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Abstract—Assessment of distal cerebral perfusion after
ischaemic stroke is currently only possible through expensive
and time-consuming imaging procedures which require the
injection of a contrast medium. Alternative approaches that
could indicate earlier the impact of blood flow occlusion on
distal cerebral perfusion are currently lacking. The aim of
this study was to identify novel biomarkers suitable for
clinical implementation using less invasive diagnostic tech-
niques such as Transcranial Doppler (TCD). We used 1D
modelling to simulate pre- and post-stroke velocity and flow
wave propagation in a typical arterial network, and Sobol’s
sensitivity analysis, supported by the use of Gaussian process
emulators, to identify biomarkers linked to cerebral perfu-
sion. We showed that values of pulsatility index of the right
anterior cerebral artery > 1.6 are associated with poor
perfusion and may require immediate intervention. Three
additional biomarkers with similar behaviour, all related to
pulsatility indices, were identified. These results suggest that
flow pulsatility measured at specific locations could be used
to effectively estimate distal cerebral perfusion rates, and
ultimately improve clinical diagnosis and management of
ischaemic stroke.

Keywords—Leptomeningeal collateral, Ischaemic stroke,

Gaussian process emulator, Sensitivity analysis, Biomarker,

Cardiovascular modelling, Brain circulation, Wave propaga-

tion.

INTRODUCTION

Ischaemic stroke (IS), the most common cere-

brovascular disease and the second cause of death

worldwide, constitutes a significant burden on the

healthcare systems of many countries.15 It is caused by

a thrombus which obstructs a major vessel and limits

the amount of blood that perfuses the districts down-

stream of the occlusion, causing tissue death if the

perfusion is not swiftly restored.29

Several collateral pathways provide alternative

perfusion routes in case of occlusion of a major vessel.

The primary one, the Circle of Willis (CoW), provides

an alternative perfusion route in obstructions of the

internal carotid artery.9,33 In case of occlusions of the

proximal middle cerebral artery (MCA), which

accounts for the majority of all stroke cases,41 conti-

nuity of perfusion is provided by a network of smaller

vessels, the pial or leptomeningeal anastomoses

(LMAs). LMAs connect the MCA with posterior and

distal anterior cerebral arteries (PCA and ACA2,

respectively).9,36 This compensation mechanism is an

important determinant of post-ischaemic tissue fate,2

but its effectiveness is highly dependent on the status of

the LMAs and their ability to carry sufficient amounts

of blood and metabolites.18 It has been observed that

patients with effective collateral circulation recover

better than patients with poor LMAs.11 Imaging

methods, for example contrast and perfusion MR and

CT, are commonly used in the diagnosis of IS and can

evaluate the degree of collateralisation8,33 and perfu-

sion impairment. However, they are expensive and
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require the injection of a contrast medium in the blood

stream. Additionally, they only offer a snapshot in

time of the patient’s condition and do not allow for

continuous monitoring.22

Transcranial Doppler ultrasound (TCD) is not able

to detect a signal from small vessels such as the LMAs

but can be used to indirectly confirm the presence of IS

and LMA collateralisation8,33 through non-invasive

measurement of intracranial blood velocities and the

evaluation of features of the velocity waveforms in

large vessels such as ACA1 (proximal anterior cerebral

artery), ACA2, PCA and MCA.6,8,38 Despite being

used to evaluate the recanalisation state after treat-

ment, TCD does not provide a quantitative measure of

the degree of tissue perfusion for preoperative plan-

ning.22 The identification of velocity-based biomarkers

of perfusion that could be measured via TCD would

allow first responders to route IS patients along the

most appropriate clinical pathway in a timely man-

ner.46

Computational models of the CoW can help

understanding the mechanics of stroke and collateral-

isation and have been used in a variety of scenarios.

The use of 3D approaches is popular13,21 but poses

challenges for domain definition, determination of

parameters and required computational resources. 1D

models allow either steady or transient simulations of

larger vascular networks in shorter time frames,30 can

incorporate nonlinear material properties,5 and have

been used to study the brain circulation in physiolog-

ical16,44 and pathological conditions, both alone1,32 or

integrated with data driven techniques.24,40 Only re-

cently have researchers started to include the pial cir-

culation into their models,25,27,28 rarely proposing

methodologies for clinical exploitation of their find-

ings.

In this study we have a twofold aim, which we

pursue through a hybrid mechanistic-statistical

approach. The first aim is the development and vali-

dation of a 1D computational model of the LMAs to

improve our mechanistic understanding of the influ-

ence of stroke on blood flow. The second aim is the

identification of biomarkers for distal perfusion that

could be computed from TCD measures routinely

performed in a clinical setting. We employ Gaussian

process emulators for the analysis of arterial blood

velocities,24 and Sobol sensitivity analysis10,24 for the

identification of biomarkers. This process recognises

the potential variability of anatomical parameters

within the patient population, and the effects of this on

results variability. We will show that the model cap-

tures the fundamental role of LMAs during IS and that

it is possible to identify a biomarker that could inform

clinical management of IS from routinely performed

clinical measurements.

MATERIALS AND METHODS

We first present the mechanistic model of the LMA

circulation and describe its use for simulating healthy

and stroke scenarios. Then, we describe the statistical

model and introduce Gaussian Process Emulators

(GPEs), for emulating the behaviour of the brain cir-

culation model, and Sobol’s sensitivity analysis (SSA),

for model reduction and biomarker identification.

Mechanistic Baseline Model

The network used in this study extends a subject

generic model of the brain vasculature we have previ-

ously published and validated24 by further branching

the PCA and the distal ACA (ACA2). The input

parameters of the model (radii, length, and Young’s

modulus of all vessels, windkessel parameters for the

outlets and the inlet flow rate) were obtained from the

literature. The original model, comprising the CoW

and other extracranial arteries, is based on the model

developed by Alastruey et al.1. Vessels branching from

left and right MCA were derived from a study of Melis

et al.24, while we used the ADAN model7 and a study

from Phan et al.27 to obtain the data for branches of

PCA and ACA2. Furthermore, we included the pial

vessels that connect the anterior and posterior cerebral

districts with the middle one. Figure 1 shows a diagram

of the resulting network.

The LMAs were modelled as 5 mm long and 400

lm27,36 wide direct connections between the major

vessels.27 All arteries in the network were modelled as

elastic 1D vessels able to deform in the radial direc-

tion.1,35 Arterial stiffness was location dependent, with

larger and smaller vessels having lower and higher

Young’s modulus respectively. The inflow of blood

was prescribed at the ascending aorta as half a sinu-

soidal wave with peak amplitude of 485 mL/s and

duration 0.3 s (systole). During the 0.7 s diastole the

inlet flow rate was set to 0 mL/s.1 The peripheral parts

of the vascular system were represented as three ele-

ment RCR windkessel outlets.1 Values of resistance

and compliance of individual outlets were computed

by distributing the total peripheral vascular resistance

and compliance to each outlet according to their

area.42 The model described above constituted the

baseline model. The complete representation of the

model (mechanical parameters and network connec-

tivity) is available in the Supplementary Material and

as an online dataset4. The software openBF 23 was

used to compute blood flow rate, velocity, and pressure

in all vessels of the network over a full 1s cardiac cycle.

The baseline model was used to simulate a healthy

individual and a patient with complete ischaemic

occlusion in the left MCA (Fig. 1). We regarded the
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MCA peripheral outlets as the brain region most di-

rectly affected by the stroke, and the total outflow in

this region as the distal perfusion of interest in the

study. We assessed the influence of the LMAs anatomy

by comparing the post-stroke total outlet flow with the

pre-stroke case. Furthermore, we computed flow

diversion (FD) and pulsatility index (PI), as they are

commonly used in the clinic to infer the presence of IS

using TCD measurements.17,33 FD is defined as the

ratio of the time-average blood velocity in a vessel in

the ipsilateral side (same side) to the stroke to the

average velocity in the contralateral (opposite side)

vessel. Physiological values of FD in the ACA1 and

PCA are around 1, while IS patients typically show

FD>1.3.17,33 PI is defined as the difference between

maximum and minimum blood velocity waveforms

divided by its time-averaged value over a cardiac

cycle.6 Patients with MCA stroke show PI<1.2 in the

ACA and PCA17,33.Figure 2 shows a typical velocity

waveform in the ACA1, and the equation used for

calculation of PI.

Gaussian Process Emulator

GPEs are statistical tools that can emulate the be-

haviour of complex nonlinear systems using only a

limited number of model runs as training points.

We sampled the vessel radii and the outlet wind-

kessel parameters of all the intracranial vessels, as it

has been shown that these parameters are the most

influential in determining blood velocities.24 This

amounted to the analysis of 136 parameters. Using the

Latin Hypercube method10,24 we sampled 1100 points

from the 136-dimensional input parameter space by

varying the variables within ±40% of their nominal

value. These 1100 points were split into a training

dataset of 900 points and a validation dataset of 200

points. All the 1100 points were simulated using

openBF and used as inputs for a GPE with zero mean

and squared exponential kernel.24 The emulator was

trained to output the average perfusion (time-average

over the cardiac cycle of the outlet flow in the left

MCA region) and the candidate biomarkers that are

detailed in the next section. The number of training

points was chosen after performing a convergence

study to guarantee a sufficient quality of the emulator

fit on the validation dataset. Discrepancies between

simulator and emulator were assessed through the

mean average percentage error (MAPE),10 defined as

MAPE ¼
100%

200

1

ys

X

200

n¼1

yns � yne
�

�

�

�

where yns and yne are the results from the n-th run of the

simulator and emulator respectively, and ys. is the

mean of the simulator output. The quality of the

emulator fit was deemed acceptable when the MAPE

was <7% on the entire validation dataset, in align-

ment with previous studies.10

With the emulator trained on the 136-dimensional

space we generated the points for SSA as described in

the next section

FIGURE 1. Portion of the network used in this study. ACA2
district is shown in yellow, MCA district in red, PCA district in
blue, ACA1 in black, LMAs in green, other intracranial vessels
in grey. Extracranial vessels are not shown. The cross
identifies the occlusion location in the left MCA. The white
circle indicates the locations where the velocities are
measured to compute the biomarkers.

FIGURE 2. Typical velocity waveform from healthy ACA1
(black). Blue dotted line indicates its maximum value (peak
systole), while orange and green dotted lines indicate the
minimum(end-diastole) and time-averaged values
respectively. The definition of pulsatility index (PI) for this
waveform is shown on the right. The flow diversion (FD), not
shown here, is computed as the ratio of the ipsilateral and
contralateral average velocities.
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Sensitivity Analysis for Model Reduction

Specific features of the velocity waveforms (mini-

mum, time-average and maximum from left and right

ACA1, ACA2 and PCA) were extracted from the 1100

openBF simulations and used to determine the candi-

date biomarkers, as listed in Table 1.

The candidate biomarkers in Table 1 were selected

based on FD and PI and in alignment with established

clinical protocols, where this type of measurements are

routinely taken in the management of stroke

patients.17,33

The effectiveness of biomarkers in capturing the

extent of distal MCA perfusion was assessed through

Sobol sensitivity analysis (SSA).10,24 SSA decomposes

the output variance of a mathematical model and at-

tributes it to the variance of individual inputs. The

influence of an input on the outputs is quantified

through the Sobol indices, with 0 and 1 corresponding

to minimum and maximum influence respectively. A

thorough exploration of the input space of a model

with N input parameters requires O 1000 �Nð Þ simu-

lations,24 which is often computationally prohibitive

using a mechanistic model. We generated 110000

points for sensitivity analysis using the statistical

emulator: the number of points was selected to ensure

convergence of the Sobol algorithm. Following this we

identified the parameters with Sobol’s indices >0.110

that defined the reduced space.

Biomarker Identification

We restricted the use of the emulator to the reduced

space, and generated an additional 110000 points to

compute the Sobol’s indices for two scenarios of input

parameter variability:

1. 40% variability on all the model parameters.

2. 10% variability on the ACA and PCA radii, 40%

variability on all the remaining model parameters.

The first scenario corresponds to the case where the

least information is known about the patient’s anat-

omy. The second scenario refers to the case where the

radii of ACA and PCA are estimated using TCD to

reduce uncertainty on these values.14 Finally, an out-

put is regarded as a biomarker if it is sensitive to the

same set of input parameters as the average distal

perfusion.

Correlation Analysis

To further characterise the identified biomarkers,

we studied their correlation with the distal perfusion

when the levels of uncertainty on the radii of ACA2

and PCA varied continuously from 10% to 40%. The

uncertainty on all the other parameters was kept to

40%.

Sobol indices and correlation surfaces describe the

strength of the relationship between two quantities but

do not give explicit information on their mutual

dependency. We generated a pool of 10000 virtual

patients with 10% uncertainty on ACA2 and PCA and

produced scatter plots of the perfusion against the

biomarkers. From these relationships we identified

biomarker thresholds to stratify patients into groups

with perfusion below 50% and those with perfusion

level above 50%. The 50% perfusion value was se-

lected based on clinical evidence that prolonged re-

gional brain perfusion lower than 50% is associated

with cerebral damage and requires immediate inter-

vention.11,12 Using this perfusion value, we subdivided

the biomarker/perfusion plane into four quadrants.

The upper left quadrant (A) correctly stratifies patients

into the group requiring immediate intervention. The

upper right one (B) includes patients incorrectly iden-

tified as needing urgent care. Patients in the lower left

quadrant (C) are incorrectly classified as not needing

priority treatment, while those in the lower right

quadrant (D) are correctly classified by the biomarker.

The optimization process identifies the value of the

biomarker threshold that maximises the ratio

H ¼

P

i Ai þDi
P

i Ai þ Bi þ Ci þDi

where Ai;Bi;Ci and Di denote the points belonging to

A, B, C and D respectively. This approach guarantees

that the error in predicting the level of perfusion using

the given biomarker threshold is minimum over the

entire population, and thus can be used as a threshold

for clinical decision making.19

Furthermore, from the scatter plots it was possible

to compute the probabilities that, for a given value of

the biomarker, the patients exhibit a perfusion above

50%. This is computed as the ratio of points above

50% perfusion to the total number of points corre-

sponding to an observed value of the biomarker.

RESULTS

Mechanistic Baseline Model

The simulation of a healthy individual presents a

balanced circulation, with negligible differences in

velocities, flowrate, and pressure between homologous

vessels on the two sides of the brain, and values of flow

diversion are 0.95, 0.99 and 1 in proximal ACA, distal

ACA and PCA respectively (Fig. 3). Pulsatility indices

in these vessels are 1.3, 1.3 and 1.48 on both right and
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left side, as shown in Fig. 4. The occlusion of left MCA

causes a pressure drop from 70 to 53 mmHg in its

distal region. The effect on ipsilateral ACA2 and PCA

is smaller, with drop from 75 to 73 mmHg and from 80

to 77 mmHg respectively, but enough to generate a

pressure gradient which forces blood from ACA2 and

PCA into the LMAs. This blood is then distributed to

the vessels of the MCA district downstream the

occlusion. Figures 3 and 4 show the values of flow

diversion and pulsatility index after the stroke. Aver-

age post-stroke MCA perfusion ranges from 57% to

79% (68±7 %), showing how LMAs act as collateral

pathways. Alterations to blood flow on the contralat-

eral side are negligible.

Model Reduction and Biomarker Identification

Amongst the 136 parameters of the full model we

identified 11 that had a major influence (Sobol’s in-

dex>0.1) on the determination of candidate

biomarkers and distal perfusion. These parameters are

the radii of left and right ACA1, ACA2 and PCA, the

radius of LMA, the resistive part of the windkessel

elements in left and right ACA2 and PCA districts.

Detailed results are available in the Supplementary

Material.

The Sobol indices obtained for the reduced model in

the scenarios of 40% and 10% uncertainty are pre-

sented in Figs. 5 and 6 respectively as a heatmap where

darker colours signify higher influence. The average

perfusion is predominantly influenced by the radius of

the pial collaterals (R0: LMA), as indicated by its

Sobol index of 0.88. Conversely, all the proposed

biomarkers show a weak dependency on the LMA

radius (Sobol indices below 0.14) and are mostly

influenced by the radii of PCA and ACA2.

The situation changes when variability on the radii

of PCA and ACA2 is reduced to 10%. All biomarkers

show a decrease of the Sobol indices associated with

ACA2 and PCA, and a simultaneous increment in the

influence of LMAs and distal windkessel parameters.

Four biomarkers present a Sobol index greater than

0.5 (PI-ACA1-R: 0.6; PPI: 0.65; PI-ACA1: 0.53;

meanPI: 0.64).

Correlation Study

We present here only the results for two biomarkers,

pulsatility index of right ACA1 (PI-ACA1-R) and the

product of all pulsatility indices (PPI). The remaining

two biomarkers have similar qualitative behaviour and

are reported in the Supplementary Material. Figure 7

shows the absolute value of the linear correlation

TABLE 1. List of potential biomarkers and their locations.

Candidate biomarker Acronym

Flow diversion of ACA1 FD-ACA1

Flow diversion of PCA FD-PCA

Flow diversion of ACA2 FD-ACA2

Pulsatility index of ACA1 left PI-ACA1-L

Pulsatility index of ACA1 right PI-ACA1-R

Pulsatility index of PCA left PI-PCA-L

Pulsatility index of PCA right PI-PCA-R

Pulsatility index of ACA2 left PI-ACA2-L

Pulsatility index of ACA2 right PI-ACA2-R

Product of pulsatility indices of ACA1, ACA2 and PCA left and right PPI

Product of pulsatility indices of ACA1 left and right PPI-ACA1

Product of pulsatility indices of PCA left and right PPI-PCA

Product of pulsatility indices of ACA2 left and right PPI-ACA2

Mean of pulsatility indices of ACA1, ACA2 and PCA left and right meanPI

FIGURE 3. The flow diversion in ACA1, ACA2 and PCA
increases after stroke (black bars) with respect to the healthy
case (hatched bars) and reaches values above 1.3 (red dashed
line), which is a sign of LMA collateralisation.
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coefficient between each biomarker and the level of

distal perfusion for different levels of uncertainty on

the parameters that can be clinically measured, the

radii of ACA2 and PCA.

Lower values of uncertainties are associated with

higher correlation, while lack of knowledge on the

anatomy of the network yields lower predictive ability.

The two biomarkers present comparable ranges of

correlation coefficient but behave differently with re-

spect to the uncertainty levels. PI-ACA1-R shows

weak dependence on the PCA radius, with maximum

values of R ¼ 0:69 attained for 10% uncertainty on

ACA2 radius. The correlation drops to R ¼ 0:27 when

the uncertainty on ACA2 grows.

For PPI the case is not as polarised. The maximum

correlation is R ¼ 0:72, which degrades to R ¼ 0:22

when the uncertainty grows, although with a smaller

gradient compared to the previous two biomarkers.

Biomarker Threshold for Decision Making

Figure 8(a) shows the scatter plots drawn from

10000 virtual patients generated by the emulator in the

case of least uncertainty, corresponding to points in the

bottom left part of the correlation surfaces in Fig. 7.

For both biomarkers, higher perfusion is associated

with lower values of the biomarkers.

The behaviour of the ratio H, whose maximum

identifies the optimal biomarker threshold, is plotted in

Fig. 8(b). Values of the threshold are PI-ACA1-R=1.6

and PPI=9.3. Perfusion probabilities are plotted in

Fig. 8(c). For example, with measurement PPI=6 the

patient is classified as not in need of priority treatment,

with a 90% likelihood of perfusion>50%. A value

PPI=15 is associated to immediate care, and a 12%

probability of good perfusion.

DISCUSSION

We have presented a mechanistic 1D model of the

leptomeningeal collaterals and developed a methodol-

ogy for identifying biomarkers for distal perfusion that

could aid clinical decision making.

The mechanistic model of LMAs shows features of

the brain circulation that have been observed in clinical

studies on stroke patients. In healthy conditions the

circulation between right and left hemispheres is bal-

FIGURE 4. Following left MCA stroke (black bars) the
pulsatility index of left ACA1, ACA2 and PCA decreases,
while the right side is only minimally affected. White bars
show the values in the healthy case, and the red dashed line
indicates PI=1.2: values before 1.2 are signs of distal LMA
collateralisation.

FIGURE 5. Sobol indices in case of 40% uncertainty on input
parameters (on the x axis). ‘‘R0: Vx’’ indicates the radius of
vessel Vx, ‘‘WK: R’’ is the resistive part of the windkessel
element. Darker colours signify higher influence of the inputs
on the outputs (on the y axis). The average perfusion is
significantly influenced by the radius of LMAs. With high level
of uncertainty on the inputs the biomarkers do not depend on
R0: LMA and thus cannot be used as proxy measurements.

FIGURE 6. Sobol indices in case of 10% uncertainty on left
and right R0: ACA2 and R0: PCA. Uncertainty on remaining
parameters is 40%. Increased knowledge of ACA2 and PCA
radii causes an increase in the dependency of the biomarkers
on the LMA radii. The four biomarkers whose Sobol index with
R0: LMA is above 0.5 are highlighted.
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anced, with nearly identical values of pressure, blood

velocity and flowrate on homologous vessels on both

sides. In this situation the LMAs are subject to small

pressure gradients and perfused with little amount of

blood. Following MCA occlusion, changes in blood

pressure on the occluded side force the blood to fill the

LMAs and reach distal MCA regions. This is consis-

tent with theories on the physiology of LMAs9,20,36

and findings from computational studies.25,27,28 Our

baseline model shows values of FD and PI well aligned

with the literature.17,33 Flow velocity increases in ipsi-

lateral ACA and PCA because of the negligible vari-

ations in their radius, combined with the reduction of

distal resistance caused by the recruitment of LMAs.

The drop in resistance also influences a decrease in

pulsatility index,20 although it’s been suggested that

other factors contribute to the determination of the

pulsatility index.6 The contralateral side is only mar-

ginally affected by the occlusion, coherently with pre-

dictions from the study of Jozsa and colleagues.16

SSA determined that the radius of LMAs is

responsible for approximately 90% of distal perfu-

sion’s variability. According to Poiseuille’s law, the

resistance to flow offered by a tube is inversely pro-

portional to the fourth power of its radius.9 Conse-

quently, variations of LMA radius between ±40%

yield variations in vascular resistance between 25%

and 800% of the baseline value, which is reflected on

the distal perfusion because the LMAs connect the

ACA2 and PCA regions with the distal branches of

MCA and perfuse them when the MCA is occluded.

Furthermore, the percentage variation of vascular

resistance induced by variation of peripheral wind-

kessel resistance is one order of magnitude smaller

than that induced by variation of LMA radius, which

explains why their Sobol indices are small. The

important role of LMA radius finds indirect confir-

mation in clinical and computational studies. Using

CT angiography, Yeo and colleagues showed that

good collaterals are associated with significant

recanalisation and positive outcome post pharmaco-

logical treatment.43 Other researchers confirmed these

findings.34,37 In their computational. study, Padmos

and colleagues showed that increasing the number of

LMAs strengthens the connection between different

brain regions and has the overall effect of reducing the

resistance between the regions downstream the occlu-

sion, improving exponentially the transport properties

of a contrast medium across an occlusion.25 This is

equivalent to the reduction in resistance observed in

our model when the LMAs are widened.

We identified four biomarkers, all potentially mea-

surable through TCD measurements, that can inform

on the perfusion state. Flow diversion of ACA and

PCA is routinely used for assessing the presence of a

stroke and the degree of collateralisation17,33,45 but its

Sobol indices show that it can’t be used as a proxy for

distal MCA perfusion. On the other hand, combina-

tions of pulsatility indices of ipsilateral and contralat-

eral ACA1, ACA2 and PCA showed a significant

dependency on the radius of LMAs. Wide or narrow

collaterals induce low or high distal resistance, which

in turn translates to high or low pulsatility respectively.

At the same time, the quality of the collaterals affects

the level of perfusion, which essentially depends on the

radius of LMAs. This explains the dependency of PI-

based biomarkers on the LMA radius.

Despite being counterintuitive that PI-ACA1-R,

measured on the right side of the brain, is a biomarker

for the perfusion in the left side during a stroke while

FIGURE 7. Contour plots of correlation surfaces for biomarkers PI-ACA1-R (left) and PPI (right), obtained with uncertainties on
radii of PCA and ACA2 ranging from 10% to 40%.
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PI-ACA1-L is not, this is explained by the fact that an

ischaemic event introduces imbalance in the network

and triggers phenomena of flow redistribution that

breaks the symmetric behaviour characteristic of the

healthy circulation. This results in PI-ACA1-L having

lower predictive power than its counterpart, as also

shown by its relatively low Sobol index with the per-

fusion (0.23).

The biomarkers showed negative correlation with

the distal perfusion, with values of correlation ranging

from 0.22 to 0.73 depending on the level of uncertainty

on the radii of ACA2 and PCA. Existing literature

confirms this weak relationship: Uzuner and col-

leagues39 identified positive correlation between the

pulsatility indices on the lesion side and the National

Institute of Health Stroke Scale (NIHSS). Low values

FIGURE 8. (a) Scatter plot of the distal perfusion as a function of the biomarkers. The perfusion is represented as a percentage of
the healthy case. The biomarker PI-ACA1-R is on the left, while PPI on the right. The red horizontal line indicates a perfusion level
of 50%, red vertical line indicates the biomarker threshold. Patients in A do not need immediate intervention and are classified
correctly. Patients in B do not need immediate intervention and are classified incorrectly. Patients in C need immediate
intervention and are classified incorrectly. Patients in D need immediate intervention and are classified correctly. (b) H ratio for
biomarkers PI-ACA1-R (left) and PPI (right). The value of the biomarker that maximises H is chosen as the biomarker threshold. (c)
Probability of perfusion >50% as a function of the observed biomarkers. Left: PI-ACA1-R. Right: PPI.
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of NIHSS, associated with better patient’s conditions,

were attained at low values of pulsatility, which qual-

itatively validates our findings. The low correlation

coefficient predicted by our model prevents the use of

the biomarkers to univocally estimate the perfusion,

but we could identify thresholds for separating the

patients into binary categories. Such categories indi-

cate whether a patient is most likely to require imme-

diate intervention or not and are designed to optimize

the management of a large patient population. Their

use combined with the perfusion probabilities can help

in estimating the perfusion state and guiding clinical

management. Clinical studies have not focussed on the

association between TCD based metrics and perfusion

but have used metrics such the intracranial pressure

(ICP) or the cerebral perfusion pressure (CPP) as

endpoints. Bellner and colleagues3 identified a strong

association between pulsatility index and ICP in pa-

tient with head injuries. Zweifel and coworkers46 con-

firmed these results and noted a negative correlation

with CPP. However, the overall conclusion of their

study was that PI should not be used as precise indi-

cator of CPP but should rather be used as a support to

other diagnostic tools. They estimated the likelihood of

the patients having ICP and CPP within specific ran-

ges, concluding that higher PI is associated to overall

poor conditions. This does not directly validate our

results because they studied ICP and CCP and not

perfusion, but it is an indication that our model is able

to realistically capture important features of the brain

circulation.

Of the two biomarkers presented here, PI-ACA1-R

is calculated from measurement performed on right

ACA1 only, while PPI requires measurements on six

different vessels. A functional use of PPI relies on a

relatively precise knowledge of the radii of both ACA2

and PCA, potentially hard to acquire in a context of

clinical emergency. PI-ACA1-R instead requires the

determination of the radius of ipsilateral ACA2 and of

the blood velocity in contralateral ACA1, which might

be preferable in a clinical scenario.

This study has a number of limitations. Besides

qualitative validation against literature data, we did

not benchmark the biomarkers on in vivo data. The

collection of the data necessary for in vivo validation of

this model would need to be performed during the

management of stroke patients within hospital settings.

This is typically an emergency situation where dis-

ruption to standard clinical protocols has a significant

impact on patient outcomes. The first step towards

clinical translation of these results is their application

to in vivo animal models. Our model did not explicitly

represent brain autoregulation, which is an important

feature of the cerebral physiology.26 Modification of

distal haemodynamic conditions were implicitly rep-

resented through sampling of the windkessel parame-

ters, but they described a population of patients rather

than changes within a specific individual. Also, we did

not model how tissue damage evolves over time.31 This

is fundamental for long term evaluation of the status of

brain circulation but plays a minor role in case of

patient evaluation performed within few hours from

the onset of the ischaemic event, which is the scenario

our model is primarily concerned with. Another limi-

tation is the extension of the network: existing studies

in the literature have adopted representations of the

brain circulation with thousands of vessels but limited

their analysis to steady scenarios.25 In our case the

limited extension of the network limited the compu-

tational effort and allowed a transient description of

the cardiac cycle. This led to the identification of

biomarkers associated to maximum, average and

minimum values of the velocities, not possible with

steady models.

In conclusion, our mechanistic model realistically

describes the collateral circulation involved in MCA

occlusion, and our hybrid mechanistic-statistical

approach could identify a number of biomarkers than

could potentially assist doctors in the preliminary

evaluation of stroke patients.
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