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Abstract

Speech emotion recognition is essential for obtaining emotional

intelligence which affects the understanding of context and

meaning of speech. Harmonically structured vowel and con-

sonant sounds add indexical and linguistic cues in spoken in-

formation. Previous research argued whether vowel sound cues

were more important in carrying the emotional context from

a psychological and linguistic point of view. Other research

also claimed that emotion information could exist in small over-

lapping acoustic cues. However, these claims are not corrob-

orated in computational speech emotion recognition systems.

In this research, a convolution-based model and a long-short-

term memory-based model, both using attention, are applied to

investigate these theories of speech emotion on computational

models. The role of acoustic context and word importance is

demonstrated for the task of speech emotion recognition. The

IEMOCAP corpus is evaluated by the proposed models, and

80.1% unweighted accuracy is achieved on pure acoustic data

which is higher than current state-of-the-art models on this task.

The phones and words are mapped to the attention vectors and

it is seen that the vowel sounds are more important for defining

emotion acoustic cues than the consonants, and the model can

assign word importance based on acoustic context.

Index Terms: speech emotion recognition, speech emotion in-

telligibility, computational paralinguistics

1. Introduction

The aim of speech emotion recognition (SER) is to automati-

cally detect human emotions from spoken audio [1, 2] and re-

search in vocal expression recognition of emotion is interdisci-

plinary. There have been several reviews in the field [3, 4, 5, 6]

and previous research in psychology has attempted to represent

emotions using different models, such as Plutchik’s wheel of

emotion [7] or the hourglass of emotions [8]. The ground truth

is hugely dependant on the listeners who associate the acoustic

cue patterns with discrete emotion states. However, emotions

are complex as they cannot be clearly defined, which makes it

difficult to detect them accurately. Two major questions arise

about these acoustic cues. The first is concerning acoustic el-

ements in the cues and the second investigates the length and

boundaries of the cues.

The most fundamental distinction that can be made in

speech sounds is between vowels and consonants [9, 10]. These

sounds also carry socio-linguistic information, and previous re-

search on phonetics and psychology argue whether vowel or

consonant sounds are more dominant in determining the un-

derlying emotion. Previous research suggests that consonants

play a more vital role in delivering socio-linguistics informa-

tion. However, most of the recent research shows that vowels

play the vital role [11, 12]. Vowels have higher variation in for-

mant structures, allowing them to be more enriching in acoustic

context [9]. These claims have not been corroborated in compu-

tational speech emotion recognition systems, and it is not typi-

cal for current deep neural models to be interpreted with speech

emotion data in this way.

On the contrary, from a computational point of view SER

tasks require a front-end for extracting features that hold max-

imum correlation with emotion attributes while being robust to

changes in time, frequency, speaker, medium and other exter-

nal distortions. SER systems train a classifier or a group of

classifiers to map speech data to a categorical distribution of

different emotions. In practice, the most popular features are

Opensmile [13], eGeMaps [14], MFCCs [15] and filterbanks

[16]. These features are used with different classifiers such as

hidden Markov models (HMMs) [17], support vector machines

(SVMs) [18], deep belief networks (DBNs) [19] and deep neu-

ral networks (DNNs). DNNs learn task-specific abstract feature

representations by filtering out unnecessary information and im-

proving generalisation [20, 21, 22]. Research has proposed rep-

resentation learning by modelling mid to long-term sequence

dependencies [23, 24, 25].

Most recently, [26] presented a domain adversarial system

for investigating whether information in acted datasets can be

learnt to benefit emotion prediction for natural datasets. The

work aimed to be consistent by only considering datasets with

adult English speakers with the big-six emotions: happiness,

sadness, anger, surprise, disgust and fear. The method ap-

plies a bi-directional long short-term memory (BLSTM) with

an attention layer and trains in a domain adversarial fashion.

It uses sequence modelling, which is arguably more appropri-

ate for use with emotions that change over time. Alternatively,

[27] presented a convolution-based self-attention (CSA) model

for speech emotion recognition with fixed-length context sizes.

Both the models achieved very high accuracy compared to the

current state-of-the-art models.

In this work, two computational SER models based on our

previous work [26, 27] have been interpreted in light of the pro-

posed phonetic, linguistic and psychological claims about the

acoustics cues for speech emotion recognition in humans. It

is shown that the attention weights in the proposed networks

are hugely inclined to the vowel sounds, and it imposes word

importance based on preceding/following acoustic context and

prosody. It is also shown that smaller acoustic contexts are vital

in carrying emotions as previously hypothesised.

2. Consonant-Vowel Boundaries and
Perception

Traditionally, it was observed that consonant sounds carry the

more important speech information until recent studies ques-

tioned this claim [11, 12, 28]. Cole et al. [11] and Fogerty

et al. [12] have found that among humans, vowel-only seg-

ments have higher intelligibility at sentence level stimuli than
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consonant-only segments. Owren et al. [29] performed a simi-

lar experiment on word-level stimuli which mostly agrees with

[11], that meaning is more comprehensible to listeners with

vowels. Furthermore, [29] adds that vowel phones at the be-

ginning of a word constitute to improved understanding for lis-

teners, but consonant cues add more acoustic context for mean-

ing. In sentences, vowels occur 10% less than consonants [30]

but the vowel proportions yield the maximum intelligibility in a

sentence.

It is a fact that the acoustic cues for sentence intelligibil-

ity are distributed across consonant-vowel boundaries [12]. The

perceptual cues associated with the acoustics in terms of vowels

and consonants interact with each other to build an acoustic-

phonetic context for speech perception [31, 32]. So, these

small overlapping cues also hold some portion of perceptual

and socio-linguistic information though it is not clear whether

these types of acoustic cues can be useful for computational

SER tasks.

The role of vowels in perceiving socio-linguistic informa-

tion and emotion can also be explained with the different har-

monic structures of vowels [9]. These different harmonic vari-

ations in long periods of time constitute prosody which plays

a vital role in delivering emotion. Warama et al. [33] used

short vowel samples (150 ms) to remove the prosody effect of

vowels and showed that it is possible to perceive emotion from

shorter utterances. This implies SER systems could be trained

on shorter segments or parts of longer utterances.

3. DNN Approaches

To investigate the attention on the phones and the importance

of short segments in regards to SER, two audio-only state-

of-the-art approaches proposed in SER are considered. The

first is based on sequence modelling and is trained using a bi-

directional long short-term memory network (BLSTM) [26],

and the second is trained using convolutional neural networks

(CNNs) [27] and is not a sequence model. The BLSTM model

has been used to investigate the attention put on phones with

sentence-level sample. The CNN based model is used to inves-

tigate the importance of the short overlapping acoustic cues for

SER.

3.1. BLSTM with attention (BLSTMATT)

This approach applies a BLSTM followed by an attention layer

and has been described in detail in [26]. LSTM networks ig-

nore the future context and rely on the temporal order of the

sequence, whereas BLSTMs [34] introduce a second layer of

hidden connections which flows in the opposite temporal direc-

tion as a way to exploit the contextual information from the past

and the future [35]. Applying these networks, a temporal fea-

ture distribution over the sequence can be obtained, which is

useful for SER tasks.

Attention has the flexibility of computing long-term inter-

sequence dependencies. By computing the global mean, the

attention mechanism focuses the network onto specific parts

of itself which in turn captures global information. The non-

linearity tanh is used to multiply the global mean over the

whole temporal vector which computes the positional depen-

dency of each element. The resulting vector is used to com-

pute the attention weights using softmax. The soft attention

mechanism is also adopted for this work and the multiplicative

method is applied as in [36].

Finally, the classifier stage of the network contains a

fully connected linear layer which projects the attention out-
put down to the number of emotions present. It passes through

a softmax layer before computing the loss.

3.2. Convolutional Self-Attention (CSA)

The approach in [37] extracts a spatial feature y using a CNN

and performs task-specific high dimensional feature expansion

using a self-attention network, which is projected to the original

feature dimension. The new feature ŷ will be

ŷ = y + γ(A) (1)

where the learnable parameter γ controls the degree of projec-

tion and A is the attention map.

Convolution layers with smaller kernel sizes (2-6) have

been applied. The features from previous CNN layers, y, are

transformed into seven feature spaces in Eq. 2 and Eq. 4.

j (y) = Wj (y) k (y) = Wk (y) (2)

where j and k are feature spaces learned through the convolu-

tional layers Wj and Wk. The positional relationship between

the elements in j and k are calculated. This is followed by cal-

culating the attention energy, E.

E = softmax
(

j (y)T k (y)
)

(3)

The attention energy is projected onto a common representation

space l.

l (y) = Wl (y) (4)

where Wl is a convolutional layer and the network weights are

learned through back-propagation. Each of these projections,

except l, performs downsampling of the input feature maps.

The attention map, A, is calculated by performing matrix

multiplication as shown in Eq. 5 and the attention is projected

into the same dimension as the original feature, y. The projec-

tion is controlled using γ.

A = γ · (l (y) · E) (5)

This network learns the non-local dependencies as well as the

local neighbourhood using the convolution self-attention.

4. Experimental Setup

4.1. Data

The IEMOCAP [38] dataset has been used for evaluation. The

corpus comprises over 12 hours of utterances from 10 speak-

ers (5 male and 5 female) [38]. It has five dyadic (between

two speakers) sessions, and the sessions are either scripted or

improvised for eliciting emotions. The spoken English has a

North American accent and in previous research it is common

for IEMOCAP to be evaluated as four classes only: happy

(happy is combined with excitement to give 1545 segments),

sad (1084 segments), anger (1103 segments) and neutral (1708

segments). The utterances are split into a train set of 4290 (Ses-

sions 1-4) and a test set of 1241 (Session 5) and referred to as

IEM4 in this paper and in [26].

4.2. Features

Experiments in [26] showed how the BLSTMATT system per-

formed best in terms of unweighted and weighted accuracy with

23-dimensional log-Mel filterbank features which are applied to

the CSA system as well.
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4.3. Implementation

The two systems are implemented in PyTorch [39]. The BLST-

MATT performs segment-level classification and the CSA per-

forms frame-level classification. The Adam optimiser [40]

is applied to the two models with the initial learning rate of

0.0001. As Adam adaptively optimises the learning rate but

does not change it, the PyTorch approach of ReduceLROn-

Plateau has been investigated. The optimum patience setting

is found to be 4 epochs with a multiplicative factor of 0.8. Sys-

tem combination is also explored to investigate whether these

models have a complementary relationship for SER.

4.3.1. Segment Level

The BLSTMATT contains two hidden layers of 512 nodes each.

The output layer of size 1024 is fed into the attention mecha-

nism computing a context vector of size 128, which is projected

to 1024 nodes. This is then passed to the emotion classifier

which linearly projects to the 4 classes. The cross-entropy loss

function is applied, which is preceded by a softmax layer in

the PyTorch implementation. The BLSTMATT produces a vari-

able length attention vector based on the input segment length,

as mentioned in section 3.1. To interpret the acoustic attention,

the attention vectors have been extracted and mapped with the

phones in the input segments.

4.3.2. Frame Level

The CSA consists of three CNN blocks, each block has batch

normalisation and rectified linear unit (ReLU) activation. These

layers produce 128 channel feature maps which are fused in a

convolutional self-attention layer where the number of channels

are downsampled. The contextually enhanced output features

from the attention layer are given as input to the classifier which

linearly projects to the 4 classes.

To investigate the acoustic context length, the utterances are

split into chunks with an overlap of 10 frames. The utterances

which are less than the context length are not included in the

training or test sets. The size of the chunks is varied from 20 to

120 frames.

4.4. Evaluation

Unweighted accuracy (UA) and the weighted accuracy (WA)

are used to evaluate the results. The UA calculates accuracy in

terms of the total correct predictions divided by total samples,

which gives equal weight to each class. As IEM4 is imbalanced

across the emotion classes, the WA is calculated as well, which

weighs each class according to the number of samples in that

class:

UA =
TP + TN

P +N
, WA =

1

2
(
TP

P
+

TN

N
) (6)

where P is the number of correct positive instances (equivalent

to TP+FN ) and N is the number of correct negative instances

(equivalent to TN + FP ).

4.5. Baseline

The results are directly compared with other SER systems

which also use the IEM4 dataset and process only audio. For

WA, [41] applies factor analysis in a cross-lingual approach.

For UA, in [42] a CNN-LSTM model is trained, [24] applies

a deep capsule network with gated recurrent units (GRU) for

sequence modelling, [43] used deep attention pooling for SER

System Context UA% WA%

Factor analysis [41] - - 56.1
CNN LSTM [42] - 59.4 -
CNN RecCap [24] - 58.1 -
CNN GRU-SeqCap [24] - 59.7 -
Attention Pool [43] - 71.8 -
MULTIMODAL: Attention [44] - 78.0 -

BLSTMATT Variable 80.1 73.5

CSA

20 75.8 69.4
30 76.3 68.8
40 75.1 68.0
50 73.9 67.8
60 75.1 67.0
70 74.1 64.7
80 73.2 67.4
90 74.8 66.9
100 74.6 65.9
110 73.8 67.5
120 72.2 64.2

SYSCOMB: BLSTMATT with CSA V./30 80.5 74.0

Table 1: Results for both model architectures and system com-

bination compared to baseline results on IEM4 data.

tasks and [43] applies attention pooling. Finally, a multimodal

system which is also attention-based and processes both audio

and textual data [44] is included to show the performance the

presented audio-only systems could achieve.

5. Results and Discussion

The experimental results are shown in Table 1. The BLSTMATT

system is trained and tested with whole segments from the cor-

pus. Naturally, the context length for BLSTMATT is variable

because the segment lengths are not fixed in IEMOCAP. On the

contrary, the CSA system is trained with fixed-length samples.

The BLSTMATT system outperforms the baselines in terms

of UA and WA on IEM4. It even outperforms the multimodal

system which makes use of textual information as well as au-

dio, which the two presented models do not use. The BLST-

MATT system outperforms the CSA model by 2.7% absolute

difference. One of the possible reasons is that the BLSTMATT

is trained with the whole segment, taking in all the informa-

tion possible. Typically, in emotion recognition corpora a whole

segment is labelled as one emotion category. However, all the

smaller acoustic cues from the segment don’t necessarily belong

to the same emotion category because emotions are dynamic en-

tities and can change momentarily. This segment issue has been

discussed later.

The CSA system outperforms the best baselines in terms of

UA and WA. However, unlike the BLSTMATT, it does not out-

perform the multimodal [44] baseline. When comparing the

context lengths, CSA shows better performance with smaller

context lengths, and the best result of UA 76.3% comes with

context length of 30. This result does not mean that acoustic

length 30 is the optimal acoustic cue length because this par-

ticular result is based on the model architecture. However, it

can be clearly said that the smaller acoustic cues hold socio-

linguistic emotion information as previously claimed by the

cognitive studies.

The two best system outputs (BLSTMATT and CSA with

context length 30) can be combined to investigate whether a

gain can be achieved from the different training methods. With

the CSA output posterior probabilities scaled by a factor of

0.4 and then multiplied by the posterior probabilities from the

BLSTMATT gives a gain of 0.4% UA and 0.5% WA. This shows

both systems learn the emotion classes in different ways, lead-

ing to overall improved performance when combining system
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Figure 1: Acoustic attention weights on four different segments from left to right (a) Neutral: “Hi, I need an ID”, (b) Sad: “I don’t

know”, (c) Sad: “I know” and (d) Happy: “I know, me neither”

outputs.

Further remarks in regard to emotion classifcation for the

SER task, the trained neural network classifiers map the in-

put sample to a categorical distribution. Therefore, the output

of the supervised DNN SER classifiers is based on the ground

truth provided by the annotators. It is likely that some emotions

are redundant and challenging to infer based on the different

voiced emotion portrayals across cultures. Also, perceptual dif-

ferences can clearly be seen among the manual annotators of

ground truth in IEMOCAP. Speech emotion is a continuous and

dynamic process, and it is not logical to consider an emotion

state over a long segment. So, using small overlapping acoustic

cues for determining emotion state would be a pragmatic future

path.

5.1. Attention to acoustic cues

For the BLSTMATT system, the attention weights for each test

segment can be extracted and plotted against the aligned seg-

ment. These plots are shown in Figure 1. The phones are

mapped to the attention vectors to show the relative positions

of the attention weights compared to the phones and words.

The segments displayed have some common words, but each

segment falls under a different emotion category. Common

words have been investigated from different emotion categories

to demonstrate the word importance weights given by the atten-

tion vectors.

Firstly, it can be seen that the attention weights are higher

and prominent near the vowel phones, which implies the vowels

are incredibly significant for speech emotions. There is a strong

correlation seen between vowels and high attention weights.

The attention weights on the consonant phones are not high,

but they are not negligible. The attention vector projections on

consonants are dependent on the vowel cues, and they constitute

consonant-vowel boundaries in the context of emotion. These

figures show similarity with the hypotheses and the claims about

vowels and emotions from phonetics, psychology and linguistic

studies mentioned in Section 2.

Secondly, the model gives an idea about the word impor-

tance in determining an emotion class. Here word is used from

an acoustic point of view as the BLSTMATT model has not

been trained with any language model. For example, the word

“know” has three different representations over three different

emotion categories. One possible reason can be that the pre-

ceding/following acoustic cue provides context information for

a given region. The other reason lies with the role of prosody.

The “I know” segment from both sad, Fig. 1c, and happy, Fig.

1d, categories has different representations, suggesting a strong

relationship between the word importance and prosody for de-

ciding emotion category. The attention on the phone “ay” across

different segments and emotions shows the prosodic variation of

the phone can constitute to different emotions.

6. Conclusions

Two contrasting systems are presented and evaluated on the

commonly used IEM4 dataset, which contains elicited emo-

tions. In this research, the contribution is two-fold. Primar-

ily, in this work, a novel empirical bridge between the cog-

nitive, phonetic theories and the computational models have

been demonstrated by interpreting the deep neural models over

acoustic speech emotion data. The attention vectors are inter-

preted by mapping them in the plots with the phones and sen-

tences. Secondly, the relevance of acoustic context information

is investigated, and it has been shown that even smaller acous-

tic cues hold emotion information. The paper also argues about

the way speech emotion segments are labelled across long seg-

ments. The exact temporal limitations of this phenomenon are

not clear. Future research is necessary to investigate that.
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