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Abstract
Background: A growing amount of health research uses social media data. Those critical of social media research often cite that it may be unrepresentative of the population, but the suitability of social media data in digital epidemiology is more nuanced. Identifying the demographics of social media users can help establish representativeness.
Objectives: We sought to identify the different approaches or combination of approaches to extract race or ethnicity from social media and report on the challenges of using these methods. 
[bookmark: _Hlk96694773]Methods: We present a scoping review to identify the methods used to extract the race or ethnicity of Twitter users from Twitter datasets. We searched 17 electronic databases from date of inception to the 15th May 2021 and carried out reference checking and hand searching in order to identify relevant articles. Sifting of each record was undertaken independently by at least two researchers with any disagreement discussed. Studies were required to have extracted race and/or ethnicity of Twitter users with either manual or computational methods or a combination of both. 
Results: From 1249 records sifted, we identified 67 that met our inclusion criteria. The majority focus on US based users and English language tweets. A range of data were used including Twitter profile metadata such as names, pictures, information from bios (including self-declarations), or location and/or content of the tweets. A range of methodologies were used including manual inference, linkage to census data, commercial software, language/dialect recognition and machine learning (ML) and/or Natural Language Processing (NLP). Not all studies evaluated their methods. Those that did found accuracy to vary from 45% to 93% with significantly lower accuracy identifying non-white race categories. The inference of race or ethnicity raises important ethical questions which can be exacerbated by the data and methods used. The comparative accuracy of different methods is also largely unknown.
Conclusion: There is no standard accepted approach or current guidelines for extracting or inferring race or ethnicity of Twitter users. Social media researchers must use careful interpretation of race or ethnicity and not over-promise what can be achieved, as even manual screening is a subjective, imperfect method. Future research should establish the accuracy of methods to inform evidence-based best practice guidelines for social media researchers, and be guided by concerns of equity and social justice. 
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INTRODUCTION
Twitter data are increasingly used as a surveillance and data collection tool in health research. When millions of users post on Twitter, it translates to a vast amount of publicly accessible timely data about a variety of attitudes, behaviors, and preferences in a given population. While this data was not originally intended as a repository of individual information, Twitter data has been retrofitted in infodemiology to investigate population level health trends [1-15]. Researchers often use Twitter data in consort with other sources to test the relationship between online discourse and offline health behavior, public opinions and disease incidence. 
The appeal of Twitter data is clear. Twitter is one of the largest public facing social media platform, with an ethnically diverse user base [16, 17] of more than 68 million US Twitter users, with Black users accounting for 26% of that base [18]. This diverse user base gives researchers access to people they may have difficulty reaching using more traditional approaches [19]. However, the promising insights that can be derived from Twitter data are often limited by what is missing, specifically basic socio-demographic information of each Twitter user. Demographic attributes of users is often required within health research for subpopulation analyses and to explore differences and identify inequity. Without evidence of the distal and proximal factors that lead to racial and ethnic health disparities, it is impossible to address and correct these drivers. Insights from social media data can be used to inform service provision, as well as to develop targeted health messaging by understand public perspectives from a diverse populations.  
However, in order to use  social media and digital health research to address disparities, we need to know not only what is said on Twitter, but also who is saying what [20]. While others have discussed extracting or estimating features such as location, age, gender, language, occupation and class, no comprehensive review of the methods used to extract race or ethnicity has been conducted [20]. Extracting race and ethnicity of Twitter users is particularly important to identify trends, experiences and attitudes of racially and ethnically diverse populations [21]. As race is a social construction, not a genetic categorization [22, 23], that practice of defining race and ethnicity in health research has been an ongoing, evolving challenge. Traditional research does have the advantage of knowing the identity of the person in the study and allowing them to systematically identify their racial and ethnic identity. In digital health research, [22, 23] determining a user’s race or ethnicity by extracting data from a user’s Twitter profile, meta data, or tweets, is a process that is inevitably challenging, complex and not without ethical questions. 
[bookmark: _Hlk96696507]Furthermore, while Twitter is used for research internationally, an international comparative study of methods to determine race or ethnicity is difficult, practically impossible, given societies use different standardized categories that describe their own populations [24]. A common approach in the US is based off the US Census Bureau practice to allow participants to identify with as many as five to six large racial groupings (Black, White, Asian Pacific Islander, Native, Other), while separately choosing one ethnicity (Hispanic)[25]. However, race and ethnicity variables continue to be misused in study design or when drawing conclusions. For example, race or ethnicity is often incorrectly treated as a predictor of poor health, rather than as a proxy for the impact that being a particular race or ethnicity have on that person’s experience with the health system [26]. Simply put, health disparities are driven by racism, not race [27-29]. While race or ethnicity affiliation are important factors in understanding diverse populations, digital research must tread lightly and thoughtfully in both the collection and assignment of race or ethnicity. 
[bookmark: _Hlk96691537]The lack of basic socio-demographic data about Twitter users has led researchers to apply a variety of approaches to better intuit characteristics of the people behind each tweet. The breadth of the landscape of approaches in extracting race or ethnicity is currently unknown.   Our overall aim is to summarize and assess the range of computational and manual methods used in research based on Twitter data to determine the race or ethnicity of Twitter users. 

METHODS
We conducted a comprehensive scoping review of extraction methods and offer recommendations and cautions related to these approaches. [30]We selected Twitter as it is currently the most commonly used social media platform in healthcare research, and it has some unique intrinsic characteristics that drive the methods used for mining it. Thus, we felt that the methods, type of data and the social media platforms used are related in such a way that comparing methods for different social media would add too many variables and would not be truly comparing like with like. A detailed protocol was designed for the methods to be used in our scoping review, but we are unable to register scoping reviews on PROSPERO. We report our methods according to the PRISMA scoping review statement [30].
Inclusion criteria
We devised strict inclusion criteria for our review based on the PICOS format (Population, Intervention, Comparators, Outcomes, Study Design). Although this is not a review of effectiveness we felt that the PICOS question breakdown [31] was still the most appropriate breakdown available for our question format [31]. The inclusion criteria were as follows;
[bookmark: _Hlk96695806]Population- P: We included only datasets of Twitter users. Studies were eligible for inclusion if they collected information to extract or infer race or ethnicity directly from the users’ tweets, their profile details (such as the users’ photo or avatar, their name, location, and biography (bio), and/or their followers. We excluded studies extracting race or ethnicity from social media platforms other than Twitter, or from unspecified social media platforms, or that used multiple social media platforms that included Twitter but the data relating to Twitter was not presented separately.
Intervention – I: Studies were included where the methods to extract or infer race or ethnicity data of Twitter users were stated. Articles that used Machine Learning (ML), Natural Language Processing (NLP), human in the loop or other computationally assisted methods to predict race or ethnicity of users were included, as were manual or non-computational methods, including photo recognition or linking to census data. We excluded studies for which we were unable to determine the methods used or that extracted data solely on other demographic characteristics such as age, gender or geographical location.
Comparator – C: The use of a comparison of the methods used was not required. One method could be compared to another method (such as a gold standard) or no comparison could be undertaken.
Outcome- O: The extraction or inference of race or ethnicity of Twitter users was the primary or secondary outcome of the paper. . As this was a scoping review in which we aimed to demonstrate the full landscape of the literature no particular measurement of performance of the method used was required in our included studies.
Study Design - S: Any type of research study design was considered relevant. Discussion papers, commentaries and letters were excluded.
[bookmark: _Hlk98924159]Limits: No date, language or publication type restrictions were applied to the inclusion criteria. However, no potentially relevant articles were identified in any non-English languages and the time period by default was since 2006, the year of the inception of Twitter.
Search strategy
A database search strategy was derived from combining three facets; facet one consisted of free-text terms related to Twitter (Twitter OR Tweet* OR Tweeting OR Retweet* OR Tweep*), facet two consisted of terms for race or ethnicity, and facet three consisted of terms for methods of prediction, such as ML, NLP, and artificial intelligence related terms (Supplementary table 1). All ethnology-related subject terms were adapted for different database taxonomies and syntax, with standard methods of prediction subject terms in Medline and other database indexing. The methods of prediction term facet was expanded using a comprehensive list of specific text analysis tools and software names extracted from Hinds and Joinson 2018 [32], which includes a comprehensive list of automated machine-learning processes used in predicting demographic markers in social media. Additional terms were added from a related paper [33]. 
Sources searched
A wide range of bibliographic and grey literature databases were selected for searching covering computer science, health and social sciences. The databases (Table 1) were last searched on the 15th May 2021, with no date or other filters applied. 
Table 1: Databases searched with number of records retrieved
	Database Name
	Total number of results

	ACL Anthology 
	Screened first 50 records from 2 searches

	ACM Digital Library
	150

	Cinahl
	200

	Conference Proceedings Citation Index – Science (CPCI-S)
	84

	Conference Proceedings Citation Index – Social Science (CPCI-SS)
	7

	Emerging Sources Citation Index (ESCI)
	41

	Google Scholar 
	(screened first 100 records from 2 searches)

	IEEE Xplore
	186

	Library and Information Science Abstracts
	120

	LISTA
	79

	OpenGrey
	0

	Proquest Dissertations and Theses – UK and Ireland
	195

	PsycINFO
	72

	PubMed
	84

	Science Citation Index (SCI)
	56

	Social Science Citation Index (SSCI)
	111

	Zetoc
	50



Reference checking of all the included studies and any related systematic reviews identified by the searches was conducted. We browsed Journal of Medical Internet Research as this is a key journal in this field as well as hand searched two relevant conferences the International AAAI Conference on Weblogs and Social Media (ICWSM) and ACL proceedings.
Citations were exported to a shared Endnote library and duplicates were removed. The deduplicated records were then imported into Rayyan to facilitate blind independent screening by the authors. Using the inclusion criteria at least two screeners from the research team screened each record independently, with disputes on inclusion discussed and a consensus decision reached.
Only the first 50 records from ACL and the first 100 records from a Google Scholar search were screened during two searches (11/03/2020 and 24/05/2021) as these records are displayed in order of relevance and it was felt that after this number no relevant articles were being identified [12, 21, 34-98].
Data Extraction
For each included article we extracted the following data on an excel spreadsheet:
[bookmark: _Hlk96696707]year of publication, study country and language, race or ethnicity categories extracted (such as, for race - Black, White, Asian or for ethnicity - Hispanic, European), and paper type (journal, conference or thesis). We also extracted details on extraction methods (such as classification models or software used), features and predictors used in extraction (tweets, profile, pictures), number of Twitter users, number of Tweets or images used, performance measures to evaluate methods used (validation) and results of any evaluation (such as accuracy). Any performance measure metrics were reported as stated within the included studies themselves. All extracted data was checked by two reviewers.
Quality Assessment
There is no formally approved quality assessment tool for this type of study. Since this is a scoping review we did not carry out any formal assessment. However, we did assess any validation carried out and whether the methods are reproducible. 
Data Analysis
We summarized the stated performance of those papers that included validation. However, we could not compare approaches using the stated performance, as performance measures and validation approaches varied considerably. There is also no recognized gold standard dataset for comparison.

RESULTS
A total of 1735 records were entered into an Endnote library and duplicates were removed leaving 1249 records for sifting (Figure 1). 1080 records were excluded based on title and abstract screening alone. In total 169 references were deemed potentially relevant by either of the independent sifters (RS, GG, RJ, SG and KO). The full-text of these articles were screened independently and 67 studies [12, 21, 34-98] met our inclusion criteria and 102 references were excluded [32, 79, 99-198]. The main reason for exclusion was that although the abstract indicated that demographic data were collected, this did not include race or ethnicity (most commonly, other demographic attributes were collected such as gender, age or location). The other reasons for exclusion were that the researchers included collected demographic data through surveys or questionnaires administered via Twitter (but not from data posted on Twitter) or that the researchers used a social media platform other than Twitter.
Figure 1: Flow diagram for included studies

Characteristics of the included studies
The majority of the studies stated or implied that they were based solely or predominantly in the US and limited to English language bios or tweets. Six studies were multi-national [40, 43, 58, 68, 85, 88], one was UK based [61] and another based in Qatar [57] and only eight studies (12%) extracted data from tweets in multiple languages [34, 40, 54, 57, 58, 68, 85, 88] (Supplementary table 2).
[bookmark: _heading=h.gjdgxs]The most common race examined was White (87%, 58/67), followed by Black/African-  American (84%, 56/67), Asian (67%, 45/67), and ethnicity as Hispanic/Latino (64%, 43/67) (Figure 2)
[bookmark: _Hlk98938124]Figure 2: Percentage of studies with each race or ethnicity
Some studies treated race as a binary classification such as African-American or not, or African-American or White, while others created a multiclass classifier of three or four classes, or a combination of classes.  Six studies went above four classes, however, these often included ethnicity/nationality classifiers as well as race [40, 50, 56, 68, 85, 97]. 
The data objects from Twitter used to extract the race or ethnicity varied, with the use of profile pictures or the Twitter user’s name being most common. Others also used tweets in the users’ timeline, information from Twitter bios or the Twitter users’ location. Most studies used more than one data object from the Twitter data. In addition the datasets within the studies varied in size between 392 and 168,000,000, with those using manual methods having smaller datasets ranging from just 392 [52] to 4900 [67]. 
Unfortunately, performance was only measured in some studies (Table 2). Metrics used to report results were particularly varied for those studies using ML or NLP and included: F1 score (which combines precision and recall), accuracy, area under the curve (AUC) or mean average precision. Table 2 lists the methods, features and the reported performance of the top model from each study.
Manual Screening
Twelve studies used manual techniques to classify Twitter users into race or ethnicity categories [21, 38, 42, 51-53, 59, 67, 89-92]. These studies generally combined qualitative interpretation of recent tweets, information in user bios making an affirmation of racial or ethnic identity, or photographs/images in the user timeline or profile. 
[bookmark: _Hlk98924559][bookmark: _Hlk96697588]In most cases, tweets were first identified by text matching based on terms of interest to the research topic, for instance, having a baby with a birth defect [52], commenting on a controversial topic [59, 91], or use of potentially gang- or drug-related language [42]. Researchers then identified the tweet authors and in most cases assigned race or ethnicity through hand-coding based on profile and timeline content. Some studies coded primarily by identifying self-identifying statements of race used in a tweet or in users’ bios such as people stating that they are a ‘Black American’ [51, 52, 90, 92] or hashtags [38] (such as #BlackScientist). Others coded exclusively based on the research team’s attribution of racial identity through examination of profile photographs [21, 59] or avatar [89]. Some authors coded primarily with self-declarations, with secondary indicators such as profile pictures, language, usernames or other content [42, 53, 67, 90, 91]. In most cases it appears reasonable to infer that coding was done by the study authors or members of their research teams, with the exception of those using the crowdsourcing marketplace Amazon’s Mechanical Turk (AMT)  [21, 92].
Agreement between coders was sometimes measured but the validity and accuracy measurements were not generally included. One study [67], however, documented a 78% reliability for coding race compared to census demographics, with Black and White users being coded accurately 90% of the time and Hispanic or Asian users being accurately coded between 45-60% of the time. The high accuracy for Black users was based on the higher likelihood of Black users to self-identify. 
Census Driven Prediction
Another approach to predict race or ethnicity is through utilizing demographic information from national census and census-like data and transferring it to the social media cohort. The US based studies largely used census-based race and ethnicity categories: Asian and Pacific Islander, Black/African American, Latino/Hispanic, Native American and White. The one U.K. based study included the categories British and Irish, West European, East European, Greek or Turkish, South East Asian, Other Asian, African & Caribbean, Jewish, Chinese, and other minority [85]. 
We identified 14 studies [41, 50, 54, 56, 62, 65, 72, 73, 76, 79, 85-87, 97] that utilized Census geographic data, census surname classification or a combination of both. Six studies incorporated census geographic data [41, 54, 65, 76, 85, 86]. For example, Blodgett 2016[41] created a simple probabilistic model to infer user’s ethnicity by matching geotagged tweets to census block information. They averaged the demographic values of all the tweets by the user and assumed this to be a rough proxy of the user’s demographics. Stewart 2014 [76] collected tweets tagged with geolocation (longitude and latitude) information. The zip code of the user was derived from this geolocation information and matched to demographic information found in the ZIP Code Tabulation Area (ZCTA) defined by the census bureau. This information was used to find correlation between ethnicity and African American Vernacular English syntax [76]. 
[bookmark: _Hlk96697666]Other studies used the census derived name classification system to determine race or ethnicity based on user names. We identified twelve studies that predicted user race or ethnicity using surnames [50, 56, 62, 65, 72, 73, 79, 85-87, 97, 189]. Surnames were used to assign race or ethnicity using either US census based name classification system or less commonly, an author in-house generated classification system. Of these studies, eight relied solely on user last names [50, 56, 62, 65, 72, 73, 86, 87]. Of those that reported validating the system, validation methods of this name-based system alone were not reported, but four studies reported accuracy between 71.80% and 81.25% [65, 72, 73, 85]. Of note, one study reported vastly different accuracy in predicting whiteness vs. blackness (94% predicting white users vs. 33% predicting African-American/Black users)[85]. The remaining studies augmented named based predictions with aggregate demographic data from the American Community Survey or equivalent. For example, statistical and text mining methods were used to extract surnames from Twitter profiles, combining this information with census block information based on geolocated tweets to assess the probability of the user’s race or ethnicity [62]. These studies did not report validation or accuracy. 
Ad-hoc ML and/or NLP
[bookmark: _Hlk96697716]Twenty four papers [35-37, 39, 40, 48, 49, 63, 66, 68-70, 74, 78, 80-84, 93-96, 98] utilized some ML and/or NLP to automatically classify users by their race or ethnicity. ML and NLP methods were used to process the data made available by the Twitter user, such as profile images, tweets text, and location of residence. These studies almost invariably consisted of  larger cohorts with  considerable variation in the specific methods employed. 
Supervised ML models (where some annotated data is used to ‘train’ the system) were used in 12 of the 24 studies. The models used include support vector machine (SVM) [40, 48, 63], gradient boosted decision tree [69, 70], and regression models [35, 36, 39, 78, 199]. 
Semi-supervised (where a large set of unannotated data is also used for training the system, in addition to annotated data), or fully unsupervised models using neural networks or regression were used for classification in 10 of the 24 studies [35, 37, 68, 74, 80, 81, 83, 94-96]. 
Two studies used an ensemble of previously published race or ethnicity classifiers by processing the data through four extant models and using a majority rule approach to classify users based on the output of each classifier [82, 93].
The ML models use features, or data inputs, to predict the desired output. Features derived from textual information in the user’s profile description such as name or location were used by some studies [36, 37, 40, 62, 69, 70, 81, 83, 94, 95]. Other studies included features related to images, including but not exclusively profile images [48, 69, 70, 189] and the facial features in those images [68]. Some studies used linguistic features to classify a user’s race or ethnicity [39, 40, 48, 49, 63, 69, 70, 74, 78, 80, 83, 94-96, 199]. Specific linguistic features used in the models include n-grams [40, 48, 74, 93-96], topic modeling [48, 63, 80], sentiment and emotion [78] and self-reports [69, 70, 83]. Information about a user’s followers, or network of friends, were included as features in some studies under the assumption that members of these networks have similar traits [36, 39, 48, 49, 93]. 
Labeled datasets are used to train and test supervised and semi-supervised ML models and also validate the output of unsupervised learning methods. Some of the studies used previously created data sets that contained demographic information, such as the MORPH database of images [189], a database of mugshots [40], or manually annotated data from previous studies [81, 83]. Others created ground truth datasets from surveys [199] or by semi-automatic means, such as matching Twitter users to voter registrations [39], using extracted self-identification from user profiles or tweets [69, 70, 83], or used celebrities with known ethnicities[68]. Manual annotation of Twitter users was also used based on profile meta data [36, 37, 48, 78], self-declarations in the timeline [63, 84] or user images [37, 96]. Table 2 summarizes the best performing ML approach, features used and the reported results for each study that utilized automatic classification methods. In the table, classifier is the number of race or ethnicity classification groups, ML model is the top performing algorithm reported and features are the variables used in the predictions.
Table 2: Top system performance within studies using ML/NLP. Result metrics are reflected here as reported in the original publications 

	Study
	Classifier
	ML Model
	Features
	Results Reported 

	
	
	
	
	Accuracy
	F1 Score
	AUCb

	Pennacchiotti 2011[70]
	binary
	GBDTa
	images, text, topics, sentiment
	--
	0.66

	--

	Pennacchiotti 2011[69]
	binary
	GBDT
	images, text, topics, sentiment, network
	--
	0.70

	--

	Bergsma 2013[40]
	binary
	SVMa
	names; name clusters
	0.85
	--
	--

	Ardehaly 2017[37]
	binary
	DLLPa
	text, images
	--
	0.95 (image)
0.92 (text)
	--

	Volkova 2018[78]
	binary
	LRa
	text, sentiment, emotion
	--
	--
	0.97

	Wood-Doughtry 2018[81]
	binary
	CNNa
	name
	0.73
	0.72
	--

	Saravanan, 2017[74]
	ternary
	CNN
	text
	NR
	NR
	NR

	Ardehaly 2017[35]
	ternary
	DLLP
	text, images
	--           
	0.84 (image)
0.83 (text)
	--

	Gunaranthne 2019[96]
	ternary
	CNN
	text
	--
	0.88
	--

	Wood-Doughtry 2018[81]
	ternary
	CNN
	name
	0.62
	0.43
	--

	Culotta 2016[49]
	quaternary
	REa
	network, text
	--
	0.86
	--

	Chen 2015[48]
	quaternary
	SVMa
	n-grams, topics, self declarations, image
	0.79
	0.79
	0.72

	Markson, 2017[63]
	quaternary
	CNN
	synonym expansion, topics
	0.76
	--
	--

	Wang 2016[189]
	quaternary
	CNN
	images
	0.84
	--
	--

	Xu, 2016[84]
	quaternary
	SVM
	synonym expansion, topics
	0.76
	--
	--

	Ardehaly 2015[36]
	quaternary
	MLRa
	census, name, network, tweet language
	0.83
	--
	--

	Mohammady 2014[66]
	quaternary
	LR
	census, image tweets
	0.82
	0.81
	--

	Barbera, 2016[39]
	quaternary
	LR w/ENa
	tweets, emojis, network
	0.81
	--
	--

	Wood-Doughty 2020[83]
	quaternary
	CNN
	name, profile metadata, text
	0.83
	0.46
	

	Preotiuc_Pietro 2018[199]
	quaternary
	LR w/EN
	text, topics, sentiment, POS tagging, name, perceived race labels, ensemble
	
	
	0.88 AAc, 0.78 Latino, 0.83 Asian, 0.83 White

	Muller 2021[93]
	quaternary
	CNN
	Text, accounts followed
	
	0.25 Asian, 0.63 AAc/black, 0.28 Hispanic, 0.90 White
	

	Bergsma 2013[40]
	Multinomial > 4
	SVM
	name; name clusters
	0.81
	--
	--

	Nguyen 2018[68]
	Multinomial > 4
	NNa
	images
	0.53

	--
	--



a CNN, convolutional neural network; DLLP, deep learning from label proportions; EN, elastic net; GBDT, gradient boosted decision tree; LR, logistic regression; MLR, multinomial logistic regression NN, neural network; RE, regression, SVM, support vector machine 
b AUC, area under curve
c AA, African American
The data from Twitter is inherently imbalanced in terms of race or ethnicity groups. In ML, it is important to attempt to mitigate the effects of the imbalance as the models have difficulty learning from few examples and will tend to classify to the majority class and ignore the minority class. Few studies addressed the imbalance directly. Some opted to make the task binary, focusing only on their group of interest versus all others [69, 70, 96], or only the majority classes [40, 78]. Others chose modified performance metrics that account for imbalance when reporting their results [35, 63, 84]. One group, who classified based on images, supplemented their training set from an additional data source for the minority classes [35, 37]. Only two studies experimented with comparator models trained on balanced data sets. In [83], they under sampled the majority class in their training sets, and [199] oversampled the minority classes. In both cases, the overall performance of the models decreased in accuracy from 0.83 to 0.41 (on their best performing unbalanced model) and 0.84 to 0.68 [199], as the performance boost from the models superior performance on the majority class was eradicated.
Off-the-shelf Software 
[bookmark: _Hlk96697093]Seventeen studies [12, 34, 43-47, 55, 57, 58, 60, 61, 64, 71, 75, 77, 88] used off-the-shelf software packages to derive race or ethnicity. Ten studies [34, 46, 47, 55, 57, 58, 60, 64, 71, 77] used Face++[200] and five studies [12, 43-45, 75] used Demographics Pro[201], and two used Onomap[202] software to determine Ethnicity [61, 88]. Face++ is a validated machine-learning face detection service to analyze features with confidence levels for the inferred race attributes. Specifically, it uses deep-learning to identify whether profile pictures contain a single face and then the race of that face (limited to Asian, Black, and White) and does not infer ethnicity (e.g. Hispanic) [200]. Demographics Pro estimates demographic characteristics based on Twitter behavior/usage using NLP, entity identification, image analyses, and network theory [201]. Onomap is a software tool for the classification of names [202]. Three of the studies that used Face++ used the same baseline dataset [47, 64, 77] and one used a partial subset of this same dataset [71].
Two of the studies that used Face++ [34, 60] did not measure its performance at all. Another study [46] simply stated that Face++ could identify race with 99% confidence or higher for 9% of total users. Two studies [55, 57] used Face++ along with other methods. One of these studies used Face++ in conjunction with Demographics which uses given name or full name from a database that contains US census for demographics. This study simply measured the percentage of twitter users for which they could extract race data (46% college students and 92% of role models) but did not measure the performance of Face++ [55]. The other study [57] built a classifier model on top of using Face++ and recorded an accuracy of 83.8% when compared to users who stated their own nationality.
Four studies [47, 64, 71, 77] (with the same dataset in full or in part) used the average confidence level reported by Face++ for race which was 85.97 ± 0.024%, 85.99 ± 0.03%, 86.12 ± 0.032% respectively with a confidence interval of 95%. When one of these studies [47] carried out their own accuracy assessment they found an accuracy score of 79% for race when compared to 100 manually annotated pictures. Huang 2020 [58] also carried out their own accuracy assessment and found that Face++ achieved an averaged accuracy scores of 88.4% for race when compared to 250 manually annotated pictures.
Five studies [12, 43-45, 75] used Demographics Pro and whilst they reported on Demographics Pro success in general they did not directly report any metrics of its success. The two studies using Onomap provided no validation of the software [61, 88].
In light of our results we have compiled our recommendations for best practice which are summarized in figure 3 and is examined further in our discussion.
[bookmark: _Hlk98938284]Figure 3: Summary of our best practice recommendations



DISCUSSION
Principal Findings
As there are no guidelines currently published or even best practice guidance, it is no surprise that we found researchers use a variety of methods for estimating race or ethnicity of Twitter users. We identified four categorizations for the methods used; manual screening, census-based prediction, ad-hoc ML and/or NLP and off-the-shelf software. These methods all exhibit particular strengths as well as inherent biases and limitations. 
Comparing the validity of methods for the purpose of deriving race or ethnicity is difficult as classification models differ not only in approach, but in the definition of the classification of race or ethnicity itself [111, 203, 204]. There was also a distinct lack of evaluation or validation of methods used. Those that did measure performance of the methods used found accuracy to vary from 45% to 93% with significantly lower accuracy identifying non-white race categories. 
This review shielded little light on the performance of commercial software. Previous empirical comparisons of facial recognition APIs have found that Face++ achieves 93.0% accuracy [205] and works comparatively better for lighter male skins [206]. The included studies in our review suggest lower accuracy. Whilst data on accuracy was not forthcoming in any of the included studies using Demographics Pro [201]. Even when performance was assessed, the methodology used may be biased if there are issues with the ‘gold standard’ used to train the model.
[bookmark: _Hlk96698021]In addition to the four over-arching methods used, the studies also varied in terms of the features used to determine or define race or ethnicity. Further the reliability of the features used to determine or define race or ethnicity for this purpose is questionable. Specifically, the use of twitter users’ profile pictures, names, and locations, the use of unvalidated linguistic features attributed to racial groups (such as, slang words, African-American Vernacular English, Spanglish, or Multicultural London English) and the use of training data that are prone to perpetuate biases (e.g. police booking photos or mug shots) were all of particular concern. Issues related to methods used
Approaches that include, or solely rely on profile pictures to determine race or ethnicity can introduce bias. First, not all users have a photograph as their profile picture, nor is it easy to determine that a picture used is that of the user. A study of the feasibility of utilizing Face++, found only 30.8% of Twitter users had a detectable single face in their profile. A manual review of the automatically detected faces determined 80% could potentially be of the user (i.e. not a celebrity) [207]. Human annotation may introduce additional bias, studies have found systematic biases in the classification of people into race or ethnic groups based on photographs [208, 209]. Furthermore, it is known that humans have an inclination to perceive one’s own race more readily than others [210, 211]. Thus, race or ethnicity among the annotation team has an impact on the accuracy of their race or ethnicity labels, potentially skewing the sample labels towards the race or ethnicity of the annotators [212, 213]. Given ML and NLP methods are trained on these datasets, the human biases transfer to automated methods, leading to poorly-supervised ML and training which has been shown to result in discrimination by the algorithm [214-216]. These concerns did not appear to be interrogated by the study designers. Without exception, they present categorization of persons into race or ethnicity, assuming that a subjective reading of facial features or idiomatic speech is a gold standard both for coding of race or ethnicity and for training and evaluation of automated methods.
Other methods, such as using geography or names as indicators of race, could also be unreliable. One could argue that the demographic profile for a geographic region is a better representation of the race or ethnicity in the demographic environment, rather than individual’s race or ethnicity. Problems of using postcodes or location to decipher individual social determinants are well documented [217]. The use of census data from too large an area may skew results. Amongst the studies reviewed, some use census block data which is granular, while others extrapolate from larger areas, such as city or county level data. For example, Saravanan 2017 [74] inferred the demographics of users in a city as a certain ethnic group based on that city having a large population of that group, however, no fine grained analysis was done either for the city chosen or for geolocation of the Twitter user. Thus, the validity of their assumption that a user in LA County is of Mexican descent [74]  is therefore, questionable at best. As these data was then used to create a ‘race or ethnicity’ dictionary of terms used by that group to train their model, the questionable assumption further taints downstream applications and results. Models also do not consider the differences between the demographics of twitter users versus the general demographics of the population. 
Additionally, Census demographic data that uses names is also questionable, due to name taking in marriage and indiscernible names. 
The practice of using a Twitter user’s self-reported race or ethnicity would provide a label with high confidence, but restrict the amount of usable data and introduce a margin of error depending on the method used to extract such self-reports. For example, in a sample of 14 million users less than 0.1% of users matched precise regular expression created to detect self-reported race or ethnic identity [127]. Another study used mentions of keywords related to race or ethnicity in a user’s bio, however, limited validation was conducted to ensure that mention was actually related to the user’s race or ethnicity [69, 70]. This lack of information gathered from profile information leads to a sampling bias in the training of the models [152].
Some models trained on manually annotated data did not have high inter annotator agreement, for example Chen 2015 [48] crowdsourced annotation agreement measured at 0.45. This can be interpreted as weak agreement with the percent of reliable data being 15-35% [218]. Training a model on such weakly labeled data produces uncertain results. 
It is not possible to assume the accuracy of black box proprietary tools and algorithms. The only race or ethnicity measure that seems empirically reliable is self-report, but this has considerable limitations: so, the faulty methods continue to underpin digital health research, and researchers are likely to become increasingly dependent on them. The ‘gold standard’ data required to know the demographic characteristics of the twitter user is difficult to ascertain. 
Methods that we highlight as best practice include asking Twitter users directly. This can be achieved, for example, by asking respondents of a traditional survey for both their demographic data and their Twitter handle so that the data can be linked [199]. This was undertaken in the NatCen Social Research British Social Attitudes Survey 2015 – and this has the added benefit of allowing the study of the accuracy of further methods for deriving demographic data [20]. Contacting Twitter users may also provide a gold standard but be impractical given the current terms of use of Twitter that might consider such contact a form of spamming. 
[74, 205, 206, 217]. A limitation of extracting race or ethnicity from social media is the necessity to oversimplify the complexity of racial identity. Categories were often limited to Black, White, Hispanic, and Asian. Note that ‘Hispanic’ is considered ‘ethnicity’ by the US Census, but most studies in ML used it as a ‘race’ category, more so than Asian (due to low numbers in this category). Multiple more racial identities exist, particularly from an international perspective, and this overlooks multiracial or primary and secondary identities. In addition, inferred identities may differ from self-identities, raising further issues. 
Given the sensitive nature of the data, it is important as a ‘best practice’ for the results of studies that derive race or ethnicity from Twitter data to be reproducible for validation and future use. Reproducibility of most of the studies in this review would be difficult or impossible, as only five studies linked to available code or data [40, 49, 81, 83, 107]. Furthermore, there was limited information on the coding of training data. None of the studies detailed their annotation schema nor made available annotation guidelines. Detailed guidelines as a ‘best practice’ may allow for recreating or extending datasets in situations where the original data may not be shared or where there is data loss over time. This is particularly true of data collected from Twitter, where the terms of use require that shared data sets consist of only tweet IDs, not tweet texts, and that best efforts to delete IDs from the data set if the original tweet is removed or made private by the user be in place. Additional restrictions are placed on special use cases for sensitive information, prohibiting the storage of such sensitive information if detected or inferred about the user. Twitter explicitly states that information on racial or ethnic origin cannot be “derived or inferred” for an individual Twitter user, and allows academic research studies to use only aggregate level data for analysis [219]. This policy it may be argued is more likely to be targeted at commercial activities. 
Strengths and Limitations
[bookmark: _Hlk98924778]We did not limit our databases searches and other methods by study design, yet we were unable to identify any previous reviews on the subject. To our knowledge, therefore, this is the first review of the methods used to extract race or ethnicity from social media. We identified studies from a range of disciplines and sources and were able to categorize and summarize the methods used. We were unable, however, to obtain information on the methodologies used by private sector companies that have created software for this purpose. Marketing and targeted advertising is common on social media, and is likely to use race as part of their algorithms to derive the target users.
[bookmark: _Hlk96698106]We did not limit our included papers to those for which the extraction of race or ethnicity was the primary focus. Whilst this can be conceived as a strength it also meant that the reporting of the methods used was often poor. The accurate recreation of the data lost was hampered by not knowing how decisions were made in the original studies, including what demographic definitions of race or ethnicity were used or how accuracy was determined. This limited our assessment of the included studies. Few studies validated the methods or conducted an error analysis to assess how often race is misapplied and those that did rarely used the most appropriate gold standard. This made it difficult to directly compare the results of the different approaches.

Future directions
Researchers in future studies should interrogate their methodological approaches to estimating race or ethnicity, offering careful interpretations that acknowledge the significant limits of these approaches and their impact on the interpretation of results. This may include reporting results as a range that communicates the inherent uncertainty of the classification model. Social media data may be best used in combination with other information. In addition, we must always be mindful that race is a proxy measure for the much larger impact of being a particular race or ethnicity in a society. As a result, the variability associated with race and ethnicity might reveal more about the effects of racism and social stratification than individual user attributes. To conduct this work ethically and rigorously, we recommend several practices that can help reduce bias and increase reproducibly. 
We recommend acknowledgment of the bias of the researchers that can influence the conceptualization of implementation of the study. Incorporating this reflexivity, as common in qualitative research, allows for the identification of potential blind spots that weaken the research. One way to address homogenous research teams is through the inclusion of experts in race or ethnicity or in those communities being examined. These biases can also be reduced through the inclusion of members of study populations in the research process as experts and advisors[220]. Though big data from social media can be collected without ever connecting with the people who contributed the data, it does not remove the ethical need for researchers to include representative perspectives in research processes. Examples of patient engaged research and patient-centered outcomes research, community-based participatory research and citizen science (public participation in scientific research) within the health and social sciences amply demonstrate the instrumental value and ethical obligation of intentional efforts to involve non-scientist partners in co-creation of research [220] The quality of data science can be improved by seriously heeding the imperative, “Nothing about us without us” [220]. Documenting and establishing the diversity competence attributes of the research team should become a standard. Emphasizing the importance of diverse teams within the research process will contribute to social and racial justice in other ways than just the improvement and reliability of research.
In terms of the retrieved data, the most reliable (though imperfect) method of ascertaining race is when users self-identify their racial affiliation. Further research on overcoming the availability limitations this introduces to sample sizes may be warranted. Indeed a hybrid model with automation methods and manual extraction may be preferred. For example, automation methods could be better developed to identify potential self-declarations in a user profile or timeline which could then be manually interpreted.
Finally, we call for greater reporting of validation by our colleagues. Without error analysis, the computational techniques won’t tell you when bias is present. We also need further research to establish whether any bias is systematic or random, that is, do inaccuracies favor one direction or another.

CONCLUSIONS
We identified major concerns that impact the reliability of the methods and bias the results. There are also ethical concerns throughout the process, particularly with inference of race or ethnicity as opposed to extraction of self-identity. However, the potential usefulness of using social media research requires thoughtful consideration of the best ways to estimate demographic characteristics like race and ethnicity [111]. This is particularly important given the increased access to Twitter data [203, 204].
We therefore propose several approaches to improve the extraction of race or ethnicity from social media including representative research teams, and a mixture of manual and computational methods as well as future research on methods to reduce bias.
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