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Abstract
We establish the mixing property for a family of Lebesgue measure preserving toral
maps composed of two piecewise linear shears, the first of which is non-monotonic.
The maps serve as a basic model for the ‘stretching and folding’ action in laminar fluid
mixing, in particular flowswhere boundary conditions give rise to non-monotonic flow
profiles. The family can be viewed as the parameter space between two well-known
systems, Arnold’s CatMap and amap due toCerbelli andGiona, both ofwhich possess
finite Markov partitions and straightforward to prove mixing properties. However, no
such finite Markov partitions appear to exist for the present family, so establishing
mixing properties requires a different approach. In particular, we follow a scheme of
Katok and Strelcyn, proving strong mixing properties with respect to the Lebesgue
measure on two open parameter spaces. Finally, we comment on the challenges in
extending these mixing windows and the potential for using the same approach to
prove mixing properties in similar systems.

Keywords Low-dimensional dynamics · Non-uniform hyperbolicity · Mixing ·
Deterministic chaos

Mathematics Subject Classification 37A25

1 Introduction

Two-dimensional measure-preserving discrete-time dynamical systems are both rich
in behaviour and relevant to a wide variety of applications. For example, as strobo-
scopicmaps of fluid flow they constitute amodel of kinematicmixing (Ottino 1989); as
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canonical examples of Hamiltonian systems such as forced pendulums or kicked rota-
tors (Ott 2002); as fundamental models in fast dynamo theory (Childress and Gilbert
1995) and quantumchaos (Keating 1991). The richness of the dynamical behaviour can
be seen in the observations that the dynamics may be integrable, but also may exhibit
chaotic behaviour. That is, within two-dimensional maps, hyperbolicity is compatible
with area-preservation, allowing access to the complete ergodic hierarchy, including
ergodicity, measure-theoretic mixing, the Bernoulli property, etc.

This richness can be illustrated by considering the family of maps given by the
transformation H : (x, y) → (x ′, y′) of the 2-torus T

2 into itself, given by

x ′ = x + f (y) (1)

y′ = y + x ′. (2)

Interpreting H as the composition of a pair of shears H = G ◦ F , with F(x, y) =
x + f (y), G(x, y) = y + x clarifies that Lebesgue measure is preserved by H ,
regardless of the choice of f . In the case of the Cat Map, f (y) = y imposes a
constant, hyperbolic, Jacobian at every point in T

2. This fact provides the means to
establish immediately dynamical properties, such as unstable manifolds all lying in
the same direction, a positive Lyapunov exponent for every trajectory, and ergodic
properties, such as strong mixing, the Bernoulli property and exponential decay of
correlations. The uniform hyperbolicity of the Cat Map might be a desirable property,
but is also strong enough to preclude many applications.

The strict condition of uniformity of the hyperbolicity may be broken in a number
of ways. A typical method is to slow down the expansion of tangent vectors. The
first such example of a non-uniformly hyperbolic C∞ area-preserving map on T

2 was
the Katok map (Katok 1979), in which trajectories near the hyperbolic fixed point at
the origin are slowed down, with that fixed point becoming neutral. This is sufficient
to produce zero Lyapunov exponents for some trajectories (although at almost every
initial condition these remain nonzero), and thus non-hyperbolicity. In spite of the loss
of uniform hyperbolicity, exponential decay of correlations are retained (Pesin et al.
2019).

Another example which breaks the uniformity of expansion is a linked twist map.
Defined on a subset of T

2 we replace function f (y) with a piecewise smooth, non-
decreasing function f̂ (y), such that d f̂ /dy = 0 over some sub-interval of [0, 1]. Now
unstable leaves are oriented in a continuum of directions, but, crucially, all contained in
the positive quadrant of tangent space, which makes the demonstration of the mixing
property relatively straightforward. Such a map retains the Bernoulli property of the
Cat Map (Przytycki 1983), but the rate of mixing is slowed to polynomial decay of
correlations (Sturman and Springham 2013; Springham and Sturman 2014).

Onemore example destroying the simplicity of the CatMap can be found in the dis-
continuous sawtooth map. Here, f (y) = Cy, with C > 0, so that C = 1 recovers the
Cat Map. When K is any other positive integer, the map is continuous on the torus and
the same analysis applied. When K is non-integer however, the map becomes discon-
tinuous, and although stable and unstable manifolds exist locally almost everywhere,
these may be arbitrarily short, cut up by the dense countable set of discontinuity lines
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created by iterating themap. Nevertheless, themap retains its ergodicity (Vaienti 1992)
as the parameter C is perturbed from an integer. A further example destroying the sim-
plicity of the Cat Map is found in Liverani (2004), taking f (y) = y − 1+ε

2π sin(2π y)

with ε ≥ −1. At ε = −1 we recover the Cat Map and any perturbation ε > −1 gives
a shear that is nonlinear and smooth. The mixing property is preserved under small
perturbations, but critically only when f is non-decreasing (ε ≤ 0).

For all the above examples, the map could be described as monotonic, in the sense
that f (y) is non-decreasing in each case.Muchmore complicated dynamics is possible
if this condition is broken, as can be seen in the rich behaviour of the Chirikov–Taylor
Standard Map (Chirikov 1971). This well-known map, for which f (y) = K

2π sin 2π y,
where K is a parameter, can exhibit co-existence of invariant circles, elliptic islands
and chaotic seas, due to the lack of an invariant cone in tangent space. The wider
range of possible directions for unstable leaves allows for the possibility of expansion
being immediately counteracted in the following iterate, and the consequent failure of
hyperbolicity.

A piecewise–linear version of the standard map was studied in Wojtkowski (1981)
and Bullett (1986), where f (y) = K (|y − 1/2| − 1/4), and shown for certain param-
eter values to be non-uniformly hyperbolic (K ≥ 4) and mixing (K > K0 ≈ 4.0329).
For K < 4, the map admits both chaotic and elliptic invariant domains; mixing
properties over such a chaotic domain are shown for the K = 1 map in Liverani and
Wojtkowski (1995). A different piecewise–linear adaptation of the standardmap is that
introduced by Cerbelli and Giona (2005), and proposed as a ‘continuous archetype of
area-preserving non-uniform chaos’. This map takes f (y) = 2y if y ∈ [0, 1/2] and
f (y) = 2(1− y) if y ∈ [1/2, 1]. Like the Cat Map, the Cerbelli–Giona map (hereafter
CG map) has a finite Markov partition (MacKay 2006), and so only a finite number
of possible directions for piecewise linear segments in the unstable and stable leaves.

Various generalisations to the CGmap have been proposed, for example, in Demers
andWojtkowski (2009) a family of maps designed to preserve the Markov structure is
examined, while in MacKay (2006) a number of perturbations preserving the pseudo-
Anosov nature of the map are proposed. A smooth perturbation was considered in
Cerbelli and Giona (2008) and dynamical properties such as topological entropy were
studied numerically, but the mixing property was not demonstrated. Here, we take
f (y) = y/(1 − η) if y ∈ [0, 1 − η] and f (y) = (1 − y)/η if y ∈ [1 − η, 1] with
0 < η < 1/2. Note that as η → 1/2 we recover the CG map, and as η → 0 we limit
pointwise onto the Cat Map.

We focus on the parameter space between the Cat map and the CG map, demon-
strating the Bernoulli property over two subsets of 0 < η < 1/2. In Sect. 2, we state
our results and these subsets explicitly, while in Sect. 3 we summarise the steps the
proof requires. Section 4 deals with the parameter range near the Cat Map, and Sect.
5 with parameters near the CG Map. To keep the argument concise, we move three
derivations from Sect. 5 to Appendix, Sect. 7. We conclude with some final remarks
in Sect. 6. Explicit expressions for certain coordinates used in Sects. 4 and 5 are given
as supplementary material.
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η
F G

Fig. 1 A family of area preserving maps H = G ◦ F parameterised by 0 < η < 1/2. The pointwise limit
η → 0 gives the Cat Map and taking η → 1/2 gives Cerbelli and Giona’s map, both with well-understood
mixing properties

2 Statement of Results

We consider the Lebesgue measure preserving map H : T
2 → T

2, taken as the
composition of two orthogonal shears H = G ◦ F , shown in Fig. 1. Taking local
coordinates (x, y) ∈ (R/Z)2, F maps

(x, y) 
→
⎧
⎨

⎩

(
x + 1

1−η
y, y

)
mod 1 for y ≤ 1 − η

(
x + 1

η
(1 − y), y

)
mod 1 for y ≥ 1 − η

and G maps (x, y) 
→ (x, y + x) mod 1, where η is some real parameter 0 ≤ η ≤ 1
2 .

Note that H is piecewise linear, with derivative

DH1 =
(
1 1

1−η

1 2−η
1−η

)

for 0 < y < 1 − η, and

DH0 =
(
1 − 1

η

1 η−1
η

)

for 1 − η < y < 1. DH , then, is defined everywhere but the set D = {(x, y) | y ∈
{0, 1 − η}}. The inverse map H−1 = F−1 ◦ G−1 is differentiable outside of the set
D′ = G(D).

The aim of this paper is to prove mixing properties for H over a wide parameter
range. In particular, we prove:

Theorem 1 H has the Bernoulli property for 0 < η < η1 and η2 ≤ η < η3 where
η1 ≈ 0.324, η2 ≈ 0.415, and η3 ≈ 0.491.
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3 Proof Outline

Our scheme for proving the Bernoulli property is to satisfy the qualifications given in
the following theorem from Katok and Strelcyn (1986), paraphrased in Sturman et al.
(2006).

Theorem 2 (Katok and Strelcyn) Let f : X → X be a measure preserving map on
a measure space (X ,F , μ) such that f is C2 smooth outside of a singularity set S
where differentiability fails. Suppose that the Katok–Strelcyn conditions hold:

(KS1): ∃ a, C1 > 0 s.t. ∀ ε > 0, μ(Bε(S)) ≤ C1ε
a.

(KS2): ∃ b, C2 > 0 s.t. ∀ z ∈ X \ S, ||D2
z f || ≤ C2 d(z, S)−b where D2

z f is the
second derivative of f at z.

(KS3): Lyapunov exponents exist and are nonzero almost everywhere.

Then at almost every z we can define local unstable and stable manifolds γu(z) and
γs(z). Suppose that the manifold intersection property holds:

(M): For almost any z, z′ ∈ X, ∃ m, n s.t. f m(γu(z)) ∩ f −n(γs(z′)) �= ∅.

Then, f is ergodic. Furthermore, the Bernoulli property holds, provided we can show
the repeated manifold intersection property:

(MR): For almost any z, z′ ∈ X we can find M, N such that for all m > M and
n > N, f m(γu(z)) ∩ f −n(γs(z′)) �= ∅.

The scheme extends Pesin theory (establishing ergodic properties of C2 smooth
non-uniformly hyperbolic systems, Pesin 1977) to systems which are smooth outside
of some singularity set. The conditions (KS1-2) ensure that this set has manageable
influence and follow easily from our map’s definition. We take our map as f = H ,
our domain as X = T

2, and our singularity set as S = D. Takingμ to be the Lebesgue
measure on T

2, clearly μ(S) = 0. When we say ‘for almost any z ∈ T
2’, we will be

referring to the full measure set X ′ = T
2 \ S∞, S∞ = ⋃

k≥0 H−k(D)∪⋃
k≥0 Hk(D′),

where H and all its powers Hk , k ∈ Z are differentiable. Since we can cover D with
arbitrarily thin rectangles, (KS1) follows for some C1 > 0 with a = 1. Since H is
piecewise linear, (KS2) follows trivially.

Moving onto (KS3), we define the (forwards-time) Lyapunov exponent at a point
z ∈ T

2 in direction v ∈ R
2 by

χ(z, v) = lim
n→∞

1

n
log ||DHn

z v||,

where

DHn
z = DHHn−1(z) · · · · · DHH(z) · DHz

is well defined at almost every z. We define log+(·) = max{log(·), 0} and let || · ||op
be the operator norm. Existence of Lyapunov exponents almost everywhere follows
from Oseledets’ theorem (Oseledets 1968) provided that log+ ||DH ||op is integrable.
This clearly holds, so our first substantial task is proving that these exponents are
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nonzero. A particular form of Oseledets’ theorem in two dimensions is useful here.
We paraphrase from Viana (2014):

Theorem 3 (Oseledets, Viana) Let F : X × R
2 → X × R

2 be given by F(x, v) =
( f (x), A(x)v) for some measure preserving map f on a 2-dimensional manifold X
and some measurable function A : X → GL(2). Suppose log+ ||A±1|| are integrable
and define

λ+(x) = lim
n→∞

1

n
log ||An(x)||, λ−(x) = lim

n→∞
1

n
log ||(An(x))−1||−1,

where An(x) = A( f n−1(x)) · · · · · A( f (x)) · A(x). Then, for almost every x ∈ X,

1. either λ−(x) = λ+(x) and

lim
n→∞

1

n
log ||An(x)v|| = λ±(x) ∀v ∈ R

2 \ {0}

2. or λ+(x) > λ−(x) and there exists a vector line Es
x ⊂ R

2 such that

lim
n→∞

1

n
log ||An(x)v|| =

{
λ−(x) for v ∈ Es

x \ {0},
λ+(x) for v ∈ R

2 \ Es
x .

Corollary 1 Further assuming that A takes values in SL(2) gives λ−(x) = −λ+(x).
Hence, if at some x, there exists v0 ∈ R

2 with limn
1
n log ||An(x)v0|| �= 0, it follows

that limn
1
n log ||An(x)v|| �= 0 for all nonzero vectors v.

Applying this corollary to the cocycle generated by the derivative DH of our map
H gives an efficient scheme for establishing nonzero Lyapunov exponents. We let
An(z) = DHn

z , which takes values in SL(2). If there exists v0 such that ||DHn
z v0||

grows exponentially with n, Corollary 1 gives χ(z, v) �= 0 for all v �= 0. Letting
ε = 1

2 − η, we can either consider our system as an ε-perturbation from Cerbelli
and Giona’s map, or as an η-perturbation from Arnold’s Cat map. There is subset
of the parameter space 1

3 ≤ η < 1
8 (9 − √

33) ≈ 0.407 in which island structures
appear, splitting the parameter space into two sides. Proving (M) for the Cerbelli–
Giona side follows a very similar argument to the Cat map side, but the calculations are
generally more involved. For this reason, we will begin by considering the 0 < η < 1

3
perturbation and then continue with the ε-perturbation in Sect. 5.

4 Perturbation from Arnold’s Cat Map

4.1 Establishing Non-uniform Hyperbolicity

In Cerbelli and Giona (2005), a three-element ABC partition of the domain was
defined with H(A) ⊂ A ∪ B, H(B) = C , and H(C) ⊂ A. Their derivative matrix
DH |A = DH1 was hyperbolic which, together with the fact that orbits leaving A
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A

1 − η

B

η 1 − η

C
C

H

1 − η

1 − 2η

η

η

Fig. 2 Partition of the torus for H , establishing return times to A in {1, 2, 3}. Case illustrated η = 1
4 , the

image of the partition is also shown with consistent shading

return after exactly two iterations in Ac, allowed Cerbelli and Giona to reduce much
of the dynamics to that of a hyperbolic toral automorphism, with well-understood
mixing properties.

While this approach is not possible for our family of maps, we do retain an upper
bound on return times to A, illustrated by the partition of the domain given in Fig. 2.
One can show that H(A) ⊂ A ∪ B, H(B) ⊂ A ∪ C , H(C) ⊂ A so that orbits leaving
A return after spending one or two iterations in B ∪ C . We call the path an orbit takes
around this partition its itinerary. Any itinerary, for example

AABC AB AAB ABC A . . .

can be split up into itinerary blocks I j ending in A. In the above example this would
look like

A A BC A B A A B A BC A . . . .

There are three1 unique itinerary blocks

I1 = A, I2 = B A, I3 = BC A,

with corresponding matrices

M1 = DH1, M2 = DH1 DH0, M3 = DH1 DH2
0 .

Each M j is hyperbolic for η strictly less than 1
3 , where M3 loses hyperbolicity. Our

parameter range, then, is 0 < η < 1
3 .

Proposition 1 We have nonzero Lyapunov exponents χ(z, v) �= 0 for almost every
z ∈ T

2, v �= 0, when 0 < η < 1
3 .

1 Four if you include C A, the first block in the itinerary of a point starting in C , but this also has corre-
sponding matrix M2.
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Proof Let v be a nonzero vector in the tangent space at x . As the orbit starting at x
completes an itinerary block I j , the effect on v is to premultiply by the matrix M j .
Our aim is to find a vector v0 which sees expansion in its norm after each itinerary
block. The issue we have to overcome is the possibility that expansion by one matrix
may be immediately undone by contraction from another. We do this by constructing
an invariant, expanding cone.

We define a cone C as a subset ofR
2 \{0} such that if v ∈ C then kv ∈ C for any real

k �= 0. Given a matrix M we say that C is invariant if MC ⊂ C. That is, vectors in the
cone remain in the cone when premultiplied by M . We say that the cone is expanding
if ||Mv|| > ||v|| for every v ∈ C, where || · || is some norm we choose to put on
the tangent space. In the tangent space take coordinates (v1, v2)

T ∈ R
2. Since the

transformations we are considering are linear and cones are double sided, the gradient
of a vector is the only important feature.

Starting with invariance, if the gradients gu
j , gs

j of the unstable, stable eigenvectors
of M j satisfy

gs
1(η) < gs

2(η) < gs
3(η) < gu

3 (η) < gu
2 (η) < gu

1 (η),

then the cone bounded by (and including) the unstable eigenvectors of M1 and M3 will
be invariant. Explicit expressions for these gradients will be given as supplementary
material, and the chain of inequalities is easily verified for all 0 < η < 1

3 .
It is clear, then, that it is possible to construct an invariant cone and, in fact, we

have multiple options. The minimal cone is the smallest gradient range we can take
to include all the unstable eigenvectors, defined at each parameter value. This will be
a particularly useful construction later on as it gives good bounds on the gradients
of local unstable manifolds. Its η-dependence, however, makes the expansion factor
calculations quite tedious. Given that gs

3(η) < infη gu
3 (η) across 0 < η < 1

3 , the cone
bounded by (but not including) the vectors v± with gradients g+ = supη gu

1 (η) =
2√
5−1

and g− = infη gu
3 (η) = 1 is invariant. Write this η-independent cone as C.

We will now show that C is expanding. If across 0 < η < 1
3 each of the M j expands

both of the bounding vectors v±, then the same holds for all vectors in the cone. To see
this, note that (by hyperbolicity) M j expands its unstable eigenvector vu , and contracts

its stable eigenvector vs . Let ex(v) := ||M j v||
||v|| , then ex(vu) > 1 and ex(vs) < 1. As

we rotate v from vu to vs , we pass through one of v± and ex(v) has at most one local
minimum. If ex(v±) > 1, then this minimum must lie between v± and vs , i.e. outside
of the cone, so {ex(v) | v ∈ C} is minimal at one of its boundaries. To simplify the
calculations take || · || to be the || · ||∞ norm then ||(v1, v2)T || = |v2| for all vectors in
the cone, since within C we always have |v2| ≥ |v1|. Normalise the cone boundaries

as v± =
(

1
g± , 1

)T
, now we can calculate:

• ||M1(1, 1)T || = 2η−3
η−1 > 3

• ||M2(1, 1)T || = 3η2−7η+3
η(1−η)

> 9
2

• ||M3(1, 1)T || = 4 − 10
η

+ 3
η2

> 1
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1 − η

1 − η

c
c

a

a

b

η

H−1

1 − η

1 − ηη

Fig. 3 A partition of the torus based on returns to a under H−1 and its image under H−1. Case illustrated
η = 1

4

• ||M1

(√
5−1
2 , 1

)T || =
(
1+√

5
)
(η−1)−2

2(η−1) > 3+√
5

2

• ||M2

(√
5−1
2 , 1

)T || = 2
√
5η2−3

√
5η−5η+6

2η(1−η)
> 39−7

√
5

4

• ||M3

(√
5−1
2 , 1

)T || =
(
3
√
5−1

)
η3−

(
7
√
5+7

)
η2+

(
3
√
5+17

)
η−6

2η2(η−1)
> 31−9

√
5

4

for all 0 < η < 1
3 , so that the cone is expanding across the parameter range. ��

This establishes H as non-uniformly hyperbolic over 0 < η < 1
3 . The aim of the

next section is to show that (M) holds, establishing ergodicity.

4.2 Establishing ergodicity

Return time partitions and invariant cones can be similarly constructed for H−1.
These are useful for the next step, sowewill give themnow.Figure 3 shows the partition
for returns to the set a. The itinerary blocks are follow the same pattern: a, ba, and
bca, with corresponding matricesM1,M2, andM3, respectively. The eigenvectors of
each of these matrices allow us to construct an invariant expanding cone C′. Let gs

j (η),
gu

j (η) be the gradients of the stable, unstable eigenvectors ofM j . One can verify that

gu
1(η) < gu

2(η) < gu
3(η) < gs

3(η) < gs
2(η) < gs

1(η)

for 0 < η < 1
3 so that we can take our minimal backwards cone to be the cone bounded

by (and containing) the unstable eigenvectors of M1 and M3. As before, taking the
union of these cones over 0 < η < 1

3 gives an η-independent invariant expanding
cone C′ for H−1.

We may define local stable and unstable manifolds at any point z where we have
nonzero Lyapunov exponents. These are line segments aligned with the subspace Es

z
as defined in Theorem 3, taking f = H to find the stable direction, and f = H−1 to
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find the unstable direction. The following lemma provides bounds on the gradients of
these line segments.

Lemma 1 Given local unstable, stable manifolds γu(z), γs(z) at z ∈ X ′, let m0,n0 be
the smallest non-negative integers such that Hm0(z) ∈ H(A), H−n0(z) ∈ H−1(a).
Then,

• Hm0(γu(z)) contains a segment γ aligned with some vector v ∈ C,
• H−n0(γs(z)) contains a segment γ ′ aligned with some vector v′ ∈ C′.

Proof We first note the link between the two minimal cones. Let vu(M j ), vs(M j ) be
vector subspaces generated by the unstable and stable eigenvectors of some hyperbolic
matrix M j . Clearly vu(M1) = vs(M−1

1 ) = vs(M1) and, in fact, we can always relate
the stable, unstable eigenvectors of M j to the unstable, stable eigenvectors ofM j . For
j = 2, 3 these are given by

vs(M j ) = DH1vu(M j ) (3)

and

vu(M j ) = DH1vs(M j ). (4)

To see this, note that in the j = 2 case:

M−1
2 · DH1 vu(M2) = DH−1

0 DH−1
1 · DH1 vu(M2)

=
(

DH1DH−1
1

)
DH−1

0 vu(M2)

= DH1M2 vu(M2)

= c DH1 vu(M2)

for some c with |c| > 1. This implies DH1vu(M2) is in the stable subspace of M2,
showing (3). The same argument applied to the right hand side of (4) yields |c| < 1
as required. The case j = 3 is analogous.

Now let γu(z) be the local unstable manifold at some z ∈ X ′. By the partition
construction, m0 is in {0, 1, 2}. Now Hm0(γu(z)) is a piecewise linear curve, the
union of at most 3 line segments γ j . Since z lies outside of the singularity set S,
Hm0(z) lies in the interior of some γ j , call it γ .

By definition, for any ζ, ζ ′ ∈ γu(z)

dist(H−n(ζ ), H−n(ζ ′)) → 0

as n → ∞. By extension we have that

dist(H−n(ξ), H−n(ξ ′)) → 0 (5)

for any ξ, ξ ′ ∈ γ .
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This means that H−1(γ ) ⊂ H−1(a) must be aligned with some vector in the cone
region Cs bounded by vs(M1) and vs(M3), which includes vs(M2).2 For if it falls
outside of this region, it will be pulled into the invariant expanding cone C′ for H−1,
which contradicts (5). Now if we apply H to H−1(γ ) ⊂ A, γ must align with a vector
in DH1 Cs . By (4), this is precisely the minimal cone for H . The argument for local
stable manifolds is analogous, instead using (3). ��

The main result of this section is the following.

Proposition 2 Condition (M) holds for H when 0 < η < η1 ≈ 0.324.

We will use the known behaviour of returns to H(A) (resp. H−1(a)), and expan-
sion during this return, to grow the images of local manifolds to the point where an
intersection is certain in A1 = H(A) ∩ H−1(a). This is a quadrilateral, shown in
Fig. 4. We call any line segment in A1 which joins its upper and lower boundaries a
v-segment. Similarly we call any line segment in A1 which joins its left and right (slop-
ing) boundaries a h-segment. Clearly v- and h-segments must always intersect. Given
z, z′ ∈ X ′ our aim, then, is to find m, n such that Hm(γu(z)) contains a v-segment and
H−n(γs(z′)) contains a h-segment.

The key issue we have to overcome in the growth stage is that while the images of
the segments may grow exponentially in total length, the sign alternating property (as
described in Cerbelli and Giona 2005) means that they can repeatedly double back on
themselves, meaning that their total diameter (be this in the x or y directions) does not
necessarily grow. When considering unstable manifolds, we define the diameter of a
line segment� as diam(�) = ν ({y | (x, y) ∈ �}), where ν is the Lebesguemeasure on
R.When considering stablemanifolds, we instead define diameter using the projection
to the x-axis.

We start with the method for growing unstable manifolds, partitioning a = H(A)

into three sets ai , where the subscript i is the return time of its elements to a. This
is shown in Fig. 4. We say that a line segment has non-simple intersection with ai

if its restriction to ai contains more than 1 connected component. The growth stage
involves iteratively applying the following lemma.

Lemma 2 Let �p−1 be a line segment satisfying

(C1) �p−1 ⊂ a,
(C2) �p−1 is aligned with some vector in the minimal invariant cone C for H,

and which has simple intersection with each of the ai . There exists a line segment �p

satisfying (C1), (C2),

(C3) �p ⊂ Hi (�p−1) for a chosen i ∈ {1, 2, 3}, and
(C4) There exists δ > 0 such that diam(�p) ≥ (1 + δ) diam(�p−1).

Proof The process of generating �p from �p−1 is as follows. Based on the location
of �p−1 in a, we will restrict �p−1 to one of the ai then map it forwards under Hi to
give �p, satisfying (C3). By definition of the ai , (C1) is satisfied. If �p−1 is aligned

2 The argument for the ε-perturbation in Sect. 5 is analogous, but there the cone is bounded by vs (M2)

and vs (M3).
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1 − η

1 − ηη

a1

a1

a3
a2

a2

η

η

1 − η

1 − 2η

1 − η

A1

A1

A3

A2

A2

Fig. 4 Left: a partition of a into three parts ai , where i is the return time of points in ai to a. Right: the
equivalent plot for A, considering return times under H−1

with some v ∈ C, �p is aligned with Miv. By cone invariance, this is also in C, so
(C2) is satisfied.

The expansion in diameter can be bounded from below by

Ki (η) = inf
v∈C

||Miv||
||v||

where, again, we are using the || · ||∞ norm. Since we have already shown that the
cone is expanding, if �p−1 is entirely contained within some ai then taking �p =
Hi (�p−1) ensures expansion in diameter. Where it becomes more interesting is when
�p intersects multiple ai . Looking at each of the Mi across the invariant cone, at every
parameter value M1 has the smallest expansion on its eigenvector vu(M1), M2 and
M3 have the smallest expansion on the other cone boundary vu(M3). Letting λi be the
magnitude of the unstable eigenvalue of Mi , K1 and K3 are given by

K1(η) = λ1(η) = 3 − 2η + √
5 − 4η

2 (1 − η)

and

K3(η) = λ3(η) = 3 − 9η + 2η2 + √−36η3 + 93η2 − 54η + 9

2η2
.

Next

K2(η) = 2η − 3

1 − η

1

gu
3 (η)

+ 3 − η

η
,
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calculated using the lower elements of M2, the unit vector
(

1
gu
3
, 1

)T
, and the fact that

M2 reverses the orientation of vectors in the cone.
Throughout, we assume that �p−1 has simple intersection with each of the ai .

Suppose �p−1 intersects a1 and a2, and write its restriction to these sets as �1 and �2,
respectively. Since K1(η) and K2(η) are both greater than 2 for all 0 < η < 1

3 , and
one of �1, �2 has diameter greater than or equal to 1

2 , we can restrict to that segment
�i and expand under Hi to establish that �p has larger diameter than �p−1. Now
suppose �p−1 intersects a1 and a3. If the proportion of the diameter of �p−1 in a1
is greater than 1

K1(η)
, we can simply expand from there. Otherwise �3 has diameter

greater than or equal to 1 − 1
K1(η)

, and we can expand from a3 provided that

K3(η) >
1

1 − 1
K1(η)

.

The above is satisfied for approximately η < 0.332. The case where �p−1 intersects
a2 and a3 is similar and does not further restrict the parameter range.

Now suppose �p−1 intersects a1, a2, and a3. By the same argument as before, we
require

K3(η) >
1

1 − 1
K1(η)

− 1
K2(η)

.

Solving this numerically, the above inequality is satisfied for approximatelyη < 0.327.
In any case, then, (C4) is satisfied. ��

The method for growing the backwards images of local stable manifolds is entirely
analogous.We divide up A = H−1(a) into A1, A2, A3 based on return time to A under
H−1 (see Fig. 4). The relevant hyperbolic matrices associated with the return map are
Mi , which share an invariant, expanding cone C′. We make minor adjustments to the
(C) conditions to give:

Lemma 3 Let �p−1 be a line segment satisfying

(C1’) �p−1 ⊂ A,
(C2’) �p−1 is aligned with some vector in the minimal invariant cone C′ for H−1,

and which has simple intersection with each of the Ai . There exists a line segment �p

satisfying (C1’), (C2’),

(C3’) �p ⊂ H−i (�p−1) for a chosen i ∈ {1, 2, 3},
(C4’) There exists δ > 0 such that diam(�p) ≥ (1 + δ) diam(�p−1),

where we measure the diameter of a line segment using its projection to the x-axis.

Proof As before, define

Ki (η) = inf
v∈C′

||Miv||
||v|| .
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All of the Mi see their minimum cone expansion on the cone boundary given by the
unstable eigenvector of M3. The key calculation we have to make is the parameter
value η1 such that

K3(η) >
1

1 − 1
K1(η)

− 1
K2(η)

(6)

for 0 < η < η1. We can solve numerically, giving η1 ≈ 0.324. ��
Both of these lemmas hold, then, provided that 0 < η < η1. They ensure the

exponential growth in diameter of the segments �p up to some �P which has non-
simple intersection with some ai (or Ai for the stable case). At this point we will map
directly into v- and h-segments.

Lemma 4 For any line segment �P ⊂ a which is aligned with a vector in C and
has non-simple intersection with some ai , Hk(�P ) contains a v-segment for some
k ∈ {0, 3, 5}.
Proof All non-simple intersections give useful geometric information about �P . Sup-
pose it has non-simple intersection with a3. Then, as a connected straight line segment,
it must traverse a1, that is, it connects the upper and lower boundaries of a1, pass-
ing through a1. By definition, this �P contains a v-segment. Now suppose �P has
non-simple intersection with a2. It follows that �P traverses a1 (v-segment) or �P

traverses a3, connecting its sloping boundaries. This is case (I). We will show that any
such segment contains a v-segment in its 5th image. Finally, assume that �P has non-
simple intersection with a1. It follows that we traverse a3, case (I), or the restriction
to a2 is sufficiently large that its 3rd image contains a v-segment, case (II).

We will start by showing case (I). Consider the quadrilateral Q3 ⊂ a3, defined by
the four points Pj , shown in Fig. 5. Explicit coordinates for each of these points are
given as part of the supplementary material. All of the points in the interior of Q3
share the same itinerary path under 5 iterations of H , BC AAA, so H5(Q3) is also
a quadrilateral and any straight line segment contained within Q3 maps into a new
straight line segment under H5. It is clear that any �P which traverses a3, joining
its sloping boundaries, must also traverse Q3. The sloping boundaries of Q3 map
into the upper and lower boundaries of a1 under H5, so if �P connects these sloping
boundaries, H5(�P ) contains a v-segment.

Case (II) can be argued similarly. We assume that �P has non-simple intersection
with a1 and that we do not traverse a3 in such a way that we can argue as in case (I).
We will concentrate first on the left portion of a2; we shall soon see that the analysis
for the right portion is analogous.

Since we assume �P does not connect the sloping sides of a3, it must intersect the
a1, a3 boundary on L , shown in Fig. 6. The solid thick line shown is aligned with
clockwise bound on the invariant cone, with gradient gu

3 . The intersection of �P with
the a3, a2 boundary must lie in L∗, whose x-range is bounded above by x∗.

Let � be the restriction to a2. We will show that �, constrained by the x∗, intersects
a quadrilateral whose image under H3 stretches across a1 in much the same way we
saw in case (I). For η ≤ η0 = 1− 1√

2
≈ 0.293, such a quadrilateralQ2 exists and has
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a3
H5

a1

Q3

P1P4

P2P3

H5(P1) H5(P2)

H5(P3)H5(P4)

Fig. 5 Case (I). A quadrilateral Q3 ⊂ a3 and its image in a1 under H5. Any line segment � which joins
the sloping boundaries of a3 will join the sloping boundaries ofQ3, and hence H5(� ∩Q3) is a v-segment

vu(M3)

x∗ 1 − x∗

L

L∗

Fig. 6 Geometry of line segments satisfying case (II)

a3

a2

R1R2

R3

R4

Q2

a3

a2 Q2

◦
R1

R2

H3

η < η0 η > η0

H3(Q2)

a1

Fig. 7 Case (II) for η either side of the critical value η0 = 1 − 1√
2
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all four corners on the lines x = 0, y = 1 (see left hand side of Fig. 7). Starting with
the top-right and cycling anti-clockwise, these corners have coordinates

R1 =
(−η3 + 7η2 − 13η + 7

3η2 − 10η + 8
, 1

)

, R2 =
(
2

(
2η2 − 5η + 3

)

3η2 − 10η + 8
, 1

)

,

R3 =
(

0,
5η2 − 13η + 8

η2 − 7η + 8

)

, and R4 =
(

0,
−η3 + 7η2 − 14η + 8

η2 − 7η + 8

)

.

Any line segment joining the a2, a3 boundary to the a2, a1 boundary must connect the
parallel boundaries of Q2 and therefore maps into a v-segment. At the critical value
η = η0 the point R1 lies on the rightmost corner of a2, (1− η, 1). Now let η > η0 and
consider the quadrilateral Q′

2 defined by the corners R2, R3, R4, and

R′
1 = (x ′, y′) =

(−η2 + 2η − 1

η(2η − 3)
,
−2η2 + 6η − 4

2η − 3

)

. (7)

This final corner also maps into y = 1 − η under H3; hence, any line segment which
joins the parallel sides of Q′

2 maps into a v-segment. Certainly if x∗(η) < x ′(η)

for η0 < η < η1, then � will connect the parallel sides of Q′
2. First, we solve line

equations to give

x∗(η) = ηgu
3 (η)

gu
3 (η) − η

1−η

which is bounded from above by x∗(η1) ≈ 0.5512. Next by (7),

x ′(η) = −η2 + 2η − 1

η(2η − 3)

which is bounded from below by x ′(η1) ≈ 0.5998, establishing the result.
The case where � traverses the other (right) part of a2 is analogous. Note that we

can transform one part of a2 into the other by reflecting in the lines y = 1 − η
2 and

x = 1
2 ,
3 written as (Sx ◦ Sy)(a2) = a2. Now the images of Q2 and Q′

2 under Sx ◦ Sy

span across the right portion of a2 in an analogous fashion to before and also map
into v-segments under H3. Making the same assumption as before, that case (II) holds
but case (I) does not, we know that � intersects the a2, a3 boundary at some point
(x, y) with x > 1 − x∗ (see Fig. 6). To ensure that � connects the parallel sides of
(Sx ◦ Sy)(Q′

2), it remains to check that the x-coordinate of (Sx ◦ Sy)(x ′, y′), 1− x ′, is
strictly less than 1 − x∗ across η0 < η < η1. Indeed, 1 − x ′(η) < 1 − x∗(η) follows
from x∗(η) < x ′(η), established in the previous case. ��
Lemma 5 For any line segment �P ⊂ A which is aligned with a vector in C′ and
has non-simple intersection with some Ai , H−k(�P ) contains a h-segment for some
k ∈ {0, 3, 5}.
3 Since the lines are orthogonal, Sx ◦ Sy = Sy ◦ Sx .
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r2r3 ◦◦

Q3

Q2

S(Q2)

◦H−3(r2)

◦
H−3(r3)

H−3(Q2)

H−5(Q3)

A1

Fig. 8 Two quadrilaterals Q2 ⊂ A2 and Q3 ⊂ A3 which map into A1 under H−3 and H−5, respec-
tively. Their long boundaries map into the sloping boundaries of A1, so segments � which join these long
boundaries map into h-segments. Case illustrated η = 1

4

Proof The argument is similar to the forwards-time case. A partition of H−1(a) = A
by return time is shown in Fig. 4. Case (I) assumes that � connects the two A2, A3
boundaries through A3, case (II) assumes that � joins the two sloping boundaries of
A1 through A2 ∪ A3, but that case (I) does not hold. We will show that in case (I)
H−5(�) contains a h-segment, and in case (II) H−3(�) contains a h-segment. Starting
with � satisfying case (I), Fig. 8 shows a quadrilateral Q3 ⊂ A3 with two short sides
on the A1, A3 boundaries. It follows that � must connect a segment which joins the
longer sides of Q3, through Q3. The argument is now the same as in the forwards time
analysis, all points in Q3 share the same itinerary under 5 iterations of H−1, bcaaa, so
H−5(Q3) is a quadrilateral in A. One can verify that it is wholly contained in A1 ⊂ A
and that its longer sides map into its sloping boundaries (see right image in Fig. 8).
H−5(�) then contains a segment which connects these two boundaries through A1,
that is, H−5(�) contains a h-segment. Explicit expressions for the corner coordinates
of Q3 and their images under H−5 will be given as supplementary material.

Moving onto � satisfying case (II) and first focusing on the upper portion of A2,
for η ≤ η0 we can follow the same argument, defining a quadrilateral Q2 ⊂ A2 with
itinerary baa and H−3(Q2) ⊂ A1 (see Fig. 8). Its long sides must be joined by �

and map into the boundary of A1, so H−3(�) contains a h-segment. Starting with the
bottom corner of Q2 nearest the A2, A3 boundary and cycling anti-clockwise, label
these points as r1, . . . , r4, which have coordinates

r1 =
(

η3 − 4η2 + 3η + 1

3η2 − 10η + 8
,
η3 − 4η2 + 3η + 1

3η2 − 10η + 8

)

,

r2 =
(
5η3 − 20η2 + 24η − 8

4η3 − 18η2 + 23η − 8
, 1 − η

)

,
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r3 =
(−η4 + 8η3 − 23η2 + 25η − 8

4η3 − 18η2 + 23η − 8
, 1 − η

)

, and

r4 =
(

2 − η2

3η2 − 10η + 8
,

2 − η2

3η2 − 10η + 8

)

.

For η > η0 we consider the quadrilateral Q′
2 with corners r2, r3, r4 and

r ′
1 =

(
3η2 − 5η + 1

η (2η − 3)
,
−2η3 + 7η2 − 6η + 1

η (2η − 3)

)

.

This is shown in Fig. 9, with the x-coordinate of r ′
1 highlighted as x ′(η). Like in the

forwards-time case, we need to check that x ′(η) is not so far along the A2, A3 boundary
that any � satisfying case (II) does not connect the parallel sides of Q′

2. Letting g
u
3(η)

be the gradient of the anti-clockwise invariant cone boundary for H−1, this amounts
to showing that x ′(η) < x∗(η) where (x∗, y∗) lies on the intersection of the lines

y = η + 1 − 2η

1 − η
(x − η)

(the A2, A3 boundary) and

y = 1 − 2η + gu
3(η)(x − 1 + η),

shown as the solid bold line in Fig. 9. Solving for x gives

x∗(η) = η2 + 3η − 1 + gu
3(η)(1 − η)2

gu
3(η)(1 − η) − 1 + 2η

.

One can now verify that x ′(η) < x ′(η1) < x∗(η1) < x∗(η) for all η0 < η < η1,
establishing the result. To conclude case (II) we must extend the analysis to the other
portion of A2. This process is entirely analogous to the forwards-time case, taking
reflections in x = 1

2 and y = 1
2 − η

2 . An example is shown in Fig. 8, with the image
of Q2 under these reflections shown as S(Q2). ��

We are now ready to prove Proposition 2.

Proof of Proposition 2 Let γu(z) be the local unstable manifold at some z ∈ X ′. Let
m0 ≥ 0 be the smallest integer such that Hm0(z) ∈ a. Then, by Lemma 1, Hm0(γu(z))
contains a segment �0 in a, aligned with some vector in the invariant cone C. We
can then iteratively apply Lemma 2 to generate a sequence of line segments with
exponentially increasing diameter (�p)0≤p≤P with each �p ⊂ Hm0+m p (γu(z)) for
some m p > 0. Since the sequence has exponentially increasing diameter, after some
finite number of steps P , the line segment �P must have non-simple intersection
with one of the ai . Lemma 4 then tells us that Hk(�P ) contains a v-segment for
some k ∈ {0, 3, 5}. It follows that Hm(γu(z)) contains a v-segment where m =
m0 + m P + k. Similarly given z′ ∈ X ′, we can apply Lemmas 1, 3, and 5 to find n
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◦

L

L∗

Q2

x x∗

vu(M3)

Fig. 9 Case (II) for η > η0. Any � satisfying case (II) must intersect the A1A3 boundary on L and the
A2A3 boundary on L∗. This gives a lower bound on x∗ on the x-coordinate of this intersection so that if
x∗ > x ′, then � joins the parallel sides of Q′

2

Q+
c+1

Q−

c−
1

H−1(Q−)

H(Q+)

Fig. 10 Two quadrilaterals Q+, Q− in A1 which map into A1 under H and H−1, respectively. Any v-
segment must join the dotted sides of Q+ and hence maps into another v-segment. Similar for h-segments
and Q−

such that H−n(γs(z′)) contains a h-segment. Since z and z′ were arbitrary, condition
(M) holds. ��

This establishes H as ergodic over 0 < η < η1. Stronger mixing properties can
now be easily shown.

4.3 Establishing the Bernoulli Property

Proposition 3 Condition (MR) holds for H when 0 < η < η1 ≈ 0.324.

Proof To establish (MR), it is sufficient to show that the image of a v-segment under
H contains a v-segment, and the image of a h-segment under H−1 contains a h-
segment. We can approach this is same way as before, defining quadrilaterals which
these segments must traverse and looking at their images. Define the quadrilateral Q+
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by the corners (starting from the leftmost and cycling anti-clockwise)

c+
1 =

(
1 + η − η2

3 − 2η
,
(1 − η)2

3 − 2η

)

, c+
2 = (0, 0) ,

c+
3 =

(
(1 − η)2

3 − 2η
,
(1 − η)2

3 − 2η

)

, and c+
4 =

(
2 − η

3 − 2η

2(1 − η)2

3 − 2η

)

.

This is shown in the first diagram in Fig. 10; note that the we have shifted the domain
horizontally to more easily see A1 as a quadrilateral. Any v-segment must join the
dotted sides of Q+, which map into the upper and lower boundaries of A1, so v-
segments map into v-segments. We can similarly define the quadrilateral Q− by the
corners (starting from the leftmost and cycling anti-clockwise)

c−
1 =

(
1 + η − η2

3 − 2η
, 0

)

, c−
2 =

(
2 − η

3 − 2η
, 0

)

,

c−
3 =

(
(1 − η)2

3 − 2η
, 1 − η

)

, and c−
4 = (0, 1 − η).

Again, h-segments must connect the dotted sides of Q−, which map into the sloping
boundaries of A1; hence, h-segments map into h-segments. ��

5 Perturbation from Cerbelli & Giona’s Map

5.1 Establishing Non-uniform Hyperbolicity

Let ε = 1
2 − η. Our method for establishing nonzero Lyapunov exponents almost

everywhere for H as an ε-perturbation is essentially the same as in Sect. 4.1.

Proposition 4 We have nonzero Lyapunov exponents χ(z, v) �= 0 for almost every
z ∈ T

2, v �= 0, when 0 < ε < ε1 ≈ 0.0931.

Proof The partition and possible itinerary paths I j around the partition are the same
as before. Define the corresponding matrices M j using the derivative matrices

DH0 =
(
1 −2

1−2ε
1 −1−2ε

1−2ε

)

and DH1 =
(
1 2

1+2ε
1 3+2ε

1+2ε

)

.

Again, M3 is thematrixwhich dictates our parameter range. It is hyperbolic for ε < ε1,

where ε1 =
√
33−5
8 ≈ 0.0931. M2 is hyperbolic for ε strictly greater than 0.

Following the same argument as in Sect. 4.1, it remains to define an invariant cone
and show that it is expanding. Defining gu

j and gs
j as before, one can verify that

gs
3(ε) < gs

1(ε) < gs
2(ε) < gu

2 (ε) < gu
1 (ε) < gu

3 (ε)

123



Journal of Nonlinear Science (2022) 32 :31 Page 21 of 37 31

for 0 < ε < 1√
3

− 1
2 ≈ 0.0774, and

gs
1(ε) < gs

2(ε) < gu
2 (ε) < gu

1 (ε) < gu
3 (ε) < gs

3(ε)

for 1√
3

− 1
2 < ε < ε1. Hence, the cone C, bounded by and including the unstable

eigenvectors of M2 and M3, is the minimal invariant cone. The common cone C is
then defined as the open region bounded by the unstable eigenvector of M2 at ε = 0
and the unstable eigenvector of M3 at ε = ε1. Under the || · ||∞ norm, these are the

unit vectors (1, 1)T and
(√

33−3
6 , 1

)T
, respectively. One can show that

• ||M1(1, 1)T || >
√
33+9
4

• ||M2(1, 1)T || > 1

• ||M3(1, 1)T || > 9+√
33

6

• ||M1

(√
33−3
6 , 1

)T || > 9+5
√
33

12

• ||M2

(√
33−3
6 , 1

)T || > 7 − 2
√
33
3

• ||M3

(√
33−3
6 , 1

)T || > 1

for all ε in our range, so that our cone is expanding. ��
This establishes non-uniform hyperbolicity. As before, the next section shows

ergodicity.

5.2 Establishing Ergodicity

Proposition 5 Condition (M) holds for H over ε0 < ε ≤ ε2, where ε0 ≈ 0.00925 and
ε2 ≈ 0.0850.

The overall method for establishing (M) is unchanged. The key constructions are
the partitions of H(A) and H−1(a) given in Sect. 4.2, and the invariant cones C for
H (given above) and C′ for H−1. Defining the M j as before, C′ is defined at each ε

as the cone bounded by (and including) the unstable eigenvectors ofM2 andM3, i.e.
the nonzero vectors with gradient gu

3 < g < gu
2. One can show (by the same method

as before) that C′ is invariant and expanding.
For the sake of brevity, we will only describe the process of growing the backwards

images of local stable manifolds. The process for unstable manifolds is entirely anal-
ogous and, due to C covering a smaller gradient range than C′, results in less stringent
bounds on the parameter range.

While for the η-perturbation the growth stage was relatively straightforward and
the h-segment mappings more involved, the opposite is true for the ε-perturbation. If
we were to follow the same method as before, reducing the parameter range to satisfy
equations like (6), we would be left with just a fragment of the parameter range. Our
way around this necessitates growing piecewise linear curves rather than line segments.
To ensure that we can find the diameter of a curve by summing the diameters of its
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1
2 + ε

1
2 − ε

2ε

1
2 − ε

1
2 + ε

A3

A1

A1

A2

A2

(a)

Q2

Q1

A3

A4
A5

(b)

Fig. 11 Part a gives partition of A based on return time to A under iterations of H−1. Part b shows a
subdivision A4 ∪ A5 = A2, with the boundary between these sets defined as the segment joining the points
Q1, Q2. Case illustrated ε = 0.05

constituent line segments, we require that a curve does not double back on itself, that is,
the projection to the x-axis is injective. The lemma for the growth stage is as follows:

Lemma 6 Let �p−1 be a piecewise linear curve satisfying

(C0’) �p−1 does not double back on itself,
(C1’) �p−1 ⊂ A,
(C2’) Each line segment in �p−1 is aligned with some vector in the minimal invariant

cone C′ for H−1,

and which has simple intersection with each of the Ai . There exists a piecewise linear
curve �p satisfying (C0’), (C1’), (C2’),

(C3’) �p ⊂ H−i (�p−1) for a chosen i ∈ {1, 2, 3},
(C4’) There exists δ > 0 such that diam(�p) ≥ (1 + δ) diam(�p−1),

where we measure the diameter of a curve using its projection to the x-axis.

Proof Figure 11a shows the return time partition of A = H−1(a) under H−1. Define
K j (ε) for j = 1, 2, 3 as before. BothM1 andM2 see their minimum expansion over
C′ on the unstable eigenvector of M2. As does M3 for ε < ε� ≈ 0.07735, then on
its own unstable eigenvector for ε > ε�. Since C′ is expanding, each of the K j (ε) are
strictly greater than 1 across our parameter range.
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First suppose �p−1 lies entirely within one of the A j . Each of its constituent line
segments L(xi , vi ) can be defined by an end point xi and the vector vi taking xi to the
other end point, with vi ∈ C′. Satisfying (C3’) we let �p = H− j (�p−1), then each
L(xi , vi ) is mapped to a new segment L(H− j (xi ),M jvi ) which lies in A, is aligned
in C′ and has expanded in diameter by a factor of at least K j (ε).

As the union of these new line segments, �p satisfies (C1’) and (C2’). It does not
double back on itself sinceM j will have the same orientation preserving (or reversing)
effect on each of the vi . This satisfies (C0’) and tells us that the diameter of �p is the
sum of the diameters of the new line segments,4 meaning its diameter has expanded
by at least the factor K j (ε), satisfying (C4’).

The above is the simplest case we will consider. The picture becomes more compli-
cated as we allow intersections with multiple A j . First assume that �p−1 intersects A1
and one of A2 or A3. We proceed by restricting to one of the A j , � j := �p−1 ∩ A j ,
and expanding from there, �p = H− j (� j ). By the same reasoning given for the
η-perturbation, we require

K2(ε) >
1

1 − 1
K1(ε)

(8)

and

K3(ε) >
1

1 − 1
K1(ε)

. (9)

Solving (8) gives ε > ε0 ≈ 0.00925, the lower bound on our parameter range. Solving
(9) gives ε < ε3 ≈ 0.0885, slightly larger than the upper bound on our parameter
range ε2.

Next assume that �p intersects A1, A2, and A3. The case where �p intersects A2
and A3 but not A1 follows as a trivial consequence and will be addressed at the end
of the proof. Clearly if the proportion of the diameter in A1 exceeds K1(ε)

−1,

diam(�1)

diam(�p−1)
>

1

K1(ε)
,

then we can take �p = H−1(�1) to satisfy (C0’–5’). Otherwise we have to expand
from some subset of �2 ∪ �3, giving �p such that

diam(�p) >
1

1 − 1
K1(ε)

diam(�2 ∪ �3).

To reduce the ε dependence of the problem and simplify the equations, we will take

c = sup
ε0<ε≤ε2

1

1 − 1
K1(ε)

≈ 1.4765

4 Assuming it is not 1, at which point �p has non-simple intersection with some A j .
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and show

diam(�p) > c diam(�2 ∪ �3). (10)

We will give an argument for expanding �p−1 which intersects the lower portion of
A2. The argument for the upper portion is entirely analogous due to the 180◦ rotational
symmetry of both the partition of A and the invariant cone.

Consider the subdivision of A2 into points which remain in A for a further iteration
of H−1 after returning, A4, and those which do not, A5. This subdivision is shown in
Fig. 11b. The labelled points are

Q1 =
(

−4ε3 − 2ε2 + ε + 1
2

12ε2 + 16ε + 1
, 0

)

and Q2 =
(
1 + 2ε

2 + 2ε
,
3ε + 2ε2

2 + 2ε

)

so that the segment L1 along the A4, A5 boundary has gradient

k1 = 12ε2 + 16ε + 1

(2ε + 1)(2ε + 5)
.

The segment along the A4, A3 boundary has gradient

k2 = 4ε

2ε + 1
.

Strictly speaking, at larger ε values A4 contains an additional region in the lower part
of A5 near

( 1
2 − ε, 0

)
. The only assumption we make about points in A5 is that they

return to A after two iterations, so treating this additional region as part of A5 has no
impact on our analysis.

The region A4 has some useful properties. Firstly, like A3, segments contained
within A4 return to A after 3 iterations. This5 means we can take �p = H−3(�3 ∪�4)

and have a much larger initial curve to expand from. Secondly, diameter expansion is
generally strong from A4. The itinerary path is baa with corresponding matrix

M4 = DH−1
1 DH−1

1 DH−1
0

which expands vectors at least as much as any of the other M j : K4(ε) > K j (ε) for
all ε0 < ε ≤ ε2, j = 1, 2, 3. Finally, if �p−1 intersects A5, then it must traverse A4
since, by assumption, it also intersects A3. The case where �p−1 does not intersect
A5 is trivial, reducing to the case where �p−1 only intersects A1 and A3, since A3 and
A4 both map into A under H−3 and K4 > K3.

Assume, then, that �p−1 intersects A5. Let �p = H−3(�3 ∪ �4). Our aim is to
minimise diam(�p), considering all possible curves �p−1 dictated by the invariant
cone, and showing that it still satisfies (10). To arrive at the minimal case we can make
several assumptions. Firstly, diam(�3) = 0. The condition that we intersect A3 does

5 Together with the fact thatM3 andM4 have the same orientation reversing effect on the invariant cone.
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not stipulate any minimum diameter in A3, it can be arbitrarily small. Since M3 and
M4 have the same orientation reversing effect on vectors in the cone, assuming �p

does not have diameter 1 (at which point we has non-simple intersection with some
A j ),

diam(�p) ≥ K3(ε) diam(�3) + K4(ε) diam(�4).

Comparing with (10), taking diam(�3) > 0 grows the RHS of (10) by c diam(�3),
but grows the LHS of (10) by at least K3(ε)diam(�3). Since K3(ε) > c for every
ε0 < ε ≤ ε2, in the minimal case diam(�3) = 0. We note that the condition (10) now
looks like

diam(H−3(�4)) > c diam(�4 ∪ �5),

which is satisfied if

K4(ε) > c
diam(�4) + diam(�5)

diam(�4)
. (11)

To show that this holds, we will put lower bounds on

diam(�4)

diam(�4) + diam(�5)
(12)

and K4(ε), then compare their product with c.
By a purely geometric argument, comparing the admissible gradients given by the

invariant cone with the lines which make up the partition boundaries, we have a lower
bound

diam(�4)

diam(�4) + diam(�5)

>
(2ε + 1)(2ε + 1 − 2k+

5 )

(2ε + 1)(−k−
4 (2ε + 3) − k+

5 (2ε + 5)) + 12ε2 + 16ε + 1
:= B1(ε)

where k+
5 = supε g

u
2(ε) ≈ −0.08750 and k−

4 = infε gu
3(ε) ≈ −0.6688. The calcula-

tion of this bound can be found in “Appendix”.
We will now put a lower bound on K4(ε), the minimum expansion of M4 over

the minimal cone. This is on the anti-clockwise boundary, vu(M2), which can be
described as the vector (1, k5(ε))T with

k5(ε) =
ε −

√

ε
(
4ε2 + 5ε + 1

)

2ε + 1
< 0.
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By calculating the matrix entries of M4 and noting that M4 reverses the orientation
of vectors, one can show that

K4(ε) = 3 + 46ε + 52ε2 + 8ε3

1 + 2ε − 4ε2 − 8ε3
− 12ε + 14

1 − 4ε2
k5(ε).

Let L(ε) be the linear approximation for k5(ε),

L(ε) = ε − ε0

ε2 − ε0
(k5(ε2) − k5(ε0)) + k5(ε0)

= ε − ε0

ε2 − ε0
(k−

5 − k+
5 ) + k+

5 .

One can verify that d
dε k5 < 0 and d2

dε2
k5 > 0 for ε0 < ε ≤ ε2, so that L(ε) > k5(ε)

across this parameter range and is equal at its extremes. This implies

K4(ε) ≥ 3 + 46ε + 52ε2 + 8ε3

1 + 2ε − 4ε2 − 8ε3
− 12ε + 14

1 − 4ε2
L(ε) := B2(ε)

To show condition (11), and complete this final case, it is sufficient to show that

B1(ε)B2(ε) > c ≈ 1.4765. (13)

One can show thatB1(ε)B2(ε) is monotone increasing (“Appendix”) over ε0 < ε ≤ ε2
and therefore takes its minimal value at ε0. Plugging in this value gives

B1(ε0)B2(ε0) ≈ 1.532235,

which establishes (13).
The case where diam(�1) = 0 follows as a trivial consequence. B1(ε) is still a

lower bound for the proportion of �p−1 in A3 ∪ A4, so we only need to compare
B1(ε)B2(ε) against c = 1 in this case. ��

One can follow an entirely analogous argument to prove the equivalent lemma for
growth in forwards time:

Lemma 7 Let �p−1 be a piecewise linear curve satisfying

(C0’) �p−1 does not double back on itself,
(C1’) �p−1 ⊂ a,
(C2’) Each line segment in �p−1 is aligned with some vector in the minimal invariant

cone C for H,

and which has simple intersection with each of the ai . There exists a piecewise linear
curve �p satisfying (C0), (C1), (C2),

(C3’) �p ⊂ Hi (�p−1) for a chosen i ∈ {1, 2, 3},
(C4’) There exists δ > 0 such that diam(�p) ≥ (1 + δ) diam(�p−1),
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where we measure the diameter of a curve using its projection to the y-axis.

We now give the argument for mapping into h-segments and v-segments, whose
definitions we generalise to piecewise linear curves which connect the relevant bound-
aries of A1.

Lemma 8 Let �P ⊂ A be a piecewise linear curve with each of its line segments
aligned with a vector in C′. If �P has non-simple intersection with some Ai , then
H−k(�P ) contains a h-segment for some k ∈ {0, 4}.
Proof In comparison with Lemma 5, we have fewer non-trivial cases to consider. We
claim that any �P which has non-simple intersection with A2 contains a h-segment,
that is, it can only connect A2 to itself by traversing A1. Since if �P were to connect
the two parts of A2 through A3, it would have to contain a segment with gradient

g <

1
2 − ε − 2ε

1
2 − ε − ( 1

2 + ε
) = −1 − 6ε

4ε
=: h(ε),

the gradient of the line segment joining the points
( 1
2 − ε, 1

2 − ε
)
and

( 1
2 + ε, 2ε

)
.

However, g is bounded from below by gu
3(ε) with

gu
3(ε) ≥ gu

3(ε2) ≈ −0.6688

across ε0 < ε ≤ ε2. Now

h(ε) ≤ h(ε2) ≈ −1.4397

across the range, so that g > h(ε) at each ε. Hence, if �P has non-simple intersection
with A2, it follows that it contains a h-segment. The same clearly holds if �P has
non-simple intersection with A3.

Assume, then, that �P has non-simple intersection with A1. This implies that �P

connects the two sloping boundaries of A1 through b = A2 ∪ A3. We will show that
H−4(�P ) contains a h-segment. Figure 12 shows a region D ⊂ b, bounded by two
piecewise linear curves ω, ζ . These curves can be defined by their end points on ∂b
and their turning points, whose full coordinates will be given in as supplementary
material. Label these points as ω j , ζ j , j = 1, 2, 3, 4 so that the x-coordinate increases
with j . These curves (and henceD) are contained within b for ε ≤ ε2, with ζ2 limiting
onto the right boundary of b (y = x − 1

2 + ε) as ε → ε2. In particular, ε2 ≈ 0.08504
is the positive solution to the cubic equation

8ε3 + 20ε2 + 10ε − 1 = 0.

The argument for mapping into h-segments is roughly analogous to that given for
the η-perturbation. Applying H−4 to D gives a quadrilateral in A1 with sides on its
left and right boundaries (the images of ζ and ω under H−4). Clearly any �P which
joins the left and right sides of bmust join ω and ζ throughD. Let � be this part of the
curve, then H−4(�) must be a piecewise linear curve joining H−4(ω) and H−4(ζ )

through H−4(D). That is, H−4(�) is a h-segment. ��
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ω

ζ

D

b

B

β αD

H4(α)

H4(β)

H−4(ζ)

H−4(ω)

A1

Fig. 12 Left: Two regions D ⊂ b and D ⊂ B, bounded by the piecewise linear curves ω, ζ and α, β,
respectively. Right: Their images in A1 under H−4 and H4, respectively, establishing h- and v-segments

Lemma 9 Let �P ⊂ a be a piecewise linear curve with each of its line segments
aligned with a vector in C. If �P has non-simple intersection with some ai , then
Hk(�P ) contains a v-segment for some k ∈ {0, 4}.
Proof Analogous to the previous lemma, non-simple intersection with a2 or a3 imply
that �P already contains a v-segment. To see this, note that if �P connected the two
parts of a2 through a3, it would have to contain a segment with gradient

g(ε) >

1
2 − ε

2ε
=: h(ε).

However g(ε) is bounded from above by the anti-clockwise invariant cone boundary
gu
3 (ε) and

gu
3 (ε) ≤ gu

3 (ε2) ≈ 1.669 < 2.440 ≈ h(ε2) ≤ h(ε)

across ε0 < ε ≤ ε2. As before, then, it remains to assess the case where �P has non-
simple intersection with a1. It follows that �P joins the upper and lower boundaries
of B through B. Figure 12 shows a region D bounded by ∂ B and two piecewise linear
curves α, β. These curves are contained within B across ε0 < ε ≤ ε2, with α2 limiting
onto the line y = 1 as ε → ε2. Applying H4 to D gives a quadrilateral spanning across
A1, with sides H4(α), H4(β) on its lower and upper boundaries, respectively. Clearly
�P must connect β to α through D, and therefore H4(�P ) contains a v-segment. ��

We are now ready to establish ergodicity over ε0 < ε < ε2.

Proof of Proposition 5 By the same argument given in the proof of Proposition 2, by
Lemmas 1, 7, 9, given any z ∈ X ′ we can find m such that Hm(γu(z)) contains a
v-segment. Similarly by Lemmas 1, 6, 8, given any z′ ∈ X ′ we can find n such that
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H−n(γs(z′)) contains a h-segment. It follows that they intersect which, since z and z′
were arbitrary, establishes (M). ��

5.3 Establishing the Bernoulli Property

Proposition 6 Condition (MR) holds for H when ε0 < ε ≤ ε2.

Proof Follow the same argument given in the proof of Proposition 3, replacing η by
1
2 − ε. ��

We are now ready to prove the main theorem.

Proof of Theorem 1 Noting that (KS1) and (KS2)were trivially satisfied, the Bernoulli
property holds for H over 0 < η < η1 by Theorem 2 and Propositions 1, 2, and 3.
Let η2 = 1

2 − ε2 and η3 = 1
2 − ε0. Then, H is also Bernoulli over η2 ≤ η < η3 by

Theorem 2 and Propositions 4, 5, and 6. ��

6 Final Remarks

In summary, over the parameter range 0 < η < 1
2 we have given two windows within

which we can prove global hyperbolicity and two subsets where mixing results can
be established. A natural question is whether these are the largest sets in which these
properties hold. For hyperbolicity, the bounds appear optimal, with island structures
developing around period 3 orbits when 1

3 < η < 1
2 − ε1. The itinerary for these

orbits (and some neighbourhood around them) is BC A BC A BC A . . . so stretching
behaviour is determined by the matrix M3, which is non-hyperbolic. For the mixing
property, the parameter limits given are not optimal. For example, ε2 is not the highest
upper boundon the ε-mixingwindow that our analysis allows for, but it is very close.By
considering a 5-iterate mapping into h- and v-segments, this bound could be increased
only very slightly. Improving the bound B1(ε) would increase it further, but would in
turn complicate the already lengthy algebraic manipulations.

When following theKatok andStrelcyn approach, it is typical to be leftwith parame-
ter ranges where non-uniform hyperbolicity can be established, but proving themixing
property is more challenging. See, for example, the families of maps studied in Przy-
tycki (1983) and Wojtkowski (1981). In both of these examples, the strength of the
shears is increased to break up elliptic islands and ensure an invariant cone. Indeed,
the (Wojtkowski 1981; Bullett 1986) map at parameter value K = 4 exhibits similar
dynamics to a variation of Cerbelli and Giona’s map with a double strength non-
monotonic shear, i.e. taking H = G ◦ F2. In contrast, for the perturbation considered
in this work the shear strength is not varied, in particular

∫ 1
0 f (y) dy is independent

of η.
The cornerstone of our method was establishing a partition of returns and con-

structing an invariant expanding cone, both to prove nonzero Lyapunov exponents and
as a basis for understanding how images of local manifolds grow in diameter. This
approach seems viable for proving mixing properties in other systems. For example,
consider the variation of Cerbelli and Giona’s map, perturbing the second shear by
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G(x, y) = (x, y + (1+ δ)x) mod 1. Nonzero Lyapunov exponents can be established
by our method for 0 < δ < δ1 ≈ 0.281, but proving (M) is more challenging, largely
due to the map’s discontinuity cutting up the images of local manifolds.

Towards the goal of more closely resembling realistic fluid velocity profiles, natural
extensions to this work include introducing non-monotonicity to the second shear
and studying smooth perturbations. Both of these increase the number of derivative
matrices acting on the system, which complicates the analysis. The first of these is
addressed in Myers Hill et al. (2021), taking G similar to F in the present article. The
second is considerably more challenging and is the subject of ongoing work.
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7 Appendix

7.1 Establishing the Lower BoundB1(")

In this section, we derive a lower bound

diam(�4)

diam(�4) + diam(�5)
> B1(ε)

on the proportions of a piecewise linear curve �p−1, constrained by the invariant
cone, in the regions A4 and A5. We do this by maximising diam(�5) and minimising
diam(�4), i.e. we assume that�p−1 takes the longest possible path (in diameter) across
A5, and the shortest possible path across A4. These are straight line segments, each
aligned with one of the cone boundaries. Write the gradient of segments across A4
and A5 as k4 and k5, respectively. We now have to choose where on the L1 (boundary
between A4 and A5) �p−1 intersects so that the proportion in A4 is minimal. The
lines where each segment terminates are shown in Fig. 13a. Note that L2 is the line
y = k2x , and L3 is the line y = x − ( 12 − ε). The diameter of the A4 segment passing
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Q2

Q1

L2

L3

L1

(a)

Q3

Q3

S4

S5

S5

S4

L2

L3

L1

(b)

Fig. 13 A close-up on the lower portion of A2, ε = 0.05. Part a shows the lines which bound the regions
A4 and A5. Part b shows the curve (thickest line) across A2 which minimises (12), crossing L1 at Q3. Also
shown is the segments S4 which provides a lower bound for its diameter in A4. Segments S′

4 and S′
5 are

defined to give further bound on (12) with minimal ε dependence

through (x1, y1) ∈ L1 is given by

diam(�4) = x1 − y1 − k4x1
k2 − k4

(14)

and the diameter of the A5 segment passing through (x1, y1) ∈ L1 is given by

diam(�5) = y1 + ( 12 − ε) − k5x1
1 − k5

− x1, (15)

valid for (x1, y1) ∈ L1 above a certain threshold. This is the point Q3, defined as the
intersection of L1 with the line y = k5(x − 1

2 + ε), the lowest point on L1 such that
the segment in A5 still intersects L3 ∩ A. We claim that Q3 is the point where the
proportion (12) is minimal. To see this, note that as we move along the L1 from Q2
to Q3, both diameters grow linearly. Parameterise the path as Q2(1 − z) + Q3z for
z ∈ [0, 1]. Now, at each ε, diam(�4)(z) grows like m4z + c4 for some m4 > 0, and
c4 > 0 the diameter of the segment in A4 passing through Q2. Next, diam(�5)(z)
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grows like m5z for some m5 > 0 since it grows from 0. Now

diam(�4)

diam(�4) + diam(�5)
(z) = 1 − diam(�5)

diam(�4) + diam(�5)
(z)

= 1 − m5z

m4z + c4 + m5z

= 1 − 1
c4

m5z + m4
m5

+ 1

which is minimal at z = 1, so (12) is minimal at Q3. We will now derive a lower
bound on (12) which has weaker ε dependence.

Figure 13b shows the path through Q3 in bold. Its gradient in A5 is given by k5(ε),
aligned with the unstable eigenvector of M2. Its gradient in A4 is given by k4(ε),
aligned with the unstable eigenvector of M3. Writing the segment in A5 as S5, note
that

diam(�4)

diam(�4) + diam(�5)
≥ diam(S4)

diam(S4) + diam(S5)

where S4 is the segment in A4 connecting Q3 with L2, with gradient aligned with the
steepest possible k4(ε) over the parameter range, k−

4 = infε k4(ε2) ≈ −0.6688.6 We
have equality at ε = ε2.

Nowdefine S′
5 aswe did S5, but alignedwith the least steep gradient in the parameter

range, k+
5 = supε k5(ε) = k5(ε0) ≈ −0.08750. Write its point of intersection with

L1 as Q′
3. Note that Q3 = Q′

3 when ε = ε0. Define S′
4 as having the same gradient as

S4, but passing through Q′
3.

We claim that

diam(S4)

diam(S4) + diam(S5)
≥ diam(S′

4)

diam(S′
4) + diam(S′

5)
(16)

with equality at ε = ε0. Barring this case, note that the inequality is not immediate as
both diam(S′

4) > diam(S4) and diam(S′
5) > diam(S5). Assume the non-trivial case

ε > ε0 and rewrite (16) as

1

1 + diam(S5)
diam(S4)

>
1

1 + diam(S′
5)

diam(S′
4)

,

which is equivalent to

diam(S5)

diam(S4)
<

diam(S′
5)

diam(S′
4)

. (17)

6 The minus sign in k−
4 refers to it being the clockwise bound on the invariant cone.
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Define the diameter differences �i = diam(S′
i ) − diam(Si ) and write Q3 as (x1, y1),

Q′
3 as (x ′

1, y′
1), and Q1 as (x0, 0). Then�5 = x1−x ′

1.We can solve the line intersection
equations to show that

diam(S4) = x1 − y1 − k−
4 x1

k2 − k4

= k2x1 − y1
k2 − k−

4

(18)

so that

�4 = x1 − k2x ′
1 − y′

1 − k2x1 + y1
k2 − k−

4

= k2(x ′
1 − x1) + k1(x1 − x ′

1)

k2 − k−
4

= k1 − k2
k2 − k−

4

�5.

(19)

We can rewrite (17) as

diam(S′
5) − �5

diam(S′
4) − �4

<
diam(S′

5)

diam(S′
4)

,

which rearranges to

�4

�5
<

diam(S′
4)

diam(S′
5)

.

By (19), (18), and y′
1 = k1(x ′

1 − x0) this is

k1 − k2
k2 − k−

4

<

k2x ′
1−k1(x ′

1−x0)

k2−k−
4

1
2 − ε − x ′

1

,

which can be simplified to (k1 − k2)
( 1
2 − ε

)
< k1x0. So (17) holds, provided that

12ε2 + 16ε + 1

(2ε + 1)(2ε + 5)
− 4ε

2ε + 1
<

12ε2 + 16ε + 1

(2ε + 1)(2ε + 5)
· −4ε3 − 2ε2 + ε + 1

2

12ε2 + 16ε + 1
,

which reduces to 1−4ε+4ε2 < (1+2ε)2, valid for all ε > 0. This verifies the claim,
giving us a lower bound

diam(�4)

diam(�4) + diam(�5)
≥ diam(S′

4)

diam(S′
4) + diam(S′

5)
= k2x ′

1 − y′
1( 1

2 − ε
)
(k2 − k−

4 ) − y′
1 + k−

4 x ′
1

.
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Noting that y′
1 is very small and positive,7 removing it from the denominator gives a

new bound

diam(�4)

diam(�4) + diam(�5)
>

k2x ′
1 − y′

1( 1
2 − ε

)
(k2 − k−

4 ) + k−
4 x ′

1

:= B1(ε)

which has fewer terms to consider and is still a sufficiently strong bound for our
purposes.

7.2 Expanding the Expression forB1(")

We will now show the expanded form of B1(ε),

k2x ′
1 − y′

1( 1
2 − ε

)
(k2 − k−

4 ) + k−
4 x ′

1

= (2ε + 1)(2ε + 1 − 2k+
5 )

(2ε + 1)(−k−
4 (2ε + 3) − k+

5 (2ε + 5)) + 12ε2 + 16ε + 1
. (20)

To simplify the notation, let x = x ′
1, k4 = k−

4 and k5 = k+
5 . Then, y′

1 = k1(x − x0)
and we can write

B1(ε) = (k2 − k1)x + k1x0
k4x + ( 1

2 − ε
)
(k2 − k4)

(21)

Let ϕ = 2(1+2ε)(5+2ε). Then ϕk1 = 24ε2+32ε+2, ϕk1x0 = −8ε3−4ε2+2ε+1,
and εk2 = 8ε(2ε + 5) so that multiplying (21) by ϕ/ϕ yields

B1(ε) = (8ε(2ε + 5) − (24ε2 + 32ε + 2))x − 8ε3 − 4ε2 + 2ε + 1

k4ϕx + ( 1
2 − ε

)
(8ε(2ε + 5) − k4ϕ)

= (−8ε2 + 8ε − 2)x + (1 − 2ε)(2ε + 1)2

k4ϕx + (1 − 2ε)(2ε + 5)(4ε − k4(2ε + 1))

= −2(1 − 2ε)2x + (1 − 2ε)(2ε + 1)2

k4ϕx + (1 − 2ε)(2ε + 5)(4ε − k4(2ε + 1))

= −2(1 − 2ε)x + (2ε + 1)2

k4ϕx
1−2ε + (2ε + 5)(4ε − k4(2ε + 1))

.

Now by

x = k5(ε − 1
2 ) + k1x0

k1 − k5

= −k5(2ε + 5)(1 − 2ε) + (1 − 2ε)(1 + 2ε)

2(2ε + 5)(k1 − k5)
,

7 Also noting that the numerator and denominator are both positive.
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we have that

k4ϕx

1 − 2ε
= k4(2ε + 1)

−k5(2ε + 5) + 1 + 2ε

k1 − k5
(22)

and

− 2(1 − 2ε)x = k5(1 − 2ε)2

k1 − k5
− (1 − 2ε)2(1 + 2ε)

(2ε + 5)(k1 − k5)
(23)

so that

B1(ε)

= k5(2ε − 1)2(2ε + 5) − (1 − 2ε)2(1 + 2ε) + (2ε + 1)2(2ε + 5)(k1 − k5)

k4(2ε + 1)(2ε + 5)(−k5(2ε + 5) + 1 + 2ε) + (2ε + 5)2(k1 − k5)(4ε − k4(2ε + 1))
,

where we have substituted in (22), (23) and multiplied top and bottom by (2ε +
5)(k1 − k5). Write its numerator and denominator as N (ε) and D(ε). Expanding the
k1 term,

N (ε) = k5(2ε + 5)
(
(2ε − 1)2 − (2ε + 1)2

)
+ (2ε + 1)(12ε2 + 16ε + 1 − (1 − 2ε)2)

= −8εk5(2ε + 5) + (2ε + 1)(8ε2 + 20ε)

= (2ε + 5)(4ε(2ε + 1) − 8εk5(2ε + 5))

and

D(ε) = k4(2ε + 1)(2ε + 5) (−k5(2ε + 5) + 1 + 2ε) − k5(2ε + 5)2(4ε − k4(2ε + 1))

+ 12ε2 + 16ε + 1

2ε + 1
(2ε + 5) (4ε − k4(2ε + 1))

= (2ε + 5)

(

k4
[
(2ε + 1)(−k5(2ε + 5) + 1 + 2ε) + k5(2ε + 5)(2ε + 1)

−(12ε2 + 16ε + 1)
]

− 4εk5(2ε + 5) + 4ε

2ε + 1
(12ε + 16ε + 1)

)

.

Noting that the k4k5 terms cancel and (1+2ε)2−(12ε2+16ε+1) = −4ε(2ε+3),

B1(ε) = 4ε(2ε + 1) − 8εk5
−4εk4(2ε + 3) − 4εk5(2ε + 5) + 4ε

2ε+1 (12ε
2 + 16ε + 1)

.

Multiplying top and bottom by 2ε+1
4ε establishes (20).

123



31 Page 36 of 37 Journal of Nonlinear Science (2022) 32 :31

7.3 B1(")B2(") is Monotone Increasing

Starting with the bound on K4(ε),

B2(ε) = 3 + 46ε + 52ε2 + 8ε3

1 + 2ε − 4ε2 − 8ε3
− 12ε + 14

1 − 4ε2
L(ε)

= 3 + 46ε + 52ε2 + 8ε3

(1 − 2ε)(1 + 2ε)2
− 12ε + 14

(1 − 2ε)(1 + 2ε)
L(ε)

= 3 + 46ε + 52ε2 + 8ε3 − (1 + 2ε)(12ε + 14)L(ε)

(1 − 2ε)(1 + 2ε)2
.

Combining with our expanded expression for B1(ε),

B1(ε)B2(ε)

= (2ε + 1 − 2k+
5 )(3 + 46ε + 52ε2 + 8ε3 − (1 + 2ε)(12ε + 14)L(ε))

(1 − 2ε)(1 + 2ε)2(−k−
4 (2ε + 3) − k+

5 (2ε + 5)) + (1 − 2ε)(1 + 2ε)(12ε2 + 16ε + 1)

where we have divided through by (1 + 2ε)/(1 + 2ε). Write its numerator and
denominator as P(ε) and Q(ε), then B1(ε)B2(ε) is monotone increasing if P ′Q −
P Q′ > 0. Note that as a linear function, L ′(ε) = k6 ≈ −1.85175 is constant. The
factors derived from P are then

P(ε) = (2ε + 1 − 2k+
5 )(3 + 46ε + 52ε2 + 8ε3 − (24ε2 + 40ε + 14)L(ε)),

P ′(ε) = 6 + 92ε + 104ε2 + 16ε3 − (48ε2 + 80ε + 28)L(ε)

+ (2ε + 1 − 2k+
5 )(46 + 104ε + 24ε2 − (48ε + 40)L(ε)

− k6(24ε
2 + 40ε + 14))

which, since (2ε + 1 − 2k+
5 ) > 0, L(ε) < 0, and k6 < 0, are both positive for ε > 0.

Hence, over the parameter range ε0 < ε ≤ ε2, P is maximal at ε2. Differentiating
again, one can verify that P ′′ > 0, so that P ′ is bounded below by P ′(ε0). Now for
the factors derived from the denominator,

Q(ε) = (8ε3 + 4ε2 − 2ε1)(k
−
4 (2ε + 3) + k+

5 (2ε + 5)) + (1 − 4ε2)(12ε2 + 16ε + 1),

Q′(ε) = (24ε2 + 8ε − 2)(k−
4 (2ε + 3) + k+

5 (2ε + 5))

+ (8ε3 + 4ε2 − 2ε1)(2k−
4 + 2k+

5 )

− 8ε(12ε2 + 16ε + 1) + (1 − 4ε2)(24ε + 16)

which, since 8ε3 +4ε2 −2ε1 < 0 and −8ε(12ε2 +16ε +1)+ (1−4ε2)(24ε +16) =
16+16ε+· · · > 0 over the parameter range, are also both positive. Hence Q bounded
below by Q(ε0). Again, one can verify that Q′′ < 0 so that Q′ is bounded above by
Q′(ε0).

Hence, P ′Q− P Q′ > P ′(ε0)Q(ε0)− P(ε2)Q′(ε0) ≈ 29.853, positive as required.
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