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A B S T R A C T   

Numerical simulations of groundwater flow are used to analyze and predict the response of an aquifer system to 
its change in state by approximating the solution of the fundamental groundwater physical equations. The most 
used and classical methodologies, such as Finite Difference (FD) and Finite Element (FE) Methods, use iterative 
solvers which are associated with high computational cost. This study proposes a physics-based convolutional 
encoder-decoder neural network as a surrogate model to quickly calculate the response of the groundwater 
system. Holding strong promise in cross-domain mappings, encoder-decoder networks are applicable for learning 
complex input-output mappings of physical systems. This manuscript presents an Attention U-Net model that 
attempts to capture the fundamental input-output relations of the groundwater system and generates solutions of 
hydraulic head in the whole domain given a set of physical parameters and boundary conditions. The model 
accurately predicts the steady state response of a highly heterogeneous groundwater system given the locations 
and piezometric head of up to 3 wells as input. The network learns to pay attention only in the relevant parts of 
the domain and the generated hydraulic head field corresponds to the target samples in great detail. Even relative 
to coarse finite difference approximations the proposed model is shown to be significantly faster than a 
comparative state-of-the-art numerical solver, thus providing a base for further development of the presented 
networks as surrogate models for groundwater prediction.   

1. Introduction 

Groundwater resources are of major importance for residential, in
dustrial and agricultural use. However, the quality and availability of 
groundwater supplies are significantly affected by their overexploitation 
around the world, population growth and climate extremes (Boretti and 
Rosa, 2019). Consequently, a demanding need exists for quick and ac
curate evaluation of multiple management alternatives over long time 
horizons. The last 30 years have seen the development of several 
physics-based numerical models for simulating groundwater systems, 
with Finite Difference (FD) and Finite Element (FE) discretizations of the 
partial differential equations (PDEs) as the most used and classical 
methodologies (2, Diersch, 2013). These techniques calculate the hy
draulic head by iteratively solving an implicit system of equations at 
each time step in the discretized time and flow domains. Running the 
groundwater model in a complex system within a large domain and with 
reasonable accuracy incurs numerical challenges and an excessive 
computational demand (Pulido-Velazquez et al., 2007, Gorelick, 1983). 

As the computational cost increases super-linearly with the number of 
unknowns in the discretization, long runtimes are a major challenge 
when high resolution is required or when many executions are neces
sary, such as in uncertainty analysis, sensitivity analysis, and inverse 
modelling. Mens et al., (Mens et al., 2021), discuss the case of the Na
tional Water Model (NWM) that is used for national policy-making on 
drought risk management in the Netherlands and whose heavy 
computational burden poses limits to quickly responding to policy 
questions. The authors advocate the need for a fast simple model that 
describes all relevant processes and is quick enough to explore many 
scenario and strategy combinations for long time series. Furthermore, 
groundwater flow simulations require the reconstruction of subsurface 
heterogeneities and the physical properties of the aquifer as inputs to the 
model, for which only limited direct observations are available. Inverse 
modelling is used to estimate the unknown parameters of the system, 
taking into account their stochasticity. 

Traditional approaches to the inversion problem correspond to 
iterative techniques and necessitate a large number of forward model 
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runs. As the number of unknown parameters increases, forward opera
tions become extremely computationally demanding. Surrogate models 
are cheaper-to-run models which approximate the response of a complex 
and computationally intensive model. Surrogate models have been used 
in a number of groundwater studies, such as for optimization design 
(Siade et al., 2020, Christelis et al., 2018) and uncertainty quantification 
problems (Crevillén-García et al., 2019, Gadd et al., 2019, Yu et al., 
2020), to name a few. Reduced-fidelity models simplify the level of 
complexity of the physical processes of the full-order model, e.g. by 
projecting the governing equations into a transformed space of smaller 
dimension. Projection-based techniques can accurately retain the un
derlying structure of the full-order model; however these methods can 
suffer stability and robustness issues (Lassila et al., 2014, Huang et al., 
2018), they are highly code-intrusive and they cannot efficiently treat 
strong nonlinearity (Chaturantabut and Sorensen, 2010). Data-driven 
models learn the response of the system from the simulation data in a 
supervised manner. Gaussian processes have been successfully applied 
to uncertainty quantification tasks for which the training data are 
limited but they rely on specific a priori assumptions on the relationship 
between the input and the outputs and have high computational costs 
when dealing with large datasets. (Kennedy and O’Hagan, 2000, 
Atkinson and Zabaras, 2019) 

Deep neural networks are universal function approximators and are 

becoming increasingly common surrogate models for solving problems 
within the fields of physics and engineering. These techniques have been 
applied for solving PDEs in high-dimensional settings and nonlinear 
systems, with potential applications in parameter estimation and un
certainty quantification. The reader is referred to Karniadakis et al. 
(Karniadakis et al., 2021) for a review on the strengths, limitations, 
current applications and outlook of this class of deep learning 
algorithms. 

Recently interest has grown for learning complex nonlinear, multi
scale, and high dimensional mappings of subsurface processes. In the 
work of Geneva and Zabaras (Geneva and Zabaras, 2020), convolutional 
neural networks (CNNs) for physics-constrained learning show excep
tional performance, with solutions obtained an order of magnitude 
faster than with state-of-the-art numerical solvers. They train deep 
auto-regressive convolutional neural network models to learn the dy
namics of three transient PDEs (1D Kuramoto-Sivashinsky equation, 1D 
Burgers’ equation and the 2D coupled Burgers’ system) without any 
off-line training data. Several studies adopted an adversarial network 
framework for surrogate methods for a single-phase flow forward model 
and a multiphase flow forward model (Sun, 2018, Zhong et al., 2019). 
Dagasan et al., (Dagasan et al., 2020), argue that the use of a conditional 
generative adversarial network (cGAN) as a surrogate forward model for 
groundwater systems can reduce the computational time by up to 80% 

Fig. 1. Input and output channels for an example taken from the training dataset. (Left to Right) The values of the piezometric head at the boundaries (input- channel 
#1); the location of the boundaries (input- channel #2); the hydraulic conductivity field (input- channel #3); the hydraulic head in the whole domain (output). 

Fig. 2. Attention U-net architecture as the surrogate model. The model has three input channels and one output channel as shown illustrated in Fig. 1. The first part is 
the down-sampling half (left, in blue): the inputs are encoded with a series of CNNs with kernels 4 × 4 and stride of 2 and down-sampling layers. The second half 
(right, in yellow) is the up-sampling part: the representations are expanded spatially and the number of channels is reduced. 
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compared to the numerical solver MODFLOW. 
Deep neural networks were chosen in this study largely due to their 

scalability and their ability to learn based on a few a priori assumptions. 
The first refers to the capacity to learn from massive amounts of data. 
Compared to a Gaussian process, whose runtime scales poorly with the 
size of the datasets, deep neural networks can assimilate large amounts 
of multi-fidelity observational data, even in partly understood, uncer
tain and high-dimensional contexts. Compared to reduced order model 
techniques, which aim to bring the physical relationships of full order 
models at a much lower dimension, deep neural networks do not assume 
any prior assumption that constrains the relationship between input and 
output samples. This flexibility can lead deep neural networks to learn 
complex relationships, thus increasing their modelling power but at the 
cost of a lower interpretability. 

The encoder-decoder architecture consists of a contracting and an 
expansive path. It shows robust and accurate performance in various 
tasks including machine translation problems (Wu et al., 2016), se
mantic segmentation (Oktay et al., 2018) or depth regression (Eigen 
et al., 2014). Initially developed for biomedical image segmentation 
(Ronneberger et al., 2015), U-Net is an encoder-decoder network which 
uses fully convolutional networks and requires highly limited training 
samples. U-net based architectures have been applied across a wide 
spectrum of application areas, such as image super resolution, style 

transfer, text-to-image translation and image-to-image translation (Isola 
et al., 2017). Mo et al., (Mo et al., 2019), developed a deep convolutional 
encoder-decoder network method as a surrogate model for transient 
multiphase flow models. Given the large approximation errors in the 
concentration fields near the source release location, the authors assign 
an additional weight to the loss at the eight pixels around the source 
release location in order to improve the surrogate predictive capability. 
Attention models address this limitation by allowing the model to learn 
to focus selectively on the relevant parts of the input. Attention has 
recently become an essential component of neural architectures within 
diverse application domains (Chaudhari et al., 2021, Galassi et al., 2020, 
Khan et al., 2021). Attention U-net makes use of attention gates in order 
to focus on specific parts of the image that are of importance while 
paying little attention to unnecessary areas (Oktay et al., 2018, 
Schlemper et al., 2019). 

The purpose of this paper is to propose an Attention U-Net network 
as a surrogate model for the forward operator in groundwater model
ling. The encoder-decoder model learns the mapping between model 
inputs and output for deterministic, steady-state solutions of the two- 
dimensional groundwater flow equation given a highly heterogeneous 
subsurface domain. The surrogate model accurately captures the 
nonlinear relationship between the hydraulic conductivity and the 
subsurface groundwater map. The model dynamically pays attention to 
only the parts of the input where flow can take place in a manner that 
helps the network in learning the mapping effectively. 

The rest of the paper is organized as follows. Section 2 presents the 
adopted image-to-image deep learning approach and the architecture of 
the Attention U-Net employed. Section 3 provides an overview of the 
problem formulation and model set-up along with training of the sur
rogate model. The proposed method is evaluated with and without 
attention gates in section 4. Finally, the conclusions are formulated in 
the last section. 

2. Methodology 

2.1. Surrogate Modelling as Image-to-Image Regression 

A surrogate model f̂ (x, θ) ≈ y approximates the ‘ground-truth’ 
function y = f(x) where f: X → Y is the mapping between the input 
domain X and the output domain Y, x ∈ X is the input, y ∈ Y is the output 
and θ are the model parameters. In the case of forward solving of PDEs 
with machine learning, the ground truth mapping represents some 
combination of the solution of the PDEs governing the physical system, 
and the surrogate model ŷ = f̂ (x, θ) is trained using a dataset D of N 
simulation data: D = {xi, yi}

N
i=1. 

By adopting an image-to-image regression approach, the surrogate 
modelling can be treated as an image regression problem. By solving the 
PDE over a spatial domain, such as 2D regular grids, the simulation data 
can be thought as images, with inputs xi ∈ Rdx×H×W and outputs yi ∈

Rdy×H×W where dx and dy are the number of input and output images 
with a resolution of H × W (height × width). The surrogate modelling 
problem becomes an image-to-image regression problem with the 
regression function f̂ : Rdx×H×W→Rdy×H×W (Zhu and Zabaras, 2018). 

2.2. Encoder-decoder model 

Encoder-decoder is a learning method with an analysis path 
(encoder) and a synthesis path (decoder). The encoder network trans
forms high-dimensional unlabeled input data x into low-dimensional 
embeddings z (latent space) and the decoder maps z to the intended 
output y = decoder ◦ encoder(x). The input is passed through a series of 
layers that progressively down sample until a bottleneck layer, at which 
point the decoder restores the spatial dimensions to produce the output 
images. Intuitively, the model corresponds to a coarse-refine process: 
the encoder reduces the spatial dimension of the input image to high- 

Fig. 3. (Top to Bottom) Loss curves for U-Net (solid line) and Attention U-Net 
(dashed line); RMSE and R2 scores of the model evaluated on the training 
dataset for U-Net and Attention U-Net. 
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level coarse features, and the decoder recovers the spatial dimension by 
refining the coarse features. The assumption is that the input and output 
images share the underlying structure, or they are different renderings of 
the same underlying structure, that is their structures are roughly 
aligned (Isola et al., 2017). 

As the goal of this study is to generate a targeted output image cor
responding to given inputs, the Encoder-Decoder model learns the 
mapping x → y from a conditioning input image x to the output image y. 
The network converts images from the source to target domains, where 

the first corresponds to the initial, boundary conditions and model pa
rameters and the latter to the resolution of the governing equation given 
those constrains. 

2.3. Deep Convolutional Neural Networks 

CNNs (LeCun et al., 1989, Rumelhart et al., 1985) are popular deep 
learning networks specialized in image processing (Krizhevsky et al., 
2012, Szegedy et al., 2015). While the first layers detect basic features, 

Fig. 4. Comparison between the target sample (MODFLOW) and the learned solution (prediction) for the U-Net and the Attention U-Net models for five randomly 
selected samples from test dataset. (From top to bottom) The input spatially varying hydraulic conductivity; the location of the input boundaries; the target pre
diction; the result for the U-Net; the result for the Attention U-Net (A U-Net); the attention coefficients learnt by the Attention U-Net. The images in each row share 
the same colour map with the values given in the rightmost column. The contour lines in the target and prediction images represent the values: 0.9, 0.92, 0.94, 
0.96, 0.98. 
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deeper convolutional layers learn higher representation. A convolution 
layer is a linear transformation that highlights the presence of a given 
feature in the map while preserving spatial information in the input 

image (Goodfellow et al., 2016). Given a 2-D input image and a square 
kernel ω with size m, the convolutional layer outputs the value at 
location (i,j) by summing up the contributions from the previous layer 
cells yl-1 weighted by the filter components; then, the nonlinearity σ is 
applied. 

yl
ij = σ

(
∑m

a=0

∑m

b=0
wabyl− 1

(i+a)(j+b)

)

(1) 

The stride of the convolutional layer is a parameter that determines 
the number of pixel shifts between two successive moves of the filter, 
while the padding indicates the amount of pixels with value zero added 
at each side of the boundaries of the input. The rectified linear unit 
function (ReLU) is a piecewise linear function that outputs the input if it 
is positive and zero if negative. The Leaky ReLU with slope coefficient α 

Fig. 5. Example of attention coefficients learnt by the Attention U-Net network across different training epochs (10, 40, 130) for two random samples of the 
test dataset. 

Table 1 
Wall-clock time for finite difference and Attention U-net obtained by averaging 
10 independent simulation run times.   

Hardware Backend Wall-clock 
time(s) 

Finite 
Difference 

Intel(R) Xeon(R) CPU @ 
2.20GHz, GPU Tesla K80 

MODFLOW 
FloPy 

0.184 

Attention U- 
Net 

Intel(R) Xeon(R) CPU @ 
2.20GHz, GPU Tesla K80 

Tensorflow 0.046  

Fig. 6. Model uncertainty: estimate of output mean and standard deviation of the surrogate model for three randomly selected samples from test dataset. From left to 
right: the location of the input boundaries; the input spatially varying hydraulic conductivity; simulated output obtained with MODFLOW; estimate mean of 1,000 
predicted output with the Attention U-net surrogate; estimate of output standard deviation obtained with the data-driven surrogate model. 
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modifies the function to allow a small, negative, output when the input 
is negative: 

σ(x)= {
x if x > 0

αx, otherwise (2) 

Batch normalization and dropouts are used to stabilize training and 
mitigate overfitting (Salimans and Kingma, 2016). A dropout layer se
lects a random set of units from the preceding layer and ignores their 
output, while batch normalization standardizes the layer’s inputs by 
calculating the mean and standard deviation across the batch. 

3. Application 

3.1. Groundwater model and datasets 

Consider steady-state groundwater flow in saturated media satis
fying the fundamental governing equation (Todd, 1980): 

∇⋅(K∇h) + q = 0 (3) 

The piezometric head h [L] is the field variable of interest, K is the 
input hydraulic conductivity [L/T] and q represents the source (or sink) 
terms [L3 T− 1]. 

The problem of this study consists of steady-state flow in a single- 
layer model representing a heterogeneous confined aquifer. Initially, 
in this work, only Dirichlet boundary conditions are considered and the 
groundwater head values are fixed in the cells in which the allocated 
head is known. The model takes in an input image with three channels: 
head values, boundary markers and spatially varying hydraulic con
ductivity (Fig. 1). Dirichlet boundary conditions are imposed on the four 
sides of the square domain. Head is constant at up to three random lo
cations across the domain, representing wells. The source term q is set to 
zero. The second channel of the input image is a binary mask where the 
boundary markers identify the cells with a fixed value, i.e. well locations 
and boundary cells as defined by the first source image. The last input 
channel defines the heterogeneous media. The conductivity field K of 
the highly-heterogeneous aquifer is a Gaussian random field (Van
marcke, 1983) in which the values of hydraulic conductivity are taken 
from a finite set of values. 

This application example demonstrates the capability of an Attention 
U-Net to successfully learn and simulate a common hydrologic situation 
using an image-to-image translation approach. The model is trained to 
predict the output fields consisting of the spatial components of the 
groundwater head in the domain. These predictions are compared 
against simulation results obtained by the fully-implicit finite difference 
model MODFLOW (Harbaugh, 2005), here called “target images”, 
bearing in mind that finite difference results provide an approximation 
of the partial differential equation and are not error free. 

3.2. Network architecture 

The Encoder-Decoder model is implemented as Attention U-Net 
(Oktay et al., 2018, Ronneberger et al., 2015) and the employed network 
architecture is shown in Fig. 2 (for the case of a 64 × 64 input image, as 
used in our computational tests). This is an encoder-decoder model with 
skip connections. In the down-sampling half the inputs are encoded with 
a series of CNNs with kernels of size 4, stride of 2 and padding set to 1. In 
each block, CNN is followed by a Batch Normalization layer, Dropout 
with rate 0.5 and a Leaky ReLU with slope 0.3. As the number of filters 
increases to 512 and the size of the input images reduces to 4 × 4, the 
encoder captures high-level abstract information. In the up-sampling 
half the representations are expanded spatially and the number of 
channels is reduced by a series of CNNs and up-sampling layers. The last 
up-sampling layer is followed by a transposed convolution layer with a 
sigmoid activation function to ensure predicted values between 0 and 1. 
Skip connections link the layers in the encoder with corresponding 
layers with the same-sized feature map in the decoder (Ronneberger 
et al., 2015). The only difference between Attention U-Net and the 
original U-Net architecture is that in the Attention U-Net network skip 
connections are additionally passed through attention gates, which use 
additive soft attention (Oktay et al., 2018). The attention coefficients are 
larger if the vector from the next lowest layer of the network in the 
up-sampling path and the corresponding vector from the encoder going 
through the skip connection are aligned. The weights are multiplied 
element-wise to the original vector which passes along in the skip 
connection. In this way, the attention gate (AG) mechanism allows the 
U-Net to suppress irrelevant regions and focus more on target structures 
of varying size and shape. For reproducibility full details of the network 

Table A.1 
Network architecture: internal layers, input and output feature maps and 
number of parameters.  

Layers Input Shape Output Shape Parameters 

Input Layer (64, 64, 3) (64, 64, 3) 0 
Downsampling* (64, 64, 3) (32, 32, 64) 3072 
Downsampling (32, 32, 64) (16, 16, 128) 131584 
Downsampling (16, 16, 128) (8, 8, 256) 525312 
Downsampling (8, 8, 256) (4, 4, 512) 2099200 
Attention Gate [(4, 4, 1024), 

(8, 8, 256)] 
(8, 8, 256) 3412481 

Upsampling (4, 4, 1024) (8, 8, 256) 2164992 
Concatenate - Skip 

Connection 
[(8, 8, 256), 
(8, 8, 256)] 

(8, 8, 512) 0 

Attention Gate [(8, 8, 512), 
(16, 16, 128)] 

(16, 16, 128) 3150337 

Upsampling** (8, 8, 512) (16, 16, 128) 1066112 
Concatenate - Skip 

Connection 
[(16, 16, 128), 
(16, 16, 128)] 

(16, 16, 256) 0 

Attention Gate [(16, 16, 256), 
(32, 32, 64)] 

(32, 32, 64) 788737 

Upsampling** (16, 16, 256) (32, 32, 64) 266816 
Concatenate - Skip 

Connection 
[(32, 32, 64), 
(32, 32, 64)] 

(32, 32, 128) 0 

Conv2DTranspose (32, 32, 128) (64, 64, 1) 2049 
*without Batch 

Normalization and without 
Dropout 
**without Dropout  

Total 
parameters: 

13,610,692   

Trainable 
parameters: 

13,604,548   

Non-trainable 
parameters: 

6,144  

Table A.2 
Second downsampling layer with input (32, 32, 64) with 128 filters of size 4 × 4, 
stride equal to 2 and zero padding.  

Layers Input Shape Output Shape 

Conv2D (32, 32, 64) (16, 16, 128) 
Batch Normalization (16, 16, 128) (16, 16, 128) 
Dropout (16, 16, 128) (16, 16, 128) 
LeakyReLU (16, 16, 128) (16, 16, 128)  

Table A.3 
Last upsampling layer with input (16, 16, 256) with 64 filters of size 4 × 4, stride 
equal to 2 and padding set equal to 1.  

Layers Input Shape Output Shape 

UpSampling2D (16, 16, 256) (64, 64, 256) 
Conv2D (64, 64, 256) (32, 32, 64) 
Batch Normalization (32, 32, 64) (32, 32, 64) 
Dropout (32, 32, 64) (32, 32, 64) 
ReLU (32, 32, 64) (32, 32, 64)  
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architecture are described in Appendix A. 

3.3. Loss function 

The aim of the regression task is to minimize the mean square error 
(MSE) between the generated samples and training data. The network 
computes the average loss across a mini-batch of size Nb: 

L MSE =
1

Nb

∑Nb

j=1

∑n
i=1

(
yj,i − ŷj,i

)2

n
(4)  

where y is the training image, ŷ is the image generated by the network 
and n denote the total number of pixels of each image. The networks 
tries to be near the ground truth output in an L2 sense. 

3.4. Network Training 

The model is trained in supervised fashion. For the examples 
described in the following section a dataset consisting of 32000 training 
data is used, and the development of the loss function is compared with 
8000 validation data. The size of the training dataset is big enough to 
ensure the model’s ability to generalize and the generation time is less 
than 3 hours. 

The losses are minimized using the Adam optimizer (Kingma and Ba, 
2014) with a starting learning rate α = 8 × 10− 4. The network is trained 
for 130 epochs. Training converged after approximately 2 hours, by 
training the models on an Intel(R) Xeon(R) GPU Tesla K80. 

The quality of the trained network is evaluated by reporting the 
coefficient of determination (R2) and the root mean squared error 
(RMSE) between each pixel value from the target image and each pixel 
value from the generated image: 

Fig. B.1. Worst 5 predictions out of 500 test samples (highest MSE values)  

Fig. B.2. Best 5 predictions out of 500 test samples (lowest MSE values)  
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R2 = 1 −

∑N
i=1‖ yi − ŷi ‖

2
2

∑N
i=1‖ yi − y ‖

2
2

,RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
‖ yi − ŷi ‖

2
2

√
√
√
√ (5)  

where y is the target image, y is the mean of the target images of the 

dataset y =

∑N
i=1

yi

N , ŷ is the network prediction, and N is the total number 
of samples. The two selected metrics between them yield complemen
tary and representative information for the evaluation of the trained 
model. 

4. Results and Discussion 

4.1. Model predictions 

This section presents both qualitative and quantitative techniques to 
test the performance of the model. The test case considers a square 
domain Ω = [0, 64] × [0, 64] consisting of 64 rows and 64 columns, 
with the width of each cell equal to one. The boundary is assumed to be 
constant head boundary with head of 1, while the imposed head values 
in the wells lie in the range [0.5,1). The number of wells, their locations 
and their values are randomly selected and vary for each data sample. 
The conductivity field, K, of the highly-heterogeneous aquifer is gener
ated as a continuous Gaussian random field, which is then discretized 
into a finite set of values. The heterogeneous hydraulic conductivity 
field has values belonging to 5 different classes (0.1, 0.325, 0.55, 0.775, 
1.) which can be thought of as 5 soil types distributed within the model. 
The model is trained with loss function in Eq. 4 and the target response is 
the finite difference simulation. 

To illustrate the superior performance of the proposed Attention U- 
Net architecture against the original U-Net network architecture, the U- 
Net network without attention gates is also trained using the same 
training sets and parameters. At the end of the training, the Attention U- 
Net network achieves a RMSE of 1.98 × 10− 3 and a R2 score of 0.996, 
while those obtained by U-Net are 3.78 × 10− 3 and 0.986, respectively 
(Fig. 3). 

Fig. 4 provides a comparison of generated images of groundwater 
head with the target images for 5 random examples taken from the test 
dataset with a set size of 4000 samples. The Attention U-Net model has 
learnt to map the flow patterns: it generates accurate predictions for 
varied input samples that are unseen during training. The predictions 
match the target images very well: the model predicts the correct value 
of groundwater head and the pattern of its distribution. The model is 

able to identify and focus on salient image regions: the attention co
efficients are highest at the boundary of the domain and near the well 
locations, while they are low in the areas with small head distribution 
gradients. 

When trained without attention gates, U-Net can predict the values 
of the groundwater head in the domain, but the generated outputs have 
some minor deviations especially at a distance from the source area and 
the head gradients are smaller. The use of the attention mechanism 
significantly improves the accuracy of the results. 

Fig. 5 visualizes the attention coefficients obtained from two test 
images with respect to training epochs. During the first 20 epochs, the 
loss function rapidly decreases (Fig. 3, top) and the attention gates learn 
to identify the location of the wells, the boundaries and a rough outline 
of the area with large head distribution gradients. By training the 
network for longer epochs, the attention coefficients are gradually 
updated and refined to focus on areas with large head distribution 
gradients. 

Appendix B shows the 5 predictions with highest and lowest mean 
square error between the generated samples and training data out of 500 
random samples from the test dataset. The errors are localized near the 
wells and the difference between the generated and target images is 
almost negligible even for the samples with the highest error. 

4.2. Model evaluation 

To test the performance of the model, its computational power is 
compared with the MODFLOW engine. Table 1 presents the processing 
time required for running the forward operators averaged on 10 exam
ples. In order to have a fair comparison between the two, the tests are 
performed on the same hardware. The CPU used is Intel(R) Xeon(R) CPU 
@ 2.20GHz and the GPU is Tesla K80. The results demonstrate that 
Attention U-Net requires less computational power than MODFLOW. 
This experiment reveals a 75% computational reduction for the data- 
driven model, showing its capability to be used in forward simulations 
with less computational demand than the state-of-the-art numerical 
solver. When applying the method to computationally more expensive 
forward models, such as in large-scale non-linear system, the compu
tational cost of the neural network will remain low and significant 
computational savings can be expected. 

Dropout at inference time can be considered equivalent to Bayesian 
approximation in deep Gaussian processes and the neural network un
certainty can be quantified following the approach proposed by Gal and 
Ghahramani (Gal and Ghahramani, 2016). At test time, the same input is 
passed 1000 times to the network with random dropout; the mean and 
the standard deviation of the generated images give an estimation of the 
prediction interval. Fig. 6 presents the results for 3 random samples: the 
uncertainty is null at the boundaries and highest in the vicinity of the 
wells, which is also the region with highest errors. Compared to the 
finite difference solver, whose response is deterministic, this method 
allows one to estimate the uncertainty of the model. 

The generalization capabilities of the network are presented in Ap
pendix C. The model is able to extrapolate to out-of-distribution inputs, 
especially for different values of hydraulic conductivity and less so for 
increasing number of wells. 

It is worth pointing out that the effect of using attention gates on the 
uncertainty and generalization capabilities of the model hasn’t been 
addressed in the current study. Future work should investigate this 
relation and consequently explore how generalization on out-of- 
distribution input samples can be improved. 

5. Conclusion and Future Work 

This paper presents a convolutional encoder-decoder network to 
quickly calculate the steady-state response of a groundwater system. The 
data-driven surrogate model is trained and tested in different scenarios 
in which the groundwater head values in the whole domain need to be 

Fig. C.1. Generalization to new input distributions. MSE error when the model 
is evaluated with hydraulic conductivity having 3 values; hydraulic conduc
tivity values belonging to 10 intervals; 3 wells in random locations the domain; 
10 wells in random locations the domain. Each test set contains 1000 samples. 
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inferred from the hydraulic head at the locations of the wells. The square 
domain is a Gaussian random field with a spatially varying hydraulic 
conductivity. When trained by minimizing the departure from the target 
images, the proposed U-Net model easily learns the nonlinear relation 
between inputs (hydraulic conductivity fields and boundary conditions) 
and output (the hydraulic head field). 

A significant contribution of the proposed framework is to incorpo
rate attention gates, which allow the network to identify and focus on 
the salient regions of the image. The visualization of the attention co
efficients demonstrate that the model has learnt to pay attention to areas 
with large head distribution gradients. The attention mechanism im
proves the network’s approximation accuracy and reduces the model 
uncertainty. The application of the data-driven surrogate method in 
solving forward simulations gives very accurate results but requiring 
much less computational time than the state-of-the-art numerical solver. 

One attractive property of this methodology is that the learning is 
carried out offline. Training converged after less than 3 hours on an Intel 
(R) Xeon(R) GPU Tesla K80, which can be considered as a low training 
time compared to typical deep learning models. Once the model is 
trained, its weights and parameters do not need to be further tuned. The 
choice of the hyperparameters and the specificities of the U-Net archi
tecture have been chosen based upon manual variation (as opposed to 
systematic optimization) to give accurate results with low computa
tional time with little apparent sensitivity. Future work could include a 
more robust hyperparameter tuning study, with a quantitative sensi
tivity analysis. 

In the current study, only Dirichlet boundary conditions were 
applied to the borders of the domain and the locations of the wells. An 
additional natural extension of our work is to investigate how well the 
model generalizes to different and mixed types of boundary conditions. 
Discretization is another important factor to consider. The present work 
has been limited to data samples with the same resolution. Many 
questions remain open related to the discretization of the sample data: e. 
g. the generalization of the trained model to different discretizations and 
the amount of training data required if the model needs to be retrained 
for different resolutions. 

The authors plan to further develop the presented model for more 
complex, larger and uncertain systems. This could include time depen
dent problems, three dimensional simulations and coupled transport 
through porous media – all of which are likely to require larger training 
data sets and potentially deeper networks. Another potential extension 
is the incorporation of prior information directly into the learning pro
cess by imposing a physics constraint in the loss function. Physics- 
informed learning could increase the speed of inference while 
requiring less data for the training process. Finally, in this study the 
network has been trained using synthetic data but the potential use of 
the proposed model holds promises for the solution of practical appli
cations due to its data-driven nature. 
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Appendix A. Network architecture 

This appendix discusses details in the models used. Both U-Net and 

Attention U-Net have 4 downsampling layers and 4 upsampling layers 
(Table A.1). Each layer consists of a series of CNNs with kernels of size 4, 
stride of 2 and padding set to 1, followed by a Batch Normalization layer 
and Dropout with rate 0.50. The nonlinear activation is Leaky ReLU with 
slope 0.3 for the downsampling layers and ReLU for the upsampling ones 
(Table A.2 and Table A.3). Skip connections concatenate the layers in 
the encoder with corresponding layers in the decoder. The network of 
Attention U-Net additionally has attention gates which are implemented 
as according to the work of Oktay et al. (Oktay et al., 2018). The total 
number of parameters of the network is 1.36 × 107, of which 7.35 × 106 

are for the attention gates. 

Appendix B. Worst and best Model predictions 

This appendix shows the 5 predictions with highest and lowest the 
mean square error out of 500 random samples from the test dataset. The 
samples with highest errors present multiple wells with wide plumes 
which cover most of the domains (Fig. B.1); on the contrary, the best 
predictions are those in which the salient region is limited (Fig. B.2). In 
all cases, highest errors are localized near the wells. It is worth noticing 
that even when the error is higher, the MSE is in the order of 10− 5 and 
the difference between the generated and target images is almost 
negligible. 

Appendix C. Generalization 

So far the model has been both trained and tested for different sce
narios in which the groundwater head values in the whole domain is 
inferred from the piezometric head at the locations of up to three wells 
and the spatially varying hydraulic conductivity has values belonging to 
5 different classes between 0 and 1. Here we consider testing the model 
on cases that have different numbers of well locations and different 
values for the hydraulic conductivity between 0 and 1. Fig. C.1 shows 
the MSE error for the model tested on four new input distributions. The 
figure shows that the model is able to generalize well given different 
values of the hydraulic conductivity, but less so for increasing number of 
wells. 
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