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a b s t r a c t

Non-monotonic velocity profiles are an inherent feature of mixing flows obeying non-slip boundary
conditions. There are, however, few known models of laminar mixing which incorporate this feature
and have proven mixing properties. Here we present such a model, alternating between two non-
monotonic shear flows which act in orthogonal (i.e. perpendicular) directions. Each shear is defined
by an independent variable, giving a two-dimensional parameter space within which we prove the
mixing property over open subsets. Within these mixing windows, we use results from the billiards
literature to establish exponential mixing rates. Outside of these windows, we find large parameter
regions where elliptic islands persist, leading to poor mixing. Finally, we comment on the challenges
of extending these mixing windows and the potential for a non-exponential mixing rate at particular
parameter values.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Background

Mixing a fluid in some domain X by chaotic advection, es-
entially stirring, typically concerns the study of time-T periodic
incompressible laminar flows v(x, t) = v(x, t+ T ), x ∈ X . The dy-
amical features of these flows are described by the trajectories of
luid particles within the system, in particular their positions after
ach time period T . This defines a map f : X → X which sends the
nitial position of a particle to its position after time T . The long
erm behaviour of the flow v on X is then described by repeated
terations of the map f , denoted by f n, and the incompressibility
ondition on v tells us that f preserves the Lebesgue measure µ
on X . Ergodic theory provides the mathematical framework for
understanding the long term behaviour of iterating such maps,
most importantly it gives a precise definition for what it means
for a map to be mixing:

Definition 1. A µ-preserving invertible map f : X → X is mixing
if limn→∞ µ(f n(B) ∩ A) = µ(A)µ(B) for all measurable A, B ⊂ X ,
(X) = 1.

A hallmark of chaotic advection in two dimensions is an it-
rative ‘stretching and folding’ type action. Starting with a blob
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of fluid B, this action transforms f n(B) into a thin fluid filament
hich is repeatedly folded to spread across the entire domain, or
ny target set A. A natural model for this behaviour is to compose
hear maps, which stretch while preserving µ, on the torus T2,
hose periodic boundaries interweave the long fluid filaments. A
anonical example is the Cat Map H : T2

→ T2 [1]. Parameterise
2 by (x, y) ∈ (R/Z)2, then H = G ◦ F composes horizontal and

vertical shears, written in matrix form as(
x
y

)
↦→

(
1 0
1 1

)
  

DG

(
1 1
0 1

)
  

DF

(
x
y

)
mod 1 =

(
1 1
1 2

)
  

M

(
x
y

)
mod 1,

here DF , DG denote the Jacobians of the maps F , G. Since H
an be defined using a single hyperbolic matrix M , the map is
niformly hyperbolic, with the same magnitude and directions
f expansion, contraction across the entire domain. While this
llows for a straightforward proof of the mixing property, mixing
n a realistic fluid flow is typically non-uniform due to the influ-
nce of walls and non-linear velocity profiles. The key barriers
o mixing in this setting are elliptic islands, invariant subsets
ithin which particle paths trace out closed curves. From a fluids
erspective these curves form material lines in the flow which
articles cannot penetrate (except by diffusion), leading to poor
ixing [2]. An illustration of an island pair is given later in
ig. 2(b). Previous studies which try to minimise island structures
n realistic mixing flows include [3], looking at eggbeater and
uct flows, and Hertzsch et al. [4], looking at mixing in DNA
icroarrays.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.physd.2022.133224
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2022.133224&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:scjmh@leeds.ac.uk
https://doi.org/10.1016/j.physd.2022.133224
http://creativecommons.org/licenses/by/4.0/


J. Myers Hill, R. Sturman and M.C.T. Wilson Physica D 434 (2022) 133224

a
d
t
s
t
t
a
g
o

F

t
o
s

k
i

i

p
m
i
o

Several mappings exist which incorporate realistic flow phe-
nomena and still allow for a proof of the mixing property. Linked
Twist Maps [5], hereafter LTMs, compose monotonic shears which
act on annuli of the torus, leaving a region invariant which models
a boundary within the domain. Mixing properties can be shown
in the co-rotating case, where the shears act in the positive
x and y directions [6]. In the counter-rotating case, where the
direction of one shear is reversed, island structures develop and
can only be broken up by taking strong shears. This highlights a
potential challenge for mixing by non-monotonic shears, which
inherently exhibit this counter rotating quality. Indeed, there are
few examples of non-monotonic toral maps with proven mixing
properties. Cerbelli and Giona’s map (hereafter the CG Map),
studied in [7,8], and [9], incorporates non-monotonicity into the
first shear by taking

F (x, y) =
{
(x+ 2y, y) mod 1 for y ≤ 1

2 ,

(x+ 2(1− y), y) mod 1 for y ≥ 1
2 ,

nd leaves G unchanged. While this introduces a non-hyperbolic
erivative matrix over half the domain, a unique geometric fea-
ure of the map ensures that this does not compromise long term
tretching behaviour. Indeed, hyperbolic and mixing properties of
he CG Map can be proven by quite direct means, with analysis of
he unstable foliation revealing that fluid filaments get stretched
nd folded in a very regimented fashion. This is not the case for
eneric non-monotonic shears F , as shown in [10], where shears
f the form

η(x, y) =

⎧⎪⎨⎪⎩
(
x+ 1

1−η y, y
)

mod 1 for y ≤ 1− η,(
x+ 1

η
(1− y), y

)
mod 1 for y ≥ 1− η,

(1)

are considered with G left unchanged. An illustration of this shear
is given in Fig. 1(a); note that parameter values η = 0 and
η = 1/2 give the Cat Map and CG Map respectively. Mixing
properties over subsets of the parameter space 0 < η < 1/2
are shown using a scheme from [11], Theorem 3 in the present
work, which gives comparatively easy to verify conditions under
which non-uniformly hyperbolic systems1 are mixing, compared
to arguing by direct means. Non-uniform hyperbolicity ensures
the existence (almost everywhere) of local stable and unstable
manifolds which, roughly speaking, describe the characteristic
local flow direction in backwards and forwards time respectively
(see for example [12]). The way in which blobs of fluid are
stretched and spread across the domain is then described well by
the images of these local manifolds, and mixing properties follow
from intersection conditions on these images. Broadly speaking,
the key challenge to showing these conditions for non-monotonic
systems is the sign alternating property as described in [7]. While
hyperbolicity ensures that the images of local manifolds grow ex-
ponentially in length, non-linear shears like Fη fold these images
back on themselves, potentially inhibiting their spread across the
domain (also commented on in [13]). This challenge can often be
overcome by establishing sufficiently strong stretching behaviour
over one or several iterates, a method we will employ here to
prove mixing properties of maps composing two non-monotonic
shears. While taking G similar to Fη (see Fig. 1(b)) means that
he images of local manifolds will fold back on themselves more
ften, in turn the gradients defining G will become steeper, giving
tronger stretching behaviour.
Alongside knowing whether a map is mixing, it is desirable to

now the rate at which we approach a mixed state. That is, what
s the rate of decay of |µ(f n(B) ∩ A)− µ(A)µ(B)| with n? Taking

1 In particular non-uniformly hyperbolic systems with singularities, which are
nherent to piecewise linear maps.
2

Fig. 1. A family of area preserving maps H(ξ,η) = Gξ ◦ Fη parameterised by
0 < η, ξ < 1.

indicator functions 1A(x) = 1 if x ∈ A, 0 otherwise, and defining
the correlation function

Cn(φ,ψ, f , µ) =
∫ (

φ ◦ f n
)
ψ dµ−

∫
φ dµ

∫
ψ dµ (2)

for observables φ,ψ : T2
→ R, this amounts to studying

the decay of |Cn(1B, 1A, f −1, µ)|. Proving exponential correlation
decay rate for uniformly hyperbolic maps is quite straightforward,
e.g. by construction of a Markov partition. The Young tower ap-
proach was established to study correlations in non-uniformly
hyperbolic systems, based on the theory developed in [14,15]. The
theory has been extended to hyperbolic systems with singulari-
ties [16] culminating in schemes from [17], which give conditions
under which systems enjoy exponential or polynomial decay of
correlations, provided hyperbolicity is sufficiently strong. While
aimed at application to billiards systems, the scheme is readily
applicable to models of fluid mixing, most recently in [18] where
the mixing rate for a wide class of linked twist maps is shown to
be at worst polynomial.

1.2. Statement of results

Let H(ξ,η) : T2
→ T2 be the composition of two shears Fη and

Gξ , where Fη is given by (1) and Gξ maps

(x, y) ↦→

⎧⎪⎨⎪⎩
(
x, y+ 1

1−ξ x
)

mod 1 for x ≤ 1− ξ,(
x, y+ 1

ξ
(1− x)

)
mod 1 for x ≥ 1− ξ .

Fig. 2 shows the orbit starting at z0 = (1/
√
2, 1/
√
3) for three

arameter choices, highlighting the potential for mixing and non-
ixing behaviour over the parameter space. The aim of this paper

s to prove this behaviour, establishing mixing results on subsets
f the parameter space 0 < ξ, η < 1. A plot of the results in

the present work is given in Fig. 3 and summarised in our main
theorem:

Theorem 1. Let H,M, E, I1, I2, I3 be the parameter sets shown
in Fig. 3.

• For (ξ, η) ∈ H, H(ξ,η) is non-uniformly hyperbolic.
• For (ξ, η) ∈ M, H(ξ,η) is mixing.
• For (ξ, η) ∈ E, H(ξ,η) enjoys exponential decay of correlations.
• For (ξ, η) ∈ I1, I2, I3 and their reflections in the lines η = ξ

and η = 1− ξ , H(ξ,η) is non-mixing.

Explicit definitions of the above parameter sets are given in
Section 5.
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Fig. 2. Orbit of z0 = (1/
√
2, 1/
√
3), 50,000 iterates shown, under H(ξ,η) at parameter values (a): ξ = η = 1/10, (b): ξ = 3/10, η = 6/10, (c): ξ = η = 1/2. In (a) we

ee fully ergodic behaviour, in (b) island structures are present, and in (c) orbits can become trapped near invariant sets of line segments.
Fig. 3. Proven behaviour of H(ξ,η) over the parameter space 0 < ξ, η < 1. Regions In and their reflections exhibit persistent elliptic island structures, explored in
ection 5.2.
. Proof outline for Theorem 1

The paper is organised as follows. In this section we state a
heorem from [17] which gives conditions under which a map en-
oys exponential decay of correlations. We also state two results
hich give an efficient scheme for proving the mixing property.

n Section 3 we follow this scheme to prove the mixing property
ver a subset of the reduced parameter space ξ = η, correspond-
ng to taking matching shears. In Section 4 we find a bound on
such that H(η,η) enjoys exponential decay of correlations. In

ection 5 we generalise our results to the wider two dimensional
arameter space; establishing parameter space symmetries and
roving our main result, Theorem 1. Section 6 looks at the special
ase H(ξ,η) with ξ = η = 1

2 , which exhibits some unique
ynamical features. We conclude with some final remarks in
ection 7.
We begin with the scheme outlined in [17], which gives con-

itions under which a system exhibits exponentially decaying
eturn times to a subset Λ, and subsequently exponential de-
cay of correlations by construction of a Young Tower. We first
list some basic properties for systems amenable to the scheme,
paraphrased from [17].
3

Let M be an open domain in a 2D C∞ compact Riemannian
manifold M with or without boundary, f : M → M .

(CZ1): Smoothness. The map f is a C2 diffeomorphism of M \ S
onto f (M \ S), where S is a closed set of zero Lebesgue
measure.

(CZ2): Hyperbolicity. At any x ∈ M ′ ⊂ M where Dfx exists, there
exist two families of cones Cu

x (unstable) and C s
x (stable)

such that Dfx(Cu
x ) ⊂ Cu

f (x) and Dfx(C s
x) ⊃ C s

f (x). There exists
a constant λ > 1 such that

∥Dfx(v)∥ ≥ λ∥v∥ ∀v ∈ Cu
x and ∥Df −1x (v)∥ ≥ λ∥v∥ ∀v ∈ C s

x .

These families of cones are continuous on M ′, and the
angle between Cu

x and C s
x is bounded away from zero. For

any f -invariant measure µ′, at almost every x ∈ M we
have non-zero Lyapunov exponents and can define local
unstable and stable manifolds W u(x), W s(x).

(CZ3): SRB measure. The map f preserves a measure µ whose
conditional distributions on unstable manifolds are ab-
solutely continuous, and is mixing.

(CZ4): Distortion bounds. Let λ(x) denote the factor of expansion
u
on the unstable manifold W (x). If x, y belong to an
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unstable manifold W u such that f n is defined and smooth
on W u, then

log
n−1∏
i=0

λ(f ix)
λ(f iy)

≤ α(dist
(
f nx, f ny

)
)

where α(·) is some function, independent of W u, with
α(s)→ 0 as s→ 0.

(CZ5): Bounded Curvature. The curvature of unstable manifolds
is uniformly bounded by a constant B ≥ 0.

(CZ6): Absolute continuity. If W1,W2 are two small unstable
manifolds close to each other, then the holonomy map
h : W1 → W2 (defined by sliding along stable man-
ifolds) is absolutely continuous with respect to the in-
duced Lebesgue measures νW1 and νW2 , and its Jacobian
is bounded:
1
C ′
≤
νW2 (h(W

′

1))
νW1 (W

′

1)
≤ C ′

for some C ′ > 0, where W ′1 ⊂ W1 is the set of points
where h is defined.

(CZ7): Structure of the singularity set. For any unstable curve
W ⊂ M (a curve whose tangent vectors lie in unstable
cones) the set W ∩ S is finite or countable and...2

Denote the length of a line segment W by |W |. Denote the
connected components of W ∩ (M \ S) by Wi. We are now ready
to give the result from [17], specifically their Theorem 10 with
m = 1.

Theorem 2 (Chernov and Zhang). Let f be defined on a 2D manifold
M and satisfy the requirements (CZ1-7). Suppose

lim inf
δ→0

sup
W :|W |<δ

∑
i

λ−1i < 1 (3)

where the supremum is taken over unstable manifolds W and λi
denotes the minimal expansion factor on Wi. Then the map f : M →
M enjoys exponential decay of correlations.

To satisfy (CZ3) we must first establish parameter sets on
which H(ξ,η) is mixing. Our scheme for this is to prove the
Bernoulli property (which implies the mixing property by the
ergodic hierarchy) by satisfying the qualifications given in the
following theorem from [11], paraphrased in [19].

Theorem 3 (Katok and Strelcyn). Let f : X → X be a measure
preserving map on a measure space (X,F, µ) such that f is C2

smooth outside of a singularity set S where differentiability fails.
Suppose that the Katok–Strelcyn conditions hold:

(KS1): ∃ a, C1 > 0 s.t. ∀ ϵ > 0, µ(Bε(S)) ≤ C1ε
a.

(KS2): ∃ b, C2 > 0 s.t. ∀ z ∈ X \S, ∥D2
z f ∥ ≤ C2 d(z, S)−b where D2

z f
is the second derivative of f at z.

(KS3): Lyapunov exponents exist and are non-zero almost every-
where.

Then at almost every z we can define local unstable and stable
manifolds γu(z) and γs(z). Suppose that the manifold intersection
property holds:

(M): For almost any z, z ′ ∈ X, ∃m, n s.t. f m(γu(z))∩ f −n(γs(z ′)) ̸=
∅.

Then f is ergodic. Furthermore the Bernoulli property holds, provided
we can show the repeated manifold intersection property:

2 There is an additional requirement in the countable case, irrelevant for our
articular singularity set.
4

MR): For almost any z, z ′ ∈ X there exist M,N such that for all
m > M and n > N, f m(γu(z)) ∩ f −n(γs(z ′)) ̸= ∅.

The scheme extends Pesin theory (establishing ergodic proper-
ies of C2 smooth non-uniformly hyperbolic systems, Pesin [20])
o systems which are smooth outside of some singularity set. The
onditions (KS1-2) ensure that this set has manageable influence,
nd follow easily from our map’s definition. Write H = H(ξ,η) and
artition the torus into four rectangles Rj using the lines x = 0,
= 0, x = 1 − ξ , and y = 1 − η, as shown in Fig. 4. Letting

j = F−1η (Rj), the derivative DH is defined everywhere outside of
he set D = ∪j∂Aj and is constant on each of the Aj. The matrices
j = DH|Aj are given by

1 =

(
1 1

1−η
1

1−ξ 1+ 1
(1−ξ )(1−η)

)
, M2 =

(
1 1

1−η

−
1
ξ

1− 1
ξ (1−η)

)
,

M3 =

(
1 −

1
η

1
1−ξ 1− 1

η(1−ξ )

)
, M4 =

(
1 −

1
η

−
1
ξ

1+ 1
ηξ

)
.

Letting A′j = G(Rj) = H(Aj), the derivative of H−1 is defined
everywhere outside of the set D′ = ∪j∂A′j and is constant on
each of the A′j . The labelled intersections with the axes are y1 =
(1− ξ )(1− η), y2 = 1− η + ξη, x1 = η(1− ξ ), and x2 = 1− ξη.

Using the notation of Theorem 3, we take our map as f = H ,
our domain as X = T2, and our singularity set as S = D. Taking
µ to be the Lebesgue measure on T2, clearly µ(S) = 0. Let
X ′ = T2

\ S∞, S∞ =
⋃

k≥0 H
−k(D)∪

⋃
k≥0 H

k(D′), the full measure
set where H and all its powers Hk, k ∈ Z are differentiable. Since
we can cover D with arbitrarily thin rectangles, (KS1) follows for
some C1 > 0 with a = 1. Since H is piecewise linear, (KS2) follows
trivially.

Moving onto (KS3), we define the (forwards-time) Lyapunov
exponent at a point z ∈ T2 in direction v ∈ R2 by

χ (z, v) = lim
n→∞

1
n
log ∥DHn

z v∥,

where

DHn
z = DHHn−1(z) · ... · DHH(z) · DHz

s well defined at almost every z. We define log+(·) = max
log(·), 0} and let ∥ · ∥op be the operator norm. Existence of
yapunov exponents almost everywhere follows from Oseledets’
heorem [21] provided that log+ ∥DH∥op is integrable. This clearly
olds, so our first substantial task is proving that these exponents
re non-zero. A particular form of Oseledets’ theorem in two
imensions is useful here. We paraphrase from [22]:

heorem 4 (Oseledets, Viana). Let F : X × R2
→ X × R2 be

iven by F (x, v) = (f (x), A(x)v) for some measure preserving map
on a 2-dimensional manifold X and some measurable function
: X → GL(2). Suppose log+ ∥A±1∥ are integrable and define

+(x) = lim
n→∞

1
n
log ∥An(x)∥, λ−(x) = lim

n→∞

1
n
log ∥(An(x))−1∥−1,

here An(x) = A(f n−1(x)) · ... · A(f (x)) · A(x). Then for almost every
x ∈ X,

1. either λ−(x) = λ+(x) and

lim
n→∞

1
n
log ∥An(x)v∥ = λ±(x) ∀v ∈ R2

\ {0}

2. or λ+(x) > λ−(x) and there exists a vector line Es
x ⊂ R2 such

that

lim
1
log ∥An(x)v∥ =

{
λ−(x) for v ∈ Es

x \ {0},
2 s
n→∞ n λ+(x) for v ∈ R \ Ex.
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orollary 1. Further assuming that A takes values in SL(2) gives
−(x) = −λ+(x). Hence if at some x there exists v0 ∈ R2 with
imn

1
n log ∥An(x)v0∥ ̸= 0, it follows that limn

1
n log ∥An(x)v∥ ̸= 0

for all non-zero vectors v.

Applying this corollary to the cocycle generated by the deriva-
tive DH of our map H gives an efficient scheme for establishing
non-zero Lyapunov exponents. We let An(z) = DHn

z , which
takes values in SL(2). If there exists v0 such that ∥DHn

z v0∥ grows
exponentially with n, Corollary 1 gives χ (z, v) ̸= 0 for all
v ̸= 0.

3. Mixing property for matching shears

In this section we will prove the following:

Theorem 5. The map H(η,η) has the Bernoulli property for 0 < η <

η1 ≈ 0.2389.

3.1. Establishing non-uniform hyperbolicity

Proposition 1. Let 0 < η < 1/2. At almost every z, χ (z, v) ̸= 0
for all v ̸= 0.

Proof. Let H = H(η,η) and take matrices Mj = DH|Aj , all of
which are hyperbolic over 0 < η < 1/2. For any non-zero vector
v = (v1, v2)T , define its gradient by v2/v1 ∈ R ∪ {∞}. Write the
gradients of the unstable, stable eigenvectors of Mj as gu

j , g
s
j . One

can verify that

gu
4 (η) < gu

2 (η) < g s
2(η) < g s

1(η) < g s
4(η) < g s

3(η) < gu
3 (η) < gu

1 (η)

(4)

across 0 < η < 1/2. This allows us to define a cone region C in
the tangent space, bounded by the unstable eigenvectors of M2
and M3, which includes all of the unstable eigenvectors of the Mj,
and none of the stable eigenvectors (see Fig. 5). It follows that
this cone is invariant, that is, MjC ⊂ C for each j. We now verify
that this cone is expanding, that is, there exists δ > 0 such that
∥Mjv∥ ≥ (1 + δ)∥v∥ for each j, vector v ∈ C, where ∥ · ∥ is
whatever norm we put on the tangent space. Lower bounds on
these expansion factors

Kj(η) = inf
v∈C

∥Mjv∥

∥v∥

using a convenient norm, ∥ · ∥∞, are given as follows:

K1 =
2− η

, K2 =
1− η

, K3 =
1− η

, and

1− η η η s

5

Fig. 5. Disjoint cones C and C′ in R2 . C is bounded by the unstable eigenvectors
vu2 , v

u
3 of M2 , M3 and contains the unstable eigenvectors of M1 , M4 . C′ is similarly

formed using the stable eigenvectors.

K4 =
1− η + η2

η2
.

All are strictly greater than 1 for 0 < η < 1/2, so C is expanding
over this parameter range.

For any z ∈ X ′, v0 ∈ C, it follows that ∥DHn
z v0∥ grows

xponentially with n. By Corollary 1, this implies χ (z, v) ̸= 0 for
ny v ̸= 0. □

Hence we have non-zero Lyapunov exponents almost every-
here, i.e. H is hyperbolic.

.2. Establishing ergodicity

In this section we will prove the following:

roposition 2. Condition (M) holds for H when 0 < η < η1 ≈
.2024.

The proof consists of three stages. Non-zero Lyapunov ex-
onents at z ∈ X ′ implies the existence of local unstable and
table manifolds γ (z) and γ (z) at z. The first stage, Lemma 1,
u s
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escribes the nature of these local manifolds. In the next stage,
emmas 2 and 3, we give an iterative scheme for growing the
ackwards (forwards) images of any local (un)stable manifold.
e then grow the images of these manifolds up until the point
here the images connect up certain partition boundaries. This
hen allows us, by Lemmas 4 and 5, to establish an intersection
n the next several iterates.

Let C′ be the cone bounded by the stable eigenvectors of M2
and M3, including the stable eigenvectors of each of the Mj. It
follows that this cone is invariant and expanding under H−1.
The cones C and C′ provide bounds on the gradients of local
manifolds:

Lemma 1. At every z ∈ X ′, γu(z) is a line segment aligned with
some v ∈ C, and γs(z) is a line segment aligned with some v′ ∈ C′.

roof. Since H is piecewise linear, γu(z) and γs(z) are line seg-
ents, aligned with some vectors v and v′ respectively. By defi-
ition, for any ζ , ζ ′ ∈ γu(z)

ist(H−n(ζ ),H−n(ζ ′))→ 0 (5)

s n→∞. Similarly for any ζ , ζ ′ ∈ γs(z)

ist(Hn(ζ ),Hn(ζ ′))→ 0 (6)

as n → ∞. Note that C can be described at the cone region
ounded by the stable eigenvectors of M−12 and M−13 and includ-
ng the stable eigenvectors of each M−1j . Clearly v must be aligned
n this cone, for if it falls outside of this region, repeatedly apply-
ng the M−1j will pull v towards the invariant expanding cone C′,
resulting in exponential growth in its norm, which contradicts (5).
Similarly v′ must lie in C′ to avoid contradicting (6). □

We now move onto the growth stage, first defining some
useful properties of line segments.

Definition 2. We say that a line segment has simple intersection
with Aj if its restriction to Aj is empty or a single line segment.

An example is provided in Fig. 4, where Γ has simple inter-
section with A2 and non-simple intersection with A1. We also
define the x- and y-diameters of a line segment Γ by diamx(Γ ) =
({x | (x, y) ∈ Γ }) and diamy(Γ ) = ν ({y | (x, y) ∈ Γ }), where ν
s the Lebesgue measure on R.

Lemma 2 (Growth Lemma). Let η < η1. Given a line segment Γp−1,
aligned with some v ∈ C and having simple intersection with each
Aj, there exists a line segment Γp ⊂ H(Γp−1) such that

(C1) Γp is aligned with some vector in C,
(C2) diamy(Γp) ≥ (1 + δ) diamy(Γp−1) for some δ = δ(η) > 0,

independent of Γp−1.

Proof. Let ∥ ·∥ denote the ∥ ·∥∞ norm. Since |v2| ≥ |v1| for every
v = (v1, v2)T ∈ C, vectors v ∈ C have norm ∥v∥ = |v2|. Define
xpansion factors

j(η, v) =
∥Mjv∥

∥v∥

or each of the matrices Mj in the direction v ∈ C.
Suppose Γp−1, aligned with some v ∈ C, has simple intersec-

tion with all the Aj and each intersection is non-empty. Write the
restriction of Γp−1 to Aj as Γ j. Now if for some j

j(η, v) diamy(Γ j) > diamy(Γp−1), (7)

we can take Γp = H(Γ j) to satisfy (C2). If Γp−1 was aligned with
v ∈ C, Γ is now aligned with M v ∈ C, so (C1) is also satisfied.
p j

6

If (7) does not hold, the proportion of Γ j in Γp−1 is bounded
above by K−1j . Suppose (7) does not hold for j = 2, 3, 4. Then
the proportion of Γ 1 in Γp−1 is bounded below by

diamy(Γ 1)
diamy(Γp−1)

> 1−
1
K2
−

1
K3
−

1
K4
.

Hence taking Γp = H(Γ 1) satisfies (C2) provided that

K1(η, v) >
1

1− 1
K2
−

1
K3
−

1
K4

,

which rearranges to
4∑

j=1

1
Kj(η, v)

< 1

nd holds for any v ∈ C provided that

sup
v∈C

4∑
j=1

1
Kj(η, v)

< 1. (8)

nit vectors in C are of the form (k, 1)T for k0 ≤ k ≤ k1 with
0 = η/ (η − 1), k1 = 1. For each j let Mj =

(
aj bj
cj dj

)
, then

4

j=1

1
Kj(η, v)

=

4∑
j=1

1
|cjk+ dj|

=
1

c1k+ d1
+

1
−c2k− d2

+
1

−c3k− d3
+

1
c4k+ d4

=: Φ(η, k)

where we have used the fact that M2 and M3 are orientation
reversing. Now

∂2Φ

∂k2
=

2c21
(c1k+ d1)3

+
2c22

(−c2k− d2)3
+

2c23
(−c3k− d3)3

+
2c24

(c4k+ d4)3

which, by comparing with the terms of Φ(η, k), is clearly positive.
ence for each η, Φ as a function in k is convex, giving

sup
v∈C

4∑
j=1

1
Kj(η, v)

= sup
k0≤k≤k1

Φ(η, k) = max{Φ(η, k0),Φ(η, k1)}.

ver 0 < η < 1
2 we have that Φ(η, k0) > Φ(η, k1) so that

8) holds over 0 < η < η1 where η1 ≈ 0.2389 solves the
quation Φ(η, k0) = 1. So for η in this range, choosing one of
p = H(Γ j) will always satisfy (C2). The case where Γp−1 has
mpty intersection with one or more of the Aj follows as a trivial
onsequence. □

The equivalent lemma for the growth of line segments under
−1 is as follows. Recall the partition of the torus into four sets
′

j given in Fig. 4.

Lemma 3. Let η < η1. Given a line segment Γp−1, aligned with
some v′ ∈ C′ and having simple intersection with each A′j , there exists
a line segment Γp ⊂ H−1(Γp−1) such that

(C1′) Γp aligned with some vector in C′,
(C2′) diamx(Γp) ≥ (1 + δ) diamx(Γp−1) for some δ = δ(η) > 0,

independent of Γp−1.

Proof. The argument is analogous. Parameterise C′ by (1,m)T
for m0 ≤ m ≤ m1 with m0 = −1, m1 = η/(1 − η). Then the
condition on expansion factors equivalent to (8) reduces to the
bound max{Ψ (η,m0),Ψ (η,m1)} < 1 where

Ψ (η,m) =
1

+
1

+
1

+
1

.

−b1m+ d1 b2m− d2 b3m− d3 −b4m+ d4
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ne can verify that Ψ (η,m0) = Φ(η, k1) and Ψ (η,m1) = Φ(η, k0)
so that the lemma holds over 0 < η < η1. □

Moving onto the final mapping stage, call any line segment
Γ ⊂ R1 which joins the upper and lower boundaries (y = 0,
y = 1−η) a v-segment. Similarly we call any line segment Γ ⊂ R1
which joins the left and right boundaries (x = 0, x = 1 − η)
a h-segment. Clearly v-segments and h-segments must always
intersect.

Lemma 4 (Mapping Lemma). Let Γ be a line segment contained
ithin some A′j . If Γ has non-simple intersection with some Aj, then
k(Γ ) contains a v-segment for some k ∈ {1, 2, 3, 4}.

roof. Note that the sets A′1, A
′

3 are entirely contained within the
trip {x ≤ 1−η}, and the sets A′2, A

′

4 are entirely contained within
he strip {x ≥ 1−η}, so Γ lies entirely within one of these strips.
uppose first that it lies in {x ≤ 1 − η}, then Γ must have non-
imple intersection with A1 or A3. Non-simple intersection with
2 and A4 is possible, but involves wrapping vertically around the
orus, and in doing so implies non-simple intersection with A1 or
3. Assume Γ has non-simple intersection with A1. Then it must
ither connect the segments 2a and 2b (shown in Fig. 6) though
2 or connect the segments 4a and 4b through A4, depending
hich way it connects the two parts of A1. The same is true when
has non-simple intersection with A3.
Equivalent analysis can be applied to the strip {x ≥ 1 − η}.

or Γ in this strip, it follows that Γ connects 3a to 3b through
3 or connects 1a to 1b through A1. This gives four possible cases.
enote the case where Γ connects ja to jb through Aj by case (j).
e will show that all cases reduce to case (3). Suppose first that
satisfies case (4), connecting 4a to 4b through A4. Then H(Γ )

onnects 4a′ to 4b′ through A′4 (see Fig. 6). To do this, H(Γ ) must
onnect the segments 1a and 1b, passing through A1. That is, H(Γ )
atisfies case (1). One can similarly show that if Γ satisfies case
1) then H(Γ ) satisfies case (2), and that if Γ satisfies case (2)
hen H(Γ ) satisfies case (3). This case is illustrated in Fig. 6.

Looking at the images 3a′ = H(3a) and 3b′ = H(3b), we
ee that any line segment in A′3 which joins 3a′ to 3b′ must pass
hrough y = 0 and y = 1 − η, the lower and upper boundaries
f R1. It follows that if Γ satisfies case (3), H(Γ ) contains a v-
egment. For any of the four cases (j), j = 1, 2, 3, 4, Hk(Γ ) will
ontain a v-segment for k = 3, 2, 1, 4. □

emma 5. Let Γ be a line segment contained within some Aj. If Γ
as non-simple intersection with some A′j , then H−k(Γ ) contains a
-segment for some k ∈ {1, 2, 3, 4}.

roof. The argument is almost entirely analogous, we say that Γ
atisfies case (j′) if Γ connects jA′ to jB’ through A′j (see Fig. 7 for
n illustration of the relevant segments). Γ is entirely contained
ithin one of the strips {y ≤ 1−η} or {y ≥ 1−η} which, together
ith the fact that Γ has non-simple intersection with some A′j ,

mplies that Γ satisfies case (j’) for some j. Again, we have that if
satisfies case (4’) then H−1(Γ ) satisfies case (1’). This reduces to

ase (3’), and in turn reduces to case (2’). Any segment connecting
A to 2B through A2 must pass through the lines x = 1− η and
= 0, the right and left boundaries of R1. It follows that for Γ

atisfying case (j’), j = 1, 2, 3, 4, H−k(Γ ) contains a h-segment for
= 3, 1, 2, 4. □

We are now ready to establish ergodicity.

roof of Proposition 2. Given z ∈ X ′, by Lemma 1, Γ0 = γu(z)
s a line segment aligned with some vector v ∈ C. By Lemma 2
e can generate a sequence of line segments (Γp)0≤p≤P , with

p

p ⊂ H (γu(z)) and the diameter of Γp growing exponentially

7

ith p. It follows that after finitely many P steps, ΓP must have
on-simple intersection with one of the partition elements Aj.
ince H−1(ΓP ) lies entirely within some Aj, ΓP lies entirely within
ome A′j . Now by Lemma 4, Hk(ΓP ) contains a v-segment for
ome k ∈ {1, 2, 3, 4}. Hence we have found m = P + k such
hat Hm(γu(z)) contains a v-segment. Similarly given z ′ ∈ X ′, by
emmas 1, 3, and 5, we can find n such that H−n(γs(z ′)) contains
h-segment. It follows that they must intersect. □

We now move onto establishing stronger mixing properties.

.3. Establishing the Bernoulli property

roposition 3. Condition (MR) holds for H when 0 < η < η1 ≈
.2024.

roof. Given z ∈ X ′, by Lemmas 1, 2, 4, we have found M0
uch that HM0 (γu(z)) contains a segment Γ which joins 3a′ to 3b′
hrough A′3. As shown in the previous section, this means that
contains a v-segment. It also follows that Γ satisfies case (2)

o, by induction, we have that H2k(Γ ) contains a v-segment for
∈ N. Consider the quadrilateral Q1 ⊂ A1, defined by its corners

1 =

(
(1− η)3

1+ (1− η)2
, 0
)
, q2 =

(
(1− η)2

1+ (1− η)2
, 0
)
,

q3 =
(
0,

(1− η)3

1+ 2(1− η)2

)
, q1 =

(
0,

(1− η)4

1+ 2(1− η)2

)
.

n illustration of Q1 and its image H(Q1) ⊂ A2 are shown in
Fig. 8. One can show that each of the points qi map into the
oundary of A2 so that if Γ joins the dashed boundaries of Q1,
hen H(Γ ) satisfies case (2). For Γ joining 3a′ to 3b′ through
′

3, Γ must intersect the line y = 0 at some point (x, 0) with
≤ x ≤ xv = η2(1 − η)

(
1− η + η2

)−1. Hence our Γ joins the
dashed lines of Q1 as described, provided that xv(η) ≤ q1(η). This
holds for η ≤ η2 ≈ 0.4302. Since η2 > η1, this holds in our
arameter range so H(Γ ) satisfies case (2). By the same argument
s before, by induction it follows that H1+2k(Γ ) contains a v-
egment for k ∈ N. Let M = M0 + 2, then Hm(γu(z)) contains
v-segment for all m ≥ M .
By an entirely analogous argument, showing that h-segments

nd their images under H−1 must satisfy case (3),3 given any
′
∈ X we can find N = N0 + 2 such that H−n(γs(z ′)) contains
h-segment for any n ≥ N . Since z and z ′ are arbitrary, this
stablishes (MR). □

We are now ready to prove the main theorem.

roof of Theorem 5. Noting that (KS1) and (KS2) were trivially
atisfied, and the other conditions follow from Propositions 1, 2,
over 0 < η < η1, Theorem 3 gives the Bernoulli property for η
ver this range. □

. Rate of mixing

The fact that we have strong expansive behaviour under just
ne iterate of H allows us to deduce an exponential rate of mixing
ith minimal further analysis. Define the correlation function Cn
s in (2) and recall the conditions (CZ1-7) from Section 2. We will
how:

heorem 6. Let 0 < η < η3 ≈ 0.204. There exist constants
1, c2 > 0 such that |Cn(φ,ψ,H, µ)| < c1e−c2n for all Hölder
ontinuous observables φ,ψ . That is, we have exponential decay of
orrelations.

3 Showing the equivalent to the xv(η) < q1(η) bound for H−1 requires only
η < η′ ≈ 0.4643.
2
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roof of Theorem 6. Take M = M = T2 and f = H . Starting
with (CZ1), take S = D as defined in the introduction and let
M ′ = T2

\ D. Clearly H : M ′ → H(M ′) is a C2 diffeomorphism
and µ(D) = 0. Moving onto (CZ2), take Cu

x = C and C s
x = C′

or all x ∈ M ′. Clearly these are continuous over M ′ with cone
nvariance, expansion,4 transversality shown in Section 3.1. (CZ3)
ollows from Theorem 5, noting that Bernoulli implies strong
ixing in the ergodic hierarchy. Next (CZ4), (CZ5) follow from
iecewise linearity of H and (CZ6) follows from (KS1-3). Finally
ince vectors tangent to D lie in C′, unstable curves W (with
angent vectors in C) meet D transversally. Since D is a finite
ollection of segments, W ∩ D is finite, satisfying (CZ7).
It remains to show the one step expansion condition (3).

ote that by inspection of the partition Ai in Fig. 4, we can pick
sufficiently small so that any unstable manifold of length δ

has at most three intersections with D, giving four connected
omponents Wi = W ∩ Ai. Note that each expansion factor λi
s then bounded from below by

i(η) = inf
v∈C

∥Miv∥2

∥v∥2
.

4
 Expansion in the ∥ · ∥2 norm follows from a similar argument. f

8

So (3) holds provided that
∑4

i=1 K
−1
i < 1. This holds over 0 <

< η3, where η3 ≈ 0.204 solves the equation
∑4

i=1 Ki(η)−1 = 1.
y Theorem 2, H then exhibits exponential decay of correlations
ver this parameter range. □

. The two dimensional parameter space

In this section we generalise our results to the full 0 < ξ, η <
parameter space. We begin by establishing some symmetries of
he parameter space.

.1. Parameter space symmetries

Note that the system of maps H(ξ,η) = Gξ ◦ Fη given in the
ntroduction is well defined and incorporates two non-monotonic
hears for all 0 < ξ, η < 1. Two symmetries exist which allow us
o reduce this parameter space by a factor of four. Firstly consider
1(ξ, η) = (η, ξ ), reflection in the line η = ξ . We claim that

1 ◦ Gξ ◦ Fη = Fξ ◦ Gη ◦ S1

here S1 : T2
→ T2 maps (x, y) ↦→ (y, x). This follows from the

act that S (A ) = G−1(S (R )) for j = 1, . . . , 4 and the definitions
1 j η 1 j
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Fig. 8. Diagram showing that if a segment Γ connects 3a′ to 3b’ through A′3 ,
hen H(Γ ) must satisfy case (2).

f F , G given in the introduction. Let H = F ◦G (shearing vertically
irst instead of horizontally) then it follows that we have a semi-
onjugacy between H(ξ,η) and H(η,ξ ) = Hσ1(ξ,η). Clearly H and H
hare the same mixing properties, so mixing properties of Hσ1(ξ,η)
ollow from those of H(ξ,η).

Similarly take σ2(ξ, η) = (1 − η, 1 − ξ ), reflection in the line
= 1− ξ . One can verify that

2 ◦ Gξ ◦ Fη = F−11−ξ ◦ G
−1
1−η ◦ S2

where S2 : T2
→ T2 maps (x, y) ↦→ (1 − y, 1 − x), noting that

2(Aj) = G1−η(S2(Rj)). This gives H(ξ,η) conjugate to H−1σ2(ξ,η), which
has the same mixing properties as Hσ2(ξ,η).

Taking both of these symmetries into account, we need only
study the reduced parameter space P defined by ξ ≤ η ≤ 1 − ξ
with 0 < ξ ≤ 1

2 .

5.2. Elliptic islands

We state without proof a generic result on elliptic islands for
iecewise linear toral automorphisms. See for example [23].

roposition 4. Let H be a piecewise linear, continuous, area-
reserving toral map with singularity set D. Suppose H admits
n order n periodic orbit {z1, z2, . . . , zn} such that the associated
ocycle M = DHn

z1 satisfies |tr(M)| < 2 and dist(zk,D) > 0 for
k = 1, . . . , n. Then there exists an ellipse E centred at z1 such that
Hn(E) = E.

We now apply the result to three periodic orbits of H(ξ,η).

Corollary 2. H exhibits elliptic islands of positive measure over the
following parameter spaces:

I1): 1
2 < η ≤ 1− ξ for 0 ≤ ξ < 1

2 ,

I2): 0 < ξ < min
{
1− 1

3η ,
8η3−22η2+18η+

√
4η3−4η2+1−5

2(4η3−9η2+7η−2)

}
,

I ): max
{

1 ,
2ξ2−4ξ+1

}
< η < 1 .
3 3−3ξ 2ξ2−3ξ+1 2 (

9

Proof. Starting with I1, consider the periodic orbit {z1, z2} where

1 =

(
−2ξ 2η + 5ξη − ξ − 3η + 1

4ξη − 4η + 1
,
−2ξη2 + 3ξη + 2η2 − 4η + 1

4ξη − 4η + 1

)
and

z2 =

(
−

4η
(
2ξ 2 − 3ξ + 1

)
4ξη − 4η + 1

,
−2ξη2 + 5ξη + 2η2 − 5η + 1

4ξη − 4η + 1

)
.

We claim that for (ξ, η) ∈ I1 both z1 = (x1, y1) and z2 = (x2, y2)
re contained in the interior of A3, i.e. both F (zk) are in R3. Now
(x1, y1) = (x2, y1) and F (x2, y2) = (x1, y2) so we require 0 <

k < 1−ξ and 1−η < yk < 1, which is easily verified for (ξ, η) ∈
1. It follows that dist(zk,D) > 0 and the associated cocycle is
3M3. We remark that tr(M2) = (trM)2− 2 detM so that for area
reserving matrices M , we have |tr(M2)| < 2 ⇐⇒ |trM| < 2.
ence the conditions listed in Proposition 4 are verified provided
hat |2− 1/(η − ηξ )| < 2, i.e. 4η(1− ξ ) > 1, which clearly holds
ver I1.
The analysis for I2 and I3 is analogous. They correspond to

slands around period 6 orbits with itinerary A3, A3, A1, A3, A3, A1.
he condition on the trace of the associated cocycle gives ξ <
− 1/(3η), equivalently η > 1/(3− 3ξ ). The other bounds on I2,
3 come from requiring dist(zk,D) > 0. □

The parameter regions In and their symmetries under σ1, σ2
re shown in Fig. 3. These are the three largest (in terms of
roportion of the parameter space) elliptic island families over
but do not constitute an exhaustive list. Numerical evidence

uggests that the parameter space close to I2 and I3 contains
arameters where H(ξ,η) is globally hyperbolic, and others where
t admits other families of elliptic islands.

.3. Mixing properties

In this section we generalise our approach for proving mixing
roperties over the line η = ξ to subsets of P . Inequalities on
eneralised expansion factors dictate where in P we can estab-
ish hyperbolicity, (MR), and exponential decay of correlations.
tarting with hyperbolicity, across P the traces of the Mj(ξ, η)
atisfy |trMj| > 2 for j = 1, 2, 4. For M3 we have trM2(ξ, η) =
−1/ (η − ηξ) which has absolute value greater than 2 provided
hat 1/ (η − ηξ) > 4, i.e. for η < 1/ (4− 4ξ). Let P ′ denote the
oints in P for which this inequality is satisfied. We remark that
he cone C bounded by the unstable eigenvectors of M2 and M3,
ontaining those of M1 and M4, is invariant and expanding for
arameter values in P ′. The cone C′ for H−1 is similar, bounded
y the stable eigenvectors of M2 and M3. Under the ∥ · ∥∞ norm,
he cone boundaries of C are given by the unit vectors (k0, 1)T and
k1, 1)T , where

0(ξ, η) =
−2ξ

1+
√
1− 4ξ + 4ξη

< 0 and

k1(ξ, η) =
2− 2ξ

1+
√
1− 4η + 4ξη

> 0.

The cone boundaries of C′ are given by the unit vectors (1,m0)T
nd (1,m1)T , where

0(ξ, η) =
√
4ξη − 4ξ + 1− 1

2ξ
and

m1(ξ, η) =
√
4ξη − 4η + 1− 1

2ξ − 2
.

As before, write the components of Mj as aj, . . . , dj then the
expansion factor Kj(ξ, η, k) of the matrix Mj in the direction
k, 1)T ∈ C is given by |c k+ d |. Noting that each matrix has
j j
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eterminant 1, the expansion factor Kj(ξ, η,m) of the matrix M−1j
in the direction (1,m)T ∈ C′ is given by |dj − bjm|. Let

Φ(ξ, η, k) =
4∑

j=1

1
Kj(ξ, η, k)

and

Ψ (ξ, η,m) =
4∑

j=1

1
Kj(ξ, η,m)

,

hen by the same reasoning as before, the growth lemma for H
equires max{Φ(ξ, η, k0),Φ(ξ, η, k1)} < 1 and the growth lemma
or H−1 requires max{Ψ (ξ, η,m0),Ψ (ξ, η,m1)} < 1.

Finally for each j define

j(ξ, η, v) =
∥Mjv∥2

∥v∥2
,

the expansion factor of Mj in the direction v ∈ C using the
uclidean norm. We are now ready to state the result on mixing
esults over P .

heorem 7. Let H be defined by parameter values (ξ, η) ∈ P .

• For (ξ, η) ∈ P ′, H is non-uniformly hyperbolic.
• For (ξ, η) satisfying max{Φ(k0),Φ(k1),Ψ (m0),Ψ (m1)} < 1,

shown as the set B in Fig. 9, H is Bernoulli.
• For (ξ, η) satisfying

∑
j

1
infv∈C Kj(ξ,η,v)

< 1, shown as the set E
in Fig. 9, H exhibits exponential decay of correlations.

roof. The argument is similar to that given in the proofs of
heorems 5 and 6, requiring only minor adjustments. One can
erify that the chain of inequalities (4) holds for all (ξ, η) ∈
′ so that C is invariant. Similarly one can verify that each of
he Mj expands vectors parallel to the cone boundaries, so C is
xpanding. Existence of this invariant expanding cone implies
on-zero Lyapunov exponents over a full measure set, so H is
yperbolic for parameter values in P ′. Moving onto proving (M),
emmas 1, 4, and 5 are entirely analogous. Lemma 2 follows
rom max{Φ(ξ, η, k0),Φ(ξ, η, k1)} < 1 and Lemma 3 follows
rom max{Ψ (ξ, η,m0),Ψ (ξ, η,m1)} < 1. One can verify that this
educes to Ψ (ξ, η,m1) < 1, shown as the region B ⊂ P ′ bounded
by ξ = 0, c2, and the curve c3 given by Ψ (ξ, η,m1) = 1 (see
Fig. 9). Condition (MR) follows from adapting the xv(η) < q1(η)
inequality. Solving line intersection equations gives

xv(ξ, η) =
ηξ (1− ξ )

1− η(1− ξ )
and q1(ξ, η) =

(1− η)(1− ξ )2

1+ (1− η)(1− ξ )

o that xv(ξ, η) < q1(ξ, η) reduces to

<
(1− η)2

1− η + η2

which holds over B. Again, the equivalent inequality to xv(ξ, η) <
1(ξ, η) for H−1 results in a less stringent condition on the pa-
ameter space, hence also holds over B. It follows, then, that H is
Bernoulli over parameter values (ξ, η) ∈ B.

Moving onto the mixing rate, (CZ1-7) hold by the same ar-
gument as before, noting that vectors tangent to the singularity
set D for H(ξ,η) still lie in C′. Similarly we can choose δ > 0
such that unstable manifolds W of length |W | < δ have at
most 3 intersections with D, splitting W into four components
Wj = W ∩ Aj. The one step expansion condition (3) then follows
from
4∑

sup
v∈C

1
Kj(ξ, η, v)

< 1,

j=1

10
Fig. 9. Plot of analytical results over P . The curves c1 and c2 define P ′ , c3
defines B ⊂ P ′ , c3 and c4 define E ⊂ B, on which H is respectively hyperbolic,
mixing, and exhibits exponential decay of correlations. Note that c3 meets c2 at
the point (η1, η1) and c4 meets c2 at the point (η3, η3).

i.e.
4∑

j=1

1
infv∈C Kj(ξ, η, v)

< 1 (9)

s required. Across (ξ, η) ∈ B we have that K1(ξ, η, v) and
2(ξ, η, v) always attain their infimum over the unstable eigen-
ector v2 of M2, K3(ξ, η, v) and K4(ξ, η, v) always attain their
nfimum over the unstable eigenvector v3 of M3. Hence (9) holds
rovided that Ω(ξ, η) < 1, where

(ξ, η) =
1

K1(ξ, η, v2)
+

1
K2(ξ, η, v2)

+
1

K1(ξ, η, v3)
+

1
K1(ξ, η, v3)

.

ig. 9 shows the curve c4 given by Ω(ξ, η) = 1 in B, which
ogether with c3, c2, ξ = 0 give the exponential mixing window
⊂ B. □

We now prove our main theorem.

roof of Theorem 1. Given a parameter set P ⊂ (0, 1) × (0, 1),
efine

(P) = P ∪ σ1(P) ∪ σ2(P) ∪ (σ2 ◦ σ1)(P).

etting H = Σ(P ′), M = Σ(B), E = Σ(E), the first three
tatements in Theorem 1 follow from Theorem 7 and the semi-
onjugacies established in Section 5.1. The statement on ellip-
ic islands is similar, following from the semi-conjugacies and
orollary 2. □

. Special case

Let H denote H( 12 ,
1
2 )
, the map on the cusp of the hyperbolic

parameter space P ′. As the composition of two orthogonal ‘tent’
shaped shears, we will colloquially refer to this as the Orthogonal
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ents Map (OTM). It is the unique map in the full 0 < ξ, η < 1
parameter space which is not conjugate to another H(ξ,η) and
as all integer valued derivative matrices. It is also the natural
xtension of Cerbelli and Giona’s Map with two non-monotonic
hears, so proving its observed hyperbolic and mixing properties
s desirable, in line with other generalisations [24]. We will prove
he first of these, then comment on the challenges of proving the
econd in Section 6.2.

.1. Hyperbolicity

roposition 5. H is non-uniformly hyperbolic.

Let Mj denote the derivative matrix DH on Aj. These are given
by

M1 =

(
1 2
2 5

)
, M2 =

(
1 2
−2 −3

)
,

M3 =

(
1 −2
2 −3

)
, and M4 =

(
1 −2
−2 5

)
.

For any z ∈ X ′ with n-step itinerary

Aj1 , Aj2 , Aj3 , . . . , Ajn ,

the cocycle DHn
z is given by

DHn
z = Mjn . . .Mj3Mj2Mj1

with each jk ∈ {1, 2, 3, 4}. Our aim is to decompose any cocycle
into hyperbolic matrices which share an invariant expanding
cone. Note that while M1 and M4 are hyperbolic, M2 and M3 are
not. Hence when M2 or M3 appear in a cocycle at Mjk , we must
ombine them with its neighbouring matrices Mjk+l , . . . ,Mjk+2 ,

Mjk+1 for some l ∈ N.
Let M denote the countable family of matrices {M1,M4,

M1Mn
2 ,M3Mn

2 ,M4Mn
2 ,M1Mn

3 ,M2Mn
3 ,M4Mn

3 } with n ∈ N. We claim
the following:

Lemma 6. At almost every z, the cocycle DHn
z can be decomposed

into blocks from M.

Lemma 7. The matrices in M admit an invariant expanding cone
C.

Proposition 5 follows from the two lemmas. At any z satisfying
Lemma 6, by Lemma 7 we can take any v0 ∈ C to achieve
exponential growth of ∥DHn

z v0∥ with n. We will prove Lemma 6
here, the proof of Lemma 7 can be found in the Appendix.

Proof of Lemma 6. It is sufficient to show that itineraries cannot
get trapped in A2 or A3, barring some set of zero measure. We
will consider the set A3, with the argument for A2 being entirely
analogous. In particular we will show that µ(Bn)→ 0 as n→∞
where Bn = {z ′ ∈ A3 |Hk(z ′) ∈ A3 for all 1 ≤ k ≤ n}.

Let H = F ◦ G. For any z ′ ∈ A3,

Hk(z ′) ∈ A3 for all 1 ≤ k ≤ n

⇐⇒ (G ◦ F )k(z ′) ∈ A3 for all 1 ≤ k ≤ n

⇐⇒ [F ◦ (G ◦ F )k](z ′) ∈ R3 for all 1 ≤ k ≤ n

⇐⇒ [(F ◦ G)k ◦ F ](z ′) ∈ R3 for all 1 ≤ k ≤ n

⇐⇒ Hk(z) ∈ R3 for all 1 ≤ k ≤ n

where z = F (z ′) ∈ R3. Hence recurrence in A3 under H can
be understood by instead studying recurrence in R3 under H.
Letting Bn = {z ∈ R3 |Hk(z) ∈ R3 for all 1 ≤ k ≤ n}, by the
above we have Bn = F (Bn) and µ(Bn) = µ(Bn) since F preserves

µ. The simpler geometry of R3 makes this a convenient choice.

11
Iteratively define U1 = H(R3) ∩ R3, Un = H(Un−1) ∩ R3 so that
Bn = H−n(Un). Since H preserves µ, we have µ(Bn) = µ(Un). Let
V = H−1(R3) ∩ R3 be the set of points in R3 which stay in R3. An
equivalent definition for the Un is U1 = H(V ), Un = H(Un−1 ∩ V ).
Restricting to V in this way is beneficial as H|V : V → R3 is an
affine transformation, mapping quadrilaterals to quadrilaterals.
The sets V = V1 ∪ V2 and U1 = P1 ∪ Q1 are shown in Fig. 10,
both composed of two quadrilaterals with corners on ∂R3. Note
that V1, P1 share the corners p11 = (1/4, 1/2), p

3
1 = (0, 3/4) and

V2, Q1 share the corners q11 = (1/4, 1), q31 = (1/2, 3/4), all of
which are periodic with period 2.

The intersection U1∩V is made up of two quadrilaterals P1∩V1
and Q1 ∩ V2 with corners on the period 2 points and the points
r1 = (1/10, 3/5), r ′1 = (1/6, 2/3), s1 = (1/3, 5/6), and s′1 =
(2/5, 9/10). Mapping these quadrilaterals forward under H gives
U2 = P2 ∪ Q2 where P2 = H(Q1 ∩ V2) and Q2 = H(P1 ∩ V1). Label
the corners of these quadrilaterals by pi2 and qi2, i = 1, 2, 3, 4, as
shown in Fig. 10.

We claim that for general n ∈ N, Un is made up of two
quadrilaterals Pn, Qn with corners

p1n =
(
1
4
,
1
2

)
, p2n =

(
0,

3n+ 1
4n+ 2

)
,

p3n =
(
0,

3
4

)
, p4n =

(
n

4n− 2
,
1
2

)
,

q1n =
(
1
4
, 1
)
, q2n =

(
1
2
,
3n+ 2
4n+ 2

)
,

q3n =
(
1
2
,
3
4

)
, q4n =

(
n− 1
4n− 2

, 1
)
,

labelled in the same way as the case n = 2. Pn ∩ V1 will be
quadrilateral with corners p1n, rn, p

3
n, r
′
n, and Qn ∩ V2 will be a

uadrilateral with corners q1n, sn, q
3
n, s
′
n, where

n =

(
1

4n+ 6
,
3n+ 3
4n+ 6

)
, r ′n =

(
n

4n+ 2
,
2n+ 2
4n+ 2

)
,

sn =
(
2n+ 2
4n+ 6

,
3n+ 6
4n+ 6

)
,

s′n =
(

n+ 1
4n+ 2

,
4n+ 1
4n+ 2

)
can be obtained by solving the line intersection equations. One
can verify that H(p1n) = q1n+1, H(rn) = q2n+1, H(p3n) = q3n+1,
H(r ′n) = q4n+1, and H(q1n) = p1n+1, H(sn) = p2n+1, H(q3n) = p3n+1,
H(s′n) = p4n+1, so that H(Pn ∩ V1) = Qn+1 and H(Qn ∩ V2) = Pn+1.
ence

(Un ∩ V ) = H ((Pn ∩ V1) ∪ (Qn ∩ Vn))
= H(Pn ∩ V1) ∪H(Qn ∩ V2)
= Qn+1 ∪ Pn+1
= Un+1

and the claim follows by induction. Now in the limit n→∞, Pn
limits onto the line segment joining (0, 3/4) to (1/4, 1/2) and Qn
limits onto the line segment joining (1/4, 1) to (1/2, 3/4). This
gives µ(Un) → 0 as required. The preimages of these segments
under F are visible as the darker regions of the orbit shown in
Fig. 2(c). If an orbit (like that shown in the figure) maps near to
the segments, it can take arbitrarily long to escape. This gives a
non-uniform spatial density for the orbit in the finite time picture
of the dynamics that the figure provides. □
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Fig. 10. Left: Two subsets V (patterned) and U1 (grey) of R3 , each composed of two quadrilaterals. Right: The image U2 = H(U1 ∩ V ) in R3 , the dashed lines show
the boundary of V .
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6.2. Mixing properties

This approach of identifying non-hyperbolic regions A2, A3 and
proving that itineraries cannot get trapped there is similar to
the method used to prove hyperbolicity and the mixing property
in [10]. Unlike the maps studied there, which had finite escape
times from the non-hyperbolic region, here we can find positive
Lebesgue measure sets which take arbitrarily long to escape. This
complicates establishing the growth lemma, requiring analysis of
a countably infinite partition of returns, so that the proof of the
mixing property is more involved. This is the subject of current
work.

Despite this, the above analysis allows us to comment on the
potential mixing rate of the OTM. By the shoelace formula we
can calculate µ(Pn) = µ(Qn) = n/

(
32n2
− 8

)
so that µ(Bn),

he measure of the unmixed region in A3, is given by µ(Bn) =
(Un) = n/

(
16n2
− 4

)
. This suggests that the mixing rate is at

ost polynomial, in contrast to the exponential mixing rate seen
lsewhere in our parameter space. Numerical evidence supports
his, and suggests exponential correlation decay rate across P ′

nd the curve c1 left of the OTM.

. Discussion

.1. Improving the (exponential) mixing windows

Numerical results suggest mixing behaviour across all of P ′

nd some way beyond. The key issue limiting our analysis from
stablishing mixing results over the larger parameter space is
he weak hyperbolicity of M3 near η = 1/ (4− 4ξ) and non-
yperbolicity for η > 1/ (4− 4ξ). There are methods for getting
round this weak expansion, considering expansion over n it-
rates and using the precise geometry of the singularity set
or Hn to derive stronger bounds on the growth of local mani-
olds. Several factors prevent the easy application of this method.
irstly, neighbouring partition elements defined by the singu-
arity set for Hn will always have inverse orientation preserv-
ng/reversing properties. This was not the case in [10] and was
ey in establishing an analogous growth lemma for piecewise
inear curves rather than line segments. Secondly, considering
n with two non-monotonic shears involves working with a
ery complicated singularity set with 4n partition elements. This,
12
ogether with a two-dimensional parameter space, makes any
nalysis significantly more challenging.
Recall that the one step expansion condition in Theorem 2

17] was the key constraint on our exponential mixing window
. In subsequent publications this condition has been weakened,
mploying image coupling methods rather than construction of a
oung tower. Using similar notation to Theorem 2, the weakened
ondition (from [25]) is given as follows for our map H . Let W
e an unstable curve, Wi be the restriction to Ai, and Vi = H(Wi).
he one-step expansion condition is satisfied provided that there
xists q ∈ (0, 1] such that

lim inf
δ→0

sup
W :|W |<δ

∑
i

(
|W |
|Vi|

)q

·
|Wi|

|W |
< 1, (10)

where the supremum is taken over all unstable curves W . This
is difficult to implement for our maps as finding the precise pro-
portions of the curve(s) that attain this supremum in each of the
four partition elements Ai is challenging. Three proportion tuning
parameters are required, which together with q and the two
dimensional parameter space results in a non-trivial optimisation
problem.

7.2. Comparison with linked twist maps

Let F , G be the non-monotonic shears given in Section 1.
Taking F̃ = F , G̃ = G and imposing F̃ |{y>1−η} = G̃|{x>1−ξ} = Id
gives a class of linked twist maps H̃ = G̃ ◦ F̃ with known mixing
properties over the (ξ, η) parameter space [6]. Indeed, the mixing
rate for H̃ is known to be polynomial, see [18,26], in contrast to
the exponential rate shown seen over E for H . It is clear, then,
that the shears in the annuli {y > 1 − η}, {x > 1 − ξ} have a
significant positive impact on this aspect of the dynamics. One
might ask whether including these shears improves mixing in
more general linked twist maps, for example the counter-rotating
LTM H̃− = G̃−1 ◦ F̃ . Letting H− = G−1 ◦ F , one can show that
mapping by H− rather than H̃− does not mitigate the growth of
elliptic islands. For example, over ξ = η < 1/2 the maps H−
and H̃− share the same pair of elliptic islands associated with the
period 2 orbit(
(1− η)2

,
(1− η)2

)
←→

(
(1− η)(2− η)

,
(1− η)(2− η)

)

3− 2η 3− 2η 3− 2η 3− 2η
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Table 1
Information necessary for establishing hyperbolicity of each M ∈M and for showing that they admit an invariant cone C.
M (tr(M))2 − 4 gu(M) gs(M)

M1 32 1+
√
2 1−

√
2

M4 32 −
√
2− 1 −1+

√
2

M1Mn
2 4 (4n+ 3)2 − 4

n+
√
4n2 + 6n+ 2+ 1

n+ 1
n−
√
4n2 + 6n+ 2+ 1

n+ 1

M1Mn
3 4 (4n+ 3)2 − 4

5n+
√
4n2 + 6n+ 2+ 1
3n+ 1

5n−
√
4n2 + 6n+ 2+ 1
3n+ 1

M2Mn
3 64n (4n+ 1) −

n+ 2
√
n (4n+ 1)+ 1
3n+ 1

−n+ 2
√
n (4n+ 1)− 1
3n+ 1

M3Mn
2 64n (4n+ 1)

n+ 2
√
n (4n+ 1)+ 1
3n+ 1

n− 2
√
n (4n+ 1)+ 1
3n+ 1

M4Mn
2 4 (4n+ 3)2 − 4 −

5n+
√
4n2 + 6n+ 2+ 1
3n+ 1

−5n+
√
4n2 + 6n+ 2− 1
3n+ 1

M4Mn
3 4 (4n+ 3)2 − 4 −

n+
√
4n2 + 6n+ 2+ 1

n+ 1
−n+

√
4n2 + 6n+ 2− 1
n+ 1
Table 2
Minimum expansion factors for each M ∈M over the cone C.
M Components K (M) infn K (M)

M1

(
1 2
2 5

)
6−
√
5 3.763

M4

(
1 −2
−2 5

)
6−
√
5 3.763

M1Mn
2 (−1)n

(
2n+ 1 2n+ 2
6n+ 2 6n+ 5

)
6n+

(
1−
√
5
)
(3n+ 1)+ 5 6.055

M1Mn
3 (−1)n

(
1− 6n 6n+ 2
2− 14n 14n+ 5

)
14n+

(
1−
√
5
)
(7n− 1)+ 5 11.58

M2Mn
3 (−1)n

(
1− 6n 6n+ 2
10n− 2 −10n− 3

)
10n+

(
1−
√
5
)
(5n− 1)+ 3 8.055

M3Mn
2 (−1)n

(
1− 6n −6n− 2
2− 10n −10n− 3

)
10n+

(
1−
√
5
)
(5n− 1)+ 3 8.055

M4Mn
2 (−1)n

(
1− 6n −6n− 2
14n− 2 14n+ 5

)
14n+

(
1−
√
5
)
(7n− 1)+ 5 11.58

M4Mn
3 (−1)n

(
2n+ 1 −2n− 2
−6n− 2 6n+ 5

)
6n+

(
1−
√
5
)
(3n+ 1)+ 5 6.055
R
b
M
a

u

t
W
n
T
i

and the non-hyperbolic matrix

M−1 =

(
1 1

1−η
−1
1−η 1+ 1

(1−η)2

)
.

.3. Future work

Towards the aim of incorporating the key features of laminar
ixing flows in a theoretically tractable model, this paper serves
first step. A natural next step would be to smooth out the
eaks of the shears, moving closer to plane Poiseuille flow. While
ixing behaviour is observed to persist, see for example [4],
moothing the shears introduces a parabolic fixed point which
ignificantly complicates the dynamics. Establishing hyperbolicity
s challenging as near this fixed point we have a dilation of cone
ields. Recurrence methods similar to those used in Section 6
ould be utilised, but the non-linear nature of the shears com-
licates the analysis of return times and the behaviour in the
angent space during a return.
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Appendix

Proof of Lemma 7. Parameterise the tangent space by (v1, v2) ∈
2. Define C as the cone contained within the region |v2| ≥ |v1|,
ounded by and including the unstable eigenvectors of M4M2 and
1M3. As unit vectors in the ∥·∥∞ norm, these are v− = (−α, 1)T

nd v+ = (α, 1)T respectively where α = 1
2 (
√
5 − 1). We will

show hyperbolicity, cone invariance, and finally norm expansion
of vectors in C under matrices from M.

Starting with hyperbolicity, a matrixM ∈M is hyperbolic if its
trace satisfies (tr(M))2 > 4. Table 1 shows (tr(M))2−4 for each of
the matrices, one can verify that all are positive. Hence each of the
matrices M have distinct unstable and stable eigenvectors, write
their gradients as gu(M) and gs(M) respectively. The gradients of
the cone boundaries v± are ±1/α, so we have cone invariance
Mv ∈ C for all v ∈ C if |gu(M)| ≥ 1/α and |gs(M)| < 1/α. Again,
sing Table 1, this is easily verified.
By cone invariance, for any M ∈ M, v = (v1, v2)T ∈ C,

he vector (v′1, v
′

2)
T
= M(v1, v2)T will satisfy ∥(v′1, v

′

2)
T
∥ = |v′2|.

rite the components of M as
( m1 m2
m3 m4

)
, then the expansion in

orm of unit vectors v ∈ C under M is given by |m3v1 +m4|.
he expansion factors of hyperbolic matrices over vectors in an
nvariant cone are always minimal on one of the cone boundaries,
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o the minimum expansion factor for M over C is

in{| ± αm3 +m4|} =

{
| − αm3 +m4| if sgn(m3) = sgn(m4)
|αm3 +m4| if sgn(m3) ̸= sgn(m4)

ince α > 0. Write this minimum expansion factor as K (M).
able 2 shows the minimum expansion factors K (M) for each
∈ M. All are greater than 1 so that the cone C is expanding

s required. □
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