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Abstract

Copy number alterations (CNA) are structural variation in the genome, in which

some regions exhibit more or less than the normal two chromosomal copies. This

genomic CNA profile provides critical information in tumour progression and is

therefore informative for patients’ survival. It is currently a statistical challenge

to model patients’ survival using their genomic CNA profiles while at the same

time identify regions in the genome that are associated with patients’ survival.

Some methods have been proposed, including Cox proportional hazard (PH)

model with ridge, lasso, or elastic net penalties. However, these methods do not

take the general dependencies between genomic regions into account and pro-

duce results that are difficult to interpret. In this paper, we extend the elastic

net penalty by introducing additional penalty that takes into account general

dependencies between genomic regions. This new model produces smooth pa-

rameter estimates while simultaneously performs variable selection via sparse

solution. The results indicate that the proposed method shows a better predic-

tion performance than other models in our simulation study, while enabling us

to investigate regions in the genome that are associated with the patients’ sur-

vival with sensible interpretation. We illustrate the method using a real dataset

from a lung cancer cohort and simulated data.
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1. Introduction

1.1. Motivation

Copy number alteration (CNA) is a type of structural variation in the

genome [1]. It refers to the duplication or deletion of DNA segments larger

than 1 kb [2]. It is therefore common to observe CNA estimates in long seg-5

ments [3] or smooth segments [4] that describe the transition of copy number

across genomic regions in an individual. As a result, neighbouring genomic re-

gions are correlated; the CNA estimate in one particular genomic region is not

likely to differ much from its adjacent regions. In the medical context, CNA

has been extensively observed in tumorigenesis and speculated to drive tumor10

progression in multiple cancers [5]. Therefore, the CNA patterns carry valu-

able information on patients’ survival and it is currently a statistical challenge

to model the patients’ survival based on CNA genomic profiles. From medical

view point, prediction of cancer patients’ survival is important for the care and

management of cancer patients’ well being.15

From a statistical modelling view point, the task of modelling poses some

inter-related challenges. The first one is not an uncommon feature of data

produced by current technologies: the number of variables (genomic regions) far

exceeds the number of patients. Facing this challenge, it is immediately clear

that the original Cox proportional hazard (PH) model [6] is not suitable due20

to over-parameterisation. The second challenge is how to perform a variable

selection: we expect that only some genomic regions are associated with the

patients’ survival while the other genomic regions are not. The third and final

challenge is the fact that the variables (genomic regions) exhibit moderate to

high ‘block’ correlation as discussed in Section 2.2. These three challenges are25

inter-related and we believe that it is sub-optimal to deal with those challenges

separately. For example, ignoring the correlation between genomic regions in

the variable selection creates a problem in the interpretation of the results. If a
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single genomic region is identified to be associated with the patients’ survival,

then we expect the adjacent regions (to some extent) shall also be associated.30

This study proposes a novel method on how to deal with these challenges in a

single modelling framework.

1.2. Survival analysis on high-dimensional genomic data

In dealing with the high-dimensionality of the data, some authors have con-

sidered Cox PH model with penalty function [7]. In the model, a ridge penalty is35

introduced to log partial likelihood and provide a shrinkage to model parameter

estimates. The model does not produce a so-called ‘sparse solution’. The term

‘sparse’ refers to the situation where some model parameters are zero estimated

and the other parameters are estimated away from zero. In effect, a variable

selection is carried out. The lasso model was proposed to specifically deal with40

this problem [8]. In [8], Cox PH model is equipped with a lasso penalty to

perform a variable selection.

One concern of the lasso penalty is that it tends to select one variable from a

group of correlated variables [9]. In our context of CNA genomic profile, having

a lasso penalty in the Cox PH model would give results that are difficult to45

interpret (see Section 3.1). Since the data exhibit blocks of correlated regions,

the model tends to select one or two variables per small correlated regions

across the genome. To mitigate this situation, Zou and Hastie [9] consider a

mixture of ridge and lasso penalties called the ‘elastic net’. This results in a

penalty function that is expected to combine the best aspects: the lasso penalty50

would result in variable selection while the ridge penalty would tend to group

variables [9]. The Cox PH model with elastic net penalty has been used in some

applications [10]. A previous study by Waldron et al. [11] compared the normal

(ridge), elastic net, and lasso penalty in the Cox PH model using several types of

genomic datasets and recommended the first two penalties. When we consider55

the elastic net penalty in our study, the results are better than those of lasso

penalty, but their interpretation is still not satisfactory (see Section 3.1). In the

context of the investigation of genomic regions, we find that the model is not
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adequate since it deals with the first two challenges but not with the third one

(dependencies between genomic regions).60

To achieve our objective, we extend the elastic-net penalty in Cox PH model

by introducing an additional penalty that imposes a smoothness in the param-

eter estimates. This additional penalty is specifically included to deal with the

dependencies between genomic regions where second differences of model param-

eters of neighbouring regions are moderated to deviate around zero. With this65

formulation, the results show that the parameter estimates are sparse: many

of the genomic regions have zero estimates, while the other regions have non-

zero estimates. The non-zero estimates are grouped within some bigger regions

and have smooth transition within them. To estimate the model parameters,

we present a full gradient algorithm to maximise penalized partial likelihood70

(PPL) by generalising the idea of Goeman [12]. Coupling this with a Newton-

Raphson algorithm near an optimal solution, this method is faster and can be

done without the need for a high-performance computing facility. We illustrate

the proposed method on a real dataset from a cohort of 89 lung cancer patients

with approximately 14,000 genomic regions.75

The rest of the paper is organised as follows. Section 2 describes the data

involved. The proposed method of sparse-smoothed Cox PH model and its

computational algorithm will be described in Section 3. Section 4 discusses

our simulation study and Section 5 presents the results of real-data analysis.

Section 6 contains the discussion and the conclusion is presented in Section 7.80

2. Dataset

2.1. Patients data

Eighty-nine patients with early-stage lung squamous cell carcinoma (SCC)

who had surgery at the Department of Thoracic Surgery, St. James Hospital,

Leeds, UK, between 1994 and 2003 were included in the study [13]. Various85

clinical characteristics, such as age, gender, and stage of disease (Stage T and
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Stage N) of the patients were recorded. The summary of the patient cohort in

our study are presented in Table 1 and Figure 1.

Table 1: Description of the lung cancer dataset

Characteristics Value

No. of patients 89

No. of censored obs. 23 (25.8%)

Time after surgery Range: 34 days-12.5 years

Median: 2.35 years

95% CI: (1.83, 4.31)

Age at surgery 39 to 84 years

Gender Male: 63; Female: 26

Stage T

T1: 23 patients, 5 censored

T2: 59 patients, 16 censored

T3: 7 patients, 2 censored

Stage N

N0: 47 patients, 14 censored

N1: 35 patients, 8 censored

N2: 7 patients, 1 censored

Table 1 shows that, among the 89 patients, approximately a quarter of sur-

vival times are censored. The median survival time is at 2.35 years, as also90

indicated in Figure 1. Figure 1 (top right panel) also shows the estimated cu-

mulative baseline hazard function, which roughly indicates that Cox PH model

is reasonable for the data. The Kaplan-Meier estimates of survivor function

based on the T-staging (tumour size) and N-staging (location of affected lymph

node) are presented in the bottom panels of Figure 1. The figures indicate that95

there are differences in the estimated survivor functions between different levels

in each of Stage-T and Stage-N. This indicates that Stage-T and Stage-N are

important factors for patients’ survival.
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Figure 1: Top panels: Kaplan-Meier (KM) estimates of survivor function and cumulative

hazard function with 95% confidence interval (grey lines). Bottom panels: KM estimates

of the survivor function based on Stage-T and Stage-N groupings. Log rank tests on the

bottom panel figures indicate significant differences between groups (p-value less than 0.05).

Horizontal dotted grey line in the estimated survivor functions marks the 50% probability.

For our purpose of modelling, the information on patients’ age, tumours’

N-stage and T-stage will serve as predictors (or input) in the model. However,100

their treatment in the model will be different to that of the genomic CNA data

as described in Section 3.1.

2.2. Genomic sequence and CNA estimate

The patients’ DNA samples were sequenced in the next-generation sequencer

Illumina GAII. The sequencer produced short sequences (usually called ‘reads’)105

that were aligned to assembly hg19 of the human reference genome using the
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Figure 2: Top panel: Estimated copy number alteration (CNA) as smooth segmentation line

across the genome for patient LS170 (solid black line). One data point in the line corresponds

to the CNA from a genomic region or ‘window’ of size 200 kb. The horizontal grey lines cor-

respond to the expected copy number (left axis) or expected ratio (right axis). The horizontal

line corresponds to the ratio one. The vertical solid lines separate the chromosomes and

vertical dotted lines indicate the centromere regions. Bottom panel: Correlation of CNA’s

between genomic regions in chromosomes 1-3 and 6-8 from 89 patients in our dataset.
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Burrows-Wheeler Alignment suite version 0.5.9-r16 [14]. Further details are

elaborated in Belvedere et al. [13].

The genome wide CNA profile from each patient is calculated by depth-of-

coverage from their sequences. This involves counting the number of reads per110

fixed-size non-overlapping genomic-region (‘window’) in each sample. We esti-

mated the optimal window size to be 200 kb [15], and this gives 15,490 windows

to cover the human genome. However, due to missing data in certain parts of

the genome, e.g. centromeres, we only include information from 13,968 windows

in our analysis. The sequence data across patients are not directly comparable115

because tumour samples are inevitably contaminated with normal cells by dif-

ferent degrees. To deal with this problem, we performed a normalisation using

the CNAnorm package [16] to obtain the CNA estimates, which are shown in

Figure 2 (top panel) for one individual.

The figure shows the CNA profile estimated as smooth segmented lines [4]120

for patient LS170, where one data point corresponds to a genomic region (‘win-

dow’) of size 200 kb. When we combine the CNA estimates (e.g. solid line in

Figure 2) across the 89 patients, we create a dataset where the genomic regions

serve as predictor (‘input’) variables from modelling perspective. This indicates

that the number of predictor variables from CNA estimation is in the order of 14125

thousands (approximately) to cover the whole genome. Figure 2 (bottom panel)

shows the correlation between genomic regions in chromosomes 1-3 and 6-8 from

89 patients in the dataset. The figure indicates blocks of correlation between

genomic regions at different sizes in the dataset. This is an important charac-

teristic of CNA data, which occurs because the alterations frequently manifest130

in segments as indicated in Figure 2. As such, if a genomic region occurs as

a gain, then the adjacent regions are expected to occur as gains as well. We

shall discuss how to deal with this characteristic in the modelling as discussed

in Section 3.3.

CNA have been shown to be clinically meaningful for lung cancer patients’135

survival [17] and used as diagnostic tool for lung cancer [18]. Furthermore, CNA

have also been shown to distinguish different cancer types [19, 20] or cancer
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subtypes [21, 22, 23]. Our approach here will jointly utilise CNA and clinical

information to make prediction of cancer patients’ survival, as described in the

next section.140

3. Methods

In this section, we shall cover the relevant methodologies involved. First, we

describe the Cox proportional hazard (PH) model that we employ for modelling

in Section 3.1. In this section, we introduce the mathematical notation used

throughout this manuscript. Secondly, we describe in Section 3.2 the current145

approaches in estimating model parameters, particularly in the context of pe-

nalised Cox PH model to model patients’ survival on high-dimensional data. In

this section, we shall describe why the current approaches are not satisfactory

to achieve our objective, in particular the way we interpret the outcome. In

Section 3.3, we describe the novel model extension that we consider to address150

the drawbacks of current approaches, in light of the characteristics of genomic

CNA data. Subsequent sections will cover the estimation of model parameters.

3.1. Cox proportional hazard model

To proceed with the Cox proportional hazard modelling, let t be the time

since surgery until a patient dies due to the cancer. Let T denote the corre-155

sponding random variable, which is defined on the positive real line with an

underlying probability density function f(t). Denote S(t), h(t), and H(t) as

the survivor, hazard, and cumulative hazard function, respectively [24, 25]. In

the Cox PH model, we do not model t directly. Instead, we model the hazard,

which is defined as the instantaneous rate of occurrence of death (due to the160

disease) [6].

Denote δi as the event indicator for the i-th patient, i = 1, 2, . . . , n, where

δi = 1 if the i-th survival time, ti, is uncensored and δi = 0 if ti is censored. We

define X to be a matrix of p fixed predictors of size n× p, and Xi to be the i-th

row of X (a p-vector). We also define β to be a p-vector of model parameters165
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associated with X . In our application, the columns of X correspond to the

patients’ clinical characteristics such as age, gender, and tumour stages, while

the rows correspond to the different patients.

Let Z be a matrix of CNA of size n× q (n patients and q genomic regions),

and b be its corresponding vector of parameters. Similarly, we also denote Zi to170

be the i-th row of Z (a q-vector of CNA from i-th patient). Therefore, in our

application, the matrix Z contains the CNA estimates from 89 patients (rows)

at approximately 14 thousands genomic regions (columns).

In the Cox PH model formulation, we model the hazard function of the i-th

patient, hi(t), as

hi(t|X,Z) = h0(t) exp {Xiβ + Zib} , (1)

where h0(t) is the baseline hazard function. The baseline hazard function may

vary over time and is not a function of predictors. The predictors (or ‘input’175

variables) are the clinical phenotypes contained in X and the genomic CNA

data contained in Z.

3.2. Current approaches

The main challenge now from model formulation (1) is how to estimate the

parameters β and b. To do this, we consider the log partial likelihood [6, 26, 27]

ℓcoxp (β, b) =

n∑

i=1

[
δi(Xiβ + Zib)− δilog

( ∑

j∈R(ti)

exp(Xjβ + Zjb)

)]
(2)

where R(ti) is the risk set or a set of patients who are at-risk at time ti. The

parameters are not directly estimable due to over parameterisation in b, which

correspond to the genomic regions. To deal with the challenges, we are interested

to moderate and perform variable selection in the estimation of b while keeping

standard estimation on β. Previously, Tibshirani [8] introduced the lasso penalty

to the log partial likelihood

ℓlassop (β, b, λ) = ℓcoxp (β, b)− λ

q∑

k=1

|bk| (3)

for a positive λ.
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Figure 3: Estimates of parameters for CNA profile (̂b) under the lasso penalty (top panel)

and elastic net penalty (bottom panel).
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However, when we estimate b using the penalised likelihood (3) as shown in180

Figure 3 (top panel), the estimates b̂ are difficult to interpret. All of the non-

zero estimates are from isolated single windows, and not spanning over several

windows. The first few non-zero estimates correspond to window no. 1914,

3197, 3210, and 4200, in chromosomes 2, 3, 3, and 5, respectively (window 4200

is the first window in chromosome 5 and the estimate for this window is not185

visible in Figure 3 because it coincides with the grey line to mark the start of

the chromosome). It can be shown that almost all of the non-zero estimates are

within blocks of correlation. It is therefore difficult to understand why those

particular single windows are identified to have non-zero estimates and not their

adjacent windows, for example. One might think to consider a whole block,190

represented by its corresponding non-zero estimates, to be significant. However,

this raises another problem on the block size to consider. Furthermore, some

of the non-zero estimates are relatively close such as windows 3197 and 3210.

We have difficulties to understand whether we should consider them as a single

region of interest (i.e. a single region between window 3198 and window 3209)195

or two separate regions of interest.

The above results are well known to be the characteristics of lasso penalty.

To have some sort of ‘grouping effect’, Zou and Hastie [9] propose an elastic net

penalty, which consists of ridge and lasso penalties. With a slight reparame-

terisation, the log partial likelihood with elastic net penalty can be written as

ℓenetp (β, b, θ) = ℓcoxp (β, b)−
[
α

(
1

2
bTD(θ)−1b

)
+

1− α√
θ

(
q∑

k=1

|bk|
)]

(4)

where D(θ) ≡ θIq , Iq is the identity matrix of size q, α is a weight (set to 0.5

for our illustration), and θ is a positive ‘tuning’ parameter.

When we consider this model to our real data, the situation improves, in

that the non-zero estimates form some sort of grouping (see Figure 3, bottom200

panel). The group size varies between two to 16. However, we find that the

above issues in the interpretation remain, although in a lesser degree. Isolated

single windows with non-zero estimates are still produced. The presence of short
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gaps between regions with non-zero estimates also makes it difficult to identify

genomic regions of interest as we do not know whether we should consider them205

to be a single big region or separate regions of interest.

The above case indicates that the elastic net is still not adequate for our

purpose. To model the hazard while performing variable selection with sensible

interpretation for genomic data, an additional penalty is needed to moderate

or penalise the estimation on neighbouring windows as described in the next210

section.

3.3. Sparse-smoothed Cox PH model (SSCox)

We now discuss our proposal to extend the above sparse Cox PH model by

introducing an additional penalty function in the log partial likelihood function

to deal with the above interpretative issues. We still consider the model in Eq.215

(1), where the hazard is modelled as a function of the clinical phenotypes and

the genomic CNA data. The overall model building is described in details in the

Supplementary Material. In this section, we just describe the resulting penalty

function and the relevant log partial likelihood function for simplicity.

The main idea is that each of the above penalty functions can be considered220

to have come from distributional assumptions on the parameter b in a random

effects setting [28]. The lasso penalty, as discussed in the previous section, is the

result of assuming a Laplace distribution on the parameter b [8] and the elastic-

net penalty is the result assuming a mixture of Laplace and normal distributions

on b [9]. The extension that we propose is to put an additional distributional225

assumption on the differences of parameters associated with adjacent windows

in the genome. Specifically, we assume that differences of random effects for

adjacent windows to follow a Cauchy distribution. This way the dependencies

between adjacent windows are taken into account in the estimation of b. Further

details on the model building are described in the Supplementary Material.230

As we previously have seen from Figure 3, the non-zero estimates of b pro-

duced by the elastic net can have gaps or isolated single windows. To avoid

this, we need to consider the case where the estimate of one window is not too
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different with its adjacent windows. In this study, we consider second differences

of consecutive windows

bj+1 − 2bj + bj−1 (5)

for j = 2, . . . , q − 1 to be not too far from zero. Previous authors [7, 28]

formulated this to create the penalty

q−1∑

j=2

(bj+1 − 2bj + bj−1)
2
, (6)

or, after reparameterisation with a tuning parameter θ,

1

2
bTΣ(θ)−1b (7)

where Σ(θ)−1 ≡ θ−1R−1 and

R−1 =




1 −2 1 · · · · · · · · · 0

−2 5 −4 1

1 −4 6 −4 1
...

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1

1 −4 5 −2

0 · · · · · · 0 1 −2 1




. (8)

The above penalty (7) is less suitable for our context with genomic CNA

data that have sudden changes [4]. The penalty results in a slow changes of

estimates bj ’s between windows. Motivated by [4], we consider the penalty

q + 1

2
log
{
1 + bTΣ(θ)−1b

}
. (9)

instead of that in Eq. (7). This is the result of assuming the second differences

of the random effects for adjacent windows to follow a Cauchy distribution

as described in the Supplementary Material. This additional penalty has an

interesting characteristic. Up to a multiplicative constant, both Eqs. (7) and

(9) apply similar amount of penalty for small b̂. However, as b̂ increases, the235

latter put less penalty. Therefore, using the penalty in (9), a sudden change

14



(either a ‘jump’ or ‘drop’) in the estimates of b is permitted while keeping them

smooth.

Denoting ψ to represent other parameters and θ, we then combine this ad-

ditional penalty to arrive at the log partial likelihood for β and b

ℓp(β, b, ψ) =

n∑

i=1

[
δi(Xiβ + Zib)− δilog



∑

j∈R(ti)

exp(Xjβ + Zjb)



]

−
[
w1

(
1

2
bTD(θ)−1b

)
+ w2

(
q + 1

2
log
{
1 + bTΣ(θ)−1b

})
+
w3√
θ

(
q∑

k=1

|bk|
)]

(10)

where

1. the first line in the right hand side of the equation corresponds to ℓcoxp (β, b)240

in Eq. (2), and

2. 0 ≤ wr ≤ 1 for r = 1, 2, 3, are the weights for each penalty with
∑3
r=1 wr =

1.

The estimation of the model parameters β, b, and ψ = (θ, w1, w2) can now

be done by estimating β and b at fixed ψ as described in the next section. The245

estimation of the tuning parameter ψ is done via five-fold cross-validation partial

likelihood as described in Section 3.6. Note that the Cox PH model with ridge

penalty [7] is a special case of the above model with w1 = 1, the lasso model

[8] is a special case with w3 = 1, and the elastic-net model [29] is a special case

with w2 = 0.250

3.4. Estimation of β and b for fixed ψ

In this section, we describe the estimation of β and b at fixed (given) ψ. The

estimation is done by alternating the estimation of β and b until convergence,

using starting values β(0) and b(0).

3.4.1. Estimation of β255

We can derive the estimation of β by taking the first partial difference of the

log partial likelihood ℓp(β, b, ψ) of Eq. (10) with respect to β at fixed ψ. The
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fixed effects β are then estimated as the solution of

n∑

i=1

δi

[
Xi −

∑
j∈R(ti)

Xjexp(Xjβ + Zjb)∑
j∈R(ti)

exp(Xjβ + Zjb)

]
= 0. (11)

3.4.2. Estimation of b

To estimate the random effects b, the standard Newton-Raphson algorithm

is not applicable since the partial log likelihood in Equation (10) is not twice

differentiable everywhere. We therefore estimate b via gradient ascent algorithm

by generalising the idea of Goeman [12] who estimated model parameters from260

a likelihood function with a Laplace penalty only. In our application, we involve

a ‘trick’ as described below.

Consider the partial log likelihood function in Equation (10) as a target

function to be optimised with respect to b. The function can be written as a

sum of two terms

ℓp(β, b) = ℓpnc(β, b)−
w3√
θ

(
q∑

k=1

|bk|
)
, (12)

where

1. the term ℓpnc(β, b) corresponds to all except the last term on the right

hand side of Equation (10) or the log partial likelihood of the standard265

Cox PH model with the normal and Cauchy penalty parts only, and

2. the second term corresponds to the Laplace penalty part in Equation (10).

It is less well behaved: concave and continuous, but only differentiable at

bk 6= 0, k = 1, . . . , q.

It is important to note that, in the proposed (extended) Cox PHmodel, ℓpnc(β, b)270

is a regular function, i.e. it is concave and at least twice differentiable every-

where. With this in mind, the overall estimation algorithm will employ both the

Newton-Raphson algorithm and the gradient ascent algorithm. The Newton-

Raphson algorithm is employed to maximise ℓpnc(β, b), while the gradient ascent

algorithm will ‘encapsulate’ the overall estimation to estimate ℓp(β, b) with the275

lasso penalty. The details of the estimation method are presented in the Sup-

plementary Material.
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3.5. Estimation of the variance of the random effects

The inverse of the negative Hessian matrix H can be used as an approximate

covariance matrix of b̂. However, we consider the formulation by Gray [30] where280

the estimate of covariance matrix of b is taken as H−1IPLH
−1, where IPL is the

standard Cox PH model information matrix. From a simulation with bootstrap

(not shown), we find that the latter formulation is more accurate.

3.6. Estimating ψ via cross validation

To estimate ψ ≡ {θ, w1, w2}, we consider five-fold cross-validation (CV)

by identifying ψ that maximises CV log partial likelihood as described below

[31]. Let Ed and Vd respectively denote the estimation and validation subsets of

observations for the d-th CV fold, d = 1, . . . , 5. We calculate the cross validation

partial log likelihood as

ℓcvp (ψ) =

5∑

d=1

∑

i∈Vd

[
δi(Xiβ̂

Ed

ψ + Zib̂
Ed

ψ )− δilog



∑

j∈R(ti)

exp(Xj β̂
Ed

ψ + Zj b̂
Ed

ψ )



]
,

(13)

where, in each fold, the parameter estimates β̂Ed

ψ and b̂Ed

ψ are obtained from285

fitting the model in the d-th fold estimation set, and ℓcvp (ψ) are calculated from

Xi’s and Zi’s in the d-th fold validation set using β̂Ed

ψ and b̂Ed

ψ obtained from

its corresponding estimation set.

In our application, we consider values of ψ which always include the ridge

(w1 = 1), lasso (w3 = 1), and elastic net (w2 = 0) models because they are290

special cases of the proposed model. This means that, in our analysis and

simulation study (Section 4 below), we easily compare the proposed model to

those models.

3.7. Estimation of survivor function and model diagnostic

One of the main interests in the modelling using the Cox PH model is the

estimation of survivor function for an individual with clinical characteristics x∗

and CNA profile z∗. We first estimate the baseline hazard function h0(t) after
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we obtain the model parameter estimates β̂ and b̂. We consider an extension of

the Breslow’s estimator [32] to include the random predictors and effects as

ĥ0(ti) =
1

∑
j∈R(ti)

exp(Xj β̂ + Zj b̂)
.

The cumulative hazard function H0(t) can then be estimated as

Ĥ0(t) =
∑

ti≤t

1
∑

j∈R(ti)
exp(Xj β̂ + Zj b̂)

,

and the baseline survivor function as Ŝ0(t) = exp{−Ĥ0(t)}. The predicted295

survivor function for a new individual with a known clinical characteristics x∗

(a p-vector) and CNA profile z∗ (a q-vector) is then given by Ŝ(t;x∗, z∗) =

Ŝ0(t)
exp{x∗β̂+z∗b̂}.

For model diagnostic, we consider the Cox-Snell residuals [33]. Further de-

tails are presented in the Supplementary Material.300

4. Simulation study

To understand the proposed model’s performance, we carry out a simulation

study. As mentioned in Section 3.6, we automatically compare the proposed

model with Cox PHmodels on ridge, lasso, and elastic-net penalty. In estimating

ψ ≡ {w1, w2, θ}, we include the values of w1, w2, and w3 = (1 − w1 − w2) that305

correspond to those models and, in all cases, the optimal values for w1, w2 and

w3 always correspond to the general proposed model. Therefore, we compare the

proposed model to the sparse partial least squares (SPLS) model as described in

[34] to model survival data. Lee et al. [34] consider SPLS with L1 lasso penalty

(SPLS-L1) and hierarchical likelihood penalty (SPLS-HL). In our simulation310

study, all comparisons are based on 100 simulation datasets. In each dataset,

we do not simulate nor include the matrix of clinical characteristics X , so that

we work only with the matrix of random predictors Z of size n×q (n = 100, q =

200).
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4.1. Simulated data315

We follow the simulation setting proposed in [35], [36], and [34]. First,

the matrix of random predictors Z is generated from a multivariate normal

distribution with zero mean vector and covariance matrix Σ of size 200 × 200.

We assume Σ to be a block diagonal matrix, with the diagonal blocks to be Σc

of size 20 × 20 for c = 1, . . . , 10. The (sub-) matrix Σc has diagonal elements320

σ2
c = 1 and off-diagonal elements ρσ2

c for all c = 1, . . . , 10. In this simulation,

we set ρ = 0.9 because it is a good reflection of the real lung cancer data and

Lee et al. [34] argue that their method works better with higher correlation.

The latter suggests that we compare the proposed method to their method at

its expected optimal working condition.325

For k = 1, . . . , 20, we set bk = exp(−α(j − 1)). For k = 21, . . . , 40, we set

bk = −bk−20 to get the same pattern on the opposite sign. For k = 41, . . . , 200,

we set bk = 0. Here we have used an exponential decay with parameter α,

which we take as α = 0.0141. We generate survival time Ti, i = 1, . . . , n, from

a Weibull distribution with baseline hazard rate h0(t) = 5t4 and the censoring330

time Ci assumed to follow Uniform(0, 3) distribution, which gives censoring rate

of approximately 35%.

4.2. Simulation analysis

For each data set, we employ three methods: our proposed sparse-smoothed

Cox PH model, sparse PLS with lasso (L1) penalty (SPLS-L1) and hierarchical335

likelihood penalty (SPLS-HL) as described in [34]. We evaluate the three meth-

ods in the aspects of variable selection and prediction in a single cross validation

as follows.

1. In terms of the variable selection, we calculate the average sensitivity and

specificity [37]. Sensitivity is defined as the proportion of those parameters340

that are truly non-zero and estimated as non-zero. Specificity, on the other

hand, is defined as the proportion of parameters that are truly zero and

estimated as zero.
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2. In terms of prediction power, we compute a cross-validation [35]

−2PL = −2ℓcvp (14)

where ℓcvp is the cross-validation log partial likelihood in Equation (13)

with the relevant tuning parameters optimised (using five-fold cross vali-345

dation). For the purpose of the comparison between our proposed method

with SPLS-L1 and SPLS-HL methods, we calculate the difference between

−2PL of each method and −2PL of the true model (where b̂ is taken at

the true value).

3. We also consider different measures of prediction performance as suggested

by [34]. In the cross-validation, we actually know the true failure time in

the validation set (T Vi ). On the other hand, we can predict median survival

time in the validation set mT̂
V

i as

mT̂
V

i = Ĥ−1
0

[
− log(1/2) exp

(
− ZVi b̂

E
)]
,

where Ĥ0(t) is the estimated cumulative baseline hazard function for the350

validation set using b̂E from the estimation set.

Using T Vi and mT̂
V

i , we compute the sum of squared prediction error

(SSPE)

SSPE =
∑

i∈V

(
T Vi − mT̂

V

i

)2

and the sum of absolute prediction error (SAPE)

SAPE =
∑

i∈V

|T Vi − mT̂
V

i |

as indicators of prediction performance.

The prediction performance is considered good when -2PL, SSPE, and SAPE

are relatively small.

4.3. Simulation results355

The results of the simulation study are summarised in Figure 4 and Table 2.

Figure 4 indicates that the sparse-smoothed Cox PH model (SSCox) has similar
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Figure 4: Results from the simulation study: (a) boxplots of the absolute difference of −2PL

in Equation (14) between the true model and each of SPLS-L1, SPLS-HL, and the proposed

sparse-smoothed Cox PH model, (b) boxplots of sum of squared prediction error (SSPE),

and (c) boxplots of sum of absolute prediction error (SAPE). Lower values on all of boxplots

indicates better prediction performance. In the simulation, we automatically compare our

results with the Cox PH models with normal (ridge), Laplace (lasso), and elastic net penalties.

Using paired t-test, we can conclude that the SSCox model has similar −2PL as, but lower

SSPE and SAPE than, the SPLS-L1 and SPLS-HL models. More than 99% of simulated

times are between zero and one, hence higher median in SAPE than SSPE.
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Table 2: Sensitivity and specificity for the variable selection in the simulation study, between

sparse PLS with L1 and HL penalty (SPLS-L1 and SPLS-HL, repsectively) and the proposed

sparse-smoothed Cox PH model (SSCox). Sensitivity is defined as the proportion of those

parameters that are truly non-zero and estimated as non-zero. Specificity, on the other hand,

is defined as the proportion of parameters that are truly zero and estimated as zero.

Method Sensitivity Specificity

SPLS-L1 0.998 0.273

SPLS-HL 0.985 0.575

SSCox 0.978 0.592

−2PL as, but lower SSPE and SAPE than, the sparse PLS models (SPLS-L1 and

SPLS-HL). For SSPE, the means of 100 simulation are 13.28, 13.42, and 12.73

for SPLS-L1, SPLS-HL and SSCox respectively, while for the SAPE the means360

are 26.09, 26.21, and 25.66, respectively.

In term of sensitivity and specificity, the ordinary PLS and Cox PH model

with ridge penalty always have zero specificity because they do not produce

a sparse solution. However, this is not what we would expect from all of the

methods in our comparison. We can infer from Table 2 that all methods have365

relatively high sensitivity and the proposed SSCox method has the highest speci-

ficity. The proposed model SSCox has a slightly lower sensitivity compared to

the sparse PLS methods. This is really an artefact because the smoothness

imposed in the SSCox method would force the estimates around the change

of sign of the true parameter (such as b20 to b21) to have smooth transition.370

This smooth transition sometimes requires the estimate to be zero just before

changing sign for the next window.

It is important to note that in our simulation, we automatically consider the

Cox PH model with normal (ridge) penalty, Laplace (lasso) penalty, and the

elastic-net penalty. In all of the simulated data, the proposed sparse-smoothed375

Cox PH model is selected, i.e. has the highest cross-validation log partial like-

lihood across all values of θ evaluated.
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5. Results for real data

5.1. Estimating ψ

An important parameter to be estimated in the proposed Cox PH model380

(SSCox) is the ‘tuning’ parameter ψ = (θ, w1, w2). These parameters are im-

portant in the interpretation. Firstly, when θ goes to zero (in limit terms), the

estimates of the random effects will be zero and no information in CNA are

taken into account in the model. Secondly, w3 controls the sparseness imposed

on the random effects estimates, while w2 controls their smoothness. To esti-385

mate ψ, one could solve over a 3-dimensional grid of θ, w1, and w2. However, we

find this to be computationally impractical and does a poor job of model selec-

tion, as pointed out by Simon et al.[38]. Instead, we fix the mixing parameters

(w’s) and, for each combination of w’s, compute the cross-validation log partial

likelihood for a path of θ values. We begin the path with θ sufficiently small to390

set b = 0 (and call this θmin) and increase θ until we are near the unregularised

solution.

Figure 5 shows the cross-validation log partial likelihood ℓcvp (θ;w1 = 0.3, w2 =

0.2), with their one standard-error bar obtained from the cross validation.

Among several combinations of w’s, the highest ℓcvp (θ) is obtained at w1 =395

0.3, w2 = 0.2, and w3 = 0.5 in the lung cancer data. To estimate θ, we se-

lect the maximum value θ that is within one standard-error from ℓcvp (θmin;w)

[38]. Using this criterion, the figure suggests to select log(θ) = −6.075, which

corresponds to θ = 0.0023.

5.2. Model fit: Fixed effects estimates400

Using the optimal θ, the estimates of the fixed effects and their inference can

be seen in Table 3, where Stage T1 and Stage N0 are part of the baseline. The

table indicates that Age, Stage-T, and Stage-N are statistically significant at

the 5% significance level. The estimates indicate that the hazard ratio increases

by about six percent (e0.055 ≈ 1.06) as age-at-operation increases by one year.405

The estimate of Stage-T3 indicates that large tumour size increases the hazard
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Figure 5: Cross-validation log partial likelihood ℓcv
p
(θ;w) for different θ using w1 = 0.3 (nor-

mal penalty part), w2 = 0.2 (Cauchy penalty part), and w3 = 0.5 (Laplace penalty part)

with their one standard-error. The horizontal dashed line indicates one standard error from

ℓcv
p
(θmin;w).
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Table 3: Summary of fixed effects estimates. Stage-T1 and Stage-N0 are part of the baseline.

Predictor Estimate Exp Std.Error z-value p-value

Age 0.0551 1.06 0.0164 3.37 0.0008

StageT2 0.1817 1.20 0.3215 0.57 0.5679

StageT3 1.7622 5.83 0.6392 2.76 0.0058

StageN1 0.3616 1.43 0.3019 1.20 0.2301

StageN2 1.3653 3.92 0.4824 2.83 0.0047

ratio by almost six times from the baseline. Similarly, the estimate of Stage-N2

indicates that a wider spread of cancer cells to far-away lymph nodes increases

the hazard almost four times relative to the baseline.

5.3. Model fit: Random effects estimates410

The random effect estimates b̂ of the proposed sparse-smoothed Cox PH

model are presented in Figure 6. The figure shows the estimates are sparse:

almost all of the estimates of b are zero and only some regions in the genome

that have non-zero estimates. The non-zero estimates are grouped within big-

ger regions, and exhibit smooth transition across neighbouring windows within415

them. A more detailed view of the random effects estimates in each chromosome

is presented in the Supplementary Material.

The pattern of the estimates enables us to investigate the genome in relation

to the patients’ survival. Genomic regions with positive estimates are associated

with genes that are involved in the progression of lung cancer (poor prognosis)420

while negative estimates with those that are protective. In Figure 6, more re-

gions have positive estimates than negative estimates, which indicate that most

identified genes are those that increase the risk. For example, Flacco et al.[39],

Antoniou et al.[40], and Pelosi et al.[41] show that TERC copy number gain in

chromosome 3 is associated with early-stage non-small lung cancer. Moreover,425

there are some more studies that show the involvement of chromosome 7 in

non-small lung cancer [42, 43, 44].

An interesting finding is that some regions in chromosomes 8 and 12 have
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Figure 6: Random effects estimates b̂ in the full model, using CNA profiles. Genomic windows

with missing values (for example in the centromere regions) were excluded from analysis.

Vertical grey lines separate the chromosomes. A more detailed view of the random effects

estimates in each chromosome is presented in the Supplementary Material.
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negative random effects estimates. We expect that there are some tumour re-

pressing genes in those regions. We found three genes in chromosome 8 that fall430

in this category, although not in lung cancer specifically. A study by Schemionek

et al.[45] reported that MTSS gene reduces tumour growth in leukemia, while a

study by Yue et al.[46] shows that the gene ZHX2 is involved in the reduction

of proliferation of liver cancer. The gene NDUFB9 was shown in a study by

Li et al.[47] to be suppressor of breast cancer cell proliferation, migration and435

invasion. Several other studies also show some genes in chromosome 12 with

negative random effects that are involved in tumour suppression [48, 49].

6. Discussion

We have investigated the extension of Cox PH model to accommodate and

investigate genomic CNA profiles. Two key parameters in the model are θ,440

which controls the amount of information in CNA profiles used in the model

fitting, and w’s, which control the degree of sparseness and smoothness of the

parameter estimates. In the estimation of those parameters, we always include

the ridge (w1 = 1), lasso (w3 = 1), and elastic net (w2 = 0) models because

they are special cases of the proposed model. We find, both in the real data and445

simulated data, that the proposed model with w1 > 0, w2 > 0, and w3 > 0 are

always preferred than those special cases. This indicates that our distributional

assumption on the random effects are more suitable for genomic profiles, than

the simpler models.

The proposed formulation of the extended Cox PH model enables us to450

interpret the parameter estimates sensibly. Some genes can be identified in

genomic regions with non-zero estimates and their relevance can be confirmed

from past studies. This does not mean that there is no other genes in different

regions that are related to patients’ prognosis. Our results simply indicate that,

with limited number of patients to estimate thousands of parameters, the model455

enables this limited information to be ’channeled’ to identify associated genomic

regions that are best supported by the data. Within the identified regions, there
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are some other genes that have not been determined whether they are related

to prognosis or not, because there have been no previous study that neither

confirms nor refutes their role.460

It is worth noting that the proposed method relies on the Laplace approx-

imation. In the context of a generalized linear mixed model (GLMM), this

method is called penalized quasi-likelihood (PQL) [50] and is the most com-

monly used method due to its convenient computation [51]. Breslow and Lin

[52] show that the PQL estimators of regression parameters and variance compo-465

nent are subject to bias when applied to correlated-binary or count data, which

is not our case. Their numerical studies suggest that the biases are minimal

for 0 ≤ θ ≤ 0.25, in which the estimate of θ in our study falls. Therefore, the

results in this study are expected to not suffer from the bias of PQL.

Sutradhar [53] proposes a generalized quasi-likelihood (GQL) approach that470

produces consistent as well as more efficient estimates as shown in [54]. However,

the GQL does not require any estimates for the random effects b, which are our

main interest. Some other alternative estimation methods involve numerical

techniques, including a Bayesian approach [55], MCEM algorithm [56], Gauss-

Hermite quadrature (GHO) [57], and Quasi-Monte Carlo (QMC) [58]. One475

common drawback of this approach is that those methods are time consuming

[59]. In future research, one could consider to penalize the variance of the

random effects θ instead of penalizing the random effects b. This idea was

discussed in [51] for GLMM and it can be generalized to survival analysis.

It is important to note that we do not lose information in discriminating480

patients at different risk scores by extending the assumption of the random ef-

fects distribution. In our real lung cancer dataset, the median survival times of

patients in the 10th, 50th, and 90th percentile of risk scores remain consistent,

regardless of whether the distribution of random effects is as proposed, or any

of its special cases. This indicates that the proposed model’s ability to iden-485

tify genomic regions associated with the survival is mainly due to the model’s

formulation.

Lastly, the proposed methodology can be implemented in other omics data
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where the genomewide information contain spatial dependencies. For example,

we speculate that the methodology may be fully implemented in the case ge-490

netic data (based on single nucleotide polymorphisms) or epigenetic data (DNA

methylation), whenever survival analysis is needed. In a case where spatial de-

pendencies are not substantial, such as gene expression data [60], the method-

ology can still be implemented. However, its novel advantage may not be able

to be fully seen. These are currently part of our current active research.495

7. Conclusion

In addition to the clinical phenotypes, copy number alterations are infor-

mative for predicting cancer patients’ survival. This study identifies important

genomic regions that additionally associated with cancer patients’ survival. This

is done by addressing the characteristics of copy number alteration data that are500

highly correlated. The extended Cox PH model we proposed enables simulta-

neous prediction and identification of important genomic regions, while taking

into account the dependencies between the genomic regions.
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