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Theoretical rheo-physics of silk: Intermolecular associations reduce the critical1

specific work for flow-induced crystallisation2

Charley Schaefer1, a) and Tom C. B. McLeish13

Department of Physics, University of York, Heslington, York, YO10 5DD,4

UK5

(Dated: 18 February 2022)6

Silk is a semi-dilute solution of randomly coiled associating polypeptide chains that

crystallise following the stretch-induced disruption, in the strong extensional flow of

extrusion, of the solvation shell around their amino acids. We propose that natu-

ral silk spinning exploits both the exponentially-broad stretch-distribution generated

by associating polymers in extensional flow and the criterion of a critical concen-

tration of sufficiently-stretched chains to nucleate flow-induced crystallisation. To

investigate the specific-energy input needed to reach this criterion in start-up flow,

we have coupled a model for the Brownian dynamics of a bead-spring-type chain,

whose beads represent coarse-grained Gaussian chain segments, to the stochastic,

strain-dependent binding and unbinding of their associations. We have interpreted

the simulations with the aid of analytic calculations on simpler, tractable models with

the same essential physical features. Our simulations indicate that the associations

hamper chain alignment in the initial slow flow, but, on the other hand, facilitate

chain stretching at low specific work at later, high rates. We identify a minimum in

the critical specific work at a strain rate just above the stretch transition (i.e, where

the mean stretch diverges), which we explain in terms of analytical solutions of a two-

state master equation. We further discuss how the silkworm appears to exploit the

chemical tunability of the associations to optimise chain alignment and stretching

in different locations along the spinning duct: this delicate mechanism also high-

lights the potential biomimetic industrial benefits of chemically tunable processing

of synthetic association polymers.

a)Electronic mail: charley.schaefer@york.ac.uk
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I. INTRODUCTION7

The manufacturing of both natural and artificial polymer-based fibres relies on flow-8

induced crystallisation in non-linear rheological conditions1–6. The energy input required by9

this process may be significantly reduced in natural silk-spinning, though the mechanism by10

which this efficiency is achieved has been far from clear7. There is evidence, however, that11

locally-tailored macromolecular interactions are involved8–11: The silk protein, of which12

the conformation in solution closely resembles a random coil12, self-assembles in flow in13

aqueous conditions under energy requirements orders of magnitude lower than its synthetic14

counterparts7. It has been hypothesised that flow-induced stretching of the chain disrupts a15

solvation layer and in turn enables crystallisation to commence7,13,14. This mechanism was16

supported by molecular dynamics simulations15–18, and was employed to induce crystallisa-17

tion of synthetic poly-ethylene oxide by flow at similarly low energetic requirements as silk,18

however, at much higher molecular weight and/or strain rates13. The low-energy mecha-19

nism for natural silk-spinning therefore remains to be identified. Clues may be present in20

the subtle electrostatically-modified rheo-physics of associating polymers19–28.21

We previously found, in collaboration with Laity and Holland, that the silk protein ex-22

hibits calcium bridges that act as intermolecular reversible cross-links8,9. Such associations,23

sometimes referred to as ‘stickers’ that can be in a bound/closed or unbound/open state19,24

shift the alignment-to-stretch transition to smaller strain rates by replacing the usual Rouse25

relaxation dynamics for ‘sticky Rouse’ relaxation19–28. Inspired by these observations, we26

envision a mechanism of flow-induced crystallisation where the reversible network is ini-27

tially equilibrated (in stark contrast to the typical mechanism for the sol-gel transition of28

associating polymers, where shear flow breaks metastable intramolecular associations, and29

facilitates the formation of an intermolecular network29–31). In our case, strong flow stretches30

the ‘bridging’ strands between the stickers32,33. This stretch in turn aligns the strands at31

the scale of the Kuhn segments (which in water-soluble systems may disrupt the solva-32

tion layer7,13), so nucleating crystals as structural elements within (silk) fibres. It will turn33

out that such a picture contains within it a mechanism for the super-efficiency of natural34

silk-spinning through a surprisingly strong heterogeneity in the chain stretch distribution.35

While this mechanism seems plausible, it is not evident how this process may be controlled36

and/or optimised by the number of stickers per chain and by their lifetime. Intriguingly,37
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however, it has been observed that the Bombyx mori silkworm tunes the sticker lifetime, and38

hence the (non-)linear rheology, before and during spinning through local chemical control39

variables. Prior to pupation, i.e., when the silkworm is not required to spin a cocoon, the40

silk is stored in the gland at high viscosity using long sticker lifetimes8,9. When pupation41

commences, potassium cations are added to decrease of the sticker lifetime and reduce the42

viscosity8,9.43

We firstly hypothesise, as schematically indicated in Fig. 1, that the decrease of the44

sticker lifetime decreases the specific work needed to align the chains in the direction of the45

flow field well upstream from the spinnerette. The group of Holland also discovered that46

the structural features of the silk fibre are significantly enhanced through a gradient in the47

pH along the spinning duct, suggesting an exquisitely controlled local rheology34. While48

lower pH may induce partial folding of the protein12, it is also expected to enhance the49

lifetime of the stickers. Crucially, inspired by our previous finding that broad conformational50

distributions emerge due to the stochastic nature of binding and unbinding stickers10,11, we51

therefore hypothesise secondly that crystallisation may be initiated by reaching a critical52

concentration of highly stretched chain segments. This would require significantly less energy53

input than for stretching the entire population of chain segments.54

To theoretically investigate this hypothesis, we focus our attention on the flow-induced55

preparation of the conditions for crystallisation (rather than crystallisation itself). We are56

in particular interested in the specific critical work57

W (ts) =

∫ ts

0

σ
.. κdt, (1)

required to induce flow-induced crystallisation after a period time ts during which the system58

is subjected to the (experimentally controllable) transpose of the (local) velocity-gradient59

tensor κ = ∇vT, and the (local) stress response σ. The integral is taken in the (local)60

Lagrangian co-moving frame of a fluid element. In experimental works (see Ref. 35–3761

and citations therein), the shear rate and duration ts render the specific work a control62

variable (W ≈ σxyγ̇ts) that controls the number of nuclei generated in the system. As the63

efficiency to converse the energy input into nucleation events is rather limited (estimated64

≈ 1%37), it is worth investigating how the energy loss may be reduced, e.g., by making use65

of intermolecular associations.66

Clearly, the formation of nuclei must be controlled by the underlying molecular con-67

3

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.11

22
/8.

00
00

41
1



high pH 

Hypothesis: chemically tunable flow processing

low pH: associations 
faciliate segmental stretching

low pH 

high pH: dissociation 
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potentials. At this level of computational detail, sticker dissociation may occur following81

attempts to escape the attractive potential through molecular vibrations46,47. These MD82

simulations are, however, computationally very demanding, as the dissociation events are83

quite rare. However, because of this rarity of events, the local equilibration of the chains84

enables a much simpler description of the chain dynamics in terms of the fraction of closed85

stickers, p and their lifetime, τs
19: In a coarse-grained picture, this sticker lifetime is an86

elementary rather than an emergent timescale. This allows a description of the problem in87

terms of the dynamics of a single chain in a crowded environment10,11,48–50, an approach sim-88

ilar to the modelling of entangled polymers through slip-link and slip-spring models45,48,51–56,89

where the generation and destruction of entanglements are modelled as elementary processes.90

While there is no unique way of formulating a coarse-grained single-chain model57, all91

variants of bead-spring, slip-link and slip-spring models can be written in the general form92

ζi
∂Ri

∂t
= Fintra,i + Fthermal,i + Fflow,i + Fnetwork,i, (2)

where i is a chain segment at position Ri that is thermally equilibrated at the relevant93

time scales58. We will refer to this chain segment as a ‘node’ of an elastic network, which94

may represent a non-sticky segment of a chain (a purely frictional ‘bead’), a segment with95

a reversible association (a ‘sticker’), or it may be an entangled segment (a ‘slip-link’ or a96

‘slip-spring’). Which of these representations is invoked manifests itself in the definition97

of the friction coefficient, ζi, the (friction-dependent) thermal forces, Fthermal,i, and the98

network forces, Fnetwork,i. For instance, in classes of models where nodes move affinely with99

the flow field, the network force exactly cancels the sum of the (conformation-dependent)100

intramolecular force and the thermal force, Fnetwork,i = −Fintra,i − Fthermal,i. This ‘rigid-101

network approximation’ is tacitly invoked in the slip-link model by Hua and Schieber54102

and in our recently published model for sticky-polymers in a rigid network10,11. Within103

Likhtman’s slip-spring model, the slip-spring may diffuse within a potential energy landscape104

that represents the elastic compliance of the entangled network55. In the present work, we105

will account for the compliance experienced by the stickers in a reversible network.106

In the following, in Section IIA we present the usual intramolecular, thermal and drag107

forces that act on single chains. To capture how the stickers modify the intermolecular108

forces (i.e., the ‘elastic compliance’ of the surrounding network) and the segmental drag,109

we present a non-spatially-explicit multi-chain approach. In Section II B, we present a110
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two-state master equation that generates analytical predictions of the impact of sticker111

opening and closing on both the steady-state and transient stretch distributions of the chains,112

which enables us to interpret our simulated data in Section III. By first mapping the results113

in the linear flow regime to the analytic sticky-reptation (SR) model, in Section IIIA we114

discuss how the stochastic nature of sticker opening and closing and the elastic compliance115

affects the linear rheological data. Then, in Section III B we show how a broad steady-116

state distribution of chain conformations emerges in strongly non-linear flows of shear and117

extension. By simulating the transient emergence of these distributions in start-up flow in118

Section III C, we show that the stickers initially hamper the collective alignments of the119

chains in mildly non-linear aligning flows, but facilitates the emergence of stretched outliers.120

In Section IIID we discuss how these outliers may reduce the critical specific work for flow-121

induced crystallisation. In the discussion and conclusions of Section IV we use our findings to122

interpret the experimental observations of silk spinning, and argue that the chemical tuning123

of associations is indeed a promising mechanism to control the flow-induced crystallisation124

of artificial materials.125

II. MODEL AND THEORY126

A. Brownian dynamics of Sticky Polymers in Flow127

In this section we will present a coarse-grained description of associating polymers, where128

the dynamics of sticker opening and closing will depend on the number of open and closed129

stickers in a non-spatially-explicit collection of chains. Any linear polymer that consists of130

N monomers may be discretised using a number of nodes, Nnodes, see Fig. 2. We use the131

wording ‘node’ to emphasise that the node may not just represent a traditional, frictional132

bead of a bead-spring model, but may also represent a sticker that can be in an open or133

closed state, or a slip-link or slip-spring (which, unlike traditional beads, may fluctuate in134

numbers). Each node i is located at a spatial coordinate Ri relative to the centre of mass135

of the chain. The strand between neighbouring nodes i and i + 1 has an end-to-end vector136

Q = Ri+1−Ri and contains a fraction ∆si = Ns,i/(N +1) of all the monomers in the chain.137
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FIG. 2. The theory in Section IIA applies to sticky entangled poymers that are parameterised

using the locations of M nodes. Each node may be a bead (green disk), a sliplink/entanglement

(blue ellipses), a closed sticker (orange disk), or an open sticker (orange circles). All nodes are

assigned a friction ζi that depends on the fraction of monomers of the chain, ∆si, that reside in

each of the M +1 substrands, see Eq. (3). In general, the number of beads and entanglements may

fluctuate during a simulation. In the present work, we focus on the physics of the stickers and fix

the number of beads and do not include any entanglements.

At this level of coarse-graining, the friction of each node is given by138

ζi = Nζ0







∆si−1 +∆si/2, for i = 1

(∆si−1 +∆si)/2, for 1 < i < Nnodes

∆si−1/2 + ∆si, for i = Nnodes

, (3)

with ζ0 the monomeric friction. The assumption that the dangling chain ends are relaxed139

may be released by explicitly modelling the position of the chain ends and setting ∆si ≡ 0140

at i = 0 and at i = Nnodes
59.141

The equilibrium structure of the chain in quiescent conditions is determined by the end-142

to-end distance of the substrands, |Qi| = λb(∆siN)1/2, where the stretch ratio λ obeys the143

equilibrium distribution144

P (λ) = 4πλ2 (2π/3)−3/2 exp

(

−3λ2

2

)

. (4)

This distribution emerges as a consequence of the intramolecular and thermal forces in145

Eq. (2).146
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In order to derive the intramolecular spring forces, we consider the spring force of the147

entire chain of N monomers with a mean stretch ratio of unity148

F strand
intra =

3kBT

bN1/2
ks(λ;λmax)(1− λ), (5)

where149

ks(λ;λmax) =
(3λ2

max − λ2)/(λ2
max − λ2)

(3λ2
max − 1)/(λ2

max − 1)
. (6)

approximately captures the anharmonicity of the spring force due to the finite extensibility150

of the substrand60. For the substrands i the harmonic spring force is larger than that of the151

full chain, and the maximum stretch ratio is smaller. This is captured by the renormalisation152

Fintra 7→ Fintra,i, N 7→ ∆siN , and λmax 7→ ∆s
1/2
i λmax ≡ λmax,i. The direction of the force153

exerted by spring i on node i is Qi/|Qi|, while the direction of this force acted upon node154

i+ 1 is −Qi/|Qi|. Hence, the net intramolecular force exerted on node i is155

Fintra,i = F strand
intra,i−1

Qi−1

|Qi−1|
− F strand

intra,i

Qi

|Qi|
(7)

The thermal force is given by the equipartition theorem

〈Fthermal,i(t)〉 = 0; (8)

〈Fthermal,i,α(t)Fthermal,i,β(t
′)〉 = 0, forα 6= β (9)

〈Fthermal,i,α(t)Fthermal,i,β(t
′)〉 = 2kBTζiδ(i

′ − i)δ(t′ − t), forα = β (10)

with α, β = x, y, z the Cartesian coordinates and kBT the thermal energy.156

The force acted upon the nodes by flow is, provided that our coordinate system moves157

with the flow field, given by158

Fflow,i ≡ ζi
∂Ri

∂t

∣
∣
∣
∣
flow

= ζiκ ·Ri, (11)

where κ is the transpose of the velocity-gradient tensor, which in extension and shear is159

given by160

κ =
1

2








2ε̇ 0 0

0 −ε̇ 0

0 0 −ε̇








, and κ =








0 γ̇ 0

0 0 0

0 0 0








, (12)

respectively. As the coordinate system moves with the flow field, the spatial quantities of161

physical interest to calculate are the deformation of the individual substrands162

∂Qi

∂t

∣
∣
∣
∣
flow

= κ ·Qi, (13)

8
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using which we recursively obtain the drift of the nodes as163

∂Ri+1

∂t

∣
∣
∣
∣
flow

=
∂Qi

∂t

∣
∣
∣
∣
flow

+
∂Ri

∂t

∣
∣
∣
∣
flow

. (14)

The value of the first entry, ∂R1/∂t is adjusted to fix the centre of mass of the chain (this164

assumes that the centre of mass moves affinely with the flow field).165

The dynamics of the chain conformation depends on the state of the stickers through the166

network force, which in turn depends on the dynamics of sticker opening and closing and167

so, finally, on the chain conformation itself. In particular, when chain segments are highly168

stretched, the network forces may cause the stickers to dissociate. To obtain these forces we169

simulate multiple chains and track the collection of open and closed stickers. When sticker170

i from chain A and sticker j from chain B are closed to form a pair, the friction coefficient,171

the thermal force, and the network force are modified until the sticker pair opens again. The172

friction coefficient of both nodes becomes ζAi + ζBj , where ζAi and ζBj are given by Eq. (3),173

and the thermal forces are given by the equipartition theorem Eq. (10) as before, but with174

this modified friction coefficient. The network forces are now given by175

FA
network,i = FB

intra,j, and by FB
network,j = FA

intra,i. (15)

Hence, the paired stickers i and j have an identical friction coefficient and experience the176

same net force FA
intra,i + FB

intra,j + FA
thermal,i (where FA

thermal,i = FB
thermal,j). Crucially to forced177

sticker dissociation, the net force that acts on the closed sticker pair is178

Fstic = |FA
intra,i − FB

intra,j|, (16)

which we assume, as in other cases of forces temporary unbinding, lowers the activation179

energy for sticker dissociation as180

Eact = E0
act − ℓFstic (17)

with E0
act the activation energy in quiescent conditions and ℓ the typical length scale as-181

sociated with sticker dissociation11. We remark that the (apparent) activation energy ob-182

tained from experiments using the Arrhenius-type equation24 τs = ν−1 exp(Eact/kBT ), for183

the sticker lifetime with ν an attempt frequency, may be much larger than this activation184

energy for dissociation. This is due to fast sticker recombination processes9,61 or due to the185

mixing of various mechanisms of sticker opening and closing, such as bondswapping11,62.186
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For now, we assume a well-defined pairwise association-dissociation reaction whose equi-187

librium condition is described by the detailed balance p/(1−p)2 = K0 exp(−ℓ0Fstic), with K0188

the equilibrium constant in the absence of any chain tension. Here, the free energy ℓ0Fstic > 0189

captures the shift in detailed balance (i.e., the fraction of closed stickers decreases with an190

increasing chain tension), while ℓFstic in Eq. (17) modifies the rate by which the equilibrium191

is reached. Indeed, in terms of transition state theory, we may write the opening and closing192

rates as kopen = ν exp([θℓ0Fstic−E0
act]/kBT ) and kclose = νK0 exp(−[(1−θ)ℓ0Fstic+E0

act]/kBT ),193

respectively, where ℓ ≡ θℓ0, and where θ ∈ [0, 1] is the so-called Brønsted-Evans-Polanyi194

coefficient63. While its value may be determined using experiments or atomistic simula-195

tions, we know that θ must be larger than zero in order to capture strain-induced sticker196

dissociation29–33. We argue that the rheological physics of a reversible polymer network does197

not necessitate exact knowledge of θ: When a sticker opens, it may freely diffuse and find198

conditions to bind to another sticker that is not subject to the influence of strongly stretched199

chain segments: association will typically take place in conditions where the activation bar-200

rier is equal to that in quiescent conditions. Indeed, in our simulations we find that the201

mean fraction of open stickers in conditions of strong flow remains similar to the fraction in202

quiescent conditions, despite noticable acceleration of sticker dissociation.203

These arguments have enabled us to conveniently set ℓ = ℓ0 and θ = 1; the latter avoids204

the need for on-the-fly calculations of association rates during our simulation. We have205

implemented the opening and closing of stickers using a kinetic Monte Carlo (kMC; also206

known as a Discrete Event Simulation) scheme, where after a time interval ∆t a sticker is207

opened or closed with a probability (1− exp[−kopen∆t]) or (1− exp[−kclose∆t]), respectively.208

In our simulation algorithm, shown in Fig. 3 and discussed in detail in Appendix VA, we209

take time steps during which the chain conformations are approximately fixed, and for which210

the time-independent (but conformation-dependent) rates of sticker opening and closing are211

calculated. The dynamics of the stickers is simulated during the time step using a kMC212

scheme. This essentially creates and destroys constraints in a similar way as in the slip-link213

model54, but where the constraints physically represent closed stickers instead of entangle-214

ments (hence, our approach may be generalised using appropriate kMC algorithms64–66 to215

go beyond the unentangled chains with pairwise association and dissociation of stickers fo-216

cussed on in the present work, and also capture entanglements, stickers that dimerise through217

bondswapping, and stickers that may assemble into larger aggregates). After this step of218
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‘constraint-dynamics’ the Brownian dynamics are solved, the conformations are updated,219

and the next time step is commenced.220

FIG. 3. Flow chart of the algorithm to simulate the conformational dynamics of sticky polymers

and the dynamics of sticker association and dissociation (detailed discussion: see Appendix VA).

B. Approximate theory in transient extensional flow: Two-state model221

The dynamics of sticky polymers is complicated by the fact that a polymer with Zs222

stickers can be in 2Zs different states, as each individual sticker can be either open or closed.223

An instructive simple case is a chain with Zs = 2, as the chain is either completely free to224

relax when either of the stickers is open (state 1), or can only be extended by flow when225

both stickers are closed (state 0). Hence, we can accurately distinguish between an extension226

state where the polymer is unable to relax and a relaxation state where the polymer is able227

to relax. Using this ‘two-state’ description, we previously discovered that stickers give rise228

to enormous stretch fluctuations in extensional flow below the strain rate at which the mean229

stretch diverges, i.e., below the ‘stretch transition’, which are descibed by the steady-state230

power-law stretching distribution10
231

P (λ) ∝ λν , with ν < 1, and forλ ≫ 1. (18)
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It turned out that this two-state prediction, which is exact for chains with two stickers,232

also described the steady-state stretch distribution for chains with multiple stickers. In the233

present work, we recapitulate our previous analysis of the steady-state situation and extend234

it for transient start-up flow. In all of this analysis we will consider a single relaxation mode235

of the polymer at time scales beyond the relaxation time of the surrounding network; hence,236

we invoke the rigid-network approximation in this entire section.237

The starting point is to consider a chain in two states where the chain is either unable

to retract (state 0) or is free to retract (state 1). The opening rate is kopen and the closing

rate is kclose. The time development of the probability distribution of the stretch ratio is

described by10

∂P0

∂t
= − ∂

∂λ
[ε̇λP0] −kopenP0 + kcloseP1, (19)

∂P1

∂t
= − ∂

∂λ

[(

ε̇λ+
1− λ

τR

)

P1

]

+kopenP0 − kcloseP1, (20)

with τR the bare Rouse time of the chain without stickers. In this equation, we have

neglected the high-frequency relaxation modes of the polymer, as well as the (potentially

much slower) relaxation of the surrounding network; the latter is justified in view that the

network rapidly stiffens with an increasing strain. To approximate this equation analytically,

we first make the substitution y ≡ lnλ, so ∂Pi/∂λ = (1/λ)∂Pi/∂ lnλ ≡ exp(−y)∂Pi/∂y.

Similarly, ∂λPi/∂λ = Pi + ∂Pi/∂y. Inserting this into the governing equations gives

∂P0

∂t
= −ε̇

∂P0

∂y
− (ε̇+ kopen)P0 + kcloseP1, (21)

∂P1

∂t
= −

(
ε̇+ e−y − τ−1

R

) ∂P0

∂y
+kopenP0 −

(
kclose + ε̇+ e−y − τ−1

R

)
P1. (22)

The non-linear contributions can then be omitted by considering the limit of large stretches238

where their contribution to the distribution is exponentially small, i.e., we approximate239

e−y ≈ 0, which is equivalent to λ ≫ 1.240

In steady state, the left-hand side of the equation is zero and the equations can be cast in

the form dP/dy = A ·P, with P = [P0, P1]
T and A a constant 2 by 2 matrix. The solution

of this system of first-ordinary differential equations is given by10

P eq
0 = cλν , (23)

P eq
1 =

kclose
kopen

ε̇

(ε̇− τ−1
R )

P eq
0 , (24)
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with c a normalisation constant (its value can in principle be determined by releasing the241

approximation e−y ≈ 0), and with the exponent of the power-law distribution given in terms242

of physical parameters by243

ν = −1 +
kclose

(τ−1
R − ε̇)

− kopen
ε̇

= −1 +
1

(1− ε̇τR)

p

(1− p)

τR
τs

− 1

ε̇τs
. (25)

(this is one of the eigenvalues of Eq. (21) and Eq. (22); the other eigenvalue is −1 and244

is unphysical as a distribution of the form λ−1 cannot be normalised.) The value of this245

stretching exponent diverges if the bare stretch transition at ε̇τR = 1 is approached from246

small strain rates. However, because of the physics of the stickers, actual divergence already247

occurs at lower strain rates: At ε̇τR = (1−p), the exponent becomes ν = −1 and the stretch248

distribution can no longer be normalised. Depending on the sticker lifetime, at smaller249

strain rates the exponent may reach a value ν = −2 if the ‘sticky Weissenberg number’250

(1 − p)ε̇τR reaches unity; here, the mean stretch diverges. While the mean stretch is finite251

for smaller strain rates, the variance of the stretch diverges for ν ≥ −3, which happens if252

(1 − p)ε̇τR becomes larger than 1/210, at which point (considerably slower than the bare253

stretch transition) we expect a long tail of very high stretched chains to develop in the254

distribution.255

This analytic approach can be extended to predict the transient dynamics of the distri-256

bution in start-up flow. As we will show, the late-stage dynamics in which the tail of the257

distribution ‘fills up’ is independent of the initial conditions. In those late stages, the dis-258

tribution reaches a steady state for stretches below a certain ‘front’, λ∗(t) (above which the259

distribution function has a value of zero) which shifts to high stretch values over time. The260

precise number of chains with a certain stretch also depends on the width of this moving261

front. We assess analytical predictions on the front position and width using the two-state262

model using solutions in an early- and late-stage regime, where the time scale is, respec-263

tively, much shorter and much larger than the sticker lifetime. While the long-time regime264

will slow down the progression of the front due to sticker opening, in the early-stage regime265

we will obtain an upper limit of the rate by which the front moves.266

In the early-stage regime, we approximate the stretch distribution using a the Dirac-delta267

distribution (justified by the very wide long-time distribution), Pi(t = 0, λ) = ciδ(λ−λ∗(0))268

at λ∗(0), from which it can be easily seen that the distributions shift initially, when pure269

advection dominates over sticker dynamics, to higher stretches for the closed state, P0(t, λ) =270
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c0δ(λ− λ∗(0) exp[ε̇t]) and retract to smaller stretches for the open state P1(t, λ) = c1δ(λ−271

λ∗(0) exp[−(τ−1
R − ε̇)t]). This suggests that the ‘front’, λ∗(t), of any distribution with finite272

P0, shifts exponentially in time to higher values through λ∗(t) = λ∗(0) exp[ε̇t].273

To develop an analytic approximation for the long-time limiting behaviour of the sticky

polymers in start-up flow, we consider some point in time t0 ≫ τSR where sufficient stickers

have opened to facilitate chain relaxation, and assume that the stretch distribution has

reached a steady-state for small stretches λ < λ∗(t0), but is empty for larger stretch ratios.

Here, λ∗(t0) can be thought of as the establishment of the ‘front’ of the stretch distribution at

later times moving to higher stretches. In the following, we will show that the ansatz of this

moving front is indeed a good approximation for the tail of the transient stretch distribution

and that for later times t > t0, further convergence of the stretch distribution takes place in

the range of stretches λ∗(t0) < λ < λ∗(t), where the ‘front’ of the distribution shifts to high

stretch values as ln[λ∗(t)/λ∗(t0)] ∝ ε̇(t − t0). Assuming that λ∗(t0) ≫ 1, the steady-state

portion of the distribution is negligibly affected by the loss of small-stretch contributions

to the tail of the distribution (see discussion around Eq. (51) in Appendix VB), and for

any time t′ > t0 the λ < λ∗(t
′) portion of the stretch distribution becomes independent of

time beyond t > t′. The constancy of the distribution at λ∗(t0) provides a fixed-boundary

condition. Hence, this problem essentially models the dynamical response to a unit step, and

lends itself to an analysis through a Laplace transform to give a solution for the distribution

at each stretch ratio λ of the form exp(−sτ(λ))/s, which is the Laplace transform of a time-

dependent function that becomes non-zero at the time τ(λ). The inverse function λ(τ) is

then the trajectory of the ‘front’ of the distribution. In Appendix VB, we detail the Laplace

transform of Eqs. (21-22) with the boundary condition in this long-time regime, which as a

solution gives

P0(t, λ∗(t)) = c

(
λ∗(t)

λ∗(t0)

)ν

Θ(ν ′ ln[λ∗(t)/λ∗(t0)]− ε̇t) (26)

P1(t, λ∗(t)) =
kclose
kopen

ε̇

(ε̇− τ−1
R )

P0(t, λ), (27)

with ν the ‘steady-state stretch exponent’ in Eq. (25) and with274

ν ′ =

(

1− 1

1−Wi
+

1

1−Wisticky

)

(28)

the ‘dynamic stretch exponent’, which controls the growth of the front of the distribution275

14

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.11

22
/8.

00
00

41
1



as276

λ∗(t) = λ∗(t0) exp

(
ε̇(t− t0)

ν ′

)

. (29)

In this equation, Wi = ε̇τR and Wisticky = ε̇τSR are the (extensional) Weissenberg numbers277

of the chain without and with stickers, respectively; within the two-state model, τSR = (1−278

p)/kopen, see discussion under Eq. (25). Upon approaching the stretch transition Wisticky = 1279

where the mean stretch diverges, ν ′ ≈ 0 indicates ‘critical slowing down’, as the (late-280

stage) front of the distribution becomes immobile. For chains with strong stickers (1 −281

p)τs ≫ τR at the strain rate Wisticky = 1/2 where the variance of the stretch diverges (see282

discussion under Eq. (25)), we find ν ′ ≈ 2, which indicates that the late-stage measure283

of the front is shifted from the early-stage measure for the outliers by a factor 2. We284

have also checked that the moving front is narrow for small strain rates Wisticky < 1/2.285

In Appendix VB, we provide more analytical analysis of the two-state model to estimate286

the width of the front (relative to its extent) as ∆rel ∝
√

pWiWisticky/(1−Wisticky), where287

∆rel ≈ (∂[P (λ, t)/Peq(λ,∞)]/∂ lnλ)−1 / lnλ. As we show in Appendix VB, typically this288

width is ∆rel ≪ 1, and the front of the distribution is narrow even close to the stretch289

transition.290

III. RESULTS291

A. Linear dynamics292

We have verified the physics of our model in the linear viscoelastic regime by first sim-293

ulating non-sticky chains of fixed length but a varying number of beads from M = 4 to 64294

(the beads are regularly along the backbone of the polymer, so ∆si = 1/(M + 1) for all i).295

Fig. 4 shows that the choice of the number of beads has a negligible influence on the time296

evolution of the mean-square displacement, MSD, of the centre of mass and is in all cases297

in agreement with the theoretical prediction298

MSD = 6Dt, (30)

where the diffusivity, D, is for non-sticky polymers given by the bare Rouse diffusivity299

DR =
1

3π2

〈Re〉2
τR

. (31)
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Moreover, the inset of Fig. 4 shows that also the end-to-end-distance, Re, is distributed300

according to the physical equilibrium result of Eq. (4).301

10−4

10−2

100

102

104

106

108

10−2 10−1 100 101 102 103 104

10−3

101

10−2 101

M
S
D
/〈
R

e〉2
t/τR

M = 4
M = 8
M = 16
M = 32
M = 64
theory

P
(R

e)

Re

FIG. 4. Mean-square displacement, MSD, of the centre of mass of a non-sticky polymer against

time (main panel) and the time-averaged end-to-end length (Re) distribution (inset). The number

of real monomers per chain is fixed, while the level of coarse-graining is varied through varying the

number of beads, M , per chain. The symbols and solid black curves represent the simulations and

the theory, respectively.

For times shorter than the Rouse time of strands between stickers, i.e., for t < τR(Zs+1)−2,302

the dynamics of a sticky polymer are governed by the same Rouse diffusion as non-sticky303

chains, see Fig. 5(a). For later times than that, the motion of the polymer is subdiffusive304

until the sticky Rouse time τSR, which is approximately given by19305

τSR = τsZ
2
s

(

1− 9

p
+

12

p2

)−1

. (32)

Focussing on the crossover from early-stage bare Rouse diffusion to subdiffusive motion, one306

would expect this crossover to occur at the point in time where the substrands between307

stickers have just relaxed, and where further relaxation requires sticker dissociation. Indeed,308

we find this is the case within the rigid-network approximation. However, for the elastically309

compliant network the closed stickers themselves are able to diffuse. The friction experienced310

by the closed sticker depends on the level of deformation of the surrounding network, which311

is initially small. As the sticker diffuses further, a larger portion of the surrounding network312

is deformed and the contribution of ‘next-neighbour’ stickers starts to contribute to the313

friction. Clearly, the increase of the friction increases rapidly beyond a certain characteristic314

16

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.11

22
/8.

00
00

41
1



a) b)

10−3

100

103

10−3 100 103 106

rig
id

ne
tw

ork

com
pli

an
t ne

tw
ork

M
SD

=
6D

R
t

6D
SR
t

t
=

τ
R
/(Z

s
+
1)

2

t
=

τ
S
R

M
S
D
/〈
R

e〉2

t/τR

10−1

100

101

10−5 10−4 10−3 10−2 10−1 100 101 102 103

rigid

Zs = 10

compliant
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G
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G
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G

′′ /
G
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FIG. 5. Linear rheology of a sticky chain with Zs = 10, p = 0.9, τs = 200τR within the rigid-

network approximation (open symbols) and with this approximation released (closed symbols).

(a) Mean-square displacement MSD of the centre of mass against time. (b) Storage, G′, and loss,

G′′, modulus in units of G0 against the frequency, ω, plotted for the chain in (a) as well as for

an non-sticky chain (triangles). There is fair agreement with the analytical sticky-Rouse model

in Eq. (33) (solid curves) for the sticky chain within the rigid-network approximaton an for the

non-sticky chain. For the sticky chain with an elastically compliant network the plateau modulus

decreases to that of the theory with Zs = 4 (dashed curves).

distance. It is unknown what this distance might be, but it is likely to be strongly dependent315

on the topology of the network. The plateau value in Fig. 5(a) shows that for our simulations316

this happens to occur when the MSD of the centre of mass of chain is approximately 10,317

i.e., when the centre of mass of the chain has diffused 3− 4 times its end-to-end distance.318

The elastic compliance not only affects the subdiffusive motion of the chain, but also the319

sticky Rouse diffusivity DSR = DRτR/τSR at times beyond the sticky Rouse time. While320

the analytical expression for the sticky Rouse diffusivity accurately describes our simulations321

within the rigid-network approximation, we find that it overestimates the diffusivity of chains322

in an elastically compliant network. We have investigated the consequence of this to the323

interpretation of linear viscoelastic data, which are often used experimentally to estimate324

the number of associations per chain, by calculating the dynamic moduli G′ and G′′ against325

the frequency ω in Fig. 5(b). The data shown includes non-associating unentangled chains326

(Zs = 0) and the unentangled sticky chains of Fig. 5(a); i.e., chains with Zs = 10 stickers327

within the rigid-network approximation and with an elastically compliant network. The328
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simulated data (symbols) were obtained from the relaxation modulus, G(t), through the329

multiple-tau-correlator algorithm discussed in Ref.67. To obtain the dynamic moduli G′
330

amd G′′ we have used the finite-element approach from Ref.68. We have compared the data331

to the sticky-Rouse model (curves), which is given by332

G(t) = G0

N∑

p=Zs+1

exp

(

−2p2t

τR

)

+G0

Zs∑

p=1

exp

(

− 2p2t

τsZ2
s

)

. (33)

In this equation, the first summation captures the high-frequency bare Rouse modes (the333

number of Kuhn segments, N , truncates the highest frequencies), and the second summation334

captures the sticky Rouse modes. The modulus G0 is proportional to the number density of335

monomers and to the thermal energy.336

Fig. 5(b) shows dominance of bare Rouse relaxation at high frequencies, where all moduli337

will approach (in principle) the scaling relation G′, G′′ ∝ ω1/2. Discrepancies, such as a338

roll-off of G′′ at high frequencies, emerge due to the finite number of modes/beads that are339

included in the simulations. At decreasing frequencies the moduli of the non-sticky chains340

(triangles) decrease rapidly, while the moduli of the sticky chains reach a plateau value341

that ranges down to ω = 1/τs. Within the rigid-network approximation (closed circles),342

the modulus of the plateau is G′(ω) = G0Zs in agreement with the sticky-Rouse model in343

Eq. (33) for Zs = 10. However, if the network is elastically compliant (open circles), the344

plateau value decreases and is better described if the theory would be adjusted with an345

apparent number of stickers Zs = 4 (dashed curves). At lower frequencies ω < 1/τs the346

moduli rapidly decrease. In the simulations the moduli decrease much more rapidly than in347

the theory, as also noted earlier in Ref. 50. We find that this terminal relaxation time (we348

remind the reader that this relaxation time is for unentangled chains entirely determined349

by sticker relaxation, i.e., not by sticky reptation22,24) is even further reduced for the chain350

in an elastically compliant network. Consequently, the peak of the dynamic modulus G′′ is351

much narrower than in the theory. We have estimated that the shape of this peak is best352

described by Zs = 4 within the rigid-network approximation and Zs = 3 for the compliant353

network. This clearly indicates that analysis of the dynamic modulus peak in rheological354

data (which is required when high frequencies are experimentally inaccessible9) provides an355

underestimate of the actual number of stickers per chain.356

To obtain a wider view of the impact of the elastic compliance on the dynamics of chains357

with a various number of stickers and sticker lifetimes, we have calculated the diffusivities358
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FIG. 6. Sticky Rouse diffusivity, DSR, against the sticker lifetime, τs for chains with Zs =

2, 5, 10, 20 stickers with p = 0.9 within a rigid network (a) and a compliant one (b). The symbols

are our simulation results, and the curves represents the sticky Rouse model in Ref.19. The units

are given in terms of the bare Rouse diffusivity DR and the bare Rouse time, τR.

of various chains within the rigid-network approximation and with a compliant network359

in Fig. 6. Panel (a) shows that the predictions of Ref.19 describes our simulations well360

within the rigid-network approximation for chains with 5, 10, 20 stickers with various sticker361

lifetimes, in particular in the regime where the sticky-Rouse diffusivity scales with the sticker362

lifetime as DSR = DRτR/τSR ∝ 1/τsZ
2
s , see Eq. (32). Panel (b) shows that upon releasing the363

rigid-network approximation this scaling behaviour persists, but rescaled with a prefactor364

≈ 4. While this scaling regime is reached for the chains with more than 5 stickers (i.e., above365

the percolation threshold for network formation), this is not the case for the chains with 2366

stickers. Within the rigid-network approximation, this originates from the fact that at sticker367

lifetimes a plateau is reached where the chains with all stickers open dominate the dynamics.368

Without the rigid-network approximation, the chains cluster into linear ‘supramolecular’369

dimers, trimers, etc. through an exponentially decaying cluster-size distribution69, which370

implies a distribution of diffusivities that strongly differs from that predicted by the sticky-371

Rouse model. Hence, while our simulation approach accounts for the elastic compliance372

of the percolating network, it also captures the contributions of cluster diffusion near and373

below the percolation threshold for network formation.374
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B. Non-Linear Dynamics: Steady State375

Ordinary Gaussian polymer melts and solutions of narrow molecular-weight distribution376

exhibit broad conformational distributions in shear flow due to dynamic stretching, tumbling377

and recoiling of the chains40–42. In extensional flow, however, such chains do not tumble and378

recoil, and their stretch distributions are narrow, see Fig. 7(a). Perhaps surprisingly, by379

incorporating stickers into the chain these stretch distributions become much wider, see380

Fig. 7(b). This figure shows that the sticky chains exhibit an enormous dispersity in the381

chain stretch, as well as occasional hairpin conformations (Fig. 7(b)). These are cause by382

the stochastic binding and unbinding of stickers, where the network forces may occasionally383

act in the opposite direction of the drag forces exerted by flow.384

a) b)

FIG. 7. Representation of simulated chain conformations in extensional flow for ε̇τR = 2 for

non-sticky (a) and sticky (b) polymers. While the variations in stretch are narrow for non-sticky

polymers, these variations are broad for the sticky polymers: when a sticker in a retracting chain

segment binds to a neighbouring chain segment, this may disrupt the neighbouring chain. The

scale bar represents approximately a length 50Re, which is 65% of the fully extended chain.

To go beyond these qualitative observations, we have quantified this phenomenon using385

steady-state stretch distributions of polymers at various extension and shear rates in Fig. 8.386

We have selected non-sticky polymers (Zs = 0), and sticky polymers below (Zs = 2) and387

above (Zs = 5) the percolation threshold for network formation: The chains with only 2388

stickers may only assemble into high-molecular weight chains, while chains with 5 stickers389

may branch into percolating networks. We have modelled the physics of the stickers using390
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the same description as in our previous work on chains that are pre-aligned in the flow391

field11. We have summarised the associated parametrisation in the caption of Table I. In392

extensional flow, above the sticky Weissenberg number, Wisticky = ε̇τSR with τSR the sticky393

Rouse time we expect divergent stretching (albeit that real divergence is obstructed by the394

maximum chain extensibility λmax = 75). We have calculated the sticky Rouse time as395

τSR = [DR/DSR]τR, with the ratio between the sticky and the bare diffusivity as presented396

above in Fig. 6. The relevant results are summarised in Table I.397

TABLE I. In our simulations of sticky polymers in non-linear flow conditions we use as parameters

p = 0.9 as the fraction of closed stickers (in quiescent conditions), a sticker lifetime τs = 10τR,

an activation energy Eact = 8kBT , and a sticker dissociation length of ℓ = 1 nm. The maximum

extension ratio of the chain is λmax = 75. The intramolecular forces in Eq. 5 are calculated by

assuming a total number of N = 5525 Kuhn segments, and a Kuhn length of b = 0.4 nm. As we

focus on chains with Zs = 2 and 5 stickers, we here tabulate the ratio between the bare Rouse

and sticky Rouse diffusivities, [DR/DSR], and relaxation times, [τR/τSR]. The diffusivities were

determined in Fig. 6, and the sticky Rouse time is calculated as τSR = [DR/DSR]τR
19.

Polymer model DSR/DR τSR/τR

Zs = 2; (rigid) 0.0949± 0.0002 10.54± 0.02

Zs = 5; (rigid) 0.02156± 0.00004 46.38± 0.09

Zs = 2; (compliant) 0.4331± 0.001 2.309± 0.005

Zs = 5; (compliant) 0.1050± 0.0002 9.52± 0.02

Eq. (4) shows that in all cases the equilibrium stretch distribution for zero-flow conditions398

(black curve) is approached for small strain rates. For non-sticky chains (Zs = 0), a broad399

stretch distribution with a cutoff set by λmax emerges in shear due to the dynamic stretching,400

tumbling and re-collapsing of the chains. In extensional flow, the distribution broadens only401

within a narrow range of strain rates 0.9 < ε̇τR < 1.1 around the bare stretch transition,402

Wi = ε̇τR = 1. Beyond the stretch transition, the stretch distribution is narrow and Gaussian403

and approaches λmax with an increasing strain rate. This behaviour qualitatively changes404

upon incorporating stickers.405

Fig. 8 shows that the steady-state stretch distributions in shear are similar to those of the406

non-sticky chains, while in extensional flow the distributions of sticky polymers are remark-407
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FIG. 8. Simulated steady-state stretch distributions of the end-to-end distance, Re, for various

extension (a,c,e) and shear (b,d,f) rates for a linear unentangled, non-sticky (Zs = 0) and sticky

(Zs = 2 and Zs = 5) polymers. For these simulations τSR ≈ τs = 10τR (see Table I for all parameter

values). The black curve represents the contour-length fluctuations in quiescent conditions, given

by Eq. (4).

ably distinct from the non-sticky ones: In contrast to the non-sticky polymers, the sticky408

polymers show broad stretch distributions in steady-state extensional flow over a broad range409

of flow rates. We have observed this behaviour previously in simulations where the chains410
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were pre-aligned in the flow-field and where we invoked the rigid-network approximation11.411

Our current simulations show that this phenomenon persists when these approximations are412

released, but also show a dynamic coexistence of stretched chains, relaxed coils, and hairpins.413

Interestingly, there is a qualitative similarity between the distributions of the chains with 2414

or 5 stickers, despite the fact that these are below and above the percolation threshold for415

network formation, respectively. This indicates that the enormous reduction of the chain416

retraction rate due to the stickers does not necessitate network formation: the formation of417

high-molecular weight assemblies suffices.418

We also find that the large fluctuations in stretch below the formal stretch transition419

carry over from case of 2 stickers per chain to multiple stickers11. (The stretch transition is420

defined at the condition ε̇τSR = 1, with the sticky Rouse time obtained from the sticky-Rouse421

diffusivity of Fig. 6 as τSR = τRDSR/DR) In particular, we find that for small strain rates and422

large stretch ratios λ the stretch distribution has a power-law tail (see Eq. (18)) of which the423

width is set by a ε̇-dependent stretch exponent ν (see Section II B). We have determined the424

stretch exponent from the distributions of the chains with 2 and 5 stickers (we discuss the425

numerical method in Appendix VC) in extensional flow with and without the rigid-network426

approximation and finite extensibility, and plot these against the strain rate in Fig. 9. As427

anticipated, we have been able to map the stretch exponent of the chain with two stickers428

onto the analytical result in Eq. (25). To achieve that, it has to be taken into account that429

the open state of the chain can be achieved by opening either of the stickers; hence, τs in430

Eq. (25), which models the simultaneous opening of all stickers, is replaced by τs/2, and431

results in432

ν = −1− 1

(1− ε̇τR)

p

(1− p)

2τR
τs

+
2

˙ετs
. (34)

For chains with multiple stickers, no such analytic theory is yet available; however, we do433

find a qualitative agreement of the increasing power-law exponent with an increasing strain434

rate.435

For the chains with 2 and 5 stickers and with a fraction p = 0.9 of closed stickers, we436

also simulated the stretch distributions while including finite extensibility and an elastically437

compliant network. Finite extensibility implies that there is a cutoff of the power-law tail,438

which becomes apparent with increasing (less negative) ν. Since the fluctuations in λ diverge439

for ν ≥ −3, this cutoff has a significant effect on the tail of the stretch distribution upon440

approaching ν = −3. Fig. 9 does confirm a broadening power-law stretch distribution for441
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FIG. 9. Stretch exponent ν of the power-law tail of the stretch distribution P ∝ λν for simulations

of polymers with Zs = 2 (blue symbols) and 5 stickers (red symbols), within the rigid-network

approximation (closed symbols) and using elastic compliance and finite chain extensibility (open

symbols). The solid curve is given by the two-state model in Eq. (34) with τs = 10τR (see Table I

for all physical parameter values). For ν > −3 (horizontal line) the fluctuations in stretch diverge;

this leads to a cutoff in the stretch distribution for chains with finite extensibility, see Fig. 8.

the chains in a compliant network, but shifted to higher strain rates, as expected from the442

faster sticky-diffusion rates from Fig. 4.443

C. Non-Linear Dynamics: Transients444

In our pursuit to understand the flow-induced crystallisation of associating polymers such445

as the silk protein, we are interested in capturing the macroscopically observable stresses in446

start-up flow, and to interpret crystallisation rates in terms of the chain conformations that447

underlie these stresses. To address these challenges, in this section we will present the time-448

dependent rate-normalised transient shear stress, σxy/γ̇, and extensional stress (σyy−σrr)/ε̇,449

with the stress tensor (in units of energy per molecule) given by450

σαβ =
3kBT

b2N

∑

i=1

∆si−1ks,i
Qα,i

∆si−1

Qβ,i

∆si−1

. (35)

Focussing first on the results for non-sticky chains with a finite extensibility λmax = 75 in451

Fig. 10(a,b), we reproduce the well-known qualitative features of their stress transient57: For452

small Weissenberg numbers, ε̇τR < 1, γ̇τR < 1 the polymers are able to relax, while for large453
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FIG. 10. (a,c) Simulated rate-normalised transient extensional and shear stresses averaged over 50

polymers the non-sticky (a) and the sticky (c) case. The sticky polymer exhibits strong flucuations

for ε̇τs = 0.5, which is below the stretch transition (at ε̇τs ≈ 1, see Table I). (b,d) Transient stretch

distribution of the end-to-end distance, Re, in extensional flow for the non-sticky (b) and sticky

(d) chain at selected strain rates. The error bars in (d) represent half of the standard error of the

mean. All physical parameter values are given in Table I.

strain rates there is an overshoot in shear flow, which is related to the onset of tumbling454

and re-collapsing of stretched chains, and in extensional flow there is a sharp increase in the455

extensional stress until a plateau due to the finite extensbility of the chains is reached. Be-456

cause of the thermal fluctuations and dispersity in the initial chain conformations, Fig. 10(b)457

shows broadening of the stretch distribution at early times. At late times, when all chains458

are aligned (at the level of the beads), a sharp peak emerges at high stretches near the459

maximum extensibility λmax.460

This sharp peak in the stretch distribution is a fingerprint for non-sticky linear polymers461
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in extensional flow, and will not be visible for the sticky polymers, as we we will now show462

for Zs = 5. We plot the resulting start-up stresses and stretch distributions in Fig. 10(c,d).463

Qualitatively, we find similar shear and extensional viscosities as in the non-sticky case,464

although there is now no distinctive overshoot in shear flow. In extensional flow, the stresses465

at long time scales have shifted to higher values because of the contribution by the reversible466

cross-links. Further, while non-sticky polymers show strain hardening only for ε̇τR > 1,467

the sticky ones also show strain hardening for smaller strain rates ε̇τs > 1. For strain468

rates smaller than that we identify large fluctuations in the transient extensional stress,469

which are caused by temporary exponential stretching of chain segments between closed470

stickers that rapidly retract to a near-relaxed state when the stickers open10. For strain rates471

0.3 < ε̇τs < 0.5 these fluctuations fill up a power-law distribution whose stretch exponent is472

depicted in Fig. 9. For higher rates, the finite extensibility causes a truncation of this power473

law tail.474

The dynamics by which the stretch distributions evolve in extensional flow above the475

stretch transition (ε̇τs = 2) is shown in Fig. 10(d). At early times, the stretch distribution476

closely resembles the equilibrium distribution of Eq. (4). As time proceeds, a the distribution477

broadens exponentially with time as lnλ ∝ ε̇t until the steady state is reached after a time478

ε̇τ ∝ lnλmax. This is in qualitative agreement with the predictions of the two-state model479

that we derived in Eq. (29) of Section II B.480

D. Critical specific work481

Now that we have captured how stickers lead to broad stretch distributions, we will482

investigate how these distributions affect the critical work for flow-induced crystallisation483

(FIC). The usual predictor for FIC is the ‘Kuhn segment nematic order parameter’, P2,K ∈484

[0, 1]. If P2,K → 1 (see e.g. Ref. 3), virtually all chains are aligned at the level of the485

Kuhn segments, i.e., they are completely extended/stretched in the direction of the flow486

field. However, in this case of high chain-heterogeneity we expect this average measure487

to be a poor descriptor. We know that the critical nuclei will be dominated by the small488

fraction of highly-stretched chains, and that it is the oriented segments in these chains489

only that promote crystallisation. To model this extremum-dominated physics, therefore,490

we will assume that FIC may commence when a critical fraction, Ps, of chain segments491
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of some length ∆s∗ ∈ [0, 1], have stretched beyond a critical stretch ratio Lsλ
∗

max , where492

λ∗

max = λmax

√
∆s∗ is the maximum stretch of the chain segment and L∗

s ∈ [0, 1] a parameter493

that may be viewed as proxy for chain stretch at the Kuhn length of this extremely stretched494

chain fraction. Hence, the criterion for FIC may within our interpretation be formulated as495

496

∫ λ∗

max

Lsλ∗

max

P (λ, ts)dλ ≥ Ps, (36)

where P (.) is the transient stretch distribution function, and ts is the time into the process497

of startup flow at which the criterion is satisfied. Essentially, this criterion provides a pre-498

diction for the time required to form the first nuclei, and, hence the time ts should not be499

confused with the fixed time in FIC experiments35–37 during which a different number of500

nuclei may form depending on the strain rate. A comparison to those experiments would501

require knowledge of the physical relationship between the nucleation rate and the conforma-502

tional distribution; here, we have proposed a hypothetical condition that is likely to correlate503

to a fixed nucleation rate. For associating polymers, a natural measure for the length of504

flow-crystallisable chain segments is ∆s∗ = 1/(Zs + 1); in general, however, measures for505

Ps, Ls, and ∆s∗ will have to be determined through experimentation and (atomistic) MD506

simulations15–18.507

In this section, we will employ simulations with 50 chains of a fixed number of 11 beads508

(i.e., with 10 chain segments, giving ∆s∗ = 1/10), and we will monitor the maximum509

stretch among the total of 500 chain segments (i.e., Ps = 1/500). The time-evolution of510

the maximum stretch will enable us to screen how various values of Ls require a different511

processing time ts and a different input of specific energy. We obtain statistics on this512

relationship by averaging our results over 5 simulations with different initialisation ‘seeds’ of513

the random-number generator. We will discuss the implications of the criterion in Eq. (36)514

by comparing it to a measure of the (mean-field-type) nematic order parameter. At our515

level of coarse graining, the highest resolution of nematic chain alignment is captured using516

the nematic order parameter P2,s ∈ [0, 1], which is the largest eigenvalue of the nematic517

order tensor P2,s = (3〈uu〉 − 1)/2, where u is the unit vector tangential to the backbone of518

the chain. (we remark that this nematic order parameter is an overestimate of the Kuhn519

segment nematic order, i.e., P2,s > P2,K) In Fig. 11, we have calculated the critical specific520

work, W , as given in Eq. (1), needed to achieve values of P2,s and Ls in the range from 0 to521
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1 for non-sticky (Zs = 0) and sticky (Zs = 5) chains for various shear and extensional rates.522
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FIG. 11. Nematic order parameter, P2,s and characteristic stretch ratio, Ls, against the specific

work (see main text) for sticky (red) and non-sticky (blue) polymers in shear (left) and extensional

(right) flow. The symbols are obtained from simulations with various strain rates for a chain with

Zs = 5 with an elastically compliant network. All physical parameter values are given in Table I.

The top panels of this Figure give the nematic order parameter, P2,s, and the measure523

for stretch fluctuations, Ls against the critical specific work. For large values of the criti-524

cal work, both measures converge, which suggests that both measures can interchangeably525

used as predictors for flow-induced crystallisation for non-sticky chains. We notice that526

the critical work in shear (left) and extensional flow (right) show similar trends well above527

the stretch transition (the stretch transition of the bare chain is ε̇τR = 1). Just above528

this transition the critical work required is relatively large. This implies a monotonically529

decreasing critical work with an increasing strain rate, which is due to the suppression of530

energy dissipation by recoiling of the chains (we discuss this in more detail in Fig. 12). This531
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is in contrast to the typical behaviour in experiments on non-associating polymers (e.g., the532

flow-induced crystallisation of HDPE7), where the critical work increases with an increasing533

strain rate. We argue this discrepancy occurs because we here consider unentangled rather534

than entangled chains. Finally, the top panels of Fig. 11 confirm the expected behaviour535

where the nematic order parameter (red) is typically larger than the stretching parameter536

(blue): with an increasing specific work the chains first align and then stretch.537

This behaviour is crucially altered for the sticky polymers, as shown in the bottom pan-538

els of Fig. 11. We find that the alignment of the chains requires more critical work both539

in shear (left) and extensional flow (right), which is due to the fact that the full alignment540

of the chains requires the opening of intermolecular associations. On the other hand, the541

stretching of chain segments can take place before global chain alignment. (Note that the542

stretch transition is ε̇τR ≈ 0.1 for this system, see Table I) The stretching parameter (blue)543

follows a sharp sigmoidal dependence against the critical work, and rapidly outgrows the544

alignment parameter (red) This is possible because the stretching parameter provides in-545

formation about a fraction Ps = 1/500 of chains in the tail of the distribution, while the546

alignment parameter provides information about the mean properties. This supports out547

hypothesis that flow-induced crystallisation may be achieved at a small critical specific work548

by exploiting the stochastic nature of associating polymers.549

Given either a Ls or P2,s criterion for critical nucleation, we are interested how the strain550

rate affects how much critical specific work, W , is needed, and at what timescale, ts this551

criterion is achieved. To investigate this, we focus on horizontal lines / cross sections of552

Fig. 12 (i.e., at fixed values 0.6 and 0.8 of both Ls and P2,s). For the data points along these553

lines we plot the critical workk, W , and the timescale, ts, in Fig. 12. The left panel shows554

that the timescale scales as ts ∝ Wi−1, as one may expect and discuss in more detail below.555

Below the stretch transition this dependence becomes stronger: under these conditions many556

chain stretches are attempted, but fail due to sticker opening and lead to energy dissipation557

through chain retraction. This crossover between two regimes qualitatively agrees with that558

found in Figure 2 of the work by Holland et al. on silk7; more dedicated research is needed559

to investigate this observation.560

The right panel of Fig. 12 shows the critical specific work needed to achieve a certain561

degree of alignment, P2,s (red), or of stretch fluctuations, Ls (blue), in shear (open symbols)562

and extensional flow (closed symbols), against the sticky Weissenberg number. Evidently, a563
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FIG. 12. The critical time (left) and the specific critical work (right) against the sticky Weissenberg

number, Wisticky = ε̇τSR, γ̇τSR, for various Ls and P2,s criteria for the critical condition. The open

symbols were calculated in shear and the closed ones in extensional flow. The values are obtained

for a chain with Zs = 5 with an elastically compliant network. It is useful to interpret the strain

rates in relation to the stretch transition for the sticky chains in extension at Wisticky = 1, where

the ‘sticky’ Weissenberg number is Wisticky ≈ 10Wi = 10ε̇τR, with Wi the Weissenberg number of

the non-sticky chain. This factor 10 is non-universal and depends on the number and lifetime of

stickers, see Table I for all physical parameter values. The solid curves are given by Eq. (40) for

Ls = 0.6 and for Ls = 0.8.

high degree of overall alignment / nematic order requires much larger specific work than a564

small fraction of large stretch fluctuations does, as discussed in Fig. 11. Having in mind our565

overarching proposition that crystallisation may occur in response to stretch fluctuations,566

we now focus on the measure for Ls. We remark that for the system we studied, the567

stretch transition in the absence of stickers takes is located at Wisticky = ε̇τSR ≈ 10 (because568

τSR ≈ 10τR, see Table I). For smaller strain rates, Wisticky < 10, we find there is a minimum in569

the specific critical work near the stretch transition Wisticky ≈ 1. Indeed, while large stretches570

are achieved just below the stretch transition Wisticky < 1 due to long power-law tails in the571

stretch distribution10, many of attempt fluctuations are needed before the required stretch572

value is achieved. Due to the energy dissipation of such unsuccesful attempts, the specific573

critical work increases for decreasing strain rates. Above the minimum, the specific work574

increases and eventually reaches a plateau.575

We explain the increase of the critical specific work with an increasing strain rate in terms576
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of the two-state model that we introduced in the Theory section. We argue that the stress577

is dominated by the contributions of stretched chains in the closed state,578

σxx(t) = c

∫

P0(λ, t)λ(t)
2dλ, (37)

with c a constant, assuming that the open chains are in a relaxed state. Here, P0(λ, t) is579

the stretch distribution of the closed chains, of which we will discuss the dynamics below.580

We will then calculate the critical specific work as W =
∫ ts
0
σxxε̇dt. To calculate W , we first581

will determine ts using the criterion582

∫ λmax,i

Lsλmax,i

P0(λ, ts)dλ ≥ Ps, (38)

which, as before, implies a minimum concentration of chains with a stretch ratio of at least583

λs = Lsλmax,i. Secondly, we will need an expression for the time evolution of the probability584

density P0.585

To obtain P0, we will assume that all chains that have (temporarily) opened are suffi-586

ciently relaxed compared to the most stretched chains to have a negligible contribution to587

the overall stress σxx. Therefore, we will only take into account the loss of strongly stretched588

chains by opening rate kopen, and ignore the contribution of closing events by rate kclose. We589

will further use the initial condition P (λ, 0) = δ(1−λ), with δ(.) the Dirac delta distribution590

to represent a narrow stretch distribution at time t = 0. The dynamical equation in Eq. (21)591

then predicts that the Dirac delta distribution in time shifts to high stretch values along the592

λ axis, as593

P0(λ, t) = δ(lnλ− ε̇t)λ−(1+1/(ε̇τs)), (39)

with an amplitude that decreases in time due to sticker opening (we present the derivation594

in the first two paragraphs of Appendix VB).595

Eq. (39) shows that the critical stretch and the critical time are related by ts = lnλs/ε̇,596

which is in agreement with our simulated results displayed in Fig. 11. We insert this equation597

into the expression for the critical specific work, W =
∫ ts
0
σxxε̇dt, and find598

W (ε̇) = c

(

1− 1

ε̇τs

)−1

exp

[(

1− 1

ε̇τs

)

lnλs − 1

]

, for ε̇ > ε̇min, (40)

where ε̇min is the minimum strain rate for which the criterion in Eq. (38) is obeyed. This599

function is plotted in Fig. 12(b). It diverges at ε̇τs = 1 (this divergence is not followed600
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by the simulation data, because stochastic closing events that generate new bound chain601

segments), reaches a minimum, and then monotonically increases towards a plateau value.602

Physically, this plateau value represents the case where the entire distribution of chains is603

stretched to reach the critical stretch value λs. In this case, the concentration of stretched604

segments far exceeds the critical concentration, and more energy has been put into the605

system then needed. By decreasing the strain rate, an increasing number of stickers are able606

to open and the stress is relaxed, in turn decreasing the critical specific work to achieve the607

critical condition in Eq. (38). This supports our proposition that the stochastic nature of the608

binding and unbinding of associations enables to molecularly engineer associating polymers609

to undergo flow-induced crystallisation at low energetic costs. In particular, we have shown,610

using simulations and an approximate theory in Eq. (40) that there is an optimum strain611

rate at which the critical work for critical stretch is minimised612

IV. DISCUSSION AND CONCLUSIONS613

This work has shown that the transient evolution of the chain-stretch distribution of614

associating ‘sticky’ polymers in shear, and especially extensional, flow possesses an extremely615

rich structure. The theoretical and numerical investigations reported here were driven by616

the observation that the silk protein (i) undergoes efficient, chemically tunable, flow-induced617

crystallisation and (ii) can be modelled as an associating/sticky polymer. Our findings have618

implications for the interpretation of silk-spinning data, as well as to the development of619

novel associating polymers and the computational modelling tools (we introduced a ‘sticky’620

sliplink model, and an analytical two-state master equation which may be transferable to621

also address the peculiar dynamics of ring polymer in flow43–45).622

Regarding silk rheology, we have theoretically confirmed our hypothesis that the stickers623

between chains may reduce the critical specific work to induce flow-induced crystallisation624

(FIC) under reasonable assumptions for critical crystallisation criteria. In our approach, we625

have adopted the view that FIC may commence when a sufficient concentration of chains is626

aligned at the level of the Kuhn segments. However, in contrast to the ensemble-averaged627

approach where the Kuhn segmental nematic order parameter is measured as a predictor for628

FIC, we have assumed that a critical concentration of strongly stretched chain segments in629

the tail of the distribution is a sufficient condition for crystallisation. Indeed, by comparing a630
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measure for the stretch fluctuations to the (ensemble-average) nematic order parameter, we631

have found that the stickers hamper initial chain alignment (chain alignment is slowed down632

by the need for stickers to dissociate), while segmental stretch is facilated by the closed633

stickers. Importantly, our analysis revealed that the incorporation of stickers enables a634

significant reduction in the input of specific work needed to achieve large stretch fluctuations,635

and consequently, may reduce the energy requirements for FIC.636

Focussing on our finding that chain alignment at low, non-stretching, flow rates requires637

less specific work in the absence of stickers (and presumably for low sticker lifetimes) than638

with stickers, while the stretching of the chains at high rates is helped by long sticker life-639

times, we speculate that control over both the structural aspects of the final material and640

over the specific work needed is possible through time- or position-dependent sticker life-641

times. We argue this can be achieved through external chemical control. Indeed, during its642

larval life cycle, the silkworm stably stores its silk solution at a high viscosity, but just prior643

to silk spinning it lowers the viscosity through an increase of the potassium concentration644

through a decreasing lifetime of calcium bridges (stickers)8,9. This, as we can now interpret645

as a mechanism to ease chain alignment in flow. Intriguingly, downstream the spinning duct646

the acidity increases34, which we expect to increase the stability and hence the lifetime of647

the calcium bridges, and hence enhance local chain stretching, see Fig. 1, which may in turn648

disrupts the solvation layer of the protein and induce efficient crystallisation7,13,15–18.649

While this seems a compelling mechanism for efficient flow-induced crystallisation, it is650

not yet clear how this process may be optimised. The experimental accessibility of these651

and other questions has come in reach owing to recent advances in controlling the content652

of metal cations in silk feedstock70. In the case of Bombyx mori silk, we identified a regular653

spacing of the negative charges along the backbone of the chain, with strands of approxi-654

mately 500 uncharged amino acids between; the length of these sticker strands is of the order655

of the entanglement molecular weight9. The regularity of the spacing and the coincidental656

similarity between the number of stickers and entanglements suggests some degree of evo-657

lutionary optimisation. The functionality of ordered- versus random co-polymers is of high658

importance from a synthetic polymer chemistry point of view, and needs to be addressed659

using simulations that include both associations and entanglements.660

We conclude that our modelling approach leaves us well prepared to investigate the ways661

in which the evolution of silk-producing organisms may have exploited the potential optimal662
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strategies for efficient fibre processing. The next piece of physics to add to this account of663

the rheology of polymers with temporary assocations, not only for modelling silk proteins664

but also general associating polymers, concerns the interaction between entanglements and665

associations in strong flow. We anticipate that this will further enrich the ongoing debate666

in polymer physics on the physics of entanglement generation and destruction (i.e., ‘en-667

tanglement stripping’) in non-linear rheo-physics, as well as continue the account of how668

silk-forming organisms point to novel rheo-physics of flow-induced phase-transformations.669

V. APPENDIX670

A. Algorithm671

Because of the large distribution of chain stretch in the conditions we are interested in,672

there is also a large distribution of opening rates; in our previous work we used small time673

steps in which the chain conformation was updated, and each closed pair had a sufficiently674

small opening probability. Here, we significantly improve this algorithm by enabling much675

larger time steps between conformational updates, and during which the stickers may open676

and close many times, see Fig. 3.677

In our algorithm, we update the chain conformation using the Brownian dynamics equa-678

tion from the previous section using a time span ∆t. Depending on the opening and closing679

rates, during this time span, ∆t1 ≡ ∆t, the sticker configuration may be updated many times680

or not at all according to a kinetic Monte Carlo (kMC) scheme64–66. In every kMC step, the681

rate at which any opening or closing event may occur is calculated as WT = Wa+Wd, with682

Wa = kaNopen(Nopen − 1)/2, (41)

the sum of closing rates and683

Wd =

Nclosed/2∑

q=1

kd,q, (42)

the sum of dissociation rates, where kd,q differs for the different sticker pairs due to dispersity684

in chain tension. In these expressions, Nopen and Nclosed are the number of open and closed685

stickers, respectively; Nopen(Nopen − 1)/2 is the total number of possible associations, and686

the index q sums over all Nclosed/2 pairs of closed stickers. Using this sum of rates, the time687
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∆t2 at which the first opening or closing event occurs is688

∆t2 = − 1

WT

ln(u), (43)

with u ∈ (0, 1] a uniform random number (our code uses random numbers using the open-689

source SFMT library71). If ∆t2 exceeds the time span ∆t1, no opening or closing events690

occurs. However, if ∆t2 < ∆t1 then a second random number ∈ [0, 1] is drawn, and a691

closing event is selected with probability ka/WT, and a dissociation event q is selected with692

probability kd,q/WT. After updating the configurations of the stickers, the time span is693

updated to ∆t1 = ∆t1 + ∆t2. The kMC scheme is terminated when ∆t2 > ∆t1, following694

which the chain conformation is updated.695

While in the linear rheological conditions we solve the dynamics using a fixed time step, in696

strong flow we implemented an adaptive time step to handle the large and fast fluctuations697

in stretch that emerge in some parameter regimes of the system. In every iteration n, the698

time step for the next iteration is updated as699

∆tn+1 = ∆tn
(

min
Qi

tolerance

error

)0.25

, (44)

where an error and tolerance are calculated for the change of each end-to-end vector Qi.700

We defined the error value for each change in Qi as error = |∆Qn
i |/Qmax, with Qmax set by701

λmax. For the tolerance value we use scalar values tol− and tol+ depending on whether |Qn
i |702

is smaller or larger than a certain cutoff set by λcutoff < λmax. Above the cutoff, we avoid703

numerical instabilities due to the singularity at λmax by using704

ks(λ > λcutoff) = ks(λcutoff)×
(

λ

λcutoff

)α

. (45)

For continuity of the derivative, α = 4c2/(3 − 4c2 + c4), with c = λcutoff/λmax; for a cutoff705

λcutoff = 0.9λmax even this smooth potential is steep (α ≈ 8), and in practice we use a softer706

potential (α = 4).707

B. Asymptotic limits of the two-state model708

The two-state master equation in Eqs. (21-22) has analytical solutions for early times

where advection dominates over the sticker dynamics, and for late times where the sticker

dynamics is fast compared to the rate by which the deep tail of the stretch distribution
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fills up. We obtain these analytical solutions in both cases using the Laplace transform of

Eqs. (21-22) in the limit of large stretches λ > λ∗ ≫ 1, which is

∂P̃0

∂y
= −(kopen + ε̇+ s)P̃0 +kcloseP̃1 + P0(0, y)/s, (46)

∂P̃1

∂y
= +kopenP̃0 −(kclose + ε̇+ s− τ−1

R )P̃1 + P1(0, y)/s, (47)

where P̃i(s, y) ≡ L{Pi(t, y)} is the Laplace transform of Pi for i = 0, 1 (hence, we have used709

the standard Laplace transform of the time derivative L{∂Pi/∂t} = sP̃i(s, y)−Pi(0, y)). We710

will obtain the early- and late-stage solutions by using different initial conditions Pi(0, y) at711

t = 0 and boundary conditions that we will discuss below.712

Focussing first on the early-stage limit, we consider a narrow distribution P (λ, 0) =713

δ(1 − λ∗) of chain segments between closed stickers at time t = 0, with δ(.) the Dirac714

delta distribution. For early times, these segments stretch exponentially with time until the715

stickers open. To inspect how these segments evolve, we insert the initial conditions into716

Eq. (46), which gives717

∂P̃0

∂y
(λ, s) = −(kopen + ε̇+ s)P̃0(λ, s) + cδ(1− λ), (48)

with P̃0(λ, s) the Laplace transform of P0(λ, s). The solution is of the standard form P̃0 ∝718

exp(−sτ), which after inverse Laplace transform gives Eq. (39) in the main text.719

To solve Eqs. (21-22) in the long-time limit, we make the useful approximation that at an

intermediate time t = t∗ the distribution is at steady state for small stretches λ ≤ λ∗, while

the large-stretch tail of the distribution is unoccupied. Hence, at t = t∗ the distribution is

given by

P0(0, y) =
c′

c
P eq
0 Θ(−y + y∗) (49)

P1(0, y) =
c′

c
P eq
1 Θ(−y + y∗), (50)

where y∗ ≡ lnλ∗ and where Θ is the Heaviside step function. The prefactor720

c′ =

(

1 + c
1

1 + ν
e(1+ν)y∗

)−1

> 1, (51)

normalises the distribution. We now set λ∗ to a large value, so c′ ≈ c, and at late times721

t > t∗ the filling of the tail of the distribution (for λ > λ∗) occurs with a negligible effect on722

the distribution at small stretches.723
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of which the solution is of the form

P̃0(s, λ) = c+0 (s)λ
ν+(s) + c−0 (s)λ

ν−(s) (52)

P̃1(s, λ) = c+1 (s)λ
ν+(s) + c−1 (s)λ

ν−(s), (53)

with ν−(s) and ν+(s) the eigenvalues given by

ν± =
1

2ε̇(1− ε̇τR)

(

(2ε̇+ kopen)(1− ε̇τR)− ε̇τRkclose + s(1− 2ε̇τR)

±
√

(s+ kopen(1− ε̇τR))2 + 2ε̇τR(s− (1− ε̇τR)kopen)kclose + (ε̇τRkclose)2
)

,

(54)

and where the coefficients, c±i , follow from the boundary condition at y = y∗.724

At late times, i.e., for small s, we have ν−(s) ≈ νeq − (s/ε̇)ν ′ + (1/2)(s/ε̇)2ν ′′, where νeq725

is given by Eq. (25), and where726

ν ′ ≡ dν

d(s/ε̇)

∣
∣
∣
∣
s=0

=

(

1− 1

1−Wi
+

1

1−Wisticky

)

, (55)

and727

ν ′′ ≡ 2pWi
Wisticky

(1−Wisticky))3
, (56)

are both positive, provided that the sticky Weissenberg number is sufficiently small,728

Wisticky ≡ Wi/(1 − p) < 110, where Wi = ε̇τR is the Weissenberg number of the chain729

without stickers.730

From the boundary condition, we find that the coefficients must be of the form c±i ∝ 1/s.

As the ‘+’ solution leads to a non-normalisable solution, however, c+i = 0, and the solution

is

P̃0(s, λ) =
c

s
(λ/λ∗)

ν−−(s/ε̇)ν′− 1
2
(s/ε̇)2ν′′+O(s3), (57)

P̃1(s, λ) =
kclose
kopen

ε̇

(ε̇− τ−1
R )

P̃0(s, λ). (58)

Finally, after taking the inverse Laplace transform, we have

P0(t, λ) = c

(
λ

λ∗(0)

)νeq

Θ(ν ′ lnλ/λ∗ − ε̇t) (59)

P1(t, λ) =
kclose
kopen

ε̇

(ε̇− τ−1
R )

P0(t, λ). (60)
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Hence, the exponentially extending front of the distribution is located at the stretch ratio731

λ∗(t) = λ∗(0) exp

[(

1− 1

1−Wi
+

1

1−Wisticky

)−1

ε̇(t− t∗)

]

. (61)

We have checked the validity of our interpretation of a narrow moving-front by also732

calculating the width of this front. To do this, we consider the relaxation function f(t) =733

P (y, t)/Peq(y) with again y = lnλ, and P and Peq the transient and steady-state stretch734

distributions, respectively. A narrow front that reaches y at time τ and reaches a steady735

state at time τ +∆ may be approximated by736

f(t) =







0, for t < τ

(t− τ)/∆, for τ ≤ t < τ +∆

1, for, t ≥ τ +∆.

(62)

The Laplace transform of this function is737

L{f} =
1

s2∆
e−sτ

(
1− e−s∆

)
. (63)

We compare this result to the solution of the two-state model in Eq. (54) through a second-738

order Taylor expansion of the exponential terms739

L{f} =
1

s

(

1− (τ +
1

2
∆)

︸ ︷︷ ︸

(ν′/ε̇) ln y

s+
1

2
(τ 2 +

1

3
∆2 +∆τ)

︸ ︷︷ ︸

(ν′′/ε̇2) ln y

s2
)

. (64)

From the linear term, we find τ + ∆/2 = (ν ′/ε̇) ln y (as expected from Eq. (29)). After740

substitution into the second term and elimination of this variable, we find the width of the741

front to be742

∆ =
√
12
√

(ν ′′/ε̇) ln y − (ν ′/ε̇)2 ln y. (65)

The relative width, compared to the location of the front (τ +∆/2), is743

∆rel ≡
∆

τ +∆/s
=

√
12

√

ν ′′

(ν ′)2
− 1 (66)

The relative width calculated in the time-domain also represents the relative width of the744

(logarithmic) stretch distribution:745

∆rel ≡
y(τ +∆)− y(τ)

y(τ +∆/2)
. (67)
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Upon approaching the strain rate where the mean stretch diverges, i.e., at Wisticky = 1,746

the relative width of the front diverges as ∆rel ≈
√

24pWiWisticky/(1−Wisticky). In this747

equation, the bare Weissenberg number is Wi = Wisticky(1 − p)τR/τs. Hence, if the sticker748

lifetime is τs = 10τR and the fraction of closed stickers is p = 0.9 (as in our simulations),749

then significant broadening of the front only happens very close to the stretch transition:750

Wisticky > 0.99. This verifies that our approximation of a narrow front is indeed accurate.751

C. Power-law regression752

To determine the sticky Rouse diffusivity, DSR, from the mean-square displacement of753

the centre of mass754

lnMSD = ln(6DSR) + ln t (68)

as a function of time t, and the stretch exponent, ν, from the probability distribution755

lnP = c+ ν lnλ (69)

as a function of the stretch ratio, λ, we write both equations in the form756

y = a+ bx (70)

and perform common linear regression. However, because both power-laws represent asymp-757

totic behaviour for large x, there is also a cutoff value, xcutoff , above which they apply. We758

determine the cutoff by minimising759

χ2(a, b, i0) ≡
1

Ndata + 1− i0 −Npar

Ndata∑

i=i0

(ydatai − yfiti (a, b))2

σ2
i

, (71)

with respect to a, b and i0 (note that xi0 = xcutoff); σi is the uncertainty on the simulated y760

data. Here, we set b = 1 fixed and the number of free parameters Npar = 1 for extracting the761

sticky Rouse diffusivity from the MSD data. To determine the stretch exponent (ν) from762

the stretch distributions we use the same approach, but leave b as a free fitting parameter763

and set Npar = 2.764
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