2
{2b0Y∞T̄

′′

0 + [T̄
′′

1 ]+−}(Ys−Y∞)Y∞ + 2(b0U
(2)+T̄

′

2−T̄
′′

1 yδ +
1

2
T̄

′′′

0 y2
δ )Y∞ +

3

2
[T̄

′′

1 ]+−y2
δ + [U (5)]+−

+ 2 [
1

2
(U

′′′

0 − T̄
′′′

0 )y2
δ +

1

4
[U

′′

1 ]+−Y∞ − Û
′′

1 yδ + U
′

2 − T̄
′

2 − Q5 − 2b2
0 A∗] Ys

= R(A) = b0

∫ Sc

∞

�[(S − A[X, T ])
1
2 ]

[2S(S − A[X, T ])]
1
2

d S + 2 ¯̄T
′′

0�0[Sc] ,

(65)
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with Ū (5)(ξ, T ) = [αl,1 + b0βl,1 +
1

2
( ¯̄T

′′

0
ˆ̄U

′

1 − ˆ̄U
′′

1 − ¯̄T
′′

1)

+
1

2
(b2

0 − Ū
′′′

0 − 2ab2
0 − ¯̄T

′′

0Ū
′′

0 + 2 ¯̄T
′′′

0 − ¯̄T
′′2

0 )yδ]A + (αd,1 + b0βd,1)∂2
X A

+ (1 + a)b0 B . (66)

This is an integro-differential equation containing two integrals, where we note that the stratification

leads to a second integral compared to the homogeneous case.19 The calculation of the term on the

right-hand side yields two different expressions according to the wave type,

R(A) = −Y0

{

b0

∫ X

xc

F

[

Â(X, T ),
Â(x, T )

Â(X, T )

]

∂T Â(x, T )

Ŷs(X, T )
dx − ¯̄T

′′

0 I0[Sc]

}

for a D-wave ,

or R(A) = Y0

{

b0

∫ X

xc

K
′

[

Â(X, T )

Â(x, T )

]

∂T Â(x, T )

Ŷs(x, T )
dx − ¯̄T

′′

0 I0[Sc]

}

for a E-wave ,

with I0[Sc] =
∫ X (Sc)

xc

∂T Â(x, T )

Ŷs(x, T )
dx, (67)

where the rescaled amplitude Â and separatrix location Ŷs are Â = A/A0, Ŷs =
√

1 − Â (D wave)

and Ŷs =
√

Â (E wave), and Y0 =
√

2|A0| is the maximum half-width of the cat’s eye. The function

F( · , m) is the incomplete elliptic integral of the first kind, with parameter m (0 ≤ m ≤ 1) being

the square of the elliptic modulus (see Ref. 42), and K
′
(m) is the complete complementary elliptic

integral of the first kind, with parameter m (0 ≤ m ≤ 1). We take up a detailed examination of the

evolution equation in Sec. V, and close this section with a brief summary of the determination of

the remaining unknown constants.

The matching of the buoyancy on the separatrix yields the relationship

U
′

0

(

�̃(5)(Sc, ξ )−�̃(5,⊙)(Sc, ξ )
)

=
(

�̃
(2,⊙)

S̃
(Sc, ξ )−�̃

(2)

S̃
(Sc, ξ )

)(

�̃(2,⊙)(Sc, ζs)−�̃(2,⊙)(Sc, ξ )
)

�= 0

which gives two conditions on G(5)(Sc) and G(5,⊙)(Sc):

[G(5)]+−(Sc) = T̄
′′

0 [C (5)]+− − (Q̄2T̄0
′′ + T̄

′′′

0 yδ)([C (2)]+− + 2�0[Sc])

−
[(

Ḡ(2)
S (Sc) + Q̄2T̄0

′′ + T̄
′′′

0 yδ

)

�̃(2)(Sc, ζs)
]+

−
+ 2T

′′

0 �0,S̃[Sc]�2(ζs), (68)

and

G(5,⊙)(Sc) = G(5)(Sc) − T̄
′′

0 C (5) + (Q̄2T̄
′′

0 + T̄
′′′

0 yδ)C (2)

+
(

Ḡ(2)
S (Sc) + Q̄2T̄0

′′ + T̄
′′′

0 yδ

)

�̃(2)(Sc, ζs),

which enables the determination of the constant θ5 in (A9) and (A10) in Appendix A. G(5,⊙) is thus

completely determined. We also get two conditions on G(2)

S̃
(Sc)

G(2)

S̃
(Sc) = −Q̄2T0

′′ − T
′′′

0 yδ, [G(2)

S̃
(Sc)]+− = 2T̄

′′

0 �0,S̃[Sc],

which come down to two relations involving the distorted derivatives of D-wave buoyancy to the

second order and the wave speed V :

T
′′

1 = [T
′′

1 ]+−
yδ

Y∞
, (69)
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[T
′′

1 ]+−

(

1 − 2
y2
δ

Y 2
∞

)

= (T
′′

0 Ū
′′

0 − 2b0T
′′

0 − T
′′′

0 )Y∞ − (2T
′

2 + T
′′′

0 y2
δ + 2V T̄

′′

0 )Y −1
∞ . (70)

The jumps in αl, 1 and αd, 1 are determined by a compatibility condition applied to Eq. (19):

[αl,1]+− = P

∫ y2

y1

(

2
(Û1(y) − c1)

[U0(y) − c0]3
T

′

0(y) +
Û

′′

1 (y)

U0(y) − c0

−
U

′′

0 (y)[Û1(y) − c1] + T
′

1(y)

[U0(y) − c0]2

)

φ2(y) dy

+ ab0

(

[βl,1]+− − [bl,1,0]+−

)

+ (a + 1)b0[cl,1,0]+− , (71)

[αd,1]+− =
∫ y2

y1

φ2(y) dy + ab0[βd,1]+− , (72)

where P is the Cauchy principal part of the integral. Note that these jumps [αl,1]+−, [αd,1]+− appear

in the coefficients of the resulting evolution equation. On the other hand, the jumps [bl,1,0]+−, [βl,1]+−,

[cl,1,0]+− and [βd,1]+− are determined by matching the streamfunction. Importantly, since all these

jumps are non-zero generally, the term ǫ1/2ψ (1) in the outer expansion (13) is not continuous across

the critical layer, and is one reason why the present theory differs from those26, 34 which assumed

that this term was continuous.

Finally, matching the streamfunction yields the relationship

�̃(5,⊙)(Sc, ξ ) − �̃(5)(Sc, ξ ) = C (5),

which gives the following jumps:

[βn,2]+− = 0 , [βd,2]+− = −2βd,1b0Y∞ , [β f,2]+− = 0 , [βc,2]+− = 0 , (73)

[βB,d,1]+− = 0 , [βB,l,1]+− = −2b0Y∞ , (74)

[βl,2]+−=[Ū
′

2−
1

2
¯̄T

′

2 − cl,2,1]+− + 2b0(β
l,1

− b0 yδ)Y∞ + [
1

2
¯̄T

′′

1 − Ū
′′

1 + αl,1]+−yδ − 2
βv,1

T̄
′′

0

Pr [T
′′

1 ]+−yδ ,

and

[C (5)]+− = {
4

3
[Û

′′

1 − T̄
′′

1 + Q̄2T̄
′′

0 + (T̄
′′′

0 − U
′′′

0 )yδ]Y∞ + b0(3b0 − ¯̄T
′′

0)yδU
′

0Y∞ + [U
′

2]+−}Sc .

Using (68), we can get another relation involving the third-order mean buoyancy gradients

[G(5)]+−(Sc) = T̄
′′

0

{[

4

3
(Û

′′

1 − U
′′′

0 yδ − T̄
′′

1) + 2b0(3b0 − ¯̄T
′′

0)yδU
′

0

+
2

3

(

Q̄2 +
T

′′′

0

T
′′

0

yδ

)(

2T̄
′′

0 + b0U
′

0 + 3
V

Sc

)]

Y∞ + [U
′

2]+−

}

Sc + 2T
′′

0 �0,S̃[Sc]�2(ζs).

(75)

Finally, we display the jump of the new nonlinear contributions J2[A]

[

J2[A]
]+

−
= [T̄

′

2]+−{Y∞Ys − 2A ln[�(A, Sc)]} +
4

3
T̄

′′

1(Sc − A)Ys ,

and so this critical-layer induced nonlinear term can be expressed as

J2[A] = T̄
′

2{Y∞Ys − 2A ln[�(A, Sc)]} +
2

3
sT̄

′′

1 (Sc − A)Ys .



056602-23 P. Caillol and R. H. J. Grimshaw Phys. Fluids 24, 056602 (2012)

V. THE AMPLITUDE EQUATION

We now relate the evolution equation (65) to the simpler-looking evolution equation (1). To

achieve this aim, we look for a travelling wave solution where A = A(ζ ), ζ = X − V T where

A → 0 as ζ → ±∞, so that (1) becomes

∂T A = DX [A] ≡ V A = −D[A]. (76)

On the other hand, the right-hand side of Eq. (65) then becomes

R(A) = 2V [b0(Y∞ − Ys) − ¯̄T
′′

0 Y∞], for a D-wave , (77)

R(A) = V Y0

(

b0{K
′
[ Â(ζ )] − E

′
[ Â(ζ )]} − 2 ¯̄T

′′

0

)

, for a E-wave, (78)

where E
′
(m) is the complete complementary elliptic integral of the second kind with modulus

m = Â(ζ ).

A. D-wave

Thus we find that, for the D-wave,

D[A] = −
1

4

(Ys + Y∞)[LH (A) + V ¯̄T
′′

0 Ys]

b0 − ¯̄T
′′

0

= −V0 A −
1

2
R0 A2 − S0∂

2
X A + D0[A], (79)

where LH (A) is the left-hand side of Eq. (65). Since this must hold when A = 0, we can now

determine the constant vorticity Q5

Q5 = U
′

2 − Û
′′

1 yδ +
1

2
U

′′′

0 y2
δ +

1

4

(

1 −
y2
δ

Y 2
∞

)

[T̄
′′

1 ]+− Y∞ −
1

2
b0(3b0 − ¯̄T

′′

0 ) U
′

0 Y 2
∞ + ¯̄T

′′

0 V .

The coefficients and terms in Eq. (79) are given by

V0 =

(

a − 1 −
1

3

¯̄T
′′′

0

b2
0

+
1

3
Ū

′′

0

¯̄T
′′

0

b2
0

−
4

9

¯̄T
′′

0

b0

)

b2
0U

′

0 A0

b0 − ¯̄T
′′

0

+
1

4

[αl,1]+−

b0 − ¯̄T
′′

0

U
′

0Y∞

+
T̄

′

2

b0 − ¯̄T
′′

0

+
1

2

(

T̄
′′′

0 −
1

2

T̄
′′

1

yδ

)

y2
δ

b0 − ¯̄T
′′

0

, (80)

R0 = 4
b2

0U
′

0

b0 − ¯̄T
′′

0

(

1 +
1

9

¯̄T
′′

0

b0

+
1

3

¯̄T
′′′

0

b2
0

−
1

3
Ū

′′

0

¯̄T
′′

0

b2
0

)

, (81)

S0 =
1

4

[αd,1]+−

b0 − ¯̄T
′′

0

U
′

0Y∞ , (82)

and

D0[A] =
1

2

b2
0Y∞

b0 − ¯̄T
′′

0

(

1 − a +
14

9

¯̄T
′′

0

b0

+
2

3

¯̄T
′′′

0

b2
0

−
2

3

¯̄T
′′

0

b2
0

Ū
′′

0 +
1

2

[ ¯̄T
′′

1 ]+−

b2
0Y∞

)

A∗Ys

−
1

4
{([αl,1]+− A + [αd,1]+−∂2

X A}
U

′

0Ys

b0 − ¯̄T
′′

0

. (83)

Then, using (76) and (79) with (81)–(83), we find that

(V0 − V )A + 4μr0 A2 − μ�AY∞Ys = χd (Ys + Y∞)∂2
X A , (84)

where Ys = [2(A0 − A)]
1
2 , Y∞ =

√

2A0 ,
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and � = 1 − a +
14

9

¯̄T
′′

0

b0

+
2

3

¯̄T
′′′

0

b2
0

−
2

3

¯̄T
′′

0

b2
0

Ū
′′

0 +
1

2

[ ¯̄T
′′

1]+−

b2
0Y∞

−
[αl,1]+−

2b2
0Y∞

, (85)

while χd = −
1

4
U

′

0[αd,1]+−/(b0 − ¯̄T
′′

0 ) , μ =
1

2
b2

0U ′
0/(b0 − ¯̄T

′′

0 ) , and R0 = 8μr0.

Here, we recall that A0 = A(0) and Â = A/A0. This can readily be integrated once more to yield

χd (∂X Â)2 = μY∞(1 − Â)

{

(V0 − V )

μA0

[

2

3
(1 − Â)

1
2 − 1

]

− 2r0

[

1 + Â −
4

5
(1 − Â)

1
2

(

2

3
+ Â

)]

−�(1 − Â)
1
2

[

(1 − Â)
1
2 −

4

3

]

}

. (86)

The speed V is obtained from (86) by letting Â → 0

V = V0 + μ(
14

5
r0 − �)A0.

The case b0 = ¯̄T
′′

0 corresponds to a nonlinear wave whose speed V is arbitrary and for which the

evolution equation does not contain the time derivative. The parameter V0 in Eq. (80) is then linked

to r0 and �, by the relation 2V0(b0 − ¯̄T
′′

0 ) = b2
0U ′

0(� − 14/5r0). The rhs of (86) behaves like Â2

around A → 0, which leads to an exponential decay of the amplitude at |ζ | = ∞. We can transform

(86) by introducing the new variable Ŷs = (1 − Â)1/2, so that

(∂X Ŷs)2 =
4

5
r0

b2
0Y∞

[αd,1]+−

(

Ŷ 3
s +

5

8
(
�

r0

− 2)Ŷ 2
s −

5

4
(
2

5
+

�

r0

)Ŷs +
3

4
+

5

8

�

r0

)

. (87)

This leads to a degenerate elliptic integral

∫ Ŷs

0

dr
√

s0(r − r1)(1 − r )
= ±

ζ

ζ0

, (88)

where ζ0 =
∣

∣

∣

5

4

[αd,1]+−

b2
0r0Y∞

∣

∣

∣

1
2

, r1 = −
3

4
−

5

8

�

r0

, and s0 = sign[r0] .

Note that [αd,1]+− is always strictly positive (cf. Eq. (72)). If s0 = 1, then we require that r1 ≤ 0, or

�/r0 ≥ −6/5, and then

Â = 1 −
(

1 − (1 − r1)sech2
{

argcosh[(1 − r1)
1
2 ] +

1

2
(1 − r1)

1
2 |

ζ

ζ0

|
})2

. (89)

On the other hand if s0 = −1, then we require that r1 > 1, or �/r0 < −14/5 and then

Â = 1 −
(

1 − (r1 − 1)cosech2
{

argsinh[(r1 − 1)
1
2 ] +

1

2
(r1 − 1)

1
2 |

ζ

ζ0

|]
})2

. (90)

Note here that the term in the argument of cosech is never zero, and so this solution is not singular.

Also, this case holds when r0 < 0, which in turn requires the condition s0 = −1 or

3U
′′2
0 +

4

3
T

′′

0 (2 ¯̄T
′′

0 − 5Ū
′′

0 ) + T
′′′

0 < 0 . (91)

This condition is not realizable for an unstratified flow, but for the present weakly stratified case,

it is not as stringent. For both waves, the wavelength is inversely proportional to A
1/4

0 . From (86)

when Â = 1 (the maximum amplitude A = A0), or directly from the solutions (89) and (90), we see

that there is a slope discontinuity at ζ = 0, that is d Â/d X (ζ = 0+) �= d Â/d X (ζ = 0−), unless r1 =
0 when the solution reduces to

Â = 1 − tanh4
{1

2

ζ

ζ0

}

. (92)
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We note that if Eq. (87) is twice differentiated with respect to X, and we replace V ∂X A with −∂TA

then we obtain the KdV equation

Ŷs,T + V0,DŶs,X + R0,DŶs Ŷs,X + S0,DŶs,X X X = 0, (93)

with

R0,D =
3

5
R0 A0 , S0,D = −2S0 , and V0,D = V0 +

4

5
μr0 A0.

However, this KdV equation cannot be obtained directly from the unsteady Equation (65). Instead

is a “toy”-model equation which can only be used to infer the effects of unsteady behaviour.

B. E-wave

For the E-wave, we use (78) to characterize the amplitude Equation (1) by

D[A] = −
ALH (A)

Y0(b0{K
′
[ Â] − E

′
[ Â]} − 2 ¯̄T

′′

0)
. (94)

Again, assuming a travelling-wave form, we get

1

2
V {K

′
[ Â] − E

′
[ Â]} − V

¯̄T
′′

0

b0

− V0Ŷs + 2b0U
′

0r0 A0 ÂŶs − χlY0 Â = χdY0∂
2
X Â , (95)

where here Ŷs = [ Â]
1
2 , while χd = −

1

4
[αd,1]+−/b̄0 , χl = −

1

4
[αl,1]+−/b̄0 ,

and V0 =
1

b̄0

[

1

2
(U

′′′

0 − T̄
′′′

0 )y2
δ + U

′

2 − T̄
′

2 − Q5

]

.

This can readily be integrated once more to yield

(∂X Â)2 =
Â

[αd,1]+−

[

16

5
b2

0r0Y0Ŷs Â − [αl,1]+− Â +
16

3

b̄0

Y0

V0Ŷs + 8
¯̄T

′′

0

Y0

V̄

+
8

3

b̄0V

Y0 Â

(

(1 + Â)E
′
[ Â] − 2 ÂK

′
[ Â] − 1

)

]

, (96)

where we recall that Y0 = (−2A0)1/2. The fifth term inside the large square bracket is O( Â ln Â)

when Â → 0, which is consistent when the nonlinear wave has a finite X-period. But for a solitary

wave, where ∂X Â ∼ O( Â) as Â → 0 is needed for exponential decay in the tail, we must set the

nonlinear wave speed V = 0. The same argument leads to V0 = 0, which thus determines the constant

vorticity Q5

Q5 =
1

2
(U

′′′

0 − T̄
′′′

0 )y2
δ + U

′

2 − T̄
′

2. (97)

The requirement that |A| has a maximum at ζ = 0 leads to

[αl,1]+− =
16

5
b2

0r0Y0. (98)

Next, we rewrite (96) with the variable Ŷs to get

∫ Ŷs

1

dr
√

s0(r − 1) r
= ±

ζ

ζ0

, (99)

where ζ0 = 2

√

[αd,1]+−

|[αl,1]+−|
and s0 = sign[r0] .
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A solitary-wave solution requires that s0 = −1 (r0 ≤ 0), and then we get that

Â = sech4
[1

2

ζ

ζ0

]

. (100)

Note that this is a more localized profile than the KdV-solitary-wave profile sech2, and it has a

wavelength inversely proportional to |A0|1/4.

As for the D-wave, Eq. (96) can rewritten with the variable Ŷs , with the time derivative restored,

but with V0 = 0,

Ŷs,T

(

2{E
′
[ Â] − 1} − Ŷ 2

s K
′
[ Â]

)

+ S0,E Ŷ 4
s Ŷs,X X X + R0,E Ŷ 5

s Ŷs,X + V0,E Ŷ 4
s Ŷs,X = 0, (101)

with

S0,E =
[αd,1]+− U

′

0

b0 − ¯̄T
′′

0

√

2|A0| = 4S0, R0,E =
6

5
R0 A0, V0,E =

1

4

[αl,1]+− U
′

0

b0 − ¯̄T
′′

0

√

2|A0| = −
2

5
R0 A0 .

Here, R0 and S0 here refer to the values of the D-wave coefficients (81) and (82). Again, this equation

cannot be derived directly from (65), and is a “toy”-model which could be used to study unsteady

effects.

The travelling-wave assumption leads to a stationary KdV equation whose solution is (100). The

condition s0 = −1 requires that the constraint (91) be satisfied. It is a less restrictive condition than

the equivalent Rossby wave inequality (8/9 β < U
′′

0 < β). We examined this condition for various

velocity and buoyancy profiles for which T ′
0(yc) = 0:

(1) Consider a mixing-layer buoyancy profile of the form

T0(y) =
1

2
{(1 + βT ) + (1 − βT ) tanh[(y − yc)3 + γ (y − yc)2]}, (102)

with a buoyancy scaled by its value at y → +∞, βT being the buoyancy ratio between both streams.

With βT < 1, the buoyancy gradient T
′

0(y) is positive for y sufficiently far from yc. The related

velocity profile is then

U0(y) =
1

2
[(1 + βU ) + (1 − βU ) tanh(y − y0)].

The condition (91) is then equivalent to

(1 − βU )2 tanh2(yc − y0)sech4(yc − y0)

+
32

9
γ 2 (1 − βT )2

(1 − βU )2
cosh4(yc − y0) + (1 − βT )[

40

9
γ tanh(yc − y0) + 1] < 0,

which implies that necessarily

γ tanh(yc − y0) < −
9

40
.

If yc is above the inflexion point y0 of the velocity field, then γ < 0 and yc is a local buoyancy

minimum, and if yc is below y0, vice versa. Not all buoyancy profiles are possible; the existence of

a real parameter γ satisfying the preceding relation leads to the condition

7(1 − βU )2 tanh2(yc − y0) > 18(1 − βT ) cosh4(yc − y0), (103)

which restricts the (βU, βT) domain to (1 − βU)2/(1 − βT) � 17.357, characterizing small buoyancy

differential streams. Figure 3 displays the evolution of the buoyancy with the height y. When the

above inequality is true, a γ -range exists for which the profile (102) allows for the propagation of

E-waves and D-waves of the second kind. Here, the figure gives the profiles T0(y) for βU = −1,

βT = 0.9, yc − y0 = −1.1 and for several values of γ , the range that allows for s0 = −1 is located

around γ = 1.94 and 3.23. An adverse shear is favorable to their propagation; indeed, as βU increases,

βT approaches 1. For example, when βU = −1, (103) is satisfied as soon as βT � 0.770 and when

βU = 0, only for βT � 0.943.
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FIG. 3. Profile T0(y), yc = −1.1, y0 = 0, βU = −1, βT = 0.9. (– · –) γ = −1, ( · · ) γ = 0, (– –) γ = 1, (−− −−) γ = 1.94,

(−−− −− −−−) γ = 3.23, (– –) γ = 10.

(2) Consider the finite-depth waveguide buoyancy profile of the form

T0(y) = [y− tanh(y − yc)]/[y2− tanh(y2−yc)], βT = [y1 − tanh(y1 − yc)]/[y2 − tanh(y2 − yc)],

with the same velocity profile as above. This second profile only satisfies the case s0 = 1 for

y2 − tanh (y2 − yc) > 0 (T
′

0 (y) ≥ 0, for all y1 ≤ y0 ≤ y2).

(3) However, the profiles that satisfy locally around yc

T0(y) =
1

2
T

′′

0 η2 , U0(y) = c0 + U
′

0η +
1

2
U

′′

0 η2

satisfy (91) provided that

9U
′′2
0 + 8T̄

′′2
0 < 20T̄

′′

0 U
′′

0 ,

which implies that U
′′

0 T̄
′′

0 > 0. This corresponds to the case where buoyancy opposes to dynamics

in the coefficient b0 = (U
′′

0 − T̄
′′

0 )/U
′

0. More exactly, the ratio U
′′

0 /T̄
′′

0 is bounded by

1

9
(10 − 2

√
7) <

U
′′

0

T̄
′′

0

<
1

9
(10 + 2

√
7).

Figures 4–7 display the streamlines, isovorticity, isobar, and iso-kinetic energy contours for

the D-wave and E-wave critical layers computed with expansions to the second-order. To the

two first orders of the expansion, an iso-buoyancy contour is identical to a streamline, highlight-

ing the lock of buoyancy onto the streamlines. The local Richardson number is always negative

in half of the critical layer. Indeed in the core, at the leading order, the buoyancy varies as �

= T
′′

0 S + θ0. In these examples, the buoyancy decreases in the lower half of the critical layer. The

D-wave separatrix possesses a very flat slope at ζ = 0 as observed in a finite-period wave critical

layer.17, 23 The D-wave speed V is chosen zero. The streamlines vary with the nonlinear wave speed V

only from the order ǫ2. The buoyancy varies with V from the order ǫ3/2. If V = 1, the buoyancy value

on each contour in Fig. 4(a) slightly increases of a few percents with respect to V=0 and becomes:

6.19, 4.22, 2.25, 2.16, 1.87, 1.49, 1.10, 0.728, 2.25, 4.20, and 6.17. The D-wave cat’s eye possesses

a positive pressure anomaly around the saddle point whereas the E-wave cat’s eye possesses a
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FIG. 4. (a) Streamlines and (b) iso-vorticity lines for a D-wave nonlinear critical layer whose numerical values of the param-

eters are: U
′
0 = 2, U

′′
0 = T

′′
0 = 1, T

′′′
0 = 0.5, U

′
u,1 = 0.2, U

′+
1 = −0.5, yδ = 0.8, β+

d,1 = 0.3, c+
l,1,0 = 0.4, T

′′+
1 = 0.1, T

′+
2

= T +
3 = 0, θ0 = 0.2, r1 = −1, ζ 0 = 1/2, V = 0 (solitary wave-like solution parameters, see Sec. V), and ǫ

= 0.002. The streamlines are iso-buoyancy contours whose buoyancy on each contour is, from the bottom to the

top: 1000 × � = 6.08, 4.12, 2.18, 2.11, 1.82, 1.47, 1.08, 0.697, 2.18, 4.17, and 6.15. The cat’s eye is thus cooled with

respect to the zone outside the separatrices. The vorticity value on each contour is from the bottom to the top:

1.89, 1.91, 1.935, 1.943, 1.95, 1.96, 1.98, 1.986, 1.994, 2.02, and 2.04.

negative pressure anomaly around the centre point. The iso-vorticity lines within the cat’s eyes

satisfy Ỹ = constant; so they are quasi-horizontal for both waves. We can do the same remark for

the iso-kinetic energy lines; indeed, they are at the leading-order given by Ỹ = constant outside and

inside the cat’s eye.
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FIG. 5. (a) Streamlines and (b) iso-vorticity lines for an E-wave nonlinear critical layer whose numerical values of the

parameters are: U
′
0 = 2, U

′′
0 = T

′′
0 = 1, T

′′′
0 = 0.5, U

′
u,1 = U

′
1 = 0.2, yδ = 0, βd, 1 = 0.3, cl, 1, 0 = 0.4, T

′′
1 = 0.1, T

′
2 = T3

= 0, θ0 = 0.2, ζ 0 = 2 (solitary wave-like solution parameter, see Sec. V), and ǫ = 0.002. The buoyancy on each contour,

from the bottom to the top is: 1000 × � = 4.36, 2.373, 0.399, 0.197, − 0.203, − 0.603, − 1.00, − 1.40, 0.399, 2.372, and

4.33. The cat’s eye is also thus cooled with respect to the zone outside the separatrices. The vorticity value on each contour

is from the bottom to the top: 1.87, 1.90, 1.92, 1.93, 1.936, 1.944, 1.95, 1.96, 1.97, 1.98, 1.99, 2.00, 2.01, 2.03, and 2.05.

C. Constant-shear flow

We conclude this section with the case of a constant shear flow, U0(y) = c0 + U
′

0η, and a

quadratic buoyancy profile, T0(y) = T
′′

0 η2/2. As for the unstratified flow, the second-type D-wave

and the E-wave are not possible here since the condition s0 = −1 is not satisfied. In this special case,

all coefficients can be nevertheless found explicitly. We thus obtain for the s0 = 1-D-wave:

b0 = −T
′′

0 /U
′2
0
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FIG. 6. Isobar lines P
′ = P + gL/U2η = constant for (a) D-wave and (b) E-wave with the same numerical values as for

Figs. 4 and 5. The pressures are from bottom to top: 1000 ∗ P
′ =, D-wave: 0.742, 2.44, 3.94, 5.32, 6.11, 6.41, 6.75, 6.94, and

7.08; E-wave: −7.89, −7.85, −7.81, −7.79, −7.44, −7.06, −5.50, and −3.99. The three closed contours have the following

pressures: −7.79, −7.85, and −7.89.

and

V0 =
1

2
(
5

9
− a)T̄

′′

0 A0 −
1

8

[αl,1]+−

T
′′

0

U
′3
0 Y∞ −

1

2

(

T
′

2 +
1

4
T

′′

1 yδ

) U
′

0

T
′′

0

, R0 = −
16

9
T̄

′′

0 ,

S0 = −
1

8

[αd,1]+−

T
′′

0

U
′3
0 ,
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FIG. 7. Iso-kinetic energy contours in the plane (ξ , Y) for (a) a D-wave and( b) an E-wave with the same numerical values

as for Figs. 4 and 5, except that ǫ = 0.01. The energy (×100) are from bottom to top: D-wave: 7.35, 3.69, 1.84, 0.369, 0,

0.369, 1.84, 3.69, and 7.41; E-wave: 7.27, 3.69, 1.84, 0.369, 0, 0.369, 1.84, 3.69, and 7.48. The patterns are not symmetric

with respect to the ζ -axis. The motionless particles are located on the axis Ỹ = 0.

D̄0[A] =
1

4

(5

9
+ a

)

¯̄T
′′

0 AYsY∞ −
1

8

[T
′′

1 ]+−

T
′′

0

AYs +
1

8
([αl,1]+− A + [αd,1]+−∂2

X A)
Ys

¯̄T
′′

0

,

and V = V0 −
1

4

(

a +
137

45
+

1

2

[αl,1]+−

T
′′2

0

U
′4
0 Y∞ −

1

2

[T
′′

1 ]+−

T
′′2

0 Y∞
U

′2
0

)

T̄
′′

0 A0,

r1 ≤ 0 gives [αl,1]+− ≤ 2(
23

45
− a)( ¯̄T

′′

0 )2Y∞ + [ ¯̄T
′′

1]+−.
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The singular mode can be then analytically expressed in terms of the dimensionless coordinate

̺ = 2 | ¯̄T
′′

0 η|1/2 and the first-kind Bessel functions J1( · ) and Y1( · ):

φ+(y) = ̺ [A+ J1(̺) + B+Y1(̺)] , if T
′′

0 > 0 ,

φ−(y) = ̺ [A− J1(i̺) + B−Y1(i̺)] , (104)

φ+(y) = ̺ [A+ J1(i̺) + B+Y1(i̺)] , if T
′′

0 < 0 ,

φ−(y) = ̺ [A− J1(̺) + B−Y1(̺)] . (105)

The dispersion relation (between ̺(y1) and ̺(y2)) can then be found straightforwardly19 since the

Rossby modes and internal modes are in this simplified field, strictly identical. The outer-flow

streamfunction can be also expressed analytically.19

VI. CRITICAL-LAYER INDUCED WAVE MEAN FLOW INTERACTION

In this section, we will determine the growth rates of the mean streamwise and cross-stream

momenta, the mean buoyancy, the mean kinetic energy, and the mean potential energy at the critical

level. This is achieved by deriving the x-averaged momentum and energy equations in the outer and

inner flows, and then equating the jumps of the mean vertical flux of these different quantities in

both flows. We will thus obtain the time scales of the critical-layer induced mean flow and mean

buoyancy. The outer-flow approach is valid for λ = O(1) but the calculation using the inner flow

assumes λ ≪ 1.

A. Mean-flow acceleration

We recall that, to shorten the notation, the mean flow is defined at its critical level, so that for

instance, T1 = T1(yc) and T
′

1 = T
′

1(yc). The outer-flow averaged x-momentum equation is, in the

reference frame moving with speed c,

∂t 〈u〉 = −∂y〈uw〉 +
1

R
∂2

y U + Fv − 〈px 〉 − 2〈uux 〉, (106)

where
1

R
∂2

y U + Fv = ǫ
1
2 /R [U

′′

1 (y) + ǫ
1
2 U

′′

2 (y) + · · ·],

and in this section, 〈 · 〉 denotes the mean over the streamwise coordinate x for constant y. Usually, in

wave mean flow interaction theories, the two last terms are omitted because they involve derivatives

with respect to x. However here, the flow contains secular contributions proportional to λ X, generated

by weak viscous and thermal diffusions. Thus, their averaged related X-derivatives 〈∂X〉 are small

but not zero. In the critical-layer theory, all leading-order averages are proportional to λ. The two

last terms in (106) cannot be thus neglected and are in general of the same order as the cross-stream

gradient of the averaged vertical flux of the horizontal momentum. The calculations are performed

using the deformed critical layer in the strained coordinate S̃ system, but the tilde is omitted further

for simplicity. For the same reason, most details are omitted, and the results are then as follows.

Taking the integral of (106) over the critical-layer width δcl between yB1 and yB2 where

yB1 = yc−yδǫ
1
2 − δcl/2 + ǫ〈Y −

2 〉+ · · · and yB2 = yc − yδǫ
1
2 + δcl/2+ǫ〈Y +

2 〉+ · · · ,

corresponding to ỸB1,2
= ±δcl/(2ǫ1/2). Noting that it can be shown using (39) that 〈Y1 〉 = 0,

〈Y ±
2 〉 = b0Sc − ¯̄T

′′

0 δ2
cl/(8ǫ), and assuming that ǫ1/2 ≪ δcl ≪ 1, we get that

∫ yB2

yB1

∂t 〈u〉 dy = −[〈uw〉]yB2

yB1
+

ǫ
1
2

R
[U

′

1(y) + ǫ
1
2 U

′

2(y) + . . .]yB2

yB1

− λǫ
1
4

∫ yB2

yB1

〈pv,X 〉 dy − 2λǫ
1
4

∫ yB2

yB1

〈uuv,X 〉 dy.
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(107)

The jump [q]
yB2
yB1

of the quantity q is defined by

[q]yB2

yB1
= q(yB2) − q(yB1) − [q]

y+
a

y−
a
,

while the integral of the same inner-flow quantity Q

∫ YB2

YB1

QY dY = [Q]
YB2

YB1
− [Q]S1+

S1− − [Q]S2+

S2− ,

where [q]
y+

a

y−
a

is the q-jump through the critical-layer axis of symmetry located in ya = yc − yδǫ
1/2

+ o(ǫ). The two last terms at the r.h.s are the jumps of Q through both lower and upper separatrices

S1 and S2. Each leading-order contribution in (107) of order ǫ9/4 cancels except the x-momentum

jump, and the result for a D-wave is
∫ yB2

yB1

∂t 〈u〉 dy = λ βv,1U
′

0δclǫ
7
4 + O

(

λǫ
11
4

)

, (108)

where − [〈uw〉]yB2

yB1
= λǫ

7
4 U

′

0

[

βv,1(η + yδǫ
1
2 )

]yB2

yB1

= λβv,1U
′

0δclǫ
7
4 .

The matching of �
(2)
v,X = βv,1 on the separatrix with �

(2,⊙)
v,X = β⊙

v,1 yields: β⊙
v,1 = β+

v,1 = β−
v,1. Intro-

ducing
∫ YB2

YB1
〈uw〉Y dY derived from the averaged inner-flow x-momentum equation into (107), we

obtain a new expression for the growth rate

∫ yB2

yB1

∂t 〈u〉 dy = [〈uw〉]y+
a

y−
a

− [〈uw〉]S1+

S1− − [〈uw〉]S2+

S2− +
ǫ

1
2

R
[U

′

1(y) + ǫ
1
2 U

′

2(y) + . . .]yB2

yB1

− λǫ
3
4 [〈�Y Y 〉]YB2

YB1
− ǫ

1
2

∫ YB2

YB1

Fv dY − λǫ
1
4

∫ yB2

yB1

〈pv,X 〉 dy

+λǫ
3
4

∫ YB2

YB1

〈pv,X 〉 dY − 2λǫ
1
4

∫ yB2

yB1

〈uuv,X 〉 dy

+2λǫ− 1
4

∫ YB2

YB1

〈�Y �v,XY 〉 dY. (109)

Using the continuity of wv = −�v,x in the viscous boundary layer along the separatrices, we find

no mean x-momentum flux jumps through the separatrices, so that [〈uw〉]S1+

S1− = [〈uw〉]S2+

S2− = 0. The

calculation of each contribution in (109) can now be found explicitly, and the final outcome for a

D-wave is
∫ yB2

yB1

∂t 〈u〉 dy = −λ [U
′

1]+−ǫ
9
4 + O

(

λǫ
11
4

)

= 2λ b0U
′

0Y∞ǫ
9
4 + O

(

λǫ
11
4

)

. (110)

As 〈u〉 is given by ǫ1/2 (U1 − c1) at the leading order, the time scale τ 1 is

τ1 = λ ǫ
5
4 t = λT , ∂τ1

[U1(yc, τ1) − c1(τ1)] = κU =
b0

σ
U

′

0 , (111)

where 1 ≪ σ = δcl/[2(2|A0|ǫ)1/2] ≪ ǫ−1/2, σ is a geometrical constant whose value remains

undetermined by the theory of the nonlinear critical layer. This slow time is the time scale given in

Refs. 18–20. However, the outer-flow diffusion, the horizontal gradients of pressure and kinetic

energy were omitted in those papers, but are taken into account here. For c0 > 0, the mean flow

is accelerated if U
′′

0 > T̄
′′

0 ; this is essentially the same criterion as for a Rossby-wave nonlinear

critical layer, the ratio of the second derivative of the buoyancy over the velocity shear at the

critical level playing the same stabilizing rôle as the rotation gradient β. The time τ 1 is faster than

the viscous time scale t/R; introducing body terms related to vorticity and buoyancy prevents the

mean flow from damping over the latter time. In the slow process of the critical layer formation,
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as the stratification level is weakening around the critical layer, the modal equation simplifies into

φ′′(η) + (T̄ ′′
0 − U ′′

0 )/(U ′
0η)φ(η) = 0. By analogy with the stability of a shear flow in the β plane,

the analysis of the flow closed by the separatrices yields that this remains linearly stable since the

constant T̄ ′′
0 − U ′′

0 does not have an inflexion point. The mean flow within the diffusion boundary

layers evolves with the even smaller time scale τDB = ǫ τ 1 ≪ τ 1 in the quasi-steady assumption

where ǫ ≪ τDB ≪ 1 as shown in Ref. 19. Moreover, the leading-order buoyancy gradient T
′

1(yc) also

evolves with time τ 1, see (36). We can now define the critical-layer thickness δcl so that the growth

rates defined by (108) and (110) are equal, and so

σ =
b0

βv,1

. (112)

We here see all the interest of having a O(ǫ3/2) viscous outer flow. The coefficient βv,1 related to the

singular Frobenius solution is a free parameter of the problem which cannot be taken equal to zero,

whose sign is the same as b0’s but whose magnitude must be far less than |b0| so that the viscous

critical layer may not interfere with the nonlinear one. We easily deduce that the velocity growth rate

κU = βv,1U
′

0; the acceleration only depends on the shear and the amplitude of the leading viscous

flow.

For the E wave, the cat’s eye quantities, for instance 〈P⊙
v,X 〉, 〈�⊙

i,Y Y 〉 and 〈�⊙
v,X 〉 are very

complex but are not needed, since on average the cat’s eye thickness is zero, that is 〈Ys〉
= Y∞ = 0. Moreover, the different mean-flow jumps are zero as well, that is [U

′

2]+− = [U
′′

1 ]+− = 0 ...

(with U1(y) = Uu, 1(y)), so that for an E-wave

∫ yB2

yB1

∂t 〈u〉 dy ≡ ∂tU2 ǫ δcl = 0 . (113)

Thus for an E-wave, the mean flow is not accelerated. This result seems to be general for E-waves,

since we also found the same result for a Rossby solitary wave.20 Moreover, we deduce from (108)

that βv,1 = 0.

Next, it can be shown that the mean-vertical-velocity growth rate given by

∂t 〈w〉 = 〈θ〉 − ∂y〈p + w2〉 − 〈(uw)x 〉 +
1

R
〈∂2

yw〉,

is O(λ2), the two last terms being O(λ2), that is

∫ yB2

yB1

∂t 〈w〉 dy = O
(

λ2ǫ4
)

and

∫ yB2

yB1

〈θi 〉 dy = [〈(p + w2)i 〉]yB2

yB1
. (114)

Since 〈w(y)〉 ≃ −λβv,1φb(y)ǫ7/4 + O(λǫ9/4), if βv,1 is chosen constant, σ will vary as slowly as b0,

the leading viscous term then evolves with τDB, but the time scale is given by the second-order term

which evolves faster with τ 1, so τw = τ1. The vertical mean motion is then negligible with respect

to the horizontal mean motion since 〈u(ya)〉/〈w(ya)〉 = O(ǫ1/2 R).

Finally, the x-averaged mean vorticity outer equation

∂t 〈ω〉 = −〈θx 〉 − ∂y〈wω〉 − 〈(uω)x 〉 +
1

R
〈∂2

yω〉

yields the mean-vorticity growth rate

∫ yB2

yB1

∂t 〈ω〉 dy = −
λ

Pr
[T̄

′′

1 ]+− ln |
1

2
δ∗

cl | ǫ
9
4 . (115)

Though the mean-vorticity evolution is favored by the buoyancy/dynamics coupling through the

mean-buoyancy distortion [T̄
′′

1 ]+−, this growth rate is slowly evolving at the slow time scale

λ/Pr ǫ5/4| ln ǫ|t , which is far slower than the critical-layer homogenization time43 (λ/Pr ǫ3/4 t).
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B. Mean-flow heating

The outer-flow x-averaged buoyancy equation is

∂t 〈θ〉 = −∂y〈θw〉 − 〈(θu)x 〉 +
1

Pr R
∂2

y T + Fb. (116)

Integrating this equation over the critical layer between yB1 and yB2, we get that
∫ yB2

yB1

∂t 〈θ〉 dy = −[〈wθ〉]yB2

yB1
− λǫ

1
4

∫ yB2

yB1

〈(uθ )v,X 〉 dy

+
ǫ

1
2

Pr R
[T

′

1(y) + ǫ
1
2 T

′

2(y) + . . .]yB2

yB1
. (117)

The critical-layer induced heating given by the outer flow is therefore
∫ yB2

yB1

∂t 〈θ〉 dy = −2
λ

Pr
¯̄T

′′

0

(

[T
′′

1 ]+− +
1

3
βv,1 PrT

′′

0 σY∞|
)

σ 2Y 2
∞ǫ

13
4 . (118)

We deduce that the buoyancy time scale is λǫ9/4t if 〈θ (y ∼ ya)〉 ∼ǫ1/2 T1(yc). However, this disagrees

with the corresponding calculation for the O(ǫ11/4) potential energy (see Sec. VI D), yielding a

time scale of order λǫ7/4t. We deduce therefore that T1(yc) = 0, and consequently 〈θ (y ∼ ya)〉
∼ (θ0 + T

′′

0 Y 2/2) ǫ, while the integrated mean buoyancy growth rate is hence
∫ yB2

yB1
∂t 〈θ〉 dy

≡ ǫ∂t T2 δcl , where the contributions due to T
′

1 cancel, and then the potential-energy growth rate

scales like 〈∂ tep〉 = O(ǫ15/4). The buoyancy time scale is then the diffusion time

τ2 =
t

Pr R
, with ∂τ2

T2 = κT = − ¯̄T
′′

0

(

[T
′′

1 ]+− +
1

3
βv,1 PrT

′′

0 σY∞

)

σY∞. (119)

This is slower than the velocity time scale, and so the O(ǫ) mean buoyancy plays a weaker part

in the critical-layer dynamics, and evolves over the thermal-diffusion time scale like a passive

tracer, whereas the O(ǫ1/2) buoyancy gradient T
′

1(yc) evolves with τ 1. The growth rate of ǫ T2(yc) is

proportional to the wave maximum amplitude ǫ A0 if we assume a jump [T
′′

1 ]+− ≡ Y∞ as we see later

on. Thus, the critical layer heats if the jump [T
′′

1 ]+− satisfies the condition

[T
′′

1 ]+−

T
′′

0

+
1

3
Prb0Y∞ < 0. (120)

Equating the heating rate (118) with this given by the inner-flow buoyancy vertical flux
∫ yB2

yB1

∂t 〈θ〉 dy =
{

¯̄T
′′

0 {[T ′′
1 ]+−[

1

2
(1 − ln2) − 2σ 2] − [T ′′′

0 − (T̄ ′′
0 )2]Y∞}Y∞

− Prβv,1

(1

2
[T ′′

1 ]+−Y∞+
1

3
[T ′′′

0 −(T̄ ′′
0 )2]Y 2

∞+T ′′′
0 y2

δ + 2(θ0b0 ln 2 + T ′
2−T ′′

1 yδ)+
3

2

[T ′′
1 ]+−

Y∞
y2
δ

)}

Y∞ǫ
13
4 ,

(121)

gives a relationship between T
′′

1 and T
′

2. The background fields (U0, T0) being given, we now need

to determine the jump of the second derivative T
′′

1 (which depends on T
′′

1). The jumps of the mean

fields [q]+− are given by the matching on the separatrix but the means q are determined by studying

the diffusion boundary layers, similarly to our study of the Rossby-wave nonlinear critical layer.19

We do not then know so far the values of T
′′

1 and T
′

2. The diffusion boundary layers emerge as a

slow diffusion of the critical layer. Their width then follows the law of the viscous diffusion length,

that is, δDB ∼ ǫ1/2√τ1, see Fig. 1. We can hence assume that the critical level slowly moves within

the diffusion boundary layers according to the relation yc = yc,0 + 2ǫ1/2√τ1 κ(ǫ, τ1), see Refs. 18

and 19, in the quasi-steady régime. As a result, the critical-layer flow also evolves with a third time

scale, a very slow one that characterizes the evolution of yc, that is τDB, since all Frobenius series

terms: b0, b0, 2, a0, 2, . . . are functions of the background flow and buoyancy evaluated at yc. Finally,

the actual axis of the critical layer located at ya = yc − ǫ1/2yδ + o(ǫ) varies with the time scale ǫ1/2τ 1

≡ τ 2.
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C. Mean kinetic energy

In dimensionless coordinates, the total energy density of the system: wave + mean flow, is

et = ek + ep =
1

2
(|u|2 +

�2

Ri
) ,

where the first and second terms are the kinetic and potential energies, respectively. The averaged

kinetic-energy equation is, in the outer flow,

∂t 〈ek〉 = 〈θw〉 − ∂y〈(p + ek)w〉 − 〈[(p + ek)u]x 〉 +
1

R
〈u∂2

y u〉 + 〈uFu〉. (122)

The kinetic-energy growth rate derived from (122) is

∫ yB2

yB1

∂t 〈ek〉 dy = λ
(1

2
[U

′′

1 ]+−σ + βv,1b0(
1

3
σ 2 + σ ln 2 + 1)U

′

0Y∞

)

U
′

0σY 2
∞ ǫ

13
4 , (123)

while the kinetic-energy growth rate resulting from the inner-flow energy vertical flux jump is

∫ yB2

yB1

∂t 〈ek〉 dy = λ
(1

2
[U

′′

1 ]+− +
1

3
βv,1(b0 + 2 ¯̄T

′′

0 )U
′

0Y∞

)

U
′

0Y 2
∞ ǫ

13
4 . (124)

This can now be equated with (123), so that we may obtain the jump of T
′′

1 after using (57), as a

function of the background field

[T
′′

1 ]+− =
2b0Y∞

σ 2 − 1

(

T
′′

0 (1 − σ 2 +
2

3
σ−1) + b0U

′2
0 (

8

3
σ 2 − σ ln 2 − 4 +

1

3
σ−1)

)

. (125)

Note that

as y ≃ ya ,

∫ yB2

yB1

∂τ1
〈ek〉 dy ∼ O(ǫ2) .

For a solitary-wave perturbed flow, the mean-flow kinetic energy is equal to the mean kinetic energy,

so that the mean perturbation kinetic energy is zero and

∫ yB2

yB1

U∂τ1
U dy =

∫ yB2

yB1

∂τ1
〈ek〉 dy .

Equation (125) shows that [T
′′

1 ]+− depends on τDB, consequently T
′′

1 and [T
′

2]+− vary with τ 1 and τDB

(cf. Eqs. (58) and (69)). Eq. (121) then reveals that T
′

2(yc) depends on τ 1, τ 2 and τDB. The buoyancy

profiles T1(y) and T2(y) thus obey complex equations in the diffusion boundary layers, since T1(y) is

forced in the critical layer over the time scales τ 1 and τDB through T
′

1(yc) and T
′′

1 (yc), and evolves

on τDB in the diffusion boundary layers, whereas T2(y) is forced by the critical layer over the time

scales τ 2 and τDB (T2(yc)) and, τ 1, τ 2 and τDB (T
′

2(yc)), and diffuses on the time scale τDB. We will

not display these evolution equations, being beyond the scope of this present study.

D. Mean potential energy

The averaged potential energy equation is, in the outer flow,

∂t 〈ep〉 = −∂y〈epw〉 − 〈(epu)x 〉 + Ri−1
( 1

Pr R
〈θ∂2

yθ〉 + 〈θ Fb〉
)

. (126)

This leads to a critical-layer induced potential-energy growth rate

∫ yB2

yB1

∂t 〈ep〉 dy = λβv,1

{

T
′′

0 [
1

6
T

′′′

0 y2
δ −

1

3
(T

′′

1 yδ − T
′

2) −
1

5
(T̄

′′

0 )2σ 2Y 2
∞]σ 2Y 2

∞

+θ0[T
′′′

0 y2
δ −

2

3
(T̄

′′

0 )2σ 2Y 2
∞ − 2(T

′′

1 yδ − T
′

2)]
}

σY∞
ǫ

17
4

Ri
, (127)
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which leads to a potential-energy growth rate such as ∂τ2
〈ep〉 = κP ǫ2 with

κP = Pr
βv,1

2Ri

{

T
′′

0 [
1

6
T

′′′

0 y2
δ −

1

3
(T

′′

1 yδ − T
′

2) −
1

5
(T̄

′′

0 )2σ 2Y 2
∞]σ 2Y 2

∞

+ θ0[T
′′′

0 y2
δ −

2

3
(T̄

′′

0 )2σ 2Y 2
∞ − 2(T

′′

1 yδ − T
′

2)]
}

.

The expression for κP is too complex to be exploited analytically since it nonlinearly involves

the mean flow and buoyancy U
′

0, U
′′

0 , T
′′

0 , T
′′′

0 , T
′

1 and T2, the parameters σ , Pr and the wave

amplitude Y∞. For σ → ∞, the growth rate greatly simplifies κP = −2b0/(5Ri)PrT
′′

0 (T̄
′′

0 )2σ 3 A2
0,

and becomes proportional to the square of the wave maximum amplitude and whose sign is that of

−b0 T
′′

0 . Equating (127) with the growth rate obtained by the inner flow gives a relationship between

T
′′′

1 , T
′′

2, T
′

3, U
′′

1, and U
′

1. We will not display this second expression of the growth rate because it is

too long.

The rate of transmitted energy is, at the leading order, the jump of the averaged vertical flux of

the total energy and pressure

τE = [
〈

(ek + ep + p)w
〉

]+−.

The sign of τE usually yields the energy balance inside the critical layer, but τE cannot be used here

due to the presence of the secular terms in the nonlinear critical-layer theory, where instead we use

κE =
∫ yB2

yB1

∂t

〈

ek + ep

〉

dy .

If κE > 0, then the critical layer absorbs the total energy carried by the solitary wave and transmits

it to the mean flow and buoyancy. As the potential energy is negligible, indeed

∫ yB2

yB1

∂t

〈

ep

〉

dy/

∫ yB2

yB1

∂t 〈ek〉 dy = O
( ǫ

Pr Ri

)

,

we can predict an absorption of energy using (123) alone, so that for absorption, we come down to

an inequality involving only U
′

0, U
′′

0 , T
′′

0 and σ , independently on the wave amplitude:

2 4 6 8 10
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FIG. 8. Ratio μ1/μ2 as a function of σ .
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FIG. 9. Diagrams of the locations in the space (U
′
0U

′′
0 /T

′′
0 − 1, σ ) where the critical layer heating occurs through the relation

(129). The different zones correspond to: (1) b0 > 0, T
′′

0 < 0, (2) b0 > 0, T
′′

0 > 0, (3) b0 < 0, T
′′

0 < 0, and (4) b0 < 0,

T
′′

0 > 0. Figure (a) displays the case Pr = 0.71 and Fig. (b) Pr = 4; the critical value of Pr which divides both diagrams is

Pr = 0.982. The vertical line passes by σ = 1.323.

(U
′′

0 − T̄
′′

0 ) [μ1(σ )U
′′

0 − μ2(σ )T̄
′′

0 ] < 0, (128)

with

μ1(σ ) =
1

3
σ 2 + (ln 2 −

1

3
)σ + 1, μ2(σ ) =

1

3
σ 2 + (ln 2 +

1

3
)σ + 1, 1 < μ1 < μ2.
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The inequality (128) yields the basic condition for a kinetic-energy absorption:

1 <
U

′′

0

T̄
′′

0

<
μ2

μ1

(σ ),

that is to have a small parameter b0, or equivalently a weakly singular critical layer. Indeed, Fig. 8

displays the ratio μ2/μ1(σ ). As σ increases from one, μ2/μ1 varies relatively little, the bounding

range slowly shrinks to zero: for 1 < σ � 10, 1.176 � μ2/μ1 � 1.441. The value of σ giving a

maximum-range is σ ≃ 1.732. This kind of critical layer therefore favors a loss of kinetic energy by

the mean flow. In the same way, the heating criterium (120) yields a similar inequality containing in

addition the Prandtl number

b0

[

2
(U

′

0U
′′

0

T
′′

0

− 1
)

(
8

3
σ 2 − σ ln 2 − 4 +

1

3
σ−1) + (σ 2 − 1)(

1

3
Pr − 1) +

2

3
σ−1

]

< 0. (129)

Figure 9 shows that there still exists an infinite region in the plane (b0U
′2
0 /T

′′

0 , σ ), whatever Pr and

the signs of b0 and T
′′

0 may be, so that the critical layer may heat or cool. However, this region

changes shape and size according to these parameters. Both curves in the diagrams change curvature

at the critical Prandtl number Pr = 0.982. If we are in the case, for example, where b0 > 0 and

T ′′
0 < 0 for Pr < 0.982, then the critical layer heats if the point (b0U ′2

0 /T ′′
0 , σ ) is in the region 1 in

the Figure 9(a). However, if we are in the case where b0 > 0 and T ′′
0 > 0, then this point must be in

the region 2.

The evolutions of the mean flow and buoyancy are thus stringently related to how high streamline

and iso-buoyancy line distortions are, for the above growth rates depend on the jumps: [U
′

1]+−, [T
′′

1 ]+−
and [U

′′

1 ]+−. Though E-wave distortion is higher than D-wave distortion, the former is restricted to the

zone within and around the cat’s eye, and thus concerns only the wave-like flow, function of A[X, T],

but not the induced mean flow. Indeed, rapidly away from the cat’s eye, E-wave distortion vanishes

(as A decreases) and on space average, the E-wave critical-layer induced mean flow is not distorted

and the shifting yδ = 0 (for the E wave, after Eq. (36), c1 = 0). As a result, E-wave mean flow and

buoyancy are steady in the asymptotic quasi-steady state régime and equate the basic profiles of

velocity and buoyancy, U(y) = U0(y) and T(y) = T0(y) (U1(y) = Uu, 1). Finally, the E-wave local

rescaled Richardson number is O(ǫ), namely Jc = T
′

2/U
′2
0 ǫ.

The long-wavelength neutral and singular internal D-mode has thus an opposite effect on the

mean flow with respect to the internal neutral mode16, 17 for Jc > 1/4. Mean flow kinetic energy decays.

The solitary wave conserves its energy, as is gradually lost by dissipation over very long times. This

particular neutral mode behaviour can as well be brought out in the interaction between a vortex and

a vortex Rossby neutral mode. When a vortex supports neutral or nearly neutral asymmetric modes,

the circular vortex is weakened. The energy is trapped in these modes, then is gradually lost by

diffusion. On the other hand, stable asymmetric modes decay, which leads to an axisymmetrization

and intensification of the vortex.44 In another example of wave/mean flow interaction, the variability

in the global upper-tropospheric flow fields can be explained by the presence of a tropical westerly

anomaly: the tropical axisymmetric mode (TAM). TAM is essentially identified as a near-neutral

mode of the zonally symmetric atmosphere and is associated with the weakened Hadley cell.45

VII. CONCLUSION

In this study, we have described explicitly the strong interaction of a free internal wave with a

stratified shear flow when a critical level singularity appears in the linearized formulation. The critical

layer dynamics is fully nonlinear and analyzed in the inviscid limit, appropriate for geophysical

flows with a high Reynolds number. We assumed that the flow is quasi-steady, and made a long-

wave assumption, Crucially, we have assumed that the stratification is weak at the critical level. As

noted, nevertheless the basic buoyancy field T0(y) is technically weakly convectively unstable, and in

particular, the buoyancy field within the cat’s eye has a negative buoyancy gradient in one half of the

cat’s eye. This has come about because we have assumed that the buoyancy gradient vanishes at the
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critical level, that is T
′

0(yc) = 0. However, because the basic buoyancy field is maintained by a forcing

term Fb(y), we expect that any potential convective instability will be suppressed. Of course, if we

also suppose that T
′′

0 (yc) = 0, then the basic buoyancy field is stable, and in particular, the buoyancy

within the cat’s eye is then constant at the leading order. The Prandtl-Batchelor theorem used to

determine the stationary and laminar flow inside a closed two-dimensional domain is extended here

to allow for the slowing evolving and weakly forced flow due to weak viscous and thermal diffusions

within the separatrices. In our asymptotic procedure, the vorticity and buoyancy are determined at

each order of the perturbation expansion within the cat’s eye. As expected, at the leading order,

the vorticity is constant within the separatrices of the cat’s eye. However, due to the buoyancy-flow

coupling, the vorticity is no longer constant within the cat’s eye at the order O(ǫ1/2), whereas owing

to the buoyancy forcing, the leading-order, O(ǫ)-buoyancy is not constant. Here, ǫ is the small,

dimensionless wave amplitude.

The depression wave critical layer is not symmetrical with respect to the critical level, since it

is y-shifted by a value proportional to the local rescaled Richardson number of order O(ǫ1/2). Other

adjustments of the streamline pattern must be introduced, using a strained-coordinate parametrization

of each streamline inside the critical layer, similar to those found for Rossby-wave critical-layer

dynamics.19, 20 The distortion which is then induced on the y-axis is O(ǫ ln ǫ). The addition of a

stratified buoyancy, though small, to the wave mean flow interaction process leads to a stronger

deformation of the streamlines than for the unstratified case, and also a stronger distortion of the

critical-layer induced mean flow. This distortion of the mean flow occurs at the O(ǫ1/2)-first order for

the vorticity, and then, at the second order for the velocity and buoyancy gradient, and at the third

order for the buoyancy in agreement with Ref. 46. For the elevation wave (the E-wave), a singularity

around the separatrices is encountered for both the O(ǫ) vorticity and the O(ǫ2) buoyancy. It is

removed, as in the β-plane critical-layer case,20 with a new scaling Ŝ ≡ S̃/(ǫ1/2 ln ǫ). It seems that

this is a general outcome as the same issue appears in the works.19, 20, 47, 48 That is, it is always

possible to remove the singularities which emerge in a critical-layer nonlinear dynamics through the

use of new scalings which preserve the regular-quantity jumps.

The pressure matching condition on the separatrices of the cat’s eye leads to a compatibility

condition on the streamfunction amplitude A(X, T), which is an integro-differential equation con-

taining two integral functionals of ∂TA. For a steady travelling solitary wave, we can obtain explicit

solutions, which are nevertheless more complex than those for a modified Korteweg-de-Vries equa-

tion. The additional terms arise from the critical-layer dynamics. In particular, the assumption of

a nonlinear critical layer implies a specific long-wave scaling which provides stronger dispersion

through a smaller wavelength than in the usual derivation of the KdV equation.26 However, for steady

travelling waves, the related evolution equation for the cross-stream location of the separatrix, rather

than the amplitude of the streamfunction, is a (steady) Korteweg-de-Vries equation. Thus, we have

established that there are solitary-wave solutions for both depression waves (D-waves) and elevation

waves (E-waves) with critical-layer configurations. The conditions on the mean flow for the appear-

ance of a solitary E-wave are more stringent than for the D-wave case but can be realized in a stratified

medium. The E-wave found here is stationary in the frame moving with the linear wave. However, it

is possible that unsteady solitary E-waves could exist as solutions of the integro-differential equation

(65). Numerical solutions of this latter equation with simplified unsteady equations (93) and (101)

are planned in a future study. Away from the cat’s eye, the E-wave critical layer is not distorted, all

mean flow jumps such as [T ′′
1 ]−, [U

′′

1 ]+− . . . are zero and subsequently the critical-layer induced flow

and buoyancy which spread out in both diffusion boundary layers on either side after averaging are

the basic background U0(y) and T0(y). The result is an absence of E-wave/mean flow interaction.

The D-wave mean-flow change induced by the presence of the critical layer occurs over the

viscous time scale τ 1 = λT yet derived.19, 20 Its magnitude is function of only two parameters, the

shear at the critical level and the amplitude of the leading-order viscous flow, and it is independent

of the wave amplitude. The presence of this critical layer mostly results in a loss of kinetic energy for

the mean flow while the buoyancy of the latter can increase or decrease. In this critical-layer theory,

the averaged vertical flux of horizontal momentum is proportional to the rescaled dimensionless

viscosity λ and is, generally of same order as the outer viscous diffusion of the mean horizontal

momentum, and as the x-derivatives of the secular terms. It is therefore no longer possible to neglect



056602-41 P. Caillol and R. H. J. Grimshaw Phys. Fluids 24, 056602 (2012)

the viscous and thermal diffusions in this present wave mean-flow interaction study, as in previous

wave mean-flow interaction studies where the motion was essentially periodic and did not involve

secular terms. These secular terms are therefore essential in the critical-layer interaction. The

leading-order secular-streamfunction amplitude (O(ǫ3/2)) is inversely proportional to the D-wave

critical-layer thickness, assuming this amplitude small favors the nonlinear-critical-layer régime

with respect to the viscous-critical-layer one. As the diffusion boundary layers spread slowly with

a O(
√

τDB) thickness, where ǫ ≪ τDB ≪ 1, at either side of the critical layer, they induce a small

displacement of the critical level with the same time scale τDB which affects the critical-layer

dynamics. As a result, as the flow remains weakly stratified around the critical layer, the O(ǫ1/2)

mean horizontal velocity and the O(ǫ1/2) mean-buoyancy gradient evolves on the fast time scale τ 1

and on τDB as well, whereas the leading-order O(ǫ) mean buoyancy evolves more slowly, with the

diffusion time scale τ 2 = t/(Pr R) and with τDB. Consequently, the mean heating and mean potential

energy also evolve over the time scales τ 2 and τDB. Reciprocally, the mean dynamics and buoyancy

evolve with the time scale τDB in the diffusive boundary layers but the presence of the critical layer

introduces a complex forcing, coupling thermal and dynamical effects whose time scales are τ 1 and

τ 2 at leading orders, and which is located at the distorted level yc − ǫ1/2T
′

1(yc)/T
′′

0 (yc).
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APPENDIX A: EXTENDED PRANDTL-BATCHELOR THEOREM WITHIN THE CAT’S EYE

In this appendix, we find the expressions for the vorticity and buoyancy within the separatrices

using two integral constraints. We begin with the equations governing the motion of a uniform

incompressible fluid

� × u − ∇H + � y + ν∇2u + Fu = ∂t u, (A1)

χ∇2� − u · ∇� + Fb = ∂t�, (A2)

where � = −∇ × u , H = p/ρ + |u|2/2, ν = 1/R and χ = 1/(Pr R). The procedure we will employ

is an extension of the method49 used for a homogeneous fluid, and extended to a stratified fluid.41

We assume a solution which is a steady travelling wave. Then, in the frame moving with the

velocity of this wave, the motion is steady and the streamlines are closed in the E-wave case. For

the D-wave, we close the flow by putting the left half of the cat’s eye at the right-hand end. We use

the variable S̃, which makes the calculations easier since the pattern is symmetric vis-à-vis the curve

Ỹ = 0. Then, we integrate Eq. (A1) around the enclosing streamline defined by its value of S̃, to get
∮

� × u · dl −
∮

∇H · dl +
∮

� y · dl + ν

∮

{∇ × � − [U
′′

0 (Y ) − ǫ
1
2 U

′′

u,1(Y )]x} · dl

+ V ǫ
5
4

∮

∂X u · dl = 0. (A3)

The two first terms on the left-hand side vanish. The third and last inviscid term are also zero due to

the symmetry of the pattern with respect to the axis ζ = 0. Thus we get that

ǫ
7
4

∮

{∇ × � − [U
′′

0 (Y ) − ǫ
1
2 U

′′

u,1(Y )]x} · dl +
∮

�vy · dl + V ǫ
5
4

∮

∂X uv · dl = 0. (A4)

The third term is negligible at the leading orders. For the buoyancy equation (A2), we perform a

curvilinear integration around the enclosing streamline to get

−
∮

u

|u|
· ∇� dl + χ

∮ ∇2� − T
′′

0 (Y )

|u|
dl + V ǫ

5
4

∮

∂X�

|u|
dl = 0. (A5)
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The first and the third inviscid terms vanish by symmetry, and the viscous part of the latter term is

also negligible at the leading orders, so that

ǫ
7
4

∮ ∇2�i − T
′′

0 (Y )

|u|
dl + V Prǫ

5
4

∮

∂X�v

|u|
dl = 0. (A6)

The E-wave motion is even more simplified due to its stationarity, ∂TA = 0 after Sec. V. Note that

as the path of integration is infinite for the D-wave case, we divide each integral by the length of the

X-range involved, and thus we obtain an average of the integrand over a contour characterized by a

value of S̃. The X-average 〈f〉 of a field f within the cat’s eye, along the S̃-contour, is given by

〈 f 〉 =
1

x0(S̃)

∫ x0(S̃)

0

f dζ , for an E-wave,

〈 f 〉 =
1

L − x0(S̃)

∫ L

x0(S̃)

f dζ , L → ∞ , for a D-wave , where S̃ = A(ζ = x0).

We then expand the vorticity. For instance, for the vorticity � = −(∇ × u) · ez = ǫ−1∂2
Y � +

ǫ1/2∂2
X�, we get that � = �(0,⊙) + ǫ

1
2 �(2,⊙) + ǫ ln ǫ �(4,⊙) + ǫ �(5,⊙) + . . . .

At O(ǫ), Eqs. (A1) and (A4) yield, respectively,

�(0,⊙) = Q(0,⊙)(S̃) = U
′

0,

while Eqs. (A2) and (A6) yield

�(0,⊙) = T
′′

0 S̃ + θ0.

At O(ǫ3/2), Eq. (A1) projected onto the cross-stream and then the streamwise axes yields, �(2,⊙)

= T̄
′′

0 S̃Y + Q(2,⊙)(S̃). Then using �(2, ⊙) in Eq. (A4) yields Q(2,⊙)(S̃) = constant = Q2. Equation

(A2) implies a general solution for �̃(2,⊙) of the form

�̃(2,⊙) = T̄
′′

0 (�̃(2,⊙) − �[S̃Y ] + s�0[S]) + G(2,⊙)(S̃) .

Then, Eq. (A6) yields the condition

(G(2,⊙)

S̃
(S̃) + T̄

′′

0 Q2 + T
′′′

0 yδ)

〈

1

|S̃Y |

〉

= 0 ,

and so G(2,⊙)(S̃) = −(T̄
′′

0 Q2 + T
′′′

0 yδ)S̃ + θ2 .

The function �0[S] assures the continuity of the buoyancy on the axis Ỹ = 0 at any point ζ

= ξ − V T .

Then in the same way, at O(ǫ2ln ǫ), Eq. (A1) gives the general form of the vorticity

�(4,⊙) = Q(4,⊙)(S̃) −
1

2
b0T̄

′′

0 A,

while Eq. (A4) then implies that

Q(4,⊙)(S̃) = Q4 = constant.

Equation (A2) gives the general form of the buoyancy,

�̃(4,⊙) = T̄
′′

0 [�̃(4,⊙) −
1

2
b0∂T X−1 A] + G(4,⊙)(S̃),

with G(4,⊙)(S̃) given by (A6)

G(4,⊙)(S̃) =
1

2
b0(T̄

′′2
0 − T

′′′

0 )

∫ S̃

Sc

〈A|SY |〉
〈|SY |〉

d S + θ4. (A7)

For a D-wave, G(4,⊙)(S̃) = θ4 = constant, because the integrand numerator is zero. Note again that

the variable S̃ enables us to simplify the O(ǫ2ln ǫ) equations.



056602-43 P. Caillol and R. H. J. Grimshaw Phys. Fluids 24, 056602 (2012)

Finally at O(ǫ2), Eq. (A1) yields the expression of vorticity displayed in Eq. (62). Then, the

unknown function Q(5,⊙)(S̃) is obtained from Eq. (A4) leading to the integral constraint,
〈

|S̃Y |(Q
(5,⊙)

S̃
(S̃)−U

′′′

0 )−θ (2,⊙)
v

AX

|SY |
−T̄

′′

0 |S̃Y |[S̃Y (�S̃[|S̃Y |]−�0,S̃)]S̃+sV (�
(2,⊙)
v,Y ξ +AX�

(2,⊙)
v,Y S )

〉

= 0.

Then, taking account of the symmetries X → −X and Ỹ → −Ỹ , we get that

Q
(5,⊙)

S̃
(S̃)〈|S̃Y |〉 = U

′′′

0 〈|S̃Y |〉 + T̄
′′

0 〈|S̃Y |[|S̃Y |(�S̃[|S̃Y |] − �0,S̃)]S̃〉

+ [
1

Pr
( ¯̄T

′′

0 T̄
′′

0 −T̄
′′′

0 )+βv,1T̄
′′

0 ]

〈

ζ
AX

|S̃Y |

〉

−
T̄

′′

0

Pr

〈

AX

|S̃Y |
[

∫ ξ

xc

(|S̃Y |�S̃[|S̃Y |])S̃ dx]

〉

−θ2,v(S̃)

〈

AX

|S̃Y |

〉

.

(A8)

Only the first term at the rhs has a no zero D-wave average, the third term remains for the E-wave too.

Hence, Q(5,⊙)(S̃) = U
′′′

0 S̃ + Q5 for a D-wave, and Q(5,⊙)(S̃) = U
′′′

0 S̃ + ω5(S) + Q5 for an E-wave

with

ω5(S̃) =
1

Pr
(T̄

′′

0
¯̄T

′′

0 − T̄
′′′

0 )

∫ S̃

Sc

〈

ζ AX

|SY |

〉

〈|SY |〉
d S.

The buoyancy θ (2,⊙)
v is obtained from the viscous part of Eq. (A2)

θ (2,⊙)
v (ξ, S̃) =

1

Pr

[

¯̄T
′′

0

(

(T̄
′′

0 + βv,1 PrU
′

0)ξ −
∫ ξ

xc

[S̃Y �S̃]S̃ dx
)

− T̄
′′′

0 ξ
]

+ θ2,v(S̃).

For a D-wave, G(5,⊙)(S̃) is given by

G(5,⊙)(S̃) = [(Q̄2T
′′

0 +T
′′′

0 yδ)Q̄2−T̄
′′

0 Q5+b0Sc(T
′′′

0 −T̄
′′2

0 )+
1

2
T I V

0 y2
δ −V ( ¯̄T

′′

0 T̄
′′

0 +βv,1 PrU
′

0−T̄
′′′

0 )]S̃

+
1

6
(T I V

0 + T
′′

0
¯̄T

′′2

0 − T̄
′′′

0 T̄
′′

0 − Ū
′′′

0 T
′′

0 )S̃2 +
4

3
V T̄

′′2
0 (S̃ − Sc) + θ5 , (A9)

whereas for the E-wave, we have

G(5,⊙)(S̃) = [Q̄2
2T

′′

0 − T
′′

0 Q̄5]S̃ + (T̄
′′2

0 − T
′′′

0 )

∫ S̃

Sc

〈Ū (2)|S̃Y |〉
〈|S̃Y |〉

d S

+
1

6
T I V

0

∫ S̃

Sc

〈|SY |3〉
〈|SY |〉

d S − (T̄
′′′

0 T̄
′′

0 + Ū
′′′

0 T
′′

0 − T
′′

0
¯̄T

′′2

0 )

∫ S̃

Sc

S〈|SY |〉 − 1
3
〈|SY |3〉

〈|SY |〉
d S

− T̄
′′

0

∫ S̃

Sc

∫ S

Sc
ω5(S1)〈|S̃Y (S1)|〉S̃ d S1

〈|S̃Y (S)|〉
d S + θ5 . (A10)

APPENDIX B: ORDER-ǫ2 INNER FLOW

This section gives the expressions of the related S̃-velocity, buoyancy, and pressure outside the

cat’s eye which, due to their length, could not be inserted in the main text of the paper,

�̃
(5)
Y =

1

3
U

′′′

0 S̃Y (2A + S̃)+
1

9
b0T̄

′′

0 [s(S̃+6A)
√

2S̃−(S̃ + 2A)S̃Y −s(Sc+6A)Y∞+s(Sc + 2A)Ys]

−
1

3
(T̄

′′′

0 − T̄
′′

0 Ū
′′

0 )[(S̃ + 2A)S̃Y − s S̃
√

2S̃ − s(Sc + 2A)Ys + sScY∞]

+(T̄
′′

0
ˆ̄U

′

1 + T̄
′′′

0 yδ − T̄
′′

1 − Ū
′′

0 T̄
′

1)[A ln[�(A, S̃)] + [S̃(S̃ − A)]
1
2 −

1

2
Y∞Ys − S̃ + Sc]

+ s(b0U
(2) +

1

2
T̄

′′′

0 y2
δ − T̄

′′

1 yδ + T̄
′

2)(
√

2S̃ − Y∞) + sb2
0 A∗ ln[�(A, S̃)]

√

2S̃
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+ (Û
′′

1 − U
′′′

0 yδ)[S̃(S̃ − A)]
1
2 −

1

2
(Û

′′

1 − U
′′′

0 yδ)Y∞Ys + [
1

2
(U

′′′

0 − T̄
′′′

0 )y2
δ − Û

′′

1 yδ + U
′

2 − T̄
′

2]S̃Y

−
1

2
[U

′

2 − U
′′

1 yδ − T̄
′

2]+− Ys − s
1

2
b0

∫ S̃

Sc

�[(w − A)
1
2 ]

[2w(w − A)]
1
2

dw − ¯̄T
′′

0 {�[S̃Y ] − �[sYs]}

+ {[ ¯̄T
′′

1 − ˆ̄U
′

1T̄
′′

0 + b0(βl,1 + ¯̄T
′

1 ) − yδ
¯̄T

′′′

0 + yδ( ¯̄T
′′2

0 − b2
0)]A∗ + b0(βd,1∂

2
X A∗ + B∗)} ln[�(A, S̃)]

+α S̃Y + T̄
′′

0 ϕ(2)(S̃),

with α an unknown constant to determine while matching, while the buoyancy is

�̃(5) = T̄
′′

0 (�̃(5) − ϕ(2) �S̃[S̃Y ]) + Ḡ(2)

S̃
(�̃(2) − �[S̃Y ])

− ¯̄T
′′

0

∫ ξ

xc

�S[SY ]
(

�
(2)
ξ −

∂T A

SY

)

dx − ¯̄T
′′

0

∫ ξ

xc

(�(2)
τ − �τ [S̃Y ])

dx

S̃Y

+ G(5)(S̃). (B1)

The matching of the pressures

P̃ (5) = U
′

0�̃
(5) + Q �̃(2) −

1

2
�̃

(2)2
Y + S̃Y (�̃(2) − U

′

0�̃
(5)
Y ) + T̄

′′

0 AT X−1

−
∫ ξ

xc

S̃Y (�
(2)

S̃T
+ AT �

(2)

S̃ S̃
) dx + U

′

0

∫ S̃

Sc

F (5) d S + �̃(0)ϕ(2) S̃−1
Y + P (5), (B2)

P̃ (5,⊙) = U
′

0�̃
(5,⊙) + Q2�̃

(2,⊙) −
1

2
�

(2,⊙)2
Y + S̃Y (�̃(2,⊙) − U

′

0�̃
(5,⊙)
Y ) + T̄

′′

0 AT X−1

−
∫ ξ

xc

S̃Y (�
(2,⊙)

S̃T
+ AT �

(2,⊙)

S̃ S̃
) dx + U

′

0

∫ S̃

Sc

Q(5,⊙)(S) d S + �̃(0)ϕ(2) S̃−1
Y + P (5,⊙), (B3)

comes down to the matching of

∫ ξ

xc

S̃Y (�
(2)

S̃T
+ AT �

(2)

S̃ S̃
) dx + U

′

0 S̃Y �̃
(5)
Y .

However, the integral is continuous through the separatrices, so the streamwise velocity must be

continuous, which leads to two conditions giving �̃
(5,⊙)
Y and α. The matching of the deformation

functions ϕ(5) yields the evolution Eq. (65),

α = Q5 −
1

2
(U

′′′

0 − T̄
′′′

0 )y2
δ −

1

4
[U

′′

1 ]+−Y∞ + Û
′′

1 yδ − U
′

2 + T̄
′
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