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Abstract

A signed graph has edge weights drawn from the set {+1,−1}, and is
sign-balanced if it is equivalent to an unsigned graph under the operation
of sign switching; otherwise it is sign-unbalanced. A nut graph has a one
dimensional kernel of the 0-1 adjacency matrix with a corresponding eigen-
vector that is full. In this paper we generalise the notion of nut graphs to
signed graphs. Orders for which regular nut graphs with all edge weights +1
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exist have been determined recently for the degrees up to 12. By extend-
ing the definition to signed graphs, we here find all pairs (ρ, n) for which
a ρ-regular nut graph (sign-balanced or sign-unbalanced) of order n exists
with ρ ≤ 11. We devise a construction for signed nut graphs based on a
smaller ‘seed’ graph, giving infinite series of both sign-balanced and sign-
unbalanced ρ-regular nut graphs. Orders for which a regular nut graph with
ρ = n − 1 exists are characterised; they are sign-unbalanced with an un-
derlying graph Kn for which n ≡ 1 (mod 4). Orders for which a regular
sign-unbalanced nut graph with ρ = n−2 exists are also characterised; they
have an underlying cocktail-party graph CP(n) with even order n ≥ 8.

Keywords: signed graph, nut graph, singular graph, graph spectrum, Fowler
construction, sign-balanced graph, sign-unbalanced graph, cocktail-party
graph.

2010 Mathematics Subject Classification: 05C50, 15A18, 05C22, 05C92.

1. Introduction and Motivation

Spectral graph theory is an important branch of discrete mathematics that links
graphs to linear algebra [8, 9, 12–14]. Singular graphs have a zero eigenvalue of
the 0-1 adjacency matrix. A special class of singular graphs consists of the core

graphs, graphs of which the kernel of the adjacency matrix contains a full vector
(i.e., a vector that has no zero entry). One subclass of core graphs, known as nut
graphs, is of particular interest. A nut graph is a singular graph in which every
non-zero vector in the kernel of the 0-1 adjacency matrix is full. A necessary
condition is that for a nut graph, the dimension of the kernel (i.e., the nullity η)
is one. In this sense, a nut graph is a maximally-extended core graph of nullity
1 [34, 37]. Some properties of nut graphs are easily proved. For instance, nut
graphs are connected, non-bipartite, and have no vertices of degree one [37]. It
is conventional to require that a nut graph has n ≥ 2 vertices, although some
authors consider K1 as the trivial nut graph. There exist numerous construction
rules for making larger nut graphs from a smaller ‘seed’ nut graph [33,37].

In this contribution we will consider signed graphs, i.e., graphs with edge
weights drawn from {−1, 1} and ask whether they can also be nut graphs. Al-
though the problem may appear to be purely mathematical, we were driven to
study it by the chemical interest arising from the specific properties expected
of conjugated π systems whose molecular graphs are nut graphs. The Hückel
molecular orbital theory of conjugated π systems [39] is essentially an exercise
in applied spectral graph theory [40]. In this electronic structure theory, sys-
tems based on nut graphs have distributed radical reactivity, since occupation
by a single electron of the molecular orbital corresponding to the kernel eigen-
vector leads to spin density on all carbon centres [36]. In the context of theories
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of molecular conduction, nut graphs have a unique status as the strong omni-
conductors of nullity 1 [19]. Extension of our considerations to signed graphs
allows the study of twisted carbon networks. Möbius carbon networks, where the
carbon framework is embedded on a surface with a half twist are representable by
signed graphs. Such molecules have been synthesised [26,30,41,42], and they obey
different electron counting rules from those of the standard unweighted Hückel
networks [17, 25]. The distinct electronic structure and unusual steric interac-
tions of Möbius systems suggest potential for applications in functional materials
of various types [16].

The notion of signed graphs goes back to at least the 1950s and is documented
in two dynamic-survey papers [44, 45]. The fundamentals of this theory and its
standard notation were developed by Zaslavsky in 1982 in [43] and in a series
of other papers. For general discussion of signed graphs the reader is referred
to recent papers [5, 22] which set out notation and basic properties. For nut
graphs, several useful papers are available, for instance [20, 31–33]. Recently the
problem of existence of regular nut graphs was posed, and solved for cubic and
quartic graphs [21]. Later, it was solved for degrees ρ, ρ ≤ 11 [18] and ρ = 12 [4].
A recent study explored cases where the class of circulant graphs provides nut
graphs [15].

In this paper we carry the problem of the existence of regular nut graphs
over from ordinary graphs to signed graphs. We characterise all orders n and
degrees ρ ≤ 11 for which a ρ-regular nut graph of order n (either signed or
unsigned) exists. This depends on a construction based on work on unsigned nut
graphs [18,21]. In the new formulation, it produces larger signed nut graphs from
smaller, whether regular or not (though it is used here only for regular graphs).
Cases where a sign-unbalanced nut graph exists with ρ = n − 1 or ρ = n − 2
are also fully characterised. We finish the paper with two questions for the open
cases (i.e., ρ ≥ 12).

We note that our investigation is a special case of the spectral theory of finite-
dimensional symmetric linear operators with nullspace spanned by a full vector.
The case where a fixed matrix A with eigenvalue λ has a part-full eigenvector has
also attracted attention [27,28].

2. Signed Graphs and Nut Graphs

2.1. Signed graphs

In this section we start with formal definitions. A signed graph Γ = (G,Σ) is
a graph G = (V,E) with a distinguished subset of edges Σ ⊆ E that we shall
call negative edges. Equivalently, we may consider the signed graph (G, σ) to
be a graph endowed with a mapping σ : E → {−1,+1} where Σ = {e ∈ E |
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σ(e) = −1}. The adjacency matrix A(Γ) of a signed graph is a symmetric matrix
obtained from the adjacency matrix A(G) of the underlying graph G by replacing
1 by −1 for entries where the vertices are connected by a negative edge. In
this context, an unweighted graph can be regarded as a signed graph without
negative edges. Symmetries (automorphisms) of a signed graph Γ = (G,Σ) are
also symmetries of the underlying graph G. They preserve edge weights
(1)

Aut Γ = {α ∈ AutG | ∀e = uv ∈ E(G), e ∈ Σ ⇐⇒ α(e) = α(u)α(v) ∈ Σ}.

Hence, the automorphism group Aut Γ of a signed graph Γ is a subgroup of the
automorphism group AutG of the underlying graph G.

2.2. Singular graphs, core graphs and nut graphs

A graph that has zero as an eigenvalue is called a singular graph, i.e., a graph is
singular if and only if its adjacency matrix has a non-trivial kernel. The dimension
of the kernel is the nullity. An eigenvector x can be viewed as a weighting of
vertices, i.e., a mapping x : V → R. A vector x belongs to the kernel, kerA, i.e.,
x ∈ kerA, if and only if for each vertex v the sum of entries on the neighbours
NG(v) equals 0, i.e.

(2)
∑

u∈NG(v)

x(u) = 0.

We call equation (2) the local condition. The support, suppx, of a kernel eigen-
vector x ∈ kerA is the subset of V at which x attains non-zero values, i.e.

(3) suppx = {v ∈ V | x(v) 6= 0}.

If suppx = V , then the vector x is full. Define supp kerA as follows

(4) supp kerA =
⋃

x∈kerA

suppx.

A singular graph G is a core graph if supp kerA = V . A core graph of nullity 1
is called a nut graph. Although the kernel of a core graph may have a basis that
has no full vectors, there exists a basis with all vectors full.

Proposition 1. Each core graph admits a kernel basis that contains only full

vectors.

Proof. Let V (G) = {1, . . . , n} and let x1, . . . ,xη be an arbitrary kernel basis.
Let ι be the smallest integer (i.e., vertex label), such that at least one of the
entries x1(ι), . . . ,xη(ι) is zero, and let xℓ(ι) be one of those entries. As G is a
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core graph, at least one of the entries x1(ι), . . . ,xη(ι) is non-zero; let us denote
the first such entry that is encountered by xk(ι). We can replace vector xℓ by
xℓ + αxk, where α > 0. If we pick α large enough, i.e., if

(5) α > max

{
|xℓ(i)|

|xk(i)|
| i 6= ι,xk(i) 6= 0

}
,

then xℓ(i) + αxk(i) will be non-zero for all i. No new zero entries were created
in the replacement process and at least one zero was eliminated. We repeat this
process until no more zeros remain.

Corollary 2. Each core graph admits a kernel basis that contains only full vectors

with integer entries.

Proof. An integer basis always exists for an integer eigenvalue, as can be seen
from the following argument. Let M be a matrix with rational entries. Let
λ be any of its rational eigenvalues and x any eigenvector corresponding to λ.
The eigenvector x can be obtained by Gaussian elimination (i.e., row reduction
to echelon form) and thus contains only rational entries. Hence, there exists a
constant k, such that the eigenvector kx has all entries integer.

An integer basis (vectors may contain 0 entries) can then be transformed to
a basis where all vectors are full by using the replacement process described in
the proof of Proposition 1. If we choose an integer for the value of α at each step,
the process will keep all entries integer.

2.3. Switching equivalence of signed graphs

Let Γ = (G,Σ) be a signed graph over G = (V,E) and let U ⊆ V (G) be a set
of its vertices. A switching at U is an operation that transforms Γ = (G,Σ) to
a signed graph ΓU = (G,Σ∇ ∂U) where ∇ denotes symmetric difference of sets
and

(6) ∂U = {uv ∈ E | u ∈ U, v /∈ U}.

Note that ∂U = ∂(V (G)\U), ΓU = ΓV (G)\U and (ΓU )U = Γ. In fact, switching is
an equivalence relation on the signed graphs with the same underlying graph. Any
graph G can be regarded as a signed graph Γ = (G, ∅). We will want to emphasise
a useful distinction. Any signed graph is a sign-balanced graph if it is switching
equivalent to Γ = (G, ∅), otherwise it is called sign-unbalanced [43, 44]. There is
precedent for these terms [44], though the shorter ‘balanced’ and ‘unbalanced’
are more often used [45]. However, the term ‘balanced’ has also been used in a
different context, where it denotes 3-regular nut graphs with the property that
the entries of the kernel vector on the neighbours of every vertex are in ratio
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2 : −1 : −1 [36]. Hence, to avoid potential confusion, we adopt the more explicit
terms here.

As observed, for instance in [5], switching has an obvious linear algebraic
description.

Proposition 3 [5]. Let A(Γ) be the adjacency matrix of signed graph Γ and

A(ΓU ) be the corresponding adjacency matrix of the signed graph switched at U .

Let S = diag(s1, s2, . . . , sn) be the diagonal matrix with si = −1 if vi ∈ U and

si = 1 elsewhere. Then

(7) A(ΓU ) = SA(Γ)S.

Since ST = S−1 = S we also have

(8) A(Γ) = SA(ΓU )S.

Clearly, switching-equivalent signed graphs with the same underlying graph
G are cospectral. In particular, all sign-balanced graphs with the same underlying
graph G are cospectral. The following lemma will be useful.

Lemma 4. Let G be a labelled connected graph on n vertices and m edges and

let T be a spanning tree of G. Every switching equivalence class of signed graphs

over G contains exactly one signed graph with all edges of the tree T positive.

Proof. Recall that in any tree there is a unique path between any two vertices.
Choose any vertex w from V . Let U be the set of vertices v in T that have an even
number of negative edges on the unique (w, v)-path of T . Then V \ U contains
the vertices v that have an odd number of negative edges on the path from w to
v along T . The sign switching (U, V \ U) will make T all positive. Hence, each
switching class has at least one signed graph that makes T all positive.

Let Γ and Γ′ be two switching equivalent signed graphs over G with edges
of T all positive. Then there exists W ⊆ V such that Γ′ can be obtained by
switching Γ at W . Let e = uv be an edge of T . Since the edge e has to remain
positive, u ∈ W if and only if v ∈ W . Because T is a spanning tree, it follows
that W = V or W = ∅. In either case, Γ = Γ′.

The essential idea of using a spanning tree is present in the earlier literature,
e.g. Lemma 3.1 in [43]. Here we use it to find cardinalities of the switching
classes, which in turn is needed for the analysis of Algorithm 1.

Proposition 5. Let G be a labelled connected graph on n vertices and m edges.

There are 2m signed graphs over G, there are 2m−n+1 switching equivalence

classes, and each class has 2n−1 signed graphs.
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Proof. At the beginning we choose a fixed but arbitrary spanning tree T in G.
We divide the argument into three steps.

Step (a). For a. given connected graph G (and the spanning tree T ) there are
2m different signed graphs. Indeed, we may choose any subset Σ of edges E and
make all edges in Σ negative. Some of the signed graphs will have all edges of T
positive, while others will have some edges of T negative.

Step (b). Among the 2m signed graphs over G exactly 2m−n+1 will have all
edges of T positive. Indeed, while fixing (n−1) edges of T positive, any selection
of the remaining (m− n+ 1) non-tree edges determines Σ. Such a selection can
be done in 2m−n+1 ways.

Hence, Step (a) gives the total number of signed graphs while Step (b) gives
the number of signed graphs having all edges of T positive. Using Lemma 4, we
deduce that there are 2m−n+1 switching equivalence classes.

Step (c). There are 2n−1 switchings available. Namely, any switching is deter-
mined by a pair (U, V \ U), but (U, V \ U) is the same switching as (V \ U,U).
Hence we have to divide 2n, the number of subsets of V , by 2. Thus, each
switching equivalence class contains 2n−1 signed graphs.

Note that a part of Proposition 5, and the idea to use spanning trees to
obtain switching classes (used in Algorithm 1) can also be found in [38].

Proposition 5 is cast in terms of labelled graphs. If we consider unlabelled
graphs, the number of classes may be reduced by symmetry. For example,
consider a graph G consisting of two copies of a cycle and a path between
them, then there are four switching classes on G, but only three non-switching-
isomorphic signed graphs: one with both cycles sign-balanced, one with both cy-
cles sign-unbalanced, and a third with one cycle sign-balanced and the other sign-
unbalanced. The third possibility corresponds to two distinct switching classes
of labelled graphs: it does not matter which cycle is taken to be sign-balanced,
up to isomorphism.

2.4. Singular, Core and Nut Signed Graphs

One may consider the kernel of the adjacency matrix of a signed graph. The local
condition (2) generalises to

(9)
∑

u∼v

xuσ(uv) = 0

for each choice of a pivot vertex v, where σ(uv) is the weight (±1) of the edge
between u and v, x(u) has been written as xu for brevity and u ∼ v denotes
u ∈ NG(v). These conventions for vectors and edges will be used in the rest of
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the paper. Note that definitions (3) and (4) can be extended to a signed graph
in a natural way. A signed graph is a singular signed graph if it has a zero as an
eigenvalue. A signed graph is a core signed graph if supp kerA(Γ) = V (G). A
signed graph is a signed nut graph1 if its adjacency matrix A(Γ) has nullity one
and kerA(Γ) contains a full kernel eigenvector. It follows that a signed nut graph
is a core signed graph of nullity one.

A graph G on n vertices and m edges gives rise to 2m distinct signed graphs.
If we are interested in non-isomorphic signed graphs only, this number may be
reduced by the symmetries that preserve signs. However, there is also an equiv-
alence relation, to be described in the next section, among the signed graphs
Γ = (G, σ) over a given underlying graph that is very convenient, as it preserves
several important signed invariants and reduces the number of graphs to be con-
sidered.

2.5. Switching equivalence and singular signed graphs

Proposition 3 has the following immediate consequence.

Proposition 6. Let Γ be a signed graph and let U ⊆ V (G). If Γ is singular and

if x is any of its kernel vectors, then ΓU is singular and the vector xU defined as

(10) xU (v) =

{
x(v), if v ∈ V (G) \ U,

−x(v), if v ∈ U,

is a kernel eigenvector for ΓU .

This proposition is helpful in the study of singular graphs. Namely, it follows
that many properties of signed graphs concerning singularity hold for the whole
switching equivalence class.

Corollary 7. Let Γ and Γ′ be two switching-equivalent signed graphs. The fol-

lowing holds.

(1) If one of the pair is singular, then the other is also singular. In addition, Γ
and Γ′ have the same nullity.

(2) If one of the pair is a core graph, then the other is also a core graph.

(3) If one of the pair is a nut graph, then the other is also a nut graph.

In particular, this reduces the search for nut graphs to a search over dis-
tinct switching equivalence classes. Note that Corollary 7 holds also in the case

1In this case we are conscious that the logical word order would be ‘nut signed graph’, as we
have started with signed graphs and looked for those that have the extra property of being a
nut graph, but using ‘nut’ as an adjective strikes the ear very oddly, so for euphony we retain
the term ‘signed nut graph’.
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when Γ and Γ′ are switching isomorphic (i.e., signed graphs such that up to ver-
tex labelling, each of them belongs to the switching class of the other). This
observation could reduce the search even more. The following fact is also useful.

Corollary 8. Every switching equivalence class of signed nut graphs has exactly

one representative that has kernel eigenvector with all entries positive.

Proof. Let Γ be a signed nut graph and x be its kernel eigenvector. Let

(11) U = {v ∈ V | x(v) < 0}.

The switching at U gives rise to the switching-equivalent signed graph ΓU with
an all-positive kernel eigenvector, i.e., a nut graph.

The above corollary enables us to select for any signed nut graph Γ = (G,Σ)
a unique switching-equivalent graph Γ′ = (G,Σ′) such that the kernel eigenvector
x′ relative to Γ′ is given by x′(v) = |x(v)|. This canonical choice of switching can
be viewed in the more general setting of signed graphs.

Using the idea of the proof of Proposition 5 and a database of regular con-
nected graphs of a given order [29], we may search for signed nut graphs of that
order. Let F (n, ρ) be the number of regular connected graphs of order n and
degree ρ. In the worst case, Algorithm 1 has to check 2m−n+1 sign structures on
each graph. Since 2m = nρ this implies a maximum of F (n, ρ)2m−n+1 tests.

Algorithm 1 Given the class of graphs Gn,ρ, i.e., the class of connected ρ-regular
graphs of order n, find a signed nut graph in this class.

Input: Gn,ρ, the class of all connected ρ-regular graphs of order n.
Output: A signed nut graph in Gn,ρ (or report that there is none).
1: for all G ∈ Gn,ρ do
2: T ← spanning tree of G
3: for all Σ ⊆ E(G) \ T do
4: Γ← (G,Σ)
5: if Γ is a signed nut graph then
6: return Γ
7: end if
8: end for
9: end for

10: report there is no signed nut graph in class Gn,ρ
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3. Existence of Regular Signed Graphs that Are Nut Graphs

In what follows we will use the fact that there are no regular graphs of odd degree
and odd order. This is an obvious consequence of the Handshaking Lemma. In
this section, we provide sufficient conditions for the existence of regular signed
nut graphs of order n and degree ρ = n − 1 or ρ = n − 2. For ρ ≤ 11, we also
establish the orders for which there exist nut graphs that are sign-unbalanced but
none that are sign-balanced. Our contribution was prompted by recent interest
in the study of families of nut graphs. An efficient strategy for generating nut
graphs of small order was published in 2018 [10, 11] and the collection of nut
graphs found there for orders up to 20 was reported in the House of Graphs [7].
For arbitrary simple graphs, the list is complete for orders up to 12, and counts
are given for degrees up to 13. A list of regular nut graphs for orders from 3 to 8
was deposited in the same place. This list covers orders up to 22 and is complete
up to order 14. More recently, the orders for which regular nut graphs of degree ρ
exist have been established for ρ ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12} [4, 18]. In [21] the
set N(ρ) was defined as the set consisting of all integers n for which a ρ-regular
nut graph of order n exists. There it was shown that

(12)

N(1) = N(2) = ∅,

N(3) = {12} ∪ {2k | k ≥ 9},

N(4) = {8, 10, 12} ∪ {k | k ≥ 14}.

In [18], N(ρ) was determined for every ρ, 5 ≤ ρ ≤ 11. In [4], these results were
extended to ρ = 12. Combining these results, we obtain the following.

Theorem 9 [18, Theorems 2, 3 and 7], [4, Theorem 1.3]. The following holds.

1. N(1) = ∅,

2. N(2) = ∅,

3. N(3) = {12} ∪ {2k | k ≥ 9},

4. N(4) = {8, 10, 12} ∪ {k | k ≥ 14},

5. N(5) = {2k | k ≥ 5},

6. N(6) = {k | k ≥ 12},

7. N(7) = {2k | k ≥ 6},

8. N(8) = {12} ∪ {k | k ≥ 14},

9. N(9) = {2k | k ≥ 8},

10. N(10) = {k | k ≥ 15},

11. N(11) = {2k | k ≥ 8},

12. N(12) = {k | k ≥ 16}.
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Note that, for each ρ in the range 3 ≤ ρ ≤ 12, the set N(d) misses only
a finite number of integer values. The question we tackle here is: which of the
missing numbers can be covered by extending the search for regular nut graphs
to include regular signed graphs? Here, we take the search as far as ρ = 11. The
main result of this paper is summarised in Table 1 which embodies the results
from Theorem 9 above and the two new Theorems 10 and 18 below.

❅
❅
❅ρ
n

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 · · ·

3 ∄ ∄ ∄ X X ⇒

4 ∄ X X X X X X X X X ⇒

5 ∄ ∄ X X X X X ⇒

6 ∄ X X X X X X X X ⇒

7 ∄ X X X X ⇒

8 X X X X X X X ⇒

9 ∄ X X ⇒

10 ∄ X X X X X ⇒

11 ∄ X X ⇒

Table 1. Existence of regular nut graphs of order n and degree ρ. Notation: X. . . there

exists a sign-balanced nut graph; . . . there exists a sign-unbalanced nut graph; ∄. . . there

exists no nut graph, signed or unsigned. Shaded squares denote parameters for which

no simple graph exists, as in these cases either ρ and n would both be odd, or ρ would

exceed n−1. Arrows⇒ indicate that the table continues to infinity to the right: regular

nut graphs, both sign-balanced and sign-unbalanced, with the given degree ρ exist for

all higher values of n (even ρ), or all higher even values of n (odd ρ). Examples for all

cases marked with are given in [3]. Some small examples are illustrated in Figure 1.

Theorem 10. Let Ns(ρ) denote the set of orders n for which there exists no

ρ-regular sign-balanced nut graph but there exists a ρ-regular sign-unbalanced nut

graph.

1. Ns(1) = ∅,

2. Ns(2) = ∅,

3. Ns(3) = {14, 16},

4. Ns(4) = {5, 7, 9, 11, 13},

5. Ns(5) = ∅,

6. Ns(6) = {8, 9, 10, 11},

7. Ns(7) = {10},



12 N. Bašić, P.W. Fowler, T. Pisanski and I. Sciriha

8. Ns(8) = {9, 10, 11, 13},

9. Ns(9) = {12, 14},

10. Ns(10) = {12, 13, 14},

11. Ns(11) = {14}.

Proof. Case Ns(1) = ∅ is trivial. The only possible graph is switching-equivalent
to K2 which is not a nut graph. Case Ns(2) = ∅ is also straightforward. The
only possible graphs are switching equivalent to the cycle Cn or the Möbius cycle
Mn (a cycle where exactly one edge carries weight −1). It is well known that
{η(Cn), η(Mn)} = {0, 2} (see, e.g. [17]) and hence neither is a nut graph.

From Theorem 9 we have only a finite number of further cases to check (all
those pairs (n, ρ) that do not correspond to X in Table 1) in order to establish
the theorem. For some sets of parameters (n, ρ), we were immediately able to
prove existence/non-existence by search using the straightforward Algorithm 1.
For some parameter combinations, exhaustive search was unfeasible, but in these
cases an example was generated by various computer-aided heuristic approaches.
For some cases this involved planting a small number of negative edges in a
general graph. For others, a negative Hamiltonian cycle or perfect matching was
added to an unsigned nut graph.

(a) (b) (c)

(d) (e) (f)

Figure 1. Some small examples of regular signed nut graphs. (a) cubic, n = 14; (b)
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cubic, n = 16; (c) quartic, n = 5; (d) quartic, n = 7; (e) sextic, n = 8; (f) sextic, n = 9.

Thick lines denote edges with negative weight.

All signed graphs mentioned in the proof can be found in [3].

4. A Construction for Signed Nut Graphs

Theorem 10 has answered our initial question, in that if we consider ordinary
graphs as special cases of signed graphs, we need only to perform a computer
search for existence of signed nut graphs for all values of n for which no ordinary
nut graph exists. However, if we want to search for sign-unbalanced nut graphs
with the intention of determining those orders for which a sign-unbalanced nut
graph exists, then methods are needed for generating larger signed nut graphs.
There are several known constructions that take a nut graph and produce a larger
nut graph [33, 37]. We will revisit one such here and extend it to signed graphs.
This is the so-called Fowler Construction for enlarging unweighted nut graphs.

Let G be a graph and v a vertex of degree ρ. Let N(v) = {u1, u2, . . . , uρ}.
Recall [18, 21] that the Fowler construction, denoted F (G, v), is a graph with

(13) V (F (G, v)) = V (G) ⊔ {q1, . . . , qρ} ⊔ {p1, . . . , pρ}

and

E(F (G, v)) = (E(G) \ {vui | 1 ≤ i ≤ ρ}) ∪ {qipj | 1 ≤ i, j ≤ ρ, i 6= j}

∪ {vqi | 1 ≤ i ≤ ρ} ∪ {piui | 1 ≤ i ≤ ρ}.(14)

Here, we generalise this construction to signed graphs.

Definition. Let Γ = (G, σ) be a signed graph and v a vertex of G that has degree
ρ. Then F (Γ, v) = (F (G, v), σ′), where for 1 ≤ i, j ≤ ρ,

(15) σ′(e) =





1 if e = vqi,

1 if e = qipj ,

σ(vui) if e = piui,

σ(e) otherwise,

is the Fowler construction for signed graphs.

Lemma 11. Let Γ = (G, σ) be a signed graph and v a vertex of G that has degree

ρ and let x be a kernel eigenvector for Γ. Then x′, defined as

(16) x′(w) =





−(ρ− 1)x(v) if w = v,

σ(vui)x(ui) if w = qi,

x(v) if w = pi,

x(w) otherwise,
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for w ∈ V (F (Γ, v)), is a kernel eigenvector for F (Γ, v).

The local structures in the signed graphs Γ and F (Γ, v) are shown in Figure 2,
which also indicates the relationships between kernel eigenvectors in these graphs.

v

a

u1b1 u2b2 uρ bρ. . .
σ(vu1) σ(vu2) σ(vuρ)

(a) Γ

v

(1− ρ)a

q1σ(vu1)b1 q2 σ(vu2)b2 qρ σ(vuρ)bρ. . .

p1a p2a pρ a. . .

u1b1 u2b2 uρ bρ. . .

σ(vu1) σ(vu2) σ(vuρ)

(b) F (Γ, v)

Figure 2. A construction for expansion of a signed nut graph Γ about vertex v of degree ρ,

to give F (Γ, v). The labelling of vertices in Γ and F (Γ, v) is shown within the circles that

represent vertices. Shown beside each vertex is the corresponding entry of the (unique)

kernel eigenvector with integer entries for the respective graph. Panel (a) shows the

neighbourhood of vertex v in Γ. Edges from vertex v to its neighbours have weights

σ(vui) which are either +1 or −1. In the figure, edges with weight −1 are dashed, as an

illustration. Edges of the remainder of the graph, indicated by the shaded bubble, may

take arbitrary signs. Panel (b) shows additional vertices and edges in F (Γ, v). Vertices

qi inherit their entries from Γ as described in Equation (16). Edges piui inherit their

weights (signs) from Γ. All other new edges in Panel (b) have weights +1.

Lemma 12. Let Γ be a singular signed graph, and let x be a kernel eigenvector.

Let u, v ∈ V be any two non-adjacent vertices, having the same degree, say ρ,
and sharing ρ − 1 neighbours. Let u′ denote the neighbour of u that is not a

neighbour of v, and let v′ denote the neighbour of v that is not a neighbour of

u. If σ(uw) = σ(wv) for all w ∈ N(u) \ {u′}, then |x(u′)| = |x(v′)|. Moreover,

x(u′) = x(v′) if and only if σ(vv′) = σ(uu′).

Proof. Let N(u) \ {u′} = N(v) \ {v′} = {w2, . . . , wρ} (see Figure 3). The
respective local conditions at vertices u and v are
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σ(uu′)x(u′) +

ρ∑

i=2

σ(uwi)x(wi) = 0,(17)

σ(vv′)x(v′) +

ρ∑

i=2

σ(wiv)x(wi) = 0.(18)

w2

w3

w4

w5

wρ

uu′ v v′

...

Figure 3. The neighbourhood of vertices u and v in Lemma 12. The dashed edges

indicate a possible selection of edges with weight −1.

Since σ(uwi) = σ(wiv) for all 2 ≤ i ≤ ρ, we get that

(19) σ(uu′)x(u′) = σ(vv′)x(v′),

by taking the difference of Equations (17) and (18). Clearly,

(20) |x(u′)| = |σ(uu′)x(u′)| = |σ(vv′)x(v′)| = |x(v′)|.

If σ(uu′) = σ(vv′), then Equation (19) implies x(u′) = x(v′). Similarly, if x(u′) =
x(v′), then Equation (19) implies σ(uu′) = σ(vv′).

Lemma 13. Let Γ and Γ′ be signed graphs over the same underlying graph G,

i.e., Γ = (G, σ) and Γ′ = (G, σ′). Let v be a vertex of G. Then Γ is switching

equivalent to Γ′ if and only if F (Γ, v) is switching equivalent to F (Γ′, v).

Proof. Let Γ and Γ′ be two signed graphs over graph G, say Γ = (G,Σ) and
Γ′ = (G,Σ′). Let v ∈ V (G) and let F (Γ, v) and F (Γ′, v) be the corresponding
Fowler constructions. Let Γ and Γ′ be switching equivalent. This means that
there exists S ⊂ V (G), such that Γ′ = ΓS . We know that ΓS = ΓV (G)\S . Without
loss of generality we may assume that v /∈ S. Let the vertex labelling of F (Γ, v),
F (Γ′, v) and F (G, v) be the same as in Figure 2. In particular, this means that
all vertices of G belong also to F (G, v). Since v /∈ S, we have

(21) F (Γ′, v) = F (ΓS , v) = F (Γ, v)S .
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Hence it follows

(22) Γ ∼ Γ′ ⇒ F (Γ, v) ∼ F (Γ′, v).

To prove the converse, assume the following: F (Γ, v) ∼ F (Γ′, v), where Γ =
(G,Σ) and Γ′ = (G,Σ′). Let S ⊂ V (F (G, v)) such that v /∈ S. Since all edges
above u1, u2, . . . , us in Figure 2(b) are positive in both signed graphs, it is clear
that S ⊂ V (G) and the result follows.

Theorem 14. Let Γ be a signed graph and v any one of its vertices. Then the

nullities of Γ and F (Γ, v) are equal, i.e., η(Γ) = η(F (Γ, v)). Moreover, ker Γ
admits a full eigenvector if and only if kerF (Γ, v) admits a full eigenvector.

Proof. Let u1, . . . , uρ be the neighbours of vertex v in G. Assume first that G is
a core graph and that x is an admissible eigenvector. Let x(w) denote the entry
of x at vertex w. Let a = x(v) and let bi = x(ui). We now produce a vertex
labelling x′ of F (Γ, v) as above. It follows that if x is a valid assignment of G,
then x′ is a valid assignment on F (Γ, v). Thus η(F (Γ, v)) ≥ η(Γ).

On the other hand, apply Lemma 12 to F (Γ, v) and an admissible assignment
x′. First consider vertices qi and qj and their neighbourhoods. Lemma 12 implies
that x′(pi) = x′(pj). Hence x′ is constant on pi, say x′(pi) = a. Thus, it follows
that x′(v) = −(ρ− 1)a. The second application of the lemma goes to vertices v
and pi. It implies that for each i the values x′(qi) and x′(ui) are equal, namely
x′(qi) = x′(ui). Finally, let x(w) = x′(w) for every w ∈ V (G) \ {v} and let
x(v) = a. Hence, the existence of an admissible x′ on F (Γ, v) implies the existence
of an admissible x on Γ. Thus η(F (Γ, v)) ≤ η(Γ).

Corollary 15. Let Γ = (G, σ) be a signed graph and v ∈ V (G) any one of its

vertices. The following statements hold.

(1) F (Γ, v) is a signed nut graph if and only if Γ is a signed nut graph.

(2) F (Γ, v) is a sign-balanced nut graph if and only if Γ is a sign-balanced nut

graph.

Proof. Follows directly from Lemma 13 and Theorem 14. Namely, if Γ is sign-
balanced, then it is switching equivalent to the all-positive signed nut graph Γ′ =
(G, ∅). However, in this case F (Γ′, v) = F ((G, ∅), v) = (F (G, v), ∅). Virtually the
same argument can be used in the opposite direction.

The question answered by Table 1 and the associated theorems was about
finding graph orders where only sign-unbalanced nut graphs would exist. The
above construction allows us to say something about the cases where both sign-
balanced and sign-unbalanced nut graphs exist. A useful observation is the fol-
lowing.
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Observation 16. Whenever there is a parameter pair (n, ρ) marked with a in

Table 1, there is an infinite series of values n, n+ 2ρ, n+ 4ρ, n+ 6ρ, . . . at which
a ρ-regular sign-unbalanced nut graph exists.

Theorem 17. Let U(ρ) be the set consisting of all integers n for which a ρ-regular
sign-unbalanced nut graph of order n exists. The following holds.

1. U(1) = ∅,

2. U(2) = ∅,

3. U(3) = {2k | k ≥ 6},

4. U(4) = {5} ∪ {k | k ≥ 7},

5. U(5) = {2k | k ≥ 5},

6. U(6) = {k | k ≥ 8},

7. U(7) = {2k | k ≥ 5},

8. U(8) = {k | k ≥ 9},

9. U(9) = {2k | k ≥ 6},

10. U(10) = {k | k ≥ 12},

11. U(11) = {2k | k ≥ 7}.

Proof. Cases U(1) = ∅ and U(2) = ∅ follow from the proof of Theorem 10. For
the remaining cases Table 1 suggests a conjecture for each row, which is proved
by identifying at least one sign-unbalanced nut graph for key small values of n,
and applying the construction.

Case U(3). A check for n = 12 yielded an example of a sign-unbalanced nut
graph. Hence by use of Theorem 10 and Observation 16, sign-unbalanced nut
graphs exist for all even n ≥ 12.

Case U(4). Checking that a sign-unbalanced nut graph exists for orders
8, 10, 12 and 14 gives a run of cases from which the result follows by use of the
construction.

Case U(5). From Table 1, 5-regular sign-balanced nut graphs exist for all
even n ≥ 10. Checking the cases n = 10, 12, . . . , 18 shows that 5-regular sign-
unbalanced nut graphs also exist, and the result follows by use of the construction.

Case U(6). Checking cases n = 12, 13, . . . , 19 is sufficient.

Case U(7). Checking cases n = 12, 14, . . . , 22 is sufficient.

Case U(8). Checking cases n = 12 and n = 14, 15, . . . , 24 is sufficient.

Case U(9). Checking cases n = 16, 18, . . . , 28 is sufficient.

Case U(10). Checking cases n = 15, 16, . . . , 31 is sufficient.
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Case U(11). Checking cases n = 16, 18, . . . , 34 is sufficient.

Note that Ns(ρ) = U(ρ) \N(ρ). Clearly, N(ρ) ⊆ U(ρ) for all 1 ≤ ρ ≤ 11.

5. Signed Nut Graphs with ρ = n− 1 and ρ = n− 2

Further theorems extend the results of Theorem 10 to infinity along the leading
diagonals of the table.

Theorem 18. Let Γ be a signed graph whose underlying graph is Kn. If Γ is a

signed nut graph, then n ≡ 1 (mod 4). Moreover, for each n ≡ 1 (mod 4), there
exists a signed nut graph with underlying graph Kn.

Proof. Graphs on the leading diagonal are regular of degree ρ = n−1 and hence
all have underlying graph Kn. Note that there are no unsigned nut graphs on
this diagonal, as Kn is non-singular.

Let n = 4k + q, where 0 ≤ q ≤ 3. We divide the proof into three parts:
(a) q ∈ {0, 2}, (b) q = 3, and (c) q = 1.

Assume that Γ is singular. Let x be a full kernel eigenvector (existence
established by Proposition 1). We may assume that x is a non-zero integer
vector. If x has no odd coordinate, we may multiply x by an appropriate power
of 1

2 so that at least one coordinate becomes odd. We call vertex s even if xs ≡ 0
(mod 2) and odd if xs ≡ 1 (mod 2). The local condition (9) at r implies that
there is an even number of odd vertices around r and hence, together with r, an
odd number of odd vertices in total for a presumed Kn nut graph.

Case (a). q ∈ {0, 2}. This means that n is even. The signed graph Γ must
have an even vertex t. The local condition at t implies that there is an even
number of odd vertices around t, and hence an even number of odd vertices in
total, a contradiction. This rules out the existence of signed nut graphs whose
underlying graph is the complete graph for q ∈ {0, 2}.

Case (b). q ∈ 3. In this case all entries xs are odd: the parity of the sum
in (9) is opposite for even and odd vertices.

Let m+ denote the number of edges in Γ with positive sign. For each vertex
s, let ρ+(s) and ρ−(s), respectively, denote the number of edges with positive
sign and negative sign that are incident with s. Note that ρ+(s)+ ρ−(s) = n− 1.
Summing local conditions over pivots r, we have

(23) 0 =
∑

r

ρ+(r)xr −
∑

r

ρ−(r)xr.

Hence,

(24) 0 =
∑

r

{ρ+(r)− ρ−(r)}xr =
∑

r

{2ρ+(r)− n+ 1}xr,
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and

∑

r

ρ+(r)xr =
n− 1

2

∑

r

xr = {2k + 1}
∑

r

xr.(25)

The RHS of (25) is an odd number as it is a product of two odd numbers, hence∑
r ρ+(r)xr is odd. Therefore, the subgraph with only positive edges has an

odd number of vertices with odd degree. By the Handshaking Lemma this is
impossible.

Case (c). q = 1 is the only remaining possibility and the first part of the
theorem follows, provided such nut graphs exist. Now we construct a signed nut
graph for each n of the form n = 4k + 1. A signed graph Γ is constructed from
K4k+1 as follows. Partition the vertex set of K4k+1 into a single vertex r = 0 and
k subsets of 4 vertices for k copies of the path P4. Change the signs of all edges
internal to each P4 to −1. To construct a kernel eigenvector x of Γ for λ = 0 place
+1 on vertex 0, then entries −1,+1,+1,−1 on each P4. We denote by 1, 2, 3, 4
the vertices of the first P4, by 5, 6, 7, 8 the vertices of the second P4, etc. Owing
to the symmetry of Γ (since automorphisms of Γ preserve edge-weights) there are
only three vertex types to be considered.

1. For r = 0 all weights σ(rs) = 1 and exactly half of the xs are equal to 1
and the other half are equal to −1. Hence, (9) is true in this case.

2. The vertex r may be an end-vertex of any of the k paths P4. The net
contribution of the three remaining vertices of P4 is −1, and all contributions of
other paths cancel out. Taking into account the edge to vertex 0, the weighted
sum in (9) is equal to 0.

3. The vertex r may be an inner vertex of any of the k paths P4. Again,
the net contribution of the three remaining vertices of P4 is −1, and by the same
argument, the weighted sum in (9) is equal to 0.

As x is a full kernel eigenvector, Γ is a core signed graph.

It remains to prove that Γ is a signed nut graph, i.e., with nullity η(Γ) = 1.
This is done by showing that the constructed full kernel eigenvector x is the only
eigenvector for λ = 0 (up to a scalar multiple). First, note that all edges incident
with vertex 0 have weight +1. Hence for r = 0, (9) becomes

(26)
∑

s 6=0

xs = 0.

It follows that

(27)
n∑

s=0

xs = x0.
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Now consider any path P4 with vertices, say, 1, 2, 3, 4. Note that vertices 1 and
4 fall into one symmetry class while vertices 2 and 3 are in the other. The local
conditions are the following.

0 = x0 − x2 +
∑

s 6=0,1,2

xs = x0 − x1 − 2x2,(28)

0 = x0 − x1 − x3 +
∑

s 6=0,1,2,3

xs = x0 − 2x1 − x2 − 2x3,(29)

0 = x0 − x2 − x4 +
∑

s 6=0,2,3,4

xs = x0 − 2x2 − x3 − 2x4,(30)

0 = x0 − x3 +
∑

s 6=0,3,4

xs = x0 − 2x3 − x4.(31)

It is straightforward to show that x1, . . . , x4 are related to x0 as

(32) x1 = x4 = −x0, x2 = x3 = x0.

Since this holds for all k path graphs P4, it follows that Γ is a signed nut graph.

We can also prove a theorem that accounts for the next diagonal of Table 1.
The graphs on this diagonal are ρ-regular ρ ≥ 3 and ρ = n − 2, implying even
order n ≥ 6. They are therefore the cocktail-party graphs, CP(n) (also known as
hyperoctahedral graphs [6, p. 17], as they are 1-skeletons of the cross-polytope
duals of hypercubes). Exhaustive search shows that there is no nut graph for the
case CP(6).

Lemma 19. Let Γ = (G,Σ) be a signed graph whose underlying graph G is

the cocktail-party graph of order 2p, CP(2p) ∼= p K2, p > 1. Then Γ is not a

sign-balanced nut graph.

Proof. The spectrum of CP(2p) is σ(CP(2p)) = {2p− 2, 0(p),−2(p−1)} [6, p. 17]
and so η(CP(2p)) = p > 1. Therefore, G is not a nut graph, and Γ is not
switching-equivalent to a sign-balanced nut graph.

Theorem 20. Let Γ = (G,Σ) be a signed graph whose underlying graph G is the

cocktail-party graph of order 2p, CP(2p) ∼= p K2. For each even p, p ≥ 4, there
exists at least one sign-unbalanced nut graph Γ.

Proof. Construct Γ(G,Σ) with G = CP(2p) and Σ defined as follows. Let K2p

be the complete graph with V (K2p) = {0, 1, . . . , 2p − 1}. Take the Hamiltonian
cycle [0, 1, 2, . . . , 2p − 1, 0] and assign weights 0 and −1 to alternate edges. All
edges not in the cycle have weight 1. To obtain the signed graph Γ, remove from
K2p all edges that were given weight 0. Note that Σ = {(1, 2), (3, 4), . . . , (2p− 3,
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2p − 2), (2p − 1, 0)} and that every vertex has a unique antipodal partner in Γ;
the partner pairs are the non-edges {(0, 1), (2, 3), . . . , (2p− 2, 2p− 1)}.

With this assignment of Σ, the local condition for an eigenvector x corre-
sponding to an eigenvalue λ of Γ is

(33) λxu =




∑

v/∈{u,u,u′}

xv


− xu′

for all u ∈ V (G), where u is the antipodal partner of u, and u′ is the (unique)
vertex connected to u by a negative edge. Condition (33) can be rewritten as

(34) λxu =




∑

v∈V (G)

xv


− xu − xu − 2xu′ ,

and summing over all u ∈ V (G) gives

(35) (λ− 2p+ 4)
∑

u∈V (G)

xu = 0.

Hence, if λ = 0, the desired vector has S =
∑

v∈V (G) xv = 0 and (34) reduces to

(36) xu + xu = −2xu′ = −2xu′ = −(xu′ + xu′),

where the second equality follows by substituting u for u in the first (with the
labelling convention u′ = (u)′).

Note that the vector y with entries specified by

(37) yu =

{
+1, if u ≡ 0 or 1 (mod 4),

−1, otherwise,

is both full and a kernel eigenvector of Γ. Therefore, Γ is a core signed graph.
We now show that the nullity η(Γ) is not greater than 1.

Uniqueness of the kernel vector follows from a symmetry argument. The
dihedral group Dp is a subgroup of Aut |G| and Aut |Γ|. This fact is given a
spatial realisation by identifying the vertices of Γ with those of a regular [p]-
gonal prism, so that edges in Σ correspond to consistently oriented diagonals on
vertical quadrilateral faces, pairs of antipodal partners in Γ lie on vertical edges
of the prism, and positively weighted edges of Γ are symmetrically distributed
on faces and in the prism interior. The group Dp with even p has two classes of
two-fold rotational axis perpendicular to the principal (Cp) axis, passing through
midpoints of vertical edges, and centres of vertical faces, respectively. These
generate C ′

2 and C ′′
2 rotations, respectively. Figure 4 illustrates the case of n =

2p = 12.
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Figure 4. Construction of sign-unbalanced regular nut graphs with degree n − 2. The

graphs Γ(G,Σ) are based on cocktail-party graphs G = CP(2p) where 2p is divisible by

4. (a) Schlegel and (b) unfolded-net representations of the graph Γ = (CP(12),Σ) in

a prism setting of the chiral point group D6. Black- and white-filled symbols indicate

points where two-fold rotational axes enter and leave the prism. Axis C ′

2
(u) enters the

prism midway between vertex u and its graph-antipodal partner u, to emerge between

vertex w and its graph-antipodal partner w. Axis C ′′

2
(u) enters the prism between vertex

u and its neighbour on a negative edge u′, to emerge between vertices w and w′. Dashed

lines denote the edges with weight −1, chosen as described in the proof of Theorem 20.

Grey lines denote the ‘missing edges’ deleted from the complete graph K2p. Solid black

lines denote edges of weight +1, though not all are shown: the graph has an edge of

weight +1 connecting each vertex w with all vertices other than w, w′ and w itself.

Consider the local rotation C ′
2(u). This exchanges u with u and u′ with u′.

As the operation is an involution partitioning the vertices into orbits of size 2,
the eigenspace for any given eigenvalue λ of Γ can be partitioned such that each
eigenvector is either symmetric or antisymmetric under the action of C ′

2(u). In
particular, for kernel vector x, we have

(38) C ′
2(u)x = χ(C ′

2(u))x



Signed Nut Graphs 23

with character χ(C ′
2(u)) = ±1. From the local condition (36) we know that

xu′ = xu′ for every kernel vector of Γ, and so χ(C ′
2(u)) = +1, and xu = xu.

Also from (36), we have xu′ = xu′ = −xu′ = −xu′ for every kernel vector of Γ.
As C ′′

2 (u) exchanges u and u′, this relation implies χ(C ′′
2 (u)) = −1. Operations

C ′
2(u) (respectively, C ′′

2 (u)) for u form a class within the group Dp, and hence
have the same character χ(C ′

2) (respectively, χ(C
′′
2 )).

We may propagate the vector x starting from the entry xu = a, using con-
secutive C ′

2(u) and C ′′
2 (u) operations, shifting the axis each time by a rotation

of π/p about the principal axis. This process covers every vertex with an entry
|xv| = a and returns consistently to u. The resulting vector x is ay, where y is
the kernel vector given by (37); it has equal entries on antipodal partners in G,
but equal and opposite entries on pairs of vertices linked by a negative edge in
Γ. The underlying graph G is not a nut graph. Therefore, Γ is a sign-unbalanced
nut graph.

Theorem 21. Let Γ = (G,Σ) be a signed graph whose underlying graph G is the

cocktail-party graph of order 2p, CP(2p) ∼= p K2. For each odd p, p ≥ 5, there
exists at least one sign-unbalanced nut graph Γ.

Proof. Let p = 2q + 1. The proof separates into Case 1, where q is even, and
Case 2, where q is odd. In both cases we construct Γ to have p + 1 edges in Σ.
In both, a symmetry argument is used to split the cases further according to the
character (±1) of a candidate kernel vector under a two-fold rotation.

Case 1. n = 2p = 4q + 2, q is even. The candidate graph Γa for this case
is illustrated in Figure 5(a). The signed graph retains only one axis of two-fold
rotational symmetry, which exchanges vertex u with its antipodal partner u;
every vertex w has a unique rotational partner w̃, but only for u is w = w̃.

The graph Γ can be divided into two ‘halves’ H and H̃ related by the C2(u)
rotation (see Figure 5(a)). Fragment H contains a path of three negative edges
(2 − 0 − u − t), a set of q − 2 isolated negative edges (with lower endpoints
3, 5, . . . , s), and exactly one vertex that is on no negative edge.

A full kernel vector of Γa is easily found. The vector z is defined to have
entries inH z0 = −z1 = −z2 = 1, and z2w+1 = −z2w+2 = (−1)w for 1 ≤ w ≤ q−1,
and entries in H̃ given by zṽ = −zv. The vector z constructed in this way is full,
with eigenvalue 0 and character −1 under the rotation C2(u).

To check whether other kernel vectors with this character exist, consider
a putative kernel vector x. All kernel vectors of Γa obey the local condition
(pivoting on vertex w)

(39) 0 =




∑

v∈V (G)

xv


− xw − xw − 2

∑

σ(vw)=−1

xv.
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Note that vertex 1 (and 1̃ ≡ 2p − 2) have no incident negative edges. As the
kernel vector x has character −1 under C2(u), xw̃ = −xw for all w. The sum
S =

∑
v∈V (G) xv vanishes by symmetry for vectors with χ(C2(u)) = −1.

(a)

u=u

_

0 2 4 u

1 3 5 ts

t

_

n−1

n−2

~

t
~

(b)

u=u

_

0 2 4 u

1 3 5 ts

s+1

n−1

n−2

~

t

~

...

...

...

...

...

...

...

...

......

... ...

Figure 5. Construction of sign-unbalanced regular nut graphs with degree n− 2 (contin-

ued). The graphs Γ(G,Σ) are based on cocktail-party graphs G = CP(2p) where 2p is not

divisible by 4. (a) Signed graph Γa for the case n = 2p = 4q+2, with q even. (b) Signed

graph Γb for the case n = 2p = 4q + 2, with q odd. In each case, the graph is shown in

a shorthand ribbon format where each vertex lies directly above its antipodal partner.

Solid black lines denote the edges with weight −1. Grey lines denote the ‘missing edges’

deleted from the complete graph K2p. Vertices are colour coded by the number of inci-

dent edges of weight −1: white for 0, black for 1 and grey for 2. The elliptical symbol

indicates the axis of the unique two-fold rotation C2(u) that swaps vertices u ≡ (n/2)−1

and u ≡ (n/2). (The notation w indicates the antipodal partner of vertex w, and w̃ its

image under the rotation.) The wavy lines show the different splitting of Γa and Γb into

fragments H (to the left) and H̃ (to the right). Constructions (a) and (b) differ in the

position of t, the end vertex of the path of negative edges: t is at position u − 1 in Γa,

but u+ 2 in Γb.

Entries on vertices 0 and u = n/2− 1 = 2q are assigned variables b = x0 and
a = xu = xu. From the local condition it is apparent that all entries in x are
linear combinations of a and b. Pivoting on 1, 0, 2, . . . and on u, t, t, . . . gives

(40)

x0 = b, x1 = −b, x2 = −a,
x3 = a− 2b, x4 = b, . . .

xu = a, xu = −a, xt = xu−1 = −b,
xt = xu−2 = b− 2a, xs = xu−3 = a, . . .
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Now we propagate vector x starting from the left side of H and determine the
relationship between parameters a and b by requiring consistency when the neigh-
bourhood of u is reached. (NB For the smallest case, n = 10, q = 2, (40) with
xt ≡ x3 already gives a = b and x = az.)

The fragment H contains (q − 2) independent negative edges. Consecutive
application of the local condition to each vertex of this ladder of negative K2

units, (3, 4), (5, 6), . . . , (u− 3, u− 1) gives a recurrence relation for the entries in
x on top and bottom rows of Figure 5(a), with solution for q ≥ 4.

(41)
x2w+1 = (−1)w+1(wa− (w + 1)b) (1 ≤ w ≤ q − 2),

x2w+4 = x2w+1 (1 ≤ w ≤ q − 2).

Consistency of (40) and (41) for xt ≡ x2w+4 = x2w+1 with w = q − 3, requires
a = b and therefore x = az. Hence, Γa is a core with exactly one kernel vector
that has χ(C2(u)) = −1.

It remains to check that Γa has no kernel vector with χ(C2(u)) = +1, i.e.,
with xu = xũ = xu. We assign three variables a = xu, b = x0 and c = x1.
The extra parameter caters for the fact that the sum S is not now guaranteed to
vanish by symmetry. Pivoting on vertex 1 shows that S = b + c. Proceeding as
before, local conditions fix entries with lowest and highest labels in H.

(42)

x0 = b, x1 = c, x2 = −a,
x3 = a− b+ c, x4 = b, . . .

xu = a, xu = a, xt = −a−
1
2b+

1
2c,

xt = −a+ 3
2b+

1
2c, xs = xu−3 = a, . . .

Working along the ladder of vertices in sequence from 3, recurrence relations are
found.

(43)

x4w+1 = −2wa+ (w + 1)b− wc (1 ≤ w ≤ q/2− 1),

x4w+3 = (2w + 1)a− (w + 1)b+ (w + 1)c (1 ≤ w ≤ q/2− 2),

x4w = x4w−3 = x4(w−1)+1 (1 ≤ w ≤ q/2− 1),

x4w+2 = x4w−1 = x4(w−1)+3 (0 ≤ w ≤ q/2− 2).

There are three consistency conditions to be applied to reduce the number
of free parameters. Entries xt and xs must match general relation (42), and the
sum of all entries must be consistent with S as obtained from the local condition
at vertex 1. The first two conditions are

q(2a− b+ c) = 2a+ 2c,(C1)

q(2a− b+ c) = 4a+ b+ 3c.(C2)
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The third follows by summing the local condition for λ = 0 (39) over all vertices
of Γb, to give

(44) 0 = (n− 2)S − 2
∑

v∈V (G)

ρ−(v)xv,

where ρ− is as introduced in the proof of Theorem 18; see (23). Noting that
xw = xw̃ for character +1, S = b+ c, and that apart from vertices 0, u and 1, all
vertices w and their rotational partners have ρ−(w) = 1, the result is

(C3) (2q − 3)(b+ c) = 2a− 4c.

It is straightforward to show that conditions (C1) to (C3) admit only the trivial
solution a = b = c = 0, as the determinant of the coefficients in the 3 × 3 set of
linear equation vanishes only for q = 0, therefore x is the null vector and Γa is a
sign-unbalanced nut graph.

Case 2. n = 2p = 4q + 2, q is odd. The candidate graph Γb for this case
is illustrated in Figure 5(b). The signed graph retains the two-fold rotational
symmetry exchanging vertex u = 2q with its antipodal partner u, but now the
path of three negative edges has endpoint t at position u+2, leading to a different
partition into fragments H and H̃. The argument follows the same lines as Case
1. A full kernel vector is readily constructed for Γb. Here, this is z

′, with entries
in H defined by z′0 = −z′1 = −z′2 = z′u = −z′t = 1, and z′2w+1 = −z′2w+2 = (−1)w

for 1 ≤ w ≤ n/2 − 4, and entries in H̃ found from z′v = −z′ṽ. By construction,
this vector is antisymmetric under the reflection C2(u).

As in Case 1, we construct a general kernel vector x with χ(C2(u)) = −1,
working outwards from vertex 0.

(45)

x0 = b, x1 = −b, x2 = −a,
x3 = a− 2b, x4 = b, . . .

xu = a, xu = −a, xt = −b,
xt̃ = b, xs+1 = 2a− b, xs = −a, . . .

Here s+ 1 labels the final vertex of the ladder of (q − 2) disjoint negative edges,
s+ 1 = u− 2 = 2q − 2 (see Figure 5(b)).

The recurrence relation for vertices in H is

(46)
x2w = (−1)w+1(wa− (w + 1)b) (1 ≤ w ≤ q − 2),

x2w+2 = x2w11 (1 ≤ w ≤ q − 2).

Consistency with the expression for xs+1 requires a = b and x = az′. Hence, Γb

is a core and has exactly one kernel vector that has χ(C2(u)) = −1.
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It remains to check that Γb has no kernel vector with χ(C2(u)) = +1. Con-
structing a general kernel vector x with character +1, assigning parameters a, b, c
as in Case 1 gives the same entries as in (42) and the same recurrence relations
for the forward direction in H as in (43), if we note that the entry for t for Γa now
applies to s+ 1. Consistency conditions (C1) and (C3) also apply here. Condi-
tion (C2) is replaced by (C2′), as the offset of vertex s + 1 from u is 2 rather
than 4

(C2′) q(2a− b+ c) = 8a− 4b+ 2c′.

Again, it is straightforward to show that the three conditions admit only the
trivial solution a = b = c = 0, and x is the null vector. Hence, Γb is a sign-
unbalanced nut graph.

Taken together, Theorems 20 and 21 fully characterise the sub-diagonal
(ρ, n) = (n − 2, n) of Table 1. This diagonal is populated for all n ≥ 8 with
sign-unbalanced nut graphs. The following theorem summarises Theorems 18, 20
and 21.

Theorem 22. Let Γ be a signed nut graph on n ≥ 2 vertices with the underlying

ρ-regular graph G.

(a) If ρ = n − 1 (i.e., G = Kn), then n ≡ 1 (mod 4) and Γ is sign-unbalanced.

Moreover, for each n ≡ 1 (mod 4) there exists such a signed nut graph.

(b) If ρ = n − 2 (i.e., G = CP(2p) ∼= p K2 for some p), then n is even, n ≥ 8,
n = 2p and Γ is sign-unbalanced. Moreover, for each even n ≥ 8 there exists

such a signed nut graph.

6. Conclusion

Invocation of signed graphs as candidates for nut graphs allows extension of the
orders at which a nut graph exists, and leads to a proof of all cases for regular nut
graphs (either sign-balanced or sign-unbalanced) with degree at most 11. As with
unweighted nut graphs, signed nut graphs can be generated by a generic construc-
tion in which the order of a smaller signed nut graph increases from n to n+ 2ρ,
where ρ is the degree of the vertex chosen as the focus of this vertex-expansion
construction. This was used to establish Theorem 17, which specifies infinite
series of orders n for which both sign-balanced and sign-unbalanced regular nut
graphs exist. Two natural questions arise.

Question 23. Does there exist a degree ρ and order n such that there is at least

one ρ-regular nut graph of order n that is sign-balanced, but no nut graph with

the same parameters ρ and n that is sign-unbalanced?
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Current data collected in Table 1 are compatible with the existence of three
patterns for U(ρ) based on divisibility by 4. These give the basis for the following
question for ρ large enough.

Question 24. For all ρ ≥ 6, prove or find a counterexample to

(47) U(ρ) =





{k | k ∈ Z, k ≥ ρ+ 1} if ρ ≡ 0 (mod 4),

{k | k ∈ Z, k ≥ ρ+ 2} if ρ ≡ 2 (mod 4),

{2k | k ∈ Z, 2k ≥ ρ+ 3} otherwise.

Clearly, Equation (47) would not hold for ρ < 6 (see Theorem 18).
A connection with other work can be made via the concepts of two-graphs,

equiangular lines and Seidel matrices [1, 2, 23, 24, 35]. The theory of two-graphs
and Seidel matrices is equivalent to the theory of signed graphs with the under-
lying graph the complete graph Kn. The two-graphs are thus special cases of
the signed graphs considered in Table 1 (those on the main diagonal, covered
by Theorem 18). After completing our manuscript, it came to our attention
that a result that covers one direction of Theorem 18 is given already in [23].
Recently, an independent proof covering the other direction of Theorem 18 was
published in [1]; this work also gives results for the possible entries in the kernel
eigenvector. Table 1 includes this interesting case of the first diagonal, but also
gives a complete treatment of the next (where G is the cocktail-party graph), and
characterises regular signed nut graphs of degrees 3 to 11 to all order.

In previous work [11, 36] the question of which entries appear in the integer
form of the kernel eigenvector has been considered. Haemers had raised this
question for complete signed graphs in 2011 (see [5, Problem 3.26]) asking in
effect whether all signed nut graphs with G = Kn have kernel eigenvectors with
entries ±1 only. We have not specifically searched for (signed) nut graphs with
constraints on the entries of the kernel eigenvector, but the data in [3] give some
information on the values that can occur. It is interesting to note that the Fowler
construction has a specific effect on the ratio of largest to smallest magnitudes
that appear in the kernel eigenvector. Application of the construction to any
vertex of degree greater than 2 increases the magnitude of its entry; iteration of
the construction on the vertex carrying the largest entry can therefore be used
to increase the ratio indefinitely.

Supplementary Material

The GitHub repository [3] currently contains examples of sign-unbalanced nut
graphs that were used in the paper for verification of Table 1 and Theorems
10 and 17. Each entry gives an adjacency list, together with the pattern of
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positive and negative weights and the kernel eigenvector as a list of integer en-
tries. This data can also be found in the arXiv version of the present paper
(https://arxiv.org/abs/2009.09018 [math.CO]).
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