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Swarm Foraging under Communication and Vision

Uncertainties
Simon O. Obute, Philip Kilby, Mehmet R. Dogar and Jordan H. Boyle

Abstract—Swarm foraging is a common test case application
for multi-robot systems. In this paper RepAtt algorithm is
used for improving coordination of a robot swarm by selec-
tively broadcasting repulsion and attraction signals. This is
a chemotaxis-inspired search behaviour where robots use the
temporal gradients of these signals to navigate towards more
advantageous areas. Hardware experiments were used to model
and validate realistic, noisy sound communication and vision
system. We then show through extensive simulation studies that
RepAtt significantly improves swarm foraging time and robot
efficiency under realistic communication and vision models.

Note to Practitioners
Abstract—This research developed a swarm foraging algorithm

that takes into consideration the vision and communication
sensing noise levels faced by robots in real world applications.
The algorithm, known as RepAtt, was developed with the aim
of emphasizing algorithmic simplicity and limiting the hardware
requirements for the robots in the swarm. In this paper, we have
focused on the problem of deploying swarm robots to forage litter
in an environment such as a park. The communication model
of the robots was based on the physics of sound, while their
vision system was modelled using experiments with deep neural
networks based object detectors. The results show that the RepAtt
algorithm is robust to different distributions of targets (or litter)
in the search space, exhibits good swarm efficiency with changes
in swarm population and is robust to noise in its communication
and vision systems. Apart from the RepAtt algorithm, other
contributions made by this research include modelling of robot
vision system to aid extensive study of the impact of commu-
nication and vision noise on swarm coordination. This will be
relevant for extensive testing and validation before deployment
to swarm robots hardware. The sound communication used in
this research limits the kinds of environment the robots can
be deployed in. Echoes within an enclosed environment and
bandwidth limitation for communication frequency and public
disturbance due to sound emitted by the robots can all contribute
to this limitation. Thus, this research can be improved by
investing in the development of a communication technology with
similar physics. Other areas of improvement include adopting
better obstacle avoidance algorithms and implementing suitable
manipulators for handling litter objects. The algorithm can be
extended to make it applicable for solving other problems such
as search and rescue operations where foraging targets could
be disaster survivors; demining and hazardous waste cleanup,
where targets are the mines or waste material; and planetary
exploration, where targets could be interesting features of the
planets are the targets searched for by the robots.
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I. INTRODUCTION

Swarm robotics applies intelligent coordination behaviours

observed in natural swarms to solve multi-robot problems [1].

Swarms in nature have the impressive ability of accomplishing

complex tasks by following simple rules. For example, ants

are able to forage food from locations that are beyond their

individual sensory capabilities by following pheromone trails

which other ants have laid. An individual agent in the group

does not have access to global knowledge of the world and

relies only on interaction with its immediate environment

(and sometimes memory of previous experience) to make

autonomous control decisions. The swarm paradigm presents

a means of using decentralized control, local communication

and sensing to allow multi-robot systems to automate tasks

that are inefficient or impossible for single robots. The actions

of individual agents collaborating with other swarm members

produces emergent behaviours that solve tasks such as aggre-

gation, clustering, exploration, navigation and foraging among

others in robust, scalable and flexible ways [2].

Foraging is a canonical test case for swarm robotics which

involves collective search and transport of objects to a specific

deposit site known as the nest [3]. It has diverse potential real-

world applications for automating farming processes, planetary

exploration, hazardous waste clean-up or search and rescue

[4]. It also integrates within a single agent robotic tasks

such as vision, exploration, manipulation, communication

and transport. This paper describes the Repulsion-Attraction

(RepAtt) algorithm, which uses simple communication and a

chemotaxis-inspired behaviour to improve coordination in a

swarm of foraging robots. RepAtt was first proposed in our

previous work [5]. This paper extends our previous work by

using real-world vision experiments and deep neural networks

for object detection as a basis for modeling a probabilistic

robot vision system (more details in Section III-B). We use

this vision model to study the impact of imperfect vision on

the foraging performance of a robot swarm. To the best of our

knowledge, this is a novel vision model.

Section II reviews communication and vision uncertainties

in swarm foraging; the RepAtt algorithm, communication and

vision models are discussed in Section III. In Section IV we

present work on optimizing RepAtt parameters, demonstrate

that the algorithm still works well with noisy communication

signals, show that RepAtt scales well with swarm size and is

robust to changes in target distribution. We also show that it is
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able to work well despite imperfections in the robots’ vision

systems. Finally, concluding remarks and future directions are

presented in Section V.

II. REVIEW OF COORDINATION FOR SWARM FORAGING

A key means of achieving cooperation among swarm mem-

bers during foraging is through local sensing of targets and

communication with other robots.

Vision-based sensing is the most common means used by

swarm foraging robots to detect desired targets. In many sim-

ulations, robots detect objects based on their relative distance

from the objects. These simulated robots generally have om-

nidirectional detection capability and they usually have 100%

object detection accuracy within their target sensing range [6],

[7], [8], [9], [10]. In hardware realisations of swarm robot

algorithms, researchers have generally validated the collective

behaviour of the robots in absence of realistic vision system.

Thus, simplified targets such as QR codes [11], Bar codes [12],

coloured shapes [1], [13], [14] and virtual reality [15] were

used. However, the field of computer vision has significantly

progressed due in part to advances in deep neural networks

[16]. Deep neural network based object detection algorithms

such as Regions with Convolutional Neural Networks (RCNN)

[17], You Only Look Once (YOLO) [18] and Single Shot

MultiBox Detector (SSD) [19] can be trained to detect multiple

classes of complex objects. There has also been significant

work done to reduce their computational requirements so the

detectors can work well on constrained computing platforms

such as Raspberry Pi and Arduino boards commonly used in

swarm robotics. This led to the development of tiny-YOLO

[20], MobileNet-SSD [21] and machine learning frameworks

such as Tensorflow Lite for microcontrollers [22]. These

advances in computer vision make it feasible to test swarm

robots collective behaviour under realistic vision challenges

they will face when deployed in real-world environments.

Communication, on the other hand, has mostly been realized

through shared memory, the environment and direct commu-

nication [1]. In shared memory implementations, all robots

have access to a shared medium to write and read information,

which gives swarm robots a global means of communication.

This could be global network access by all robots in the

swarm [23], [24] or limited access, where only robots within

proximity of the nest have access to the information [25],

[26]. Major drawbacks of this approach are issues related

to scalability, increased complexity of individual robots and

inconsistency with the swarm paradigm of local sensing and

communication. Achieving cooperation using the environment

as a communication medium involves modification of the

search space using “markers” or “beacons” to provide infor-

mation that guides the search behaviour of foraging robots

[1]. This approach is largely inspired by stigmergy based

coordination mechanisms, such as pheromones observed in ant

colonies. This was achieved through stationary robot beacons

in [27], [8], RFID tags that stored pheromone information

in [28] and an LCD screen platform that used variation

in light intensity to communicate pheromone level [29]. A

major challenge for this communication approach is finding

an effective and scalable means of “marking” the environment

beyond controlled laboratory conditions. In direct commu-

nication, robots adapt their behaviour to improve foraging

efficiency based on information exchanged with neighbouring

robots. This was implemented in [8] using range sensors, while

[6] and [30] exchanged packets of information containing

robot state data. Direct communication faces design challenges

regarding the type of information robots should exchange,

handling interactions with multiple neighbours simultaneously,

and robustness and reliability of the communication media. Al-

though hardware implementations of swarm robot algorithms

can reflect the impact noise has on swarm foraging, little

research has been conducted on the quantification of the effect

of noisy recruitment. Some works that considered the impact

of noise realised it using imperfection in the location of targets

communicated to other swarm members and/or uncertainty in

the recruitment information sent to neighbouring robots [11],

[13], [31].

The RepAtt algorithm discussed in this paper was first

introduced in [5]. RepAtt is inspired by the chemotactic

search behaviour observed in micro-organisms such as the

Escherichia coli bacterium and Caenorhabditis elegans nema-

tode. The novelty of RepAtt lies in the use of the foraging

robots as sources of signals whose intensity degrades with

distance, unlike other implementations that used immobile

signal sources [32], [33]. Neighbouring robots then sense the

change in intensity of these signals and use them to perform

chemotactic search for good areas in which to forage. In

addition to studying the impact of noisy communication on

swarm foraging, we also modelled a realistic vision system

for the robots and extensively investigated its impact on the

performance of the swarm.

III. SWARM COORDINATION

A. Communication Model

RepAtt is based on the use of a communication mechanism

whose intensity decreases smoothly with increasing distance

from the source. The exponentially degrading signal of Equa-

tion 1 [34] was used, where Ak
ij is the strength of signal type k

sensed by robot i, located dij metres away from signal source

j. A0 is the signal strength at the source, while α and Ae

are the attenuation factor and mean ambient sound level -

properties dependent on environment condition. Total signal

strength sensed by a robot, Iki (t), at any location in the world

is the sum of same-type signals at that location (Equation 2),

where n is the total number of robots and k is the signal

type. We consider two signal types that robots can sense and

broadcast: repulsion (k = r) and attraction (k = a) signals. To

sense increase or decrease of attraction and repulsion signals,

robots compute the difference in signal intensity between two

time steps (Equation 3). It is important to note that RepAtt

does not consider the nature of signal degradation (logarithmic,

linear, exponential, inverse square law) or the size of signal’s

change. RepAtt uses only the sign of the change (that is,
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Fig. 1: Experiments for developing sound model.

whether it is positive or negative change).

Ak
ij = A0e

−αdij +Ae (1)

Iki (t) =

n
∑

j=1,j 6=i

Ak
ij (2)

∆Iki (t) = Iki (t)− Iki (t− 1) (3)

The parameters of Equation 1 were obtained through exper-

iments using Turtlebot2 hardware platforms, speakers and om-

nidirectional microphones as described in our previous work

[34] and shown in Fig. 1a. These parameters are: A0 = 299.18,

α = 0.12 and Ae = 48.18 (see Fig. 1b for how modelled

communication fits the raw experiment data). In addition, a

sound experiment involving two sound sources was used to

validate that multiple (white noise) sound sources always add

up to give a higher amplitude. One source broadcast sound

continuously for 130 seconds, while the second only broadcast

sound for 20 seconds at 10 seconds intervals. The peak of the

waveform occurred when the two sources were broadcasting

at the same time, while the troughs occurred when only one

sound source was active.

To test RepAtt’s robustness to noisy communication, the

experiments also quantified noise in the sound signals, which

was found to average 6% of signal intensity. This noise was

then modelled as a normal distribution with mean of 0 and

deviation of 0.06 as shown in Equation 4.

Bk
ij = Ak

ij

(

1−N
(

0, 0.062
))

(4)

An average filter was introduced to RepAtt to make it

more robust to noisy communication. This simple filtering

system involved each robot maintaining a limited queue size

of attraction and repulsion signals. The robot then uses the

average of the signals in its queue as its current signal

intensity level and compares this value with a previously

computed average to determine the change in signal intensity.

An equivalent effect could be easily implemented in hardware

through electronic low-pass filtering. The notation for this is

Nx-Qy, which represent x% of the modeled noise and y time-

step filter queue size. Thus N0-Q1, represents 0% noise and

instantaneous signal measurements, while N100-Q40 represent

100% (of the experimentally-obtained value) noise level and

queue size of 40 signal measurements. This modifies Equations

2 and 3 to Equations 5 and 6 respectively.

Fig. 2: Sample of images used as training dataset with litter

objects annotated using red bounding boxes. The row are

images downloaded from ImageNET [35] and the bottom row

are sample images from robot’s view of litter objects.

Iki (t) =

t
∑

b=t−y+1

(

n
∑

j=1,j 6=i

Bk
ij(b)

)

y
(5)

∆Iki (t) = Iki (t)− Iki (t− y) (6)

B. Vision Model

The vision model proposed in this paper uses probabilities

to model the uncertainties in a robot’s ability to detect targets

within its visual field. This model uses real-world experiments

of object detection with MobileNet-SSD, a state-of-the-art

machine learning object detection network model, for the

detection of litter in a moderately realistic environment such

as a local park. This vision model will be used to extensively

study the impact of imperfect vision on a swarm of foraging

robots controlled using RepAtt and Random Walk algorithms.

A training dataset made up of 519 images downloaded from

imageNET and 128 images of litter from a robot’s viewpoint

were used. The litter in the dataset were then annotated by

drawing a bounding box around each litter object in the

images. The total litter annotations in the training data was

2609, a sample of which are shown in Fig. 2. This annotated

dataset was then used to train the Mobilenet-SSD object

detection model for 20,000 iterations.

The test dataset consists of 40 minutes of video recording of

litter from a robot’s view. The camera was elevated at 44 cm

from ground level and oriented at 35◦ facing downwards. The

camera model used was a GoPro Hero 5 set to record at a

full HD resolution of 1920× 1080 pixels, wide angle field of

view (of 118◦ horizontal and 69.5◦ vertical view angles), and

50 frames per second recording rate.

After training, the performance of the Mobilenet-SSD net-

work was assessed on the test dataset. All the litter in the

videos were tracked across all the frames that they were

visible in. Only litter objects whose first appearance within

the robot’s view start at the horizon and last visible location

end at the bottom or lower sides of the video frame were used

for modelling of the vision system. This helped to restrict the

test data to litter objects that generated the most data points,
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which were useful for a reliable modelling process. The total

unique litter objects that meet this modelling criteria were 679.

The detection data while testing the MobileNet-SSD net-

work showed that once a litter was detected by the network

in the current frame, it was highly likely that it would be

detected in the next frame. However, if the network failed to

detect the litter in the present frame, it was unlikely for the

network to detect that litter in the next frame. This was because

the changes in visual scene between consecutive frames were

generally small, considering that the videos were recorded at

50 frames per second and the robot was driven at a slow

pace. Thus, the data showed that detections on consecutive

frames were not statistically independent. From observing this

detection pattern of the networks, a probabilistic vision model

was developed to provide a representative approximation of the

detection pattern. The model was based on the computation of

two transition probabilities:

1) Probability that the object detector will detect the litter

in the current frame when the object was unseen in

the previous frame. This could be because the object

in question had just entered the robot’s field of view or

it was classified as a false negative in the preceding time

step. The probability controls the transition of an object

from being unseen to it being seen and is represented as

Pu2s

2) Probability that a detection in the preceding time step

is detected in the current time step. This probability

controls how the detection of an object can persist in

a seen state across multiple consecutive frames or time

steps. This probability is represented as Ps2s.

These probabilities were computed for 124×124 and 220×220
network input resolutions to assess their relative performance.

The steps followed to extract metrics data for developing the

model probabilities are:

1) Tally all the seen to seen (s2s), seen to unseen (s2u),

unseen to seen (u2s) and unseen to unseen (u2u) transi-

tions for all the 679 litter objects. Also, tally the number

of frames the litters were detected (s) and undetected (u)

by the network.

2) From the tallied data, compute the transition probabil-

ities for each litter using Equations 7 for Pu2s and 8

for Ps2s. Use the u and s data to compute the detection

probability of each litter as shown in Equation 9.

Pu2s =
u2s

u2s+ u2u
(7)

Ps2s =
s2s

s2s+ s2u
(8)

Ps =
s

s+ u
(9)

3) Compute the overall mean and standard deviation of

Pu2s, Ps2s and Ps from those computed for each of

the 679 litter objects. The end result of this process is

shown in Table I

Table I shows that MobileNet-SSD’s average detection

probabilities, Ps, are 0.4078 and 0.6104 for 124 × 124 and

220 × 220 input sizes when applied to the test dataset. For

a single robot foraging alone, these detection probabilities

TABLE I: Analysis of the MobileNet-SSD metrics computa-

tion by analysing all frames of the test dataset containing the

679 filtered litter objects.

124× 124 220× 220

seen 68801 103887

seen2seen 59380 91994

seen2unseen 9397 11840

unseen 103252 68166

unseen2seen 9394 11807

unseen2unseen 93203 55733

never seen 11 0

always seen 0 0

Ps2s 0.7896± 0.1824 0.8558± 0.1002

Pu2s 0.1293± 0.1031 0.2567± 0.1586

Ps 0.4078± 0.2304 0.6104± 0.2156

are low. However, within a swarm context, the combined

contributions of multiple foraging agents can minimize the

effect of poor robot vision. The effects of this imperfect robot

vision system within a swarm context is investigated in detail

in Section IV-H. This also reflects the swarm paradigm which

relies on inter-robot cooperation among cheap, low-quality

robot individuals to achieve a swarm goal.

From the probabilities computed in Table I, it can be seen

that there is a significant difference between Ps2s and Pu2s

probabilities. Both input resolutions have a low Pu2s, which

means that MobileNet-SSD has a low chance of detecting

previously unseen litter. However, when the litter has been

detected by the network, there is a high likelihood for the

network to detect it in consecutive frames that follow the

detection, which is represented by the relatively high Ps2s

probability. The high standard deviations on the computed

probabilities indicate that there are differences in the de-

tectability of litter objects. Factors such as lighting, distance,

material and angle of approach of a robot to the litter object

affect the detection model’s ability to successfully detect the

presence of the litter.

The Ps2s and Pu2s transition probabilities of the vision

model play an important role in determining the overall target

detection performance/probability, Ps, of the foraging robot.

These probabilities also affect the detection behaviour of the

robots such that as Ps2s → 1, detected objects tend to remain

visible to the robot; as Ps2s → 0, previous detections get

ignored by the robots; as Pu2s → 1, undetected objects within

the robot’s frame have a high likelihood of being detected;

and as Pu2s → 0, the robot’s ability to detect objects when

they come within view becomes unlikely.

The variations of Ps2s and Pu2s transition probabilities and

their effect on the overall detection probability Ps can be used

to abstract the factors that affect the performance of a robot’s

vision system. Factors such as lighting condition, weather and

distance in addition to object detection model, vision hardware

and inference rate among others can have a significant impact

on the performance of a robot’s vision. The effects of these

changes in transition probabilities on Ps were investigated
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Fig. 3: Monte Carlo simulation for 100,000 time steps showing the mean Ps for various combinations of Pu2s and Ps2s.

using a Monte Carlo simulation. The transition probabilities

were varied from 0.001 - 1.0 and applied for detecting 100

litter objects for a period of 100,000 time steps. Sections IV-G

and IV-H investigate the effects of imperfect vision on robot

communication and swarm foraging respectively.

The mean Ps resulting from the combinations of the mod-

elling probabilities are shown in Fig. 3. The data shows that

increasing Ps2s and Pu2s increases the Ps probability. When

Ps2s = 1, Ps started from 0.3304 (Pu2s = 0.001) and sharply

approached 1.0 (when Pu2s > 0.001). This is a special case

where once the object is detected by the agent, it will always

be seen by the agent as long as it is within detection range.

Thus, in this scenario, Ps → 1.0 as time approaches infinity as

long as Pu2s > 0 (when Pu2s = 0, the agent will never detect

the object and Ps will always be 0). When Ps2s = 0.001, Ps

gradually increased from 0.001 to 0.5003 as Pu2s varied from

0.001 to 1.0. The value of Ps → 0.5 in this scenario because

as Ps2s → 0 the ability of the agent to detect the object for at

least two consecutive frames reduces. The special case where

Ps2s = 0 and Pu2s = 1.0 will lead to Ps = 0.5 because the

agent is only able to detect the target once every two time

steps. When Pu2s = 0.001, Ps had minor increments until

Ps2s became greater than 0.99, where a steep rise in Ps was

observed. This huge increase in Ps is attributed to the near

perfect ability of the agent to retain its previously detected

targets with these parameters.

Two factors that can affect the value of the Ps2s and Pu2s

transition probabilities are the quality of the object detector

and number of frames the detector processes per second (fps).

A high quality detector will be consistent in its detection

(Ps2s → 1.0) and will quickly detect new litter that come

within the robot’s view (Pu2s → 1.0). A low quality detector

will have the opposite effect on Ps2s and Pu2s.

One the other hand, a high fps (such as the 50 fps used in the

vision modelling experiments in Table I) promotes consistent

detection pattern across two consecutive frames, resulting in

high Ps2s and minimises chances of detecting objects missed

in preceding frame (that is low Pu2s). A low fps will have the

opposite effect on Ps2s and Pu2s.

C. Repulsion-Attraction Algorithm (RepAtt)

The task for RepAtt is to improve coordination of swarm

robots with limited carrying capacity searching for targets

in an unknown environment and returning them to a central

nest. Algorithm 1 is a pseudocode description of RepAtt. The

coordination behaviour executed by a robot at each time step

depends on whether the robot is in the searching, acquiring,

homing or obstacle avoidance states, which are described in

the subsequent paragraphs.

Obstacle Avoidance State (3 - 4) is used by robots to avoid

static (nest and walls) and dynamic (other robots) obstacles

when it bumps into them. It turns 45◦ to the left for obstacles

on its right (or to the right for obstacles on its left) and random

angle greater than 90◦ for obstacles in its front. It then makes

a random linear motion between 0 and 1m before transitioning

to either the searching, acquiring or homing states.

Homing State (5 - 6) is activated when the robot’s capacity,

cap, is full. In this state, the robot heads to the nest (it is

assumed that the nest broadcasts a homing signal) and deposits

the collected targets. The robot ignores attraction and repulsion

signals from nearby robots until it has successfully offloaded

all foraged targets at the nest.

The Acquiring State (22 - 23) is activated when a robot

detects target(s) within its visual range (found > 0). The

robot navigates to the nearest target to pick it up. During

this process, it broadcasts the attraction signal if it detects

more targets than its current carrying capacity, found > cap

(11 - 12). Thus searching robots within communication range

can sense the attraction and appropriately adapt their search

behaviour.

Searching State (24 - 27) is when a robot does not sense

any target item to forage within its visual range (found =
0). The robot broadcasts a repulsion signal (9 - 10) to its

neighbours while using random walk to search for targets.
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Algorithm 1 Swarm Foraging Algorithm

1: Initialize Parameters: tumble probability Pb, robot capacity cap,
attraction multiplier am, attraction divisor ad, repulsion multi-
plier rm, repulsion divisor rd, tumble mean µ, tumble deviation
σ

2: while true do
3: if obstacle encountered then
4: Enter Obstacle Avoidance State
5: else if cap == 0 then
6: Go home and drop collected targets
7: else
8: Pt = Pb, Gr = 1, Ga = 1

9: if found == 0 then
10: Broadcast Repulsion Ar

i

11: else if found > cap then
12: Broadcast Attraction Aa

i

13: if ∆Iri > 0 then
14: Gr = rm
15: else if ∆Iri < 0 then
16: Gr = 1/rd
17: if ∆Iai > 0 then
18: Ga = 1/ad

19: else if ∆Iai < 0 then
20: Ga = am

21: Pt = Pb ×Gr ×Ga

22: if found > 0 then
23: Go and pick up closest target
24: else if rand(0,1) < Pt then
25: make random turn of N

(

µ, σ2
)

26: else
27: make straight motion

Its goal in this state is to minimize the repulsion (Ir) and

maximize the attraction (Ia) signals it senses. This is achieved

by detecting the change in intensity of these signals between

two time steps (Equation 3 or 6). A robot increases its turning

probability when moving in the wrong direction, i.e. when

∆Ir > 0 or ∆Ia < 0. Doing this increases a robot’s likelihood

of reorienting itself in the desired direction. On the other

hand, when the robot senses a positive gradient for attraction

(∆Ia > 0) or a negative repulsion gradient (∆Ir < 0), it

reduces its turning probability, which in turn helps the robot

to maintain its current direction for a longer period of time and

consequently approach a region that increases its likelihood of

finding a target. Lines 13 - 21 represent this turn probability

adaptation, where am ≥ 1, ad ≥ 1, rm ≥ 1 and rd ≥ 1 are

predefined constants.

In Algorithm 1, the Random Walk algorithm (RW) used

as a baseline in Section IV can be achieved by setting

am = 1, ar = 1, rm = 1 and rd = 1. This disables

tumble probability adaptation by robots based on attraction

and repulsion gradients, making them explore with constant

probability of turning.

D. Adaptive Large Neighbourhood Search (ALNS)

The ALNS heuristic presented in [36] is a centralized,

offline route computation algorithm that has been shown to be

very effective in many transportation problems. We modelled

the target foraging task of the swarm using ALNS to represent

a centralized coordination approach to multi-robot foraging.

In the ALNS approach, the robots’ foraging route is com-

puted offline, using the nest as drop-off location for all robots

(a) (b) (c) (d) (e)

Fig. 4: (a) One50m, (b) Two50m, (c) Four50m, (d) Half50m,

(e) Uniform50m. Plot of initial world states, for 50 m × 50 m

worlds. Targets are purple, black ‘+’ is nest and yellow blob

represent the robots. For 100 m × 100 m worlds, target and

robot locations were kept constant, while world width and

length dimensions were doubled.

with full capacity. The exact setup described in [36] was im-

plemented, where the simulated annealing route optimization

was performed for 25,000 iterations, with a maximum of 50

or 100 visits removed in each iteration. The searching state

of RepAtt is replaced with the offline simulated annealing

optimization of the large neighbourhood search. Robots used

the optimized ALNS routes as waypoints when foraging. This

approach therefore gives a lower bound on the total foraging

time. However, it is not scalable or robust to changes in target

locations or swarm size.

The Random Walk and ALNS approaches are used to

allow comparison of the RepAtt coordination mechanism’s

performance against two extremes: absence of coordination

(Random Walk); and a near-optimal solution based on com-

plex centralized coordination with perfect knowledge of the

environment (ALNS).

IV. EXPERIMENTS AND RESULTS

A. Simulation Setup

The Gazebo Simulation platform was used to simulate

robots under 5 target distributions, 2 world sizes, variable

parameter settings and swarm sizes, under noiseless and noisy

communication settings. A simulation time step of 25ms was

used and each simulation was repeated 30 times. The number

of targets used was 200 and the swarm task was to locate

and pick up 90% of these targets in each world setup (sample

setups are shown in Figure 4). Each robot in the swarm moved

with velocity of 0.6 m/s and spent 5 seconds stationary to

process each target it finds to simulate the target pick up

process. Other algorithm parameters are: Pb = 0.0025 applied

at every time step, robot targets capacity 5, target detection

distance of 3 metres, µ = 1800 and σ = 900. The µ and

σ values were chosen to mimic the approximate 180◦ turns

observed in chemotactic behaviour of biological organisms

such as C. elegans.

B. Chemotaxis Gains Optimization

The attraction and repulsion gains, am, ad, rm and rd play

significant roles in the performance of RepAtt because they

affect the responsiveness of robots to changes in communi-

cated signals. To investigate their effects and find the best

combinations for a swarm of foraging robots, am and rm were

selected from 1, 2, 4, 6, 8, 10 while ad and rd were selected

from 1, 10, 50, 100, 1000. This resulted in 900 different
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(c) Varying filter queue size

Fig. 5: Results represent mean of 30 independent repetitions for a swarm of 36 robots, y-axis represent time normalized based

on performance of Random Walk. (a) and (b): Aammadd−Rrmmrdd match the respective gains in the legend. N100-Q40

foraging times were used to sort the x-axis and corresponding data for N0-Q1 have been included in the plots. (c): Variation of

average filter queue size, RepAtt gains of am = 4, ad = 100, rm = 1 and rd = 10 were used because they gave best foraging

performance. Error bars represent 95% confidence interval.

combinations of these gains. Each gain combination was used

by robots performing RepAtt in the 10 world setups, with each

simulation experiment repeated 30 times under noiseless (N0-

Q1) and noisy (N100-Q40) communication. Thus, 540,000

simulations were performed (900× 30× 10× 2) to search for

best performing gain combinations. A specific combination is

represented as Aammadd−Rrmmrdd.

In each simulation, the task was for a swarm of 36 robots

with carry capacity of 5 targets to pick up 180 targets in

the world. The performance of each of the 900 parameter

combinations was then sorted and assigned scores such that

the combination with the shortest mean time had a score of

1 and longest mean time got a score of 900. Total score was

computed by summing the scores across the 10 different world

setups, with the best parameter combination attaining the

lowest overall score (ultimately we used only the N100-Q40

results to select the best parameters, because this is the more

realistic configuration). Sample results from the ranking are

shown in Fig. 5a and 5b, where foraging times are normalized

based on time taken by Random Walk (A1m1d−R1m1d).

N100-Q40 data points were used to sort the rankings, and the

corresponding performance for N0-Q1 has also been included

in the plots. The results indicate that in clustered environments

(for example One100m, Fig. 5a) increasing parameters that

aid attraction toward targets (i.e. am and ad) and minimizing

repulsion parameters (i.e. rm and rd) produced better results.

In addition, an am value of 4 performed better than 10 because

of noise in the attraction signal - when am is too large, robots

would make too many turns and explore only a limited area

due to noise-induced inaccuracies in their gradient sensing.

In less clustered environments (for example Uniform100m),

only rd played a major role in swarm performance, where

the best parameter combination was A1m10d−R1m100d. The

results indicate that parameters that helped robots to make

more tumbles when moving in the wrong direction (i.e. am
and rm) negatively impacted RepAtt, while parameters that

aided swimming (ad and rd) positively affected RepAtt’s

performance.

Overall, the best parameter combination was

A4m100d−R1m10d, which is clearly an integration of the

best parameters for clustered and uniform target distributions.

In addition, the difference between best and worst performing

combinations in One100m (0.30 vs 1.95) compared to

Uniform100m (0.74 vs 1.48) indicates that communication

has more significant impact in highly clustered environments

in comparison to uniform environments.

C. Communication Noise Filtering

Moving from an idealised noiseless communication signal

(N0-Q1) to the realistic noisy model (N100-Q1) in our sim-

ulated foraging task initially had an extremely detrimental

effect, making RepAtt’s performance only comparable to Ran-

dom Walk (RW) as shown in Fig. 5c, where the optimized

RepAtt gains of am = 4, ad = 100, rm = 1 and rd = 10
were used. However, including the average filter with queue

size of 8, 20, 40, 80, 120 improved RepAtt’s performance.

In addition, excessively large queue sizes (for example 80 or

120) decreased RepAtt’s performance because robots lost too

much information to make the gradient useful for its current

location. A queue size of 40 gave the best performance across

the 10 world setups in comparison to other queue sizes when

working with noisy communication.

D. Foraging Performance Results

The simulation results for the 5 target distributions in

50 m× 50 m and 100 m × 100 m world sizes are shown

in Figs. 6a and 6b respectively for a swarm size of 36

robots for Random Walk (RW), N100-Q40, N0-Q1 and ALNS

algorithms. The optimized RepAtt gains of am = 4, ad = 100,

rm = 1 and rd = 10 were used.

In comparison with Random Walk, RepAtt improved swarm

coordination and decreased the foraging time in all target

distributions for both world sizes. In the 50 m× 50 m world

size, this improvement was 77% in the One50m world, which

is more than half of the improvement offered by ALNS (90%).

Similarly, the remaining four distributions recorded significant

improvements in foraging time, with the weakest effect (33%
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(b) 100 m × 100 m worlds

Fig. 6: Time taken in seconds to pick up 90% of targets for

different world scenarios, normalised using the time taken by

Random Walk. Each bar represents the mean of 30 simulation

repetitions (also given numerically above each bar). The error

bars represent 95% confidence interval. The optimized RepAtt

gains of am = 4, ad = 10, rm = 1 and rd = 10 were used

for N0-Q1 and N100-Q40.

improvement) in the Uniform50m world. For the 100 m ×

100 m world size, where the search space was quadrupled,

RepAtt also achieved excellent coordination to exploit target

regions. Its improvements over Random Walk were 83%, 63%,

37%, 71% and 32% for the One100m, Two100m, Four100m,

Half100m and Uniform100m distributions respectively. This

is compared to ALNS’s values of 94%, 88%, 79%, 90% and

70% for the respective distributions.

It is logical that coordination would have a greater beneficial

effect for highly clustered distributions. This is the reason for

particularly large performance gaps between Random Walk

and ALNS in the One, Two and Half cluster distributions

and relatively smaller margins for the less clustered Four and

Uniform worlds. It is also for these distributions that RepAtt

gained the most improvements over Random Walk.

Comparing N100-Q40 and N0-Q1, noise reduced the ef-

fectiveness of RepAtt by 8% (in Uniform100m) to 43% (in

One100m). Nonetheless, N100-Q40 performed well under

the different target distributions with performance ranging

between 30% to 77% of the time taken by the Random Walk

algorithm compared to ALNS’s 6% to 31%.

These results indicate that this simple RepAtt algorithm

is an effective mechanism for achieving swarm coordination

when performing foraging tasks. They also show that the

presence of noise, distribution of targets and size of the world

N0-Q1 N100-Q40 RW ALNS

Algorithms
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Fig. 7: Change in swarm foraging times across the ten target

distributions. Each simulation was repeated 30 times, with

y-axis showing mean time to pick up 90% of 200 targets

(normalised based on distribution with shortest mean time for

each algorithm, which is Uniform50m in all cases).

can have positive and negative impacts on the algorithm’s

performance. The effectiveness of the algorithm is more pro-

nounced when targets are clustered in smaller regions.

E. Robustness of RepAtt

One key advantage of autonomy of individual robots that

make up the swarm is their robustness to changes in world

setups and swarm size. This section focuses on the effects of

changes in targets distribution on the swarm’s foraging ability

(in terms of time taken to complete the foraging task), while

Section IV-F covers the effects of swarm size on foraging

efficiency. Fig. 7 shows the box plots of how swarm foraging

time varied across the 10 world setups with RepAtt parameters

of A4m100d-R1m10d, where foraging times were normalised

by the shortest time taken for that communication model

across all environments (which occurred in the Uniform50m).

Random Walk displayed the highest variability of 7.91,

indicating that it is the least robust (or adaptable) to variation

in target distributions and world sizes. Thus, the performance

of Random Walk is highly dependent on the kind of problem,

making it a more specialised solution that is not generally

applicable to a wide variety of conditions. ALNS showed the

least variability of 1.49, thus making it more generally applica-

ble. However, ALNS requires a priori knowledge of the search

space, which impacts its wider applicability. RepAtt displayed

good performance across the different target distributions and

did not result in any outlier when tested across the ten world

setups. The variation in foraging time across the ten world

setups for N0-Q1 and N100-Q40 were 1.90 and 2.91 respec-

tively. N100-Q40 represents a 53% reduction in robustness

in comparison to N0-Q1. However, when comparing N100-

Q40 with Random Walk, the RepAtt algorithm improves the

robustness of the swarm’s by 63.21%, thus, making the swarm

more adaptable to changes in targets distribution.

F. Scalability of RepAtt

The scalability of RepAtt was evaluated by comparing the

efficiency improvements as the swarm size varied from 1 to

100. Efficiency in this foraging task was computed as shown

in Equation 10 where n is swarm size, tp is number of

targets picked up, ttp is time to pick up tp targets and Er
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Fig. 8: Relative efficiency was computed based on tp = 180,

where total targets were 200. Each simulation was repeated 30

times and error bars represent 95% confidence interval. The

optimized RepAtt gains of A4m100d−R1m10d were used.

is relative efficiency (Equation 11). Thus, n = 1 represents a

relative efficiency of 1, while Er > 1 and Er < 1 represent

improvement and degradation in efficiency respectively.

En =
tp

n
×

1

ttp
(10)

Er =
En

E1

(11)

Fig. 8a and 8b show that RepAtt exhibited good scalability

performance by improving relative efficiency by a factor of

5.82 when there was no communication noise (N0-Q1). With

realistic noise, N100-Q40 always maintained an efficiency im-

provement of more than a factor of 2. However, Random Walk

was at best able to maintain swarm efficiency as one would

expect due to the lack of coordination. In Fig. 8c and 8d, the

lack of coordination in Random Walk caused swarm efficiency

to continuously degrade as swarm size increased, while RepAtt

was able to maintain good efficiency improvement, especially

for the Uniform100m world. In general, swarm efficiency

is expected to drop as swarm size increases beyond some

acceptable level. This is due to the effects of robot-to-robot

interference, size of the search area and limited resources

available for robots to forage.

G. Effects of Pu2s, Ps2s and vision update rate on RepAtt

The robots’ vision update rate impacts the ability of a robot

to forage and communicate effectively. The extent of this

impact is different for varying combinations of the transition

probabilities. This was studied in a simplified simulation

setup, where a robot acting as the signal source should be

broadcasting an attraction signal, but will repel instead if it

fails to detect the target(s) within its detection proximity (the

vision was controlled using Pu2s and Ps2s probabilities). The

listening robot senses the intensity and type (attraction or

repulsion) of this signal and uses it to perform chemotaxis-

based choice to move forward (toward the signal source) or

reverse (away from the signal source). In addition, the rate at

which the signal source applied the Pu2s and Ps2s probabilities

was controlled by a detection frequency of 40 Hz, 4 Hz or 1 Hz

to simulate varying inference times of the object detection

vision system. The N0-Q1 version of RepAtt with am = 4,

ad = 100, rm = 1 and rd = 10 was used for this set of

simulations each lasting 5,000 seconds. The result of these

simulations are shown in Fig. 9a.

The data shows that the proportion of forward (correct)

movements consistently increased with increasing Ps prob-

ability for vision update rates of 1 Hz and 4 Hz. For the

40 Hz update rate, the proportion of forward movements were

the same as those observed for 1 Hz and 4 Hz rates when

Ps < 0.2 and Ps > 0.9. However, for 0.2 < Ps < 0.9,

there was a noticeable distribution of the proportion of forward

movements such that many of the Pu2s and Ps2s combinations

for a specific Ps consistently gave lower proportion of forward

movements.

In Figs. 9b and 9c, a heat map was used to colour-code the

Ps2s and Pu2s probability combinations for the 40 Hz vision

update rate. The data shows that for a specific Ps value, a high

Ps2s probability combined with a low Pu2s value performed

better than combinations where Ps2s was low and Pu2s was

high.

The reason for this comes from the nature of the underlying

N0-Q1 RepAtt algorithm used by the robot to locate the

attracting robot. RepAtt relies on computing change in signal

intensity between two time steps, which relies on consistency

in the signal type and change in intensity. As Ps2s → 0 and

Pu2s → 1 the consistency in the attraction signal type the

robot senses reduces substantially. This is most obvious when

Ps2s = 0 and Pu2s = 1. Although this results in Ps = 0.5,

it would not be useful for a robot using instantaneous change

in signal intensity to perform chemotaxis. This is because any

correct gradient measurement is immediately offset by a wrong

one in the next time step.

These issues do not arise for the lower frequencies of 1 Hz

and 4 Hz because the robot was able to reliably compute

signal gradient across multiple time steps. For example, at a

vision update frequency of 1 Hz, the communicated signal

is of a consistent type for 40 time steps. Thus, the robot

performing RepAtt would compute accurate gradient values

for this duration.

H. Foraging with Imperfect Vision

The combinations of the Ps2s and Pu2s model probabil-

ities were also used to examine the foraging performance

for a swarm of 36 robots foraging 200 targets in One50m,

One100m, Uniform50m and Uniform100m environments (see

Fig. 10). The vision update rate of the robots in each sim-

ulation was either 1 Hz, 4 Hz or 40 Hz in order to study

the effects of object detection update rates on the swarm.

In all simulations, the chemotaxis parameters of am = 4,

ad = 100, rm = 1 and rd = 10 were used. Simulations
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(a) 1 Hz, 4 Hz and 40 Hz vision update
rate

(b) 40 Hz vision update rate, coloured
according to Ps2s

(c) 40 Hz vision update rate, coloured
according to Pu2s

Fig. 9: The average proportion of forward movements by a one-dimensional robot as Ps increased. The Pu2s and Ps2s

probabilities were applied at 1 Hz, 4 Hz or 40 Hz. In (a), darker colours represent multiple data points in same location. (b)

and (c) use heatmaps of transition probabilities to distinguish between multiple data points.

Uniform50m Uniform100m One50m One100m

1 Hz

4 Hz

40 Hz

Fig. 10: Mean normalised time to pick up 90% of 200 targets by a swarm of 36 robots (y-axis) and Ps on the x-axis. Foraging

times were normalised using the time taken by Random Walk with Pu2s = Ps2s = 1.0 for the corresponding world and vision

update rate setups.

for each combination of model probabilities was repeated 30

times and the time it took for the swarm to pick up 180 targets

was averaged across the repeated simulation runs.

For Random Walk, the impact of imperfect vision was more

obvious in the uniform worlds and vision update rate of 1

Hz. However, at higher vision update rates (and in the single

cluster worlds), imperfect vision had no noticeable effect until

Ps < 0.2, which was the point at which search time increases

due to poor target detection, resulting in a longer total foraging

time.
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(a) One50m (b) One100m

Fig. 11: The impact of vision update rate and model proba-

bilities on N0-Q1. Foraging time is the y-axis, while x-axis

represents Ps.

For the RepAtt algorithm, imperfect vision affects both the

robots’ ability to sense the presence of targets and choice

of signal to communicate. A very low Ps means robots will

broadcast repulsion signals when they ought to be attracting,

which in turn negatively impacts the recruitment of other

swarm members to clusters of target objects. This is why the

impact of imperfect vision on swarm foraging is noticeable for

slight reductions in Ps values, with stronger effects observed in

the one cluster environments. RepAtt outperformed Random

Walk for Ps ≥ 0.1 in all the test environments and vision

update rates, which indicates that the swarm was still able

to exhibit some level of cooperation to help improve their

foraging efficiency.

A closer look at the single cluster environments shows that

increasing the vision update rate negatively impacted N0-Q1

foraging performance as shown in Fig. 11. However, this was

not noticeable for Random Walk and N100-Q40 algorithms.

The reason for this interesting behaviour was because the

ability of searching robots to respond to attraction signals was

significantly impacted negatively by the alternating attraction-

repulsion behaviours of the robots that located targets cluster

(as discussed in Section IV-G). Furthermore, this behaviour

is most noticeable in environments that swarms could benefit

most from communication.

V. CONCLUSION

This paper has presented the development of the RepAtt

swarm foraging algorithm followed by the analysis of the

impact of imperfections in communication and target detection

on the collective behaviour of the robot swarm. Through

realistic modelling of communication noise based on hardware

experiments, the results presented in this paper revealed that,

with a simple average noise filter, RepAtt was robust to the

communication noise. This helped the swarm to forage in a ro-

bust, scalable and efficient way. Additionally, MobileNet-SSD

- a state-of-the-art machine learning based object detection

algorithm - was used as an experimental tool for developing a

probabilistic vision model for swarm robots that conforms with

recorded observations of real-world object detection data. The

results indicated that RepAtt still exhibited superior swarm

foraging performance in comparison to Random Walk at

detection probabilities as low as 0.2. This is good because

it shows that RepAtt is able to adequately support swarm

coordination in highly uncertain vision environments.

The simplicity of the RepAtt algorithm and its ability to be

robust under realistic communication and vision noise makes

it attractive for real-world implementations. The vision model

used in this paper and, to a lesser extent, the communication

model will serve as a useful tool for other researchers in the

field with which to test and examine the effect of realistic

noise models on the performance of their algorithms. This will

provide beneficial and informative insight on the practicality

of their proposed algorithmic solutions.

The results obtained from the chemotaxis-based algorithm

strongly suggests there is great potential for further work

in this area. Areas for future investigation include a survey

of communication technologies for realising the RepAtt al-

gorithm, implementation of the algorithm on swarm robots

hardware platforms and studying the algorithm’s performance

within a three-dimensional search space.
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