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MINIMAL BAD SEQUENCES ARE NECESSARY FOR
A UNIFORM KRUSKAL THEOREM

ANTON FREUND, MICHAEL RATHJEN, AND ANDREAS WEIERMANN

ABSTRACT. Kruskal’s theorem on trees is a classical result of combinatorics
with important applications in computer science. The minimal bad sequence
argument of Nash-Williams yields a proof that is very elegant but not as
elementary as possible, by previous results from mathematical logic. In the
present paper, we formulate a uniform Kruskal theorem, which extends the
original theorem from trees to general recursive data types. Our main result
shows that the minimal bad sequence argument does yield the most element-
ary proof of this uniform Kruskal theorem. So in the uniform case, the elegant
proof coincides with the most elementary one. In more precise and technical
terms, we work in the framework of reverse mathematics, where we show that
the uniform Kruskal theorem is equivalent to H%—Comprehension, over RCAj
extended by the chain-antichain principle. As a by-product of our investiga-
tion, we obtain uniform proofs of several Kruskal-type independence results.

1. INTRODUCTION

Let 7 be the collection of finite ordered trees, i. e., finite trees with a designated
root and a linear order (‘left to right’) on the children of each vertex. One can
view T as a recursive data type: For any tg,...,t,_1 € T we get another element
that we denote by o(tg,...,t,—1) € T. This element consists of a new root vertex
(represented by the symbol o) that we connect to the roots of the trees tg, ..., t,—1,
which thus become the immediate subtrees at the new root. Note that n = 0 is
permitted and yields the tree that consists of a single vertex. For s,t € T we write
s <7t if there is an embedding of s into ¢ that respects the order between children
and preserves infima with respect to the tree order. This yields a partial order <
on 7T, which admits a recursive characterization as well. Indeed, we have

§=0(80,-y8m—1) <7 0{tg, - -stn_1) =1
precisely if one of the following clauses applies:
(i) there is a strictly increasing function f : {0,...,m — 1} — {0,...,n — 1}
such that s; <7 ty(;) holds for all i < m,
(ii) we have s <7 t; for some j < n.
Here clause (i) corresponds to an embedding that maps the root to the root. Given
that it preserves infima, such an embedding must map the children of the root of s

into different subtrees at the root of t. Clause (ii) corresponds to an embedding that
maps the entire tree s into some subtree of ¢. The classical theorem of Kruskal [26]

2020 Mathematics Subject Classification. Primary 03B30; Secondary 05C05, 06A07, 68Q42,
03F35.

Key words and phrases. Kruskal’s theorem, minimal bad sequence, reverse mathematics, dilat-
ors on partial orders, recursive path ordering, independence results.

1



2 ANTON FREUND, MICHAEL RATHJEN, AND ANDREAS WEIERMANN

asserts: for any infinite sequence tg,¢1,... C T there are ¢ < j with ¢; <7 t;. Let us
note that Kruskal’s theorem has several variants, in particular for trees with labels
or without an order between children. Our results cover these variants as well — we
have simply fixed one variant for the present discussion.

A particularly elegant proof of Kruskal’s theorem is due to Nash-Williams [31].
To describe this proof, let us recall that a sequence g, x1, ... in a partial order X is
called good if there are i < j with z; <x x;; otherwise it is called bad. One calls X
a well partial order (wpo) if it contains no infinite bad sequence. Thus Kruskal’s
theorem asserts that the given order on 7 is a wpo. Aiming at a contradiction,

Nash-Williams assumes that there is an infinite bad sequence tg,t1,... € 7. He
argues that we can assume it is minimal in the following sense: for each i, if
boyeeostizt byt gy

is an infinite bad sequence, then t; has at least as many vertices as ¢;. This minimal-
ity property entails that the proper subtrees of the ¢; form a wpo. One can conclude
that g, t1, ... must be good after all, so that Kruskal’s theorem is established.

Both Kruskal’s theorem and the minimal bad sequence argument are extremely
interesting from the viewpoint of mathematical logic. This can be made precise
in reverse mathematics, a well-established framework to compare the strength of
theorems and proof methods, developed by H. Friedman [15] and Simpson [39].
The basic idea is to establish (non-)implications and equivalences over a weak base
theory, most often the axiom system RCA( of recursive comprehension. It turns
out that many theorems from various areas of mathematics are equivalent to one
of four principles. We will encounter the three stronger of these, which are known
as arithmetical comprehension (ACA,), arithmetical transfinite recursion (ATRy)
and II{-comprehension (II}-CA,). For several results of the present paper, we
will extend the base theory RCAg by the chain-antichain principle CAC, which
asserts that any infinite partial order contains an infinite chain (linear suborder)
or antichain. This principle is much weaker than arithmetical comprehension and
ensures that different definitions of well partial order are equivalent (see the analysis
by Cholak, Marcone and Solomon [2]).

As shown by Friedman, Kruskal’s theorem is unprovable in predicative mathe-
matics a la Feferman—Schiitte [4, 35, 36], in particular in the axiom system ATRg
(see the presentation by Simpson [37] and related work of Schmidt [34]). This is
significant as a concrete mathematical example for the incompleteness phenomenon
from Godel’s theorem. Despite its unusual strength, however, Kruskal’s theorem
does not exploit the full power of minimal bad sequences. Indeed, Marcone [27]
has shown that the minimal bad sequence lemma — a general principle by which an
arbitrary bad sequence yields a minimal one — is equivalent to II}-comprehension.
The latter is much stronger than Kruskal’s theorem, for reasons of logical com-
plexity and by the detailed analysis of Rathjen and Weiermann [33]. According to
this analysis, Kruskal’s theorem does have a proof that is as elementary as pos-
sible, in a certain precise sense. This elementary proof relies on the notion of
reification rather than minimal bad sequence. Somewhat informally, this creates
a tension between two notions of optimality for proofs: elegance and elementarity.
The present paper aims to resolve this tension. In order to do so, we formulate a
uniform Kruskal theorem, which extends the original theorem from trees to general
recursive data types. We then show that this uniform Kruskal theorem is equival-
ent to ITi-comprehension. Together with the aforementioned result by Marcone,



A UNIFORM KRUSKAL THEOREM 3

this means that minimal bad sequences provide the most elementary proof of the
uniform Kruskal theorem. Hence elegance and elementarity coincide, and the proof
via minimal bad sequences is optimal in both respects — but only after uniformity
has been added.

In order to formulate our uniform Kruskal theorem, we need to speak about gen-
eral recursive data types. The crucial idea is that these data types arise as the least
fixed points of suitable transformations. As an example for this approach, we give
a characterization of finite ordered trees, which is very natural from the viewpoint
of theoretical computer science: Consider the transformation of an order X into
the set Seq(X) of finite sequences in X, ordered as in Higman’s lemma [22]. More
explicitly, this means that we have

o= <930, B zm—1> SSeq(X) <y0a s ayn—1> =T
precisely if there is a strictly increasing function f : {0,...,m—1} — {0,...,n—1}
such that z; <x ys) holds for all i < m. For our collection T of finite ordered
trees, we have a bijection

k:Seq(T) =T with s({to,...,tn_1)) =o(to,...,tn_1)-

Note that x implements the intuitive construction of finite trees by recursion, as
described at the beginning of this introduction. Now this recursive construction
characterizes 7 uniquely (up to isomorphism). To capture this fact, we use basic
concepts from category theory: Make Seq functorial by sending f : X — Y to

Seq(f) : Seq(X) — Seq(Y) with  Seq(f)({zo,...,Zn-1)) = (f(x0),..., f(Xn-1)).

For any set X and any isomorphism 7 : Seq(X) — X, we obtain a unique injective
function f : 7 — X that satisfies

for=moSeq(f),

by recursion over finite trees — the given equation itself is the recursive clause that
defines f (write out both sides for an argument (to,...,t,—1)). This means that 7
and k satisfy the universal property of an initial object, which determines them up
to isomorphism (see Definition 3.7 and the paragraph that follows it). We also say
that 7 is the least fixed point of Seq. Writing [X]|<% for the set of finite subsets
of X, we now consider the ‘support’ functions

Suppx : Seq(X) - [X]<w with Supr(<‘TOa---axn—1>) = {‘T(Ja'-'vxn—l}'

These witness that each element of Seq(X) does only depend on finitely many
elements of X, or more intuitively: that the ‘constructors’ of the data type T
have finite arity. Furthermore, the given supports allow us to characterize the
embeddability relation <7 between finite ordered trees: it is uniquely determined
by the equivalence

(*) k(o) <7 R(T) € 0 <geqr) T Or K(0) <7 t' for some ' € supp(7).

To see this, write 0 = (sg,...,8m—1) and 7 = (tg,...,t,—1). Up to notation, the
given equivalence coincides exactly with the one between s = k(o) <7 k(7) = ¢
and clauses (i) and (ii) from the beginning of this introduction.

The given construction of 7 suggests to identify the recursive data types with the
least fixed points of suitable transformations. To explain what ‘suitable’ means, we
now sketch some definitions and results that will be made official in Sections 2 and 3.
By a PO-dilator we mean a functorial transformation X — W (X) of partial orders
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that comes with a family of functions suppy : W(X) — [X]|<¥ satisfying the
conditions in Definition 2.2 below. We say that W is a WPO-dilator if, in addition,
W(X) is a well partial order whenever the same holds for X. The given definitions
are strongly influenced by the classical notion of dilator in the context of (linear)
well orders, due to Girard [17]. To avoid confusion, the dilators of Girard are called
WO-dilators in the present paper. By an LO-dilator we shall mean a transformation
of linear orders that has all properties of a WO-dilator, except that it does not
need to preserve well foundedness. It is a classical result that LO-dilators are deter-
mined by their restrictions to finite arguments, which makes it possible to represent
them in the framework of reverse mathematics. In Section 2 we will establish the
analogous fact for our new notion of PO-dilator (cf. the specifications ‘class-sized’
and ‘coded’ in Definitions 2.2 and 2.4). Let us emphasize that PO-dilators arise
naturally when we aim to generalize the characterization of 7 as a least fixed point,
in which functoriality and supports play a transparent role.

We introduce one further concept, which will be motivated in the next paragraph:
Let us say that a PO-dilator W is normal if

o<wx)T = “forany x €suppy (o) thereis a y € suppx(7) with z <x 3"

holds for any partial order X and all 0,7 € W(X). The ‘suitable transforma-
tions’ that were mentioned at the beginning of the previous paragraph can now
be identified with the normal PO-dilators. Indeed, Section 3 contains an explicit
construction that transforms (the code of) any normal PO-dilator W into a partial
order TW that admits a bijection

K:W(TW)—=TW,

such that () above holds with 7T and W at the place of T and Seq, respectively.
We will show that TW and & satisfy the universal property of an initial object,
which makes them unique with the given properties (see Theorem 3.8 and the
discussion that precedes it). The partial order TW will be called the initial Kruskal
fixed point of W.

To motivate the definition of normality, we note that an inequality s <7 t in the
case of trees can only persist if the height of s is bounded by the height of ¢. If
W is normal, an analogous property holds for inequalities in 7 W, by Lemma 3.5.
Without this property, it would not seem possible to construct a partial order <
that satisfies the analogue of (%), as the proof of Proposition 3.6 will reveal.

Our construction of TW is closely related to previous work of Hasegawa [20,
21] and Weiermann [40] in somewhat different settings. For transformations that
preserve wpos, Hasegawa has proved that the least fixed point is a wpo as well, by
a straightforward application of the minimal bad sequence argument. In Section 3
we will adapt his proof to our setting, to show that the following holds and can be
proved in the axiom system II}-CA,.

Uniform Kruskal Theorem. If W is a normal WPO-dilator, then 7W is a
well partial order.

We now argue that Kruskal’s original theorem for trees is a special case of the given
uniform version. One readily checks that the transformation Seq from above is a
PO-dilator. It is even a WPO-dilator, as Higman’s lemma asserts that Seq(X) is
a well partial order whenever the same holds for X. To show that Seq is normal,
assume that we have o <g.q(x) 7 With o = (20,...,2m_1) and 7 = (Yo, ..., Yn—1)-
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By definition of the inequality in Seq(X), we have a strictly increasing function f
such that x; <x yy(;) holds for all i < m. Any x € suppx (o) is equal to some x;,
so that we get © <x y for y = yy;) € suppx(7), as required to make Seq normal.
Now the uniform Kruskal theorem entails that the initial Kruskal fixed point T Seq
is a well partial order. Kruskal’s original theorem makes the same claim about the
partial order T of finite ordered trees. To derive the original theorem from our
uniform version, it is thus enough to show that 7 and 7 Seq are isomorphic. This
follows from the fact that 7 and 7 Seq satisfy the same universal property, as noted
above. The reader may object that not all definitions and arguments have been
made official yet. After this has been done, we will repeat the given argument in
a different but completely analogous case: In Example 3.9 we give a formal proof
of Seq(Z) = TWy for a normal WPO-dilator Wy with Wz (X) =1+ Z x X. This
shows that Higman’s lemma is another instance of our uniform Kruskal theorem
(over the base theory RCAy + CAC, see the proof of Lemma 4.6).

In addition to Higman’s lemma and Kruskal’s theorem for finite ordered trees,
our uniform result covers the case of finite rooted trees without an order between
children (let W(X) = M(X) be the set of finite multisets with elements from X)
and the case of finite rooted or ordered trees with vertex labels from a given wpo Z
(take W(X) = Z x M(X) and W(X) = Z x Seq(X), respectively). In [9, 13]
the construction of TW is relativized, so that it yields a further transformation
X — TW(X), rather than a single order TW as in the present paper. This makes
it possible to iterate the construction, i.e., to repeat it with X — TW(X) at the
place of W. As shown in the cited papers, iterations of this type yield collections of
trees and sequences that are ordered according to Friedman’s gap condition. With
the gap condition we reach a variant that is considerably stronger than Kruskal’s
original theorem (see [37]). The cited results on the gap condition are closely
related to previous work by Hasegawa [20, 21] and by van der Meeren, Rathjen and
Weiermann [29, 30]. Hasegawa’s papers also reveal that the construction of 7W is
relevant for theoretical computer science, as a uniform foundation for the recursive
path orderings that are used in term rewriting (cf. the work of Dershowitz [3]).
The given examples justify our claim that the uniform Kruskal theorem extends
the original result from trees to general recursive data types.

From a logical perspective, we observe that Kruskal’s original theorem for trees
without labels is a ITi-statement (one quantification over infinite sequences). We
can turn it into a II3-statement by admitting labels from an arbitrary well partial
order. At the same time, it is known that II}-comprehension is a IIi-statement
that cannot be equivalent to any statement of complexity I} or II3. The uniform
Kruskal theorem bridges this divide: it has complexity I13 as well, since the premise
that W preserves wpos has the form ‘I1} implies II}’. This opens up the possibility
that the uniform Kruskal theorem is equivalent to II3-comprehension. A priori, it
is by no means guaranteed that this possibility materializes, but our main result
shows that it does. We will later restate the following as Theorem 5.12, after the
relevant definitions and constructions have been made official.

Main Result. Over RCA( + CAC, the uniform Kruskal theorem is equivalent
to IT}-comprehension and hence to the minimal bad sequence lemma.

As mentioned above, the uniform Kruskal theorem can be proved by the minimal
bad sequence argument and thus by IT}-comprehension. The converse implication
shows, in a certain precise sense, that the elegant proof via minimal bad sequences
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is as elementary as possible — for the uniform but not for the original theorem.
To prove the open implication in our main result, we rely on previous work of
Freund [6, 7, 8]. Inspired by Rathjen’s notation system for the Bachmann-Howard
ordinal (see [33]), Freund has defined a linear order ¥#(D) for any LO-dilator D. He
has then shown that ITi-comprehension is equivalent to the following statement:

Bachmann-Howard Principle. If D is a WO-dilator, then 9(D) is a well order.

To deduce the main result of the present paper, it suffices to show that the uni-
form Kruskal theorem implies the Bachmann-Howard principle. For this purpose,
we recall that a function f : X — Y between partial orders is a quasi embedding
if f(z) <y f(«') implies z <x 2’. By a quasi embedding v : D = W of an
LO-dilator D into a PO-dilator W we shall mean a natural family of quasi embed-
dings vx : D(X) — W(X) for all linear orders X. In Section 4 of this paper we
show that any quasi embedding D = W induces a quasi embedding of the linear
order J(D) into the partial order TW. It follows that ¥(D) is a well order if TW
is a well partial order. In Section 5 we show how to construct a normal PO-dilator
Wp and a quasi embedding D = W, for a given LO-dilator D. The main technical
step will be to show that Wp preserves wpos if D preserves well orders. Given that
Wp is a normal WPO-dilator, the uniform Kruskal theorem tells us that 7Wp is
a wpo. As we have seen, it follows that J(D) is a well order. This establishes the
Bachmann-Howard principle and completes the proof of our main result.

The results of Section 4 will also yield the following principle, which uniformizes
a step in several known independence results and can guide our search for new
ones. This principle has certainly been known as a heuristic, which has been used
in several concrete applications. However, the precise statement and proof of the
general principle seem to be new.

Uniform Independence Principle. Consider a sound theory T 2O RCA( and
a normal WPO-dilator W with a computable representation. To show that the
statement “TW is a well partial order” is independent of T, it suffices to find a
computable WO-dilator D such that (i) T proves that a quasi embedding D = W
exists and (ii) the order type of ¢¥(D) is at least as big as the proof theoretic
ordinal of T.

In [12] the order type of 9(D) has been determined for some natural WO-dilators D.
For example, it has been shown that D(X) = 1 + 2 x X2 (with an appropriate
linear order) leads to ¥(D) = I'y. By the uniform independence principle we can
now recover Friedman’s result [16] that Kruskal’s theorem for binary trees with two
labels is independent of the axiom system ATRy.

2. DILATORS ON PARTIAL ORDERS

Girard [17] has singled out uniform transformations of (well founded) linear
orders, which he calls dilators. In the present section we introduce PO-dilators as
uniform transformations of partial orders. We also show how PO-dilators can be
represented in the setting of reverse mathematics.

The notions of (well) partial order and quasi embedding have been recalled in
the introduction. We will consider them as part of the following structure:

Definition 2.1. The category PO of partial orders has the partial orders as objects
and the quasi embeddings as morphisms.
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Recall that a quasi embedding f : X — Y is an embedding if z <x 2’ is
equivalent to f(z) <y f(z’). We say that a functor W : PO — PO preserves
embeddings if W(f) : W(X) — W(Y) is an embedding whenever f : X — Y is
one. If Y is linear, then any quasi embedding f : X — Y is an embedding. Hence
the category LO of linear orders and embeddings is a full subcategory of PO.

Let us write [-]<% for the finite subset functor on the category of sets, given by

[X]=“ = “the set of finite subsets of X7,
[f]<“(a) = {f(z)|z €a} (for f: X =Y and a € [X]<¥).

We will also apply []<“ to partial orders, omitting the forgetful functor to the
underlying sets. Conversely, a subset a C X of a partial order X will often be
considered as a suborder (such that the inclusion a < X is an embedding).

Definition 2.2. A class-sized PO-dilator consists of

(i) a functor W : PO — PO that preserves embeddings and
(ii) a natural transformation supp : W = [-]<% such that the support condition

mg(W(f)) ={o € W(Y)| suppy (o) < rng(f)}
holds whenever f : X — Y is an embedding (not just a quasi embedding).
If W(X) is a wpo for every wpo X, then W is called a class-sized WPO-dilator.

In the second part of this section we will show that class-sized PO-dilators can
be represented by certain set-sized objects, which we call coded PO-dilators. The
latter allow us to make general statements about PO-dilators without quantifying
over proper classes. Note that class quantifiers are needed if one wants to state the
equivalence between class-sized and coded PO-dilators. For us, this equivalence
(and the notion of class-sized PO-dilator itself) will only play a heuristic role.

Let us state the corresponding definition for the linear case: A (class-sized)
LO-dilator consists of a functor D : LO — LO and a natural transformation
supp : D = []<% such that the support condition from clause (ii) of Definition 2.2
holds for any embedding f : X — Y of linear orders. If D(X) is a well order for
any well order X, then D is a (class-sized) WO-dilator. We point out that our
WO-dilators coincide with Girard’s dilators: The support condition ensures that
any WO-dilator preserves direct limits and pullbacks, as demanded by Girard. Con-
versely, a functor that preserves direct limits and pullbacks can be equipped with
support functions, which are unique and in particular natural (see [5, Remark 2.2.2]
for a detailed verification). Our LO-dilators coincide with the prae-dilators con-
sidered in [6, 8]. Finally, Girard’s pre-dilators (note the different spelling) coincide
with the monotone LO-dilators of Definition 5.1 below.

Concerning the support condition from Definition 2.2, we observe that one inclu-
sion is automatic: If we have o € rg(W(f)), say o = W(f)(0p) with o9 € W(X),
then the naturality of supports yields

suppy (o) = [f]=*(suppy (00)) C rng(f).

The other inclusion ensures that elements and inequalities in W (X) can only depend
on finite suborders of X: Given 0,7 € W(X), we put a := suppy () U suppx (7).
Due to the support condition we can write 0 = W (:X)(00) and 7 = W (:X)(70),
where (X : a < X is the inclusion. Since the PO-dilator W preserves embeddings,

we learn that o <y (x) 7 is equivalent to o9 <y () T0. As we shall see, this ensures
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that class-sized PO-dilators are essentially determined by their restrictions to the
category of finite partial orders.

Important examples of PO-dilators arise if we take W(X) to be some collection
of finite graphs (e. g. lists or trees) with labels in X. We will see that the following
PO-dilators are connected to Higman’s lemma.

Example 2.3. Given a partial order Z, we define a class-sized PO-dilator W as
follows: For each partial order X, the underlying set of W (X) is given as

Wz(X)=14+Zx X ={0}U{(z,2) |z € Z and z € X}.
To order this set we declare that the only inequalities are 0 <y, (x) 0 and
(z,2) <w,(x) (2,a") for z <z 2 and x <x 2.
Given a quasi embedding f : X — Y, we define Wz(f) : Wz(X) — Wz(Y) by
Wz(f)(0)=0 and Wz(f)((z,2)) = (2, f(2)).

One readily checks that this turns Wy into a functor that preserves embeddings.
To obtain a PO-dilator, we define support functions suppy : Wz(X) — [X]|<“ by

suppy (0) =0 and suppx((z,z)) = {x}.

Naturality is satisfied in view of

suppy oWz (f)((z,2)) = suppy ((z, f(2))) = {f(2)} =
= [f/I7({=}) = [fI=* o suppx ((z, 2))-

To verify the support condition we consider an embedding f : X — Y and an
element (z,y) € Wz(Y). If we have {y} = suppy((z,¥)) C rng(f), then we may
write y = f(x) with € X. The element (z,z) € Wz(X) witnesses

(z,9) = (2, f(2)) = Wz(f)((z,2)) € rng(Wz([)).
Let us also note that Wy is a WPO-dilator when Z is a well partial order.

Girard [17] has observed that LO-dilators are determined by their restrictions
to the category of finite linear orders, which makes it possible to represent them
in second order arithmetic. The details of such a representation have been worked
out in [8]. In the following we present a similar representation for PO-dilators.

In the linear case, each isomorphism class of finite orders contains a canonical
representative of the form n = {0,...,n—1} (with the usual order between natural
numbers). To obtain representatives for finite partial orders, we observe that an
order on a finite subset of N can itself be coded by a natural number. Having
fixed a suitable coding, we define POg as the set of all partial orders (a, <,) with
finite underlying set @ C N that are not isomorphic to an order with smaller code.
Elements of POy will be called coded partial orders. Crucially, any finite partial
order a (with arbitrary underlying set) is isomorphic to a unique order |a| € POy.
To ensure that our presentation is compatible with previous work on LO-dilators,
we assume n = |n| € POy for the linear orders n = {0,...,n —1}.

We also write POg for the category of coded partial orders and quasi embeddings.
It will be important that a — |a| is an equivalence between PO, and the category
of all finite partial orders. To witness this fact we fix an order isomorphism

en, : |al Za
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for each finite partial order a. In the context of second order arithmetic this does
not require choice, since we can pick the finite isomorphism with the smallest code.
Given a function f : a — b between finite partial orders, we can define |f| : |a| — |b]
as the unique function with

enyo|f| = foen,.

Note that | f] is a (quasi) embedding whenever the same holds for f. For g : b — ¢ we
have go foen, = goeny o| f| = en. o|g|o|f], so that uniqueness yields |g|o]| f| = |go f].
Similarly, we see that |id, | is the identity on |a| if id, is the identity on a. In the
case where a is linear, the function en, : |a| = {0,...,|a| — 1} — a is determined
as the unique increasing enumeration. If f : a — b is an embedding between linear
orders, then |f| : |a] — |b] is the same function as in [8].

Now consider a functor W : POy — PO such that the orders W(a) for a € POy
are countable. Up to natural equivalence, we may assume that the underlying set
of each order W(a) is a subset of N. Coding finite structures by natural numbers,
we can then represent W by the sets

W° = {{a,0,7) |a € POy and 0,7 € W(a) and o <w@) T} €N,
W' = {(f,0,7) | f is a morphism in POy and W (f)(c) = 7} C N.
When we work in the theory RCA( from reverse mathematics, a functor W is
assumed to be given by such sets W W' C N. An expression like 0 € W (a) must
then be read as an abbreviation for the A{-formula (a,o,0) € W°. Similarly, a set
supp = {{a, 0,b) | supp,(c) =b} CN

can encode a natural transformation supp : W = [|<“. When the following defini-
tion is invoked within RCA,, it is assumed that we are concerned with underlying
sets W(a) C N. From the viewpoint of a different base theory (e.g. set theory) one
may also wish to consider the case where W (a) is uncountable.

Definition 2.4 (RCAy). A coded PO-dilator consists of

(i) a functor W : POy — PO that preserves embeddings and
(ii) a natural transformation supp : W = [-]<% such that the support condition

mg(W(f)) = {o € W(b)| supp,(c) C rng(f)}

holds whenever f :a — b is an embedding between coded partial orders.

In order to define coded WPO-dilators, we must explain how coded PO-dilators
can be extended beyond finite orders (as it is not enough to demand that W(a) is
a wpo for every finite a). First, we want to show how the coded PO-dilators relate
to the class-sized PO-dilators of Definition 2.2. One direction is immediate:

Lemma 2.5. If W is a class-sized PO-dilator, then its obvious restriction W [ POgq
is a coded PO-dilator.

The lemma cannot be stated in RCA(, where the general notion of class-sized
dilator is not available. Nevertheless, we can use concrete instances of the result:

Example 2.6. The theory RCA( recognizes that the computable transformations
Wz from Example 2.3 satisfy the defining properties of class-sized PO-dilators.
It also shows that the restrictions Wy [ POg exist as sets, as the category POy is
computable. Furthermore, RCA  recognizes that Wy [POy is a coded PO-dilator.
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Our next goal is to extend a coded PO-dilator I into a class-sized PO-dilator W.
The following notion, which Girard [18] has considered in the linear case, will be
fundamental. The definition makes sense for coded and class-sized PO-dilators.

Definition 2.7 (RCAy). The trace Tr(W) of a PO-dilator W consists of all pairs
(a,0) of a coded partial order a € POy and an element o € W(a) that satisfy the
minimality condition supp,(c) = a.

Intuitively speaking, the minimality condition expresses that ¢ depends on all
elements of a. As we shall see, this ensures that certain representations are unique.
The following observation is required for the definition of W (f) below.

Lemma 2.8 (RCAy). Consider a coded PO-dilator W. If g : a — b is a surjective
quasi embedding between finite partial orders, then we have

(la],o) € Te(W) = (|, W(lg])(0)) € Tx(W).
Proof. Note that we can form W(|g|), since |g| : |a| — |b| is a morphism in POy.
The latter is characterized by the equality enpo|g| = g o en,, where en, : |a|] = a

and eny : [b] — b are the isomorphisms fixed above. As supports are natural, the
minimality condition supp, (o) = |a| from the assumption (|al,o) € Tr(W) implies

[eny] = o suppy, (W (|g])(0)) = [eny o|g[]= o suppq (o) =
= [goena]~“(la]) = [9]~*(a) =b.
This yields supp, (W (|g])(c)) = [b], as required for ([b], W(|g|)(c)) € Tr(W). [
In order to define the extension of a coded PO-dilator, we fix some notation:
When we have a C X, we write LaX : a — X for the inclusion. If X is a partial
order, then we consider a as a suborder, so that ¢ is an embedding. Given a quasi
embedding f : X — Y and a finite suborder a C X, we write f [a:a — [f]<“(a)

for the restriction of f. Here the codomain [f]<“(a) is considered as a suborder
of Y, so that f [a is a surjective quasi embedding.

Definition 2.9 (RCAy). Let W be a coded PO-dilator. For each partial order X
we define a set W (X) and a binary relation <Ww(x) by

W(X) = {(a,0)|a € [X]=* and (|a|,0) € Tr(W)},
(a,0) <wr(x) (0:7) & W([ea”[)(0) <wiausp W(1152)(7),

where aUb is considered as a suborder of X. Given a quasi embedding f: X =Y,
we define a function W(f) : W(X) — W(Y) by setting

W(f)((a,0)) = ([f]=*(a), W(|f Ta])(a)).
To define a family of functions suppy : W(X) — [X]<% we put
suppx ((a,0)) = a
for each partial order X.

Note that the following result can be stated in RCAy, since it only involves
class-sized dilators that are explicitly constructed from coded ones.

Theorem 2.10 (RCAy). If W is a coded PO-dilator, then its extension W is a
class-sized PO-dilator.
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Proof. We begin by showing that W (X) is a partial order for any partial order X.
Reflexivity is readily established. In order to prove antisymmetry we must show
that W ([2Y%))(0) = W(|g¥?|)(7) implies (a,o) = (b, 7). The minimality condition
supp|q((0) = |a| that is provided by (|al,o) € Tr(W) allows to recover a as

Ub\]<w o Supp\a|(0) =
i

[enaus] < © suppjaue (W (leg™[)(0) = [enaus ol g

o en,]<“(jal) = a.

As b can be recovered in the same way, we see that W (|.2Y°|) (o) = W (|¢8Y?|)(7) im-
plies a = b. It follows that W ([:2°%]) and W (]:#-?|) are the same quasi embedding.
Since quasi embeddings are injective, we can conclude o = 7 as well. To establish
transitivity we assume (a,0) <gpx (b,7) and (b, 7) <gp(y) (¢, p), or equivalently

W (121} (o) ooy WOEL)(T) and - W(421) () <wuoey WIRD(0):

Crucially, the condition that PO-dilators preserve embeddings allows us to deduce

W (11292 (o) = W (|eah ™)) o W (162 (o) <w(jaumiel)
<w(laubuel) W (l1a5s ™) © W (") (r) = W ([e"2)) (7).

In the same way we get W (|eg ")) (7) <w (jaubue)) W ([1297¢])(p). We can then
use transitivity in W(la UbU ¢|) to infer

W (|egoe”el) o W (leg ) (@) = W (leg™" “1)(0) <w (jaubue)
<w(auuel) W (162 (p) = W (|ease”]) o W (1e22*[)(p)

Since W ([¢2527¢]) is a quasi embedding, we get W ([e2Y|) (o) <w (jaue)y W ([129¢]) (p).

alUc
This amounts to (a,0) <y7(x) (¢, p), as required for transitivity. Next, we show that
W (f) is a quasi embedding for any quasi embedding f : X — Y. For this purpose
we consider an inequality W (f)((a, o)) W) W(f)((b, 7)), which amounts to

B e lro) (o).

f1<¢ (aLb)
W ([ 015 Tal) (@) <wrses@onn W (|t

In view of Lmzzgg;ﬂ’) o(fla)= fl(aUb) o2’ we can infer

W (IS 1(@ub)]) o W(lig” () Swsi<eaumn WIFT(@Ub)]) o W([eg (7).

As W(|f I (aUb)|) is a quasi embedding, we get W ([:2°°])(0) <w (jaup)) W (|eg?]) (7).
This amounts to (a,0) <g7(y) (b,7), as required to show that W(f) is a quasi
embedding. If f is an embedding, then the argument can be read in reverse,
which reveals that W (f) is an embedding as well. To see that W is a functor it
suffices to recall that []<“ and |- | are functorial. The naturality of Supp is evident
from the definition. It remains to verify the support condition from clause (ii) of
Definition 2.2. For this purpose we consider an embedding f : X — Y and an
element (a,0) € W(Y) with a = Suppy ((a,0)) C rng(f). Due to the latter, we can
write a = [f]<“(ap) with ag € [X]<“. Since f | ag : ag — a is surjective and we
have eng o f [ ag| = (f [ ao) o eng,, we get rng(|f [ ao|) = |a| = supp, (o). Hence
the support condition from clause (ii) of Definition 2.4 allows us to write

o =W(|f lao|)(o0) with oo € W(laol).
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Let us observe that we have
[1f Taol]= o supp),, (g0) = supp|q (W (| f I ao|)(00)) = suppy, (o) = |al.
Since the quasi embedding |f [ aol is injective, this implies supp,,,|(o0) = |ao|. We
thus have (|ag|, 00) € Tr(W) and hence (ag, 09) € W (X). By construction we get
(a,0) = ([f]=*(ao0), W(|f Taol)(00)) = W(f)((a0, 00)) € tng(W(f)),

as required by the support condition. O

Given a class-sized PO-dilator W (with support supp" : W = []<%), Lemma 2.5
yields a coded PO-dilator W | POy. By the previous theorem we get another
class-sized PO-dilator W POy (with support sapp" ¥ : W [POg = []<%). The
following result shows that we have indeed reconstructed the original PO-dilator W.

Theorem 2.11. Given any class-sized PO-dilator W, one can construct a natural
isomorphism n: W [POg = W such that we have supp” 1790 = supp" on.

In the following proof, the condition sapp"” 'T0° = supp" on is verified explicitly.
More generally, one can show that any natural transformation between PO-dilators
preserves supports. For the linear case this has been established by Girard [17].
The detailed proof in [14, Lemma 2.17] is readily adapted to the partial case.

Proof. To simplify the notation we will write W rather than W POq. Recall that
elements of W (X) are of the form (a,0) with a € [X]<¥ and o € W(|a|). For any

partial order X we can thus define a function nx : W(X) — W(X) by setting
nx((a,0)) = W(eg oeng)(0).

To see that this yields an embedding, we recall that (a, o) <wx) (b, o) amounts to

W (leg™"1)(e) <w(jaueh W(le§2)(7).
Since PO-dilators preserve embeddings, this is equivalent to
W (g © enau ol g ™) (o) <wx) W (e © enaup ol ) (7).
In view of X, o engupo|t?| = 1X, 018 oen, = (X
inequality (a,0) <y, (b,0) is equivalent to
nx ((a,0)) = W (g oeng)(0) <wix) Wi oeny)(r) =nx((b,7)),

as desired. To conclude that nx is an isomorphism it remains to prove surjectivity.
Given an arbitrary element o € W(X), we set a := suppy (o). Since X o en, has
range a, the support condition yields o = W (X o eng)(op) for some og € W (|al).
Due to the naturality of supports, we have

oen, we can infer that the

[ta ©ena]<“ o suppy, (00) = suppx (W (e © ena)(00)) = suppy (0) = a.

As 1 oen, is injective, this implies supp,((c0) = |a|. Thus we get (|a|,00) € Tr(W)
and hence (a,00) € W(X). By construction we have nx((a,0q)) = o, as needed.
Let us now show that 7 is natural. For a quasi embedding f : X — Y and any
finite suborder a C X we have

LE;]@(Q) o enjf<w(q) o|f la| = L[Yf]<w(a) o(fla)oen, = foiX oen,.
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Given an element (a,0) € W(X), we now obtain

my o W(f)((a,0)) = ny ([f17(a), W(If Tal)(0)) =
= W(tfjy<e (@) © eng<w(a) ol f Ta)(0) = W(f 015 0 ena)(0) = W(f) onx((a,0)).

Finally, we verify that n preserves supports. Recall that any element (a,0) € W (X)
satisfies the minimality condition suppm (o) = |a]. We can deduce

suppX onx ((a,0)) = suppX (W (15 0 ena)(0)) = 15 0 eng]

= [ta ©ena]<(la

“ o suppyy|(0) =

el

W
):a:suprr a,o)),

as the theorem claims. O

In the following we revert to questions of well partial orderedness.

Definition 2.12 (RCAy). A coded PO-dilator W is called a coded WPO-dilator
if W(X) is a well partial order (wpo) for any wpo X.

If the previous definition is evaluated in RCA, then we can only consider count-
able orders X (with underlying set X C N). The following result shows that this
restriction is harmless: the notion of coded WPO-dilator does not change its mean-
ing when we pass to a more expressive setting. We point out that Girard [17] has
established the same result for the linear case.

Proposition 2.13. Consider a class-sized PO-dilator W. If W(X) is a wpo for
every countable wpo X, then the same holds when X is an uncountable wpo.

Proof. Consider an arbitrary wpo X and an infinite sequence og,01,... in W(X).
Since all supports are finite, the suborder

Z = U{suppx(oi) |lie N} C X

is a countable wpo. For each i € N we have suppy (0;) C Z = rng(¢5 ), so that the
support condition yields o; = W (5 )(;) for some 7; € W(Z). Given that W (Z2) is
a wpo, we find indizes i < j with 7; <y (z) 7;. As PO-dilators preserve embeddings,
we can conclude o; <y (x) 0, as needed to show that W(X) is a wpo. O

By combining previous results, we obtain the following:

Corollary 2.14. If W is a class-sized WPO-dilator, then W | POq is a coded
WPO-dilator. If W is a coded WPO-dilator, then W is a class-sized WPO-dilator.

Proof. First assume that W is a class-sized WPO-dilator. It is straightforward
to see that W [ POy is a coded PO-dilator (cf. Lemma 2.5). Given a wpo X, the
isomorphism from Theorem 2.11 ensures that W [POg(X) = W(X) is a wpo as well.
According to Definition 2.12, this means that W [ POg is a coded WPO-dilator.
For the second part of the corollary, we assume that W is a coded WPO-dilator.
In Theorem 2.10 we have shown that W is a class-sized PO-dilator. To conclude
that W is a class-sized WPO-dilator, it suffices to know that W (X) is a wpo for
any wpo X. This is immediate by Definition 2.12. ([

As a general statement about all class-sized PO-dilators, Theorem 2.11 cannot
be formalized in RCA. However, concrete instances of the theorem are available
(and very useful) in our base theory:
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Example 2.15. Recall the class-sized PO-dilators Wz(X) = 1 4+ Z x X from
Example 2.3. In Example 2.6 we have seen that the coded PO-dilators W [ POy
are available in RCA . For each pair of partial orders Z and X, the isomorphism

nx : Wz [POo(X) = Wz(X)

from Theorem 2.11 can be constructed in RCA  as well. To conclude that W [POg
is a coded WPO-dilator, it is thus enough to show that Wz (X) is a well partial order
whenever the same holds for Z and X. The latter can be proved in RCAy+ CAC
but not in WKLy 2 RCA,, due to a result of Cholak, Marcone and Solomon [2].

We have seen that class-sized PO-dilators are equivalent to coded PO-dilators,
and that important parts of the equivalence can be established in RCA( (at least
for PO-dilators with countable trace). In the sequel, the specifications “class-sized”
and “coded” will sometimes be left implicit.

3. A UNIFORM KRUSKAL THEOREM

In this section we construct a partial order TW relative to a given PO-dilator W
that satisfies a certain normality condition. As explained in the introduction, one
can view TW as a fixed point of W (see Theorem 3.8 below for a precise statement).
Higman’s order between finite sequences and various versions of the order from
Kruskal’s theorem are all of the form TW for normal WPO-dilators W. Using
the minimal bad sequence argument, we will show that TW is a well partial order
whenever W is a WPO-dilator.

To state the aforementioned normality condition, we need some terminology.
Recall that [X]<“ denotes the set of finite subsets of X. If <y is a partial order
on X, then a quasi order < on [X]<“ can be given by

a<ib & forany x € a there is an 2’ € b with z <x 2.

In the case of singletons we will write a < 2’ and 2 <8 b rather than a < {2/}
and {z} <f" b, respectively.

Definition 3.1 (RCAy). A coded PO-dilator (W, supp) is called normal if we have
T<w@ T = supp,(0) <g" supp,(r)
for any a € POg and all elements 0,7 € W(a).

In the previous section we have seen that any coded PO-dilator W extends into
a class-sized PO-dilator W. Let us recall that elements of W (X) are of the form
(a,0) with a € [X]<* and o € W(|a|). The support functions associated with W
are given by Suppy((a,0)) = a. The following result shows that the normality
condition extends beyond the finite orders in POy. Together with Theorem 2.11,
this justifies the characterization of normality that was given in the introduction.

Lemma 3.2 (RCAy). If W is a (coded) normal PO-dilator, then we have
(a,0) Swpx) (0,7) = a <finp
for any partial order X and all elements (a,0), (b, 7) € W(X).

Proof. Assume that we have (a,0) <37y, (b, 7), which amounts to

W (29 (o) <w(aus)y W (822D (7).
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Since W is normal, this inequality implies
supp e (W (leg™°)(0)) <[atp) suppjauy (W (152 )(7)).

Recall that any (a,0) € W(X) satisfies (|a|, ) € Tr(W) and hence supp, () = |a].
We thus have

suppaup (W (leg ") (0) = [1662 1<% o suppy, (o) = [|eg~"[] < (lal)-

Hence the above amounts to

(e 1< (al) <oty (652" (lol).

Invoking the isomorphisms en,, : |a| = a and engyp : |a Ub| — a U b, we have

X _ X aUb _ X alUb
L O€Ng = L O lg = O€ly = L O €lgup OfLy |-

Since qub oengup is an embedding, we can conclude
a=[13 o eng]<(lal) = [13 0 enaup] < o [l1a™[1<(la]) <R
<% lealp © enaup] = o [P 1= (1b]) = [t © eny]<(|B]) = b,
as desired. ([l

Labelled structures are often ordered by embeddings that map each node to a
node with bigger label. This condition on the labels ensures that the resulting
PO-dilator is normal.

Example 3.3. The PO-dilators Wz (X) = 1+ Z x X from Example 2.3 are normal.
To see that this is the case, we consider an inequality

(z,2) <w,(x) (2, 2").
We then have z <z 2’ and z <x z’. The latter yields

suppx ((2,)) = {w} <§' {2} = suppx ((2',2")),

as required.

The term “normal” is motivated by the linear case, where normal WO-dilators
induce normal functions on the ordinals (due to Aczel [1]). As mentioned in the
introduction, Freund [6, 7, 8] has shown that IIi-comprehension is equivalent to
the principle that ¥(D) is well-founded for any WO-dilator D. Interestingly, the
latter becomes much weaker when we require normality: the principle that normal
WO-dilators have well founded fixed points does only lead up to (bar) induction
for I1}-formulas, as shown by Freund and Rathjen [14, 10, 11]. In contrast, the
present paper shows that I1}-comprehension is equivalent to the principle that 7W
is a wpo for any normal WPO-dilator W. This reveals that the normality condition
behaves rather differently in the partial case.

Weiermann [40] has previously described the construction of a partial order 7W
relative to a transformation W of partial orders. So far, the general construction has
been a successful heuristic principle: it has led to the analysis of several well partial
orders from algebra and combinatorics by van der Meeren, Pelupessy, Rathjen and
Weiermann [32, 28, 29]. Based on the notion of normal PO-dilator, we can now
make the general construction official. At two points in the following definition,
we require that <7 is a partial order on certain subsets of 7TW. Eventually, this
requirement will turn out to be redundant, as the entire set 7W is partially ordered
by <7w. A detailed justification of the following recursion can be found below.
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Definition 3.4 (RCAy). Consider a normal PO-dilator W. We define a set TW
of terms and a binary relation <7 on this set by simultaneous recursion:
e Given a finite set a C TW that is partially ordered by <4y, we add a term
o(a,0) € TW for each o € W(|a|) with (|a|,c) € Te(W).
e We have o(a, o) <7w o(b,7) if, and only if, one of the following holds:
(i) We have o(a, o) <gw t for some ¢ € b.
(ii) The set a U b is partially ordered by <y and we have

W (leg™"1)(o) <w(javsh W (g2 )(7).

Let us point out that 7W is non-empty if the same holds for W (). In several
natural examples this is the case: if W(X) consists of the finite sequences with
entries in X, then W (() contains the empty sequence (). In cases where W () is
empty, one can work with X — 1+ W (X) rather than W (cf. Example 2.3).

To justify the previous definition in more detail, one can proceed as follows: First
generate a set ToW 2 TW by including all terms o(a, o) for finite a C ToW, where
a is not assumed to be ordered and o may be the second component of any pair
in Tr(W). Let us write "s™ for the Godel number of a term s € ToW (note that "s™
and s coincide if the construction is already arithmetized). Now we define a length
function [ : TgW — N by the recursive clause

l(o(a,0)) = max {"o(a,0) ", 14+ >, 2-U(s)}.
The Godel numbers have been included to ensure that quantifier occurrences of
the form Veermw (I(s) < n — ...) are bounded, which justifies certain induction
arguments in RCAg. For r, s,t € ToW one can now decide r € TW and s <7w t by
simultaneous recursion on [(r) and I(s) 4+ [(t). Indeed, to decide r = o(a,0) € TW
we first decide s <7 t for all s,t € a, which is possible in view of I(s)+1(¢) < I(r).
If the resulting relation <7y is a partial order on a C TW, then we determine the
unique |a| € POq with (a, <7w) = |a|. Finally, we check (|a|,o) € Tr(W).
To show that <7 is a partial order, we also need a height h : TW — N with
h(o(a,0)) = max({0} U{h(s) +1]|s € a}).

Normality has the following important consequence:
Lemma 3.5 (RCAy). Assume that W is a normal PO-dilator. We have

s<twt = h(s) <h(t)
for all s,t € TW.
Proof. We establish the claim by induction on I(s) + I(¢). Assume that we have

s =o(a,0) <yw o(b,7) =1t.

Let us first consider the case where we have s <sy t’ for some t' € b. In view
of I(t") < I(t) we inductively get h(s) < h(t') < h(t). Now assume that a Ub is
partially ordered by <7y and that we have

W (g™ (o) <w aunly W (|52 D(7)-

As in the proof of Lemma 3.2 (with a Ub at the place of X), we can use normality
to get a <8, b. Given an arbitrary s’ € a, we thus find a ¢’ € b with s’ <7w . In
view of I(s")+1(t") < I(s)+1(t), the induction hypothesis yields h(s") < h(t') < h(t).

Since this holds for all s’ € a, we obtain
B(s) = max({0} U {h(s) + 1|5’ € a}) < h(1),
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as required. O

In the following proof, normality is used to show antisymmetry and transitivity.

Proposition 3.6 (RCAy). The relation <sw is a partial order on TW, for any
normal PO-dilator W.

Proof. By induction on n we simultaneously show

r<rwr for I(r) < n,
s<TwitANt<tws = s=t for I(s) + 1(t) <m,
r<tw sAs<twt=r<ywt for I(r) +1(s) +1(t) <mn.

Concerning reflexivity for r = o(a, o), the induction hypothesis ensures that <7y
is a partial order on a (due to the factor 2 in the definition of our length function).
Reflexivity in the partial order W (|a|) yields W([¢5])(0) <w(japy W(|ta])(c). We
can thus conclude r <sy r by clause (ii) of Definition 3.4. Let us now establish
antisymmetry for s = o(a,0) and t = o(b, 7). First assume that s <7y ¢ holds
because we have s <7w t' for some ' € b. Using the previous lemma, we then
obtain h(s) < h(t') < h(t). This means that ¢ <7w s cannot hold, again by the
previous lemma. A symmetric argument applies if we have t <7y s’ for some s’ € a.
It remains to consider the case where we have

W (e D(o) <w(ausy Wl D(r) and - W(g 2" D(T) Swiausy W(lea” (o).

By antisymmetry in the partial order W (|aUb|) we get W (|t2Y°|) (o) = W (|¢8°°]) (7).
As in the proof of Theorem 2.10 we can deduce a = b and ¢ = 7, which yields the
desired equality s = t. Finally, we establish transitivity for r = o(a, o), s = o(b,7)
and ¢t = o(c, p). First assume that s <7 t holds because we have s <7y t’ for
some t’ € c. By induction hypothesis we get r <7 t' and then r <y t. For the
rest of the argument we may assume

W (leg 2D () wpueny W(lee”*D(p)-

As in the proof of Lemma 3.2 we can use normality to get b §f7i—‘§,[, c. Now assume
that 7 <7w s holds because we have r <7y s’ for some s’ € b. Due to b Sg—r{,[, c,
we get a t’ € ¢ with 8/ <7y . By the induction hypothesis we obtain r <7y t’
and then r <7 t. It remains to consider the case where we have

W ([:62D (@) <waven Wl 1)(7)-

The induction hypothesis ensures that <7y is a partial order on a UbU c. As in
the proof of Theorem 2.10 we can then deduce W ([13“°[)(0) <w (jauc) W ([t27¢])(p)-
This yields r = o(a, o) <7w o(c, p) = t, as needed for transitivity. O

In the previous section we have chosen a unique representative |a| € POg from
the isomorphism class of each finite partial order a. The terms in 7 W depend on
this choice, due to the condition o € W(|a|) in Definition 3.4. Even for very simple
examples of a normal PO-dilator W, this makes it hard to give an understandable
description of 7W. In order to solve this problem, we now present a categorical
characterization, which determines the order TW up to isomorphism. As before,
we write Suppy : W(X) — [X]<“ for the support functions that come with the
class-sized extension W of a coded PO-dilator W.
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Definition 3.7 (RCAy). Let W be a normal PO-dilator. A Kruskal fixed point
of W consists of a partial order X and a bijection x : W(X) — X with

k(o) <x K(T) & 0 Sgpx) T oor k(o) <M supp (1)

for all o,7 € W(X). We say that (X, k) is initial if any other Kruskal fixed point
(X', k") of W admits a unique quasi embedding f : X — X’ with fox = &’ o W(f).

Just as other initial objects, initial Kruskal fixed points of a normal PO-dilator
are unique up to isomorphism. Indeed, if (X, k) and (X', ') are initial Kruskal
fixed points of W, then we get f : X — X’ as above, as well as a quasi embedding
f' X' — X with f' ok’ = ko W(f’). One can conclude that f'o f: X — X is a
quasi embedding with

(f'of)or=roW(f of).
This equality remains valid when we replace f’ o f by the identity function on X.
Given that (X, k) is initial, we can invoke uniqueness to infer that f’ o f itself is
the identity. The same reasoning shows that f o f’ is the identity on X’. It follows
that f and f’ are inverses, so that they are embeddings (rather than just quasi
embeddings) and indeed isomorphisms. Crucially, this means that the following
determines 7 W uniquely.

Theorem 3.8 (RCAy). Consider a normal PO-dilator W. There is a function
k:W(TW) = TW such that (TW, k) is an initial Kruskal fized point of W .

Proof. Comparing Definition 2.9 and Definition 3.4, we see that the conditions for
(a,0) € W(TW) and for o(a,0) € TW are almost the same. In Definition 3.4
we have included the additional condition that <y must be a partial order on a.
Due to Proposition 3.6, we now know that this condition is automatic. We can thus
define a bijection x : W(TW) — TW by setting

#((a,0)) = o(a, o).
To show that (TW, k) is a Kruskal fixed point, we consider arbitrary elements (a, o)
and (b,7) of W(TW). By comparing Definition 3.4 and Definition 3.7, we see that
it is enough to convince ourselves of
o(a,0) <Fy b & k((a,0)) <Py SwP((b,7)),
W (g )(o) Swausy W(ED() & (a,0) <y (7).
The first equivalence is true in view of k((a,0)) = o(a,o) and suppy ((b,7)) = b.
The second equivalence holds by Definition 2.9. Now consider another Kruskal
fixed point (X, x’). In view of Definition 2.9, the condition f ok = k' o W(f) from
Definition 3.7 is equivalent to
flo(a,0)) = &' (([F1=*(a), W (I f [ al)())).

Since s € a implies I(s) < l(o(a, o)), this can be read as a recursive definition, which

admits at most one solution f. To complete the proof we must show that the given
recursion does indeed yield a quasi embedding f : TW — X. We establish

reTW = f(r)eX,
fe)<x f(t) = s<twt

by simultaneous induction on I(r) and I(s) +{(¢), respectively. Let us show the first
implication for r = o(a, o). The simultaneous induction hypothesis ensures that we
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have [f]<“(a) € [X]<¥, and that f]a:a — [f]<¥(a) is a quasi embedding. In view
of r € TW we have (|a|,0) € Tr(W), so that Lemma 2.8 yields
(1A= (@)], W (If Tal)(0)) € Tx(W).
Due to Definition 2.9 we get ([f]<“(a), W (|f [a|)(¢)) € W(X), and hence f(r) € X.
To establish the second implication for s = o(a, o) and t = o(b, 7), we assume
fs) = ' (([f179(a), W (| f Tal)(0))) <x &"(([ST=2(0), WIS TB))(7))) = f(D).

Since (X, «') is a Kruskal fixed point, one of the following two cases must apply:
First assume that we have

(1=(a), W(If Tal)(9) <wxy (F17(0), WS TB(7))-

The induction hypothesis ensures that f [ (aUb) : aUb — [f]<¥(aUDb) C X
is a quasi embedding. Arguing as in the proof of Theorem 2.10, we can then
deduce (a,0) <g(ry (b, 7). Since (TW, k) is a Kruskal fixed point, we obtain

s =k((a,0)) <7w &((b,7)) =1t.
Now assume that f(s) <x f(¢) holds because of

F(s) <R suppx (([F15(0), W(IF 181)(7))) = [F1<(b).

We then have f(s) <x f(t') for some t' € b. In view of (') < I(t) the induction
hypothesis yields s <7w t'. By clause (i) of Definition 3.4 we get s < w t. ([

Using the theorem, we can finally describe TW in a concrete case:

Example 3.9. In Examples 2.3 and 3.3 we have considered normal PO-dilators Wy
with Wz(X) =1+ Z x X. We want to show that TWj is isomorphic to the set
Seq(Z) of finite sequences with entries in the partial order Z, ordered as in Higman’s
lemma [22]. In this order we have (2o ..., Zm—1) <seq(z) (20 ---»%,_1) if, and only
if, there is a strictly increasing function f : m = {0,...,m—1} = {0,...,n—1} =n
such that z; <z 2}, holds for all i < m. A bijection £ : Wz(Seq(Z)) — Seq(Z)
can be given by

H(O) = <> and H((Z,<Zo,...,zn,1>)) = <Zv'207"'azn*1>a
where 0 is the unique element of 1 C Wz (Seq(Z)) and () is the empty sequence. It

is straightforward to verify the equivalence from Definition 3.7. Strictly speaking,
this equivalence should hold with respect to a function

E: Wz [POo(Seq(Z)) — Seq(Z2),
where W [PQy is the coded restriction of Wz and Wy [ POy is its class-sized recon-
struction. According to Theorem 2.11 and Example 2.15, there is an isomorphism
Mseq(z) : Wz [POg(Sea(2)) = Wz(Sea(Z))
that preserves supports. We can conclude that Seq(Z) and & := & 0 1)geq(z) form a
Kruskal fixed point of W. To show that Seq(Z) is an initial fixed point, we consider
another Kruskal fixed point «’ : Wz(X) — X. The condition fox = k' o Wx(f)
from Definition 3.7 is equivalent to
f(0) = for(0) =& oWz (f)(0) = x'(0),
Fflzo,--y20)) = for((20, {21, 2n))) = K o Wz(f)((20, {21, 2n))) =
= &'((20, f ({215 - - -, 2n))))-
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Clearly, there is a unique function f : Seq(Z) — X that satisfies these recursive
equations. A straightforward induction over sequences shows that f(s) <x f(¢)
implies s <geq(z) t. Hence Seq(Z) is an initial Kruskal fixed point of Wz, provably
in RCA(. Theorem 3.8 and the uniqueness of initial objects yield TW 2 Seq(Z).

The theory l‘[i—CA0 extends RCAq by the principle of II}-comprehension.
Working in this theory, we now prove the uniform Kruskal theorem that has been
mentioned in the introduction. Note that Hasegawa [20] has established the same
result in a somewhat different setting. Theorem 5.12 below, which is the main result
of our paper, shows that the use of IIi-comprehension is necessary.

Theorem 3.10 (II;-CA). If W is a normal WPO-dilator, then TW is a wpo.

Proof. Aiming at a contradiction, we assume there is a bad sequence f : N — TW,
which means that we have f(i) £7w f(j) for all i < j. Let us recall the length
function ! : TW — N from above. The famous proof method by Nash-Williams [31]
suggests to consider a bad sequence g : N — TW with the following minimality
property: If h : N — TW is another bad sequence and i is the smallest number
with ¢(i) # h(i), then we have I(g(i)) < I(h(7)). To see that such a sequence exists,
we consider the tree

T = {(h(0),...,h(n —1)) | h: N = TW is a bad sequence and n € N}

of all finite sequences that can be extended into a bad sequence. Note that T can
be formed by YI-comprehension, which is equivalent to IT}-comprehension. The
existence of f ensures that 7' is non-empty. It is clear by construction that 7" has
no leaves. We say that a sequence (0g,...,0,—1) € T is l-minimal if the Godel
number of each entry o; is minimal with the following property: For any o, € TW
with I(0}) < I(o;) we have (o9, ...,0,_1,0}) ¢ T. A straightforward induction on n
shows that T' contains a unique /-minimal sequence of each length n. To construct
the minimal bad sequence g : N — TW that was promised above, we declare that
g(n) is the last entry of the [-minimal sequence of length n + 1. Now write

g(n) = o(an,0,) € TW and X =| J{an|n €N} CTW.

Let us show that (X, <7 ) is a well partial order. Aiming at a contradiction, we
assume that sg, s1,... is a bad sequence in X. By recursion, we construct sequences
of indices i(0) < i(1) < ... and j(0) < j(1) < ... with s;) € a;). For k=0 we
put i(k) = 0 and pick some index j(0) with sg € a;(). In the step we observe that

U{ali <itk)} € X

is a finite set. Since g, s1, - .. is bad, there must be some index i(k+1) > i(k) such
that s;(x41) does not lie in this set. In view of s;x11) € X we get s;x11) € ajr1)
for some j(k+ 1) > j(k). Now consider the sequence

9(0),9(1),...,9(4(0) — 1),51‘(0),5@‘(1),31'(2), L CTW.

In view of sy € a;() we have I(s;0)) < I(g(j(0))). Hence the minimality of g
implies that the given sequence is good. For j < j(0) and k € N we observe that
9(7) <Tw si(r) would imply g(j) <7w g(j(k)), due to six) € a;(). Since g is bad,
this is impossible. We conclude that sg, s1,... must be good, which contradicts
our assumption. We have thus established that X is a wpo. Then W (X) is a wpo
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as well, since W was assumed to be a WPO-dilator. For x: W(TW) — TW as in
the proof of Theorem 3.8, we can write

g(n) = k((an,0,)) with (a,,0,) € W(TW).

For each number n we have Suppyy ((an,0,)) = an € X = mg(tL"), where we
write (" : X < TW for the inclusion. In Theorem 2.10 we have shown that W is a
class-sized PO-dilator, so that it satisfies the support condition from Definition 2.2.
The latter allows us to write

(an,o0) = WLV ) (1) with 7, € W(X).

Since W (X) is a well partial order, we find indices i < j with 7; <w(x) Ti- Also
due to Theorem 2.10 and Definition 2.2, we know that W (:%") is an embedding.
We thus get (a;, 03) <gprw) (a;,0;) and then

9(i) = k((ai, 03)) <7w £((a;,05)) = 9(j)-
This contradicts the assumption that g is bad. [l

4. UNIFORM LOWER BOUNDS FOR KRUSKAL-TYPE THEOREMS

In the previous section we have constructed a partial order TW relative to
a normal PO-dilator W. The present section establishes a lower bound on the
maximal order type of 7W. This bound will have the form J(D) for a suitable
LO-dilator D, where ¥(D) is the linear order defined by Freund [8]. Our proof of
the lower bound also justifies the uniform independence principle that was stated
in the introduction.

The notion of LO-dilator has been explained in the text after Definition 2.2.
We write LOg for the category with objects n = {0,...,n — 1} and all strictly
increasing functions m — n as morphisms. Note that LOg is a subcategory of the
category POg that was considered in Section 2. As in the case of PO-dilators, each
class-sized LO-dilator D restricts to a coded LO-dilator D | LOg. Conversely, any
coded LO-dilator D can be extended into a class-sized LO-dilator D, in such a way
that we get D [LOg = D for class-sized D. For the linear case, these facts are due
to Girard [17]. A detailed presentation in our terminology is given in [8, Section 2].
In the latter paper, LO-dilators are predominantly denoted by T'; the class-sized
extension of a coded LO-dilator T is written as DT rather than 7.

We will see that TW can be bounded in terms of (D) if W and D are related
as in the following definition. Note that each coded PO-dilator W : POy — PO
restricts to a functor W [ LOg : LOg — PO. We can also consider an LO-dilator
D : LOg — LO as a functor from LOg to PO, leaving the inclusion LO — PO
implicit. With respect to the following definition, this means that each component
Vp : D(n) = W(n) with n € LOjg is a morphism in PO, i.e. a quasi embedding,.

Definition 4.1 (RCAy). A quasi embedding of a coded LO-dilator D into a coded
PO-dilator W is defined to be a natural transformation v : D = W [LOy.

If D and W are represented in RC Ay, then the underlying sets of the orders D(n)
and W(n) are contained in N. In this case, a quasi embedding v : D = W [ LOy
can be represented by the set

v={(n,o,7)|ne€Nand o € D(n) and 7 = v,(c) € W(n)}.
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We want to show that a quasi embedding between coded dilators induces a quasi
embedding between their class-sized extensions. The following lemma is needed
as a preparation. We write supp” : D = []<% and supp" : W = [|<¥ for the
supports that come with D and W.

Lemma 4.2 (RCAy). Ifv: D = W LOy is a quasi embedding, then the equation
supp! ov,, = supp? holds for each n € LOy.

Proof. For natural transformations between LO-dilators this has been shown by
Girard [17]. A proof that uses our terminology can be found in [14, Lemma 2.17]. Tt
is straightforward to check that this proof also applies when W is a PO-dilator. [

As in the case of PO-dilators, we write
Tr(D) = {(n,0)|n € LOy and ¢ € D(n) with supp? (o) = n}
for the trace of an LO-dilator D. According to [8, Definition 2.3], the class-sized
extension of D is given by
D(X) = {(a,0) |a € [X]™* and (|a|, o) € Tr(D)},
for each linear order X. The previous lemma ensures that (n,o) € Tr(D) implies

(n,vn(o)) € Tr(W), which justifies the following construction.

Definition 4.3 (RCAy). Consider a coded LO-dilator D, a coded PO-dilator W,
and a quasi embedding v : D = W. For each linear order X, we define a function
Ux : D(X) = W(X) by setting 7x ((a,0)) = (a,)4/(0)).

Let us verify the expected property:
Lemma 4.4 (RCAy). Assume that v : D = W is a quasi embedding. Then
the functions Ux : D(X) = W(X) form a natural family of quasi embeddings.
Furthermore we have suppg(v oTx = suppg for each linear order X.
Proof. We begin by showing that 7x is a quasi embedding. In view of Definition 2.9,
an inequality Vx ((a,0)) < x) Vx((b, 7)) amounts to

W ([g7°]) © Y10 (@) <w (jauspy W ([57°]) © vy (7).

Due to the naturality of v, the latter is equivalent to

Viaub| © DL (o) <w (aub)) Viaus| © D[4 (7).

Since vjqup| is a quasi embedding, we obtain

D(11g”* (@) <p(javey D(Ie51)(T).
First assume that we have equality. As in the proof of [8, Lemma 2.2] (see also the
proof of Theorem 2.10 above), we can deduce @ = b and o = 7. Then reflexivity
in D(X) yields (a,o) <Bx) (b,7). If we have D(|¢e2°%) (o) <p(jausp) D(|eg ") (1),
then (a,0) <px) (b, 7) holds according to [8, Definition 2.2]. Let us now establish
naturality. Given a quasi embedding f : X — Y of linear orders, we observe

W(f)ovx((a,0)) = W(f)((a,v1q(0))) = ([f]=*(a), W(|f Ta]) 0 vj|(0)).
Since X and Y are linear, we know that f is in fact an embedding. Hence a C X
is isomorphic to [f]<“(a) C Y. As each finite partial order has a unique represent-
ative in POy, it follows that the orders |a| and |[f]<“(a)| are equal. The function
enpsj<w(a) ¢ |[f15¥(a)l = la| — [f]<“(a) is uniquely determined as the increasing
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enumeration of the order [f]<“(a) C Y, because the latter is linear. This allows us
to conclude enfsj<w(q) = (f [ a) o eny. Also recall that |f [a| : [a| = |[f]<*(a)| is
characterized as the unique function with enjj<w(q) o|f [a| = (f [a)oen,. It follows
that |f [a| is the identity on |a| = |[f]<“(a)|. We now obtain

W(f)ovx((a,0)) = ([f]“(a), W(|f Tal) o v (0)) = ([f]=*(a), V| (51<=(a) (0)) =
=y (([f]*¥(a),0)) = Dy o D(f)((a,0)),

where the last equality relies on [8, Definition 2.2]. Finally, we observe

suppy © 7x((a,0)) = Suppy ((a,14)(0))) = a = SUPDPK ((a, 7)),

as we have claimed in the lemma. O

Recall that Freund [8] has defined a linear order ¥(D) for any LO-dilator D.
Elements of #(D) have the form 9% with a € [¢(D)]<¥ and (|a|,o) € Tr(D) (in [§]
they are written as 95" """~ for a = {so, ..., Sn—1} With so <g(p) - -+ <9(D) Sn—1)-
The order relation is given by
9 <o) 193 o D(|t27)) (o) <D(Jaub|) D(|g¥?|) () and s <9(D) ¥° for all s € a,

or ¥y <y(p) t for some t € b.

As in the case of TW, we define a length function [ : $(D) — N by
1(9) = max{"937, 1+ ZsEa 2-1(s)}.

We now come to one of the central observations of the present paper. The following
result implies that J(D) is a lower bound for 7W, as we shall see below.

Theorem 4.5 (RCAy). Consider an LO-dilator D and a normal PO-dilator W.
If there is a quasi embedding of D into W, then there is a quasi embedding of the
linear order V(D) into the partial order TW.

Proof. Assume that v : D = W is a quasi embedding. We define f : 9(D) — TW
by recursion over the terms in (D), setting
F05) = o([f1=*(a), W(If lal) 0 vai(0)).
To show that the recursion is successful, we verify
red(D) = f(r)eTW,
f(8) <rw f(t) = s<pmp) t

by simultaneous induction on I(r) and I(s)+1(¢), respectively. To establish the first
implication we write r = 9%. Given (|a|,0) € Tr(D), we can invoke Lemma 4.2 to
get (|al,vjq/(0)) € Tr(W). The simultaneous induction hypothesis ensures that the
function fla:a — [f]<“(a) C TW is a quasi embedding. Then Lemma 2.8 yields

(1), W(If Tal) 0 vja|(0)) € Ta(W).

In view of Definition 3.4 we get f(r) = f(9%) € TW, as desired. Let us now
consider an inequality f(s) <7w f(t) with s = 92 and t = ¥°. First assume that
the latter holds by clause (i) of Definition 3.4, which means that we have

f(s) <rw t' for some t' € [f]<“(b).
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For t' = f(t") with ¢ € b, the induction hypothesis yields s <ypy t”. This implies
5 <g(p) 1, by the definition of the order on ¥(D). Now assume that f(s) <7w f(t)
holds by clause (ii) of Definition 3.4, which amounts to

<w aUb <w aUb
w (‘mega)u ols W\) ©Vjal(0) Sw(js1<=(aun)) W (!L{ﬁ@&,f o Iffbl) o v (7).

Due to the induction hypothesis, we know that f[(aUb):aUb — [f]<¥(aUb) is
a quasi embedding. As in the proof of Theorem 2.10, we can then infer

W ([e29%)) 0 Vo) (@) <w(jausp W (Jee™°]) o v (7).

By naturality, this amounts to vj,up © D(|¢2°%) (o) <w(jaus)) Yjaus| © D(|f2?]) (7).
Since vjqup| : D(JaUb|) = W(|a U b|) is a quasi embedding, we obtain

D(Ieg""1)(o) <p(lavel D(leg™*)(7)-

If we have equality, then we get a = b and o = 7, as in the proof of the previous
lemma. In this case, s = J5 <y(p) Y2 =t holds by reflexivity. Now assume that
the above inequality is strict. In order to conclude s <y(p) t, we need to establish
s" <g(p) t for arbitrary s’ € a. Let us observe that f(s") € [f]<“(a) implies

F(") <qw o([f179(a), W(|f Ta]) o vja) (0)) = f(s) <7w f(2).
In view of I(s) < I(s), the induction hypothesis yields s' <ypy t. To exclude
equality, we deduce a contradiction from the assumption s’ = ¢. The latter implies
that we have f(s) <7w f(t) = f(s’). By Lemma 3.5 we get h(f(s)) < h(f(s)).
However, in view of f(s') € [f]<¥(a) we also have

h(f(s") < h(o([f]=*(a), W(If Tal) o vjq)(0))) = h(f(s)),
which yields the required contradiction. O

Following de Jongh and Parikh [23], we write o(X) for the maximal order type
of a well partial order X. The latter can be given as

o(X) = sup{«/| there is a quasi embedding of « into X},

where the ordinal « is identified with its ordered set of predecessors. If TW is a well
partial order, then the conclusion of the previous theorem implies that (D) is a well
order with order type o(¥(D)) < o(TW). A sound theory T DO RCA( with proof
theoretic ordinal at most o(9(D)) cannot prove that (D) is well founded (provided
that D and hence ¥(D) is computable). This establishes the uniform independence
principle that was stated towards the end of the introduction. A similar argument
yields the following result, which is useful because it allows us to work in the stronger
base theory ACA, of arithmetical comprehension. The result will eventually be
superseded by Theorem 5.12.

Lemma 4.6 (RCA(+CAC). Assume that TW is a well partial order whenever W
is a normal WPO-dilator. Then arithmetical comprehension holds.

Proof. In Example 2.3 we have constructed a PO-dilator Wz with
Wz(X)=142Z x X,

for each partial order Z. From Example 3.3 we know that Wy is normal. In the
theory RCA( + CAC one can show that Wz (or rather its coded restriction) is
a WPO-dilator whenever Z is a well partial order, as discussed in Example 2.15.
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According to Example 3.9, the Kruskal fixed point 7 Wy is isomorphic to the or-
der Seq(Z) of finite sequences with entries in Z. Hence the assumption of the
present result implies Higman’s lemma. The latter is equivalent to arithmetical
comprehension, as shown by Simpson [38] and Girard [19]. O

5. FROM THE UNIFORM KRUSKAL THEOREM TO H%—COMPREHENSION

In this section we deduce IT}-comprehension from the assumption that TW is
a wpo when W is a normal WPO-dilator. By a result of Freund [8], it suffices to
establish that 9(D) is well founded for any given WO-dilator D. For this purpose we
construct a normal PO-dilator Wp and a quasi embedding v : D = Wp. Our main
technical result shows that Wp preserves wpos. By the uniform Kruskal theorem
we can conclude that TWp is a well partial order. Then the quasi embedding
H(D) — TWp from Theorem 4.5 witnesses that (D) is well founded, as required.

To construct the aforementioned quasi embedding v : D = Wp, we will need to
assume that D satisfies a monotonicity property, which is due to Girard [17]:

Definition 5.1 (RCAy). A coded LO-dilator D is called monotone if we have
f(i) < g(i) foralli <m = D(f)(0) <pm) D(9)(o) for all o € D(m),
for all strictly increasing functions f,g: m={0,...,m—1} - {0,...,n— 1} =n.
Let us verify that the given property extends to infinite orders:

Lemma 5.2 (RCAy). If D is a monotone LO-dilator, then the following holds for
all embeddings f,g: X =Y of linear orders: If f(x) <y g(x) holds for all x € X,
then D(f)(o) <B(v) D(g)(o) holds for all o € D(X).

Proof. A given element o € D(X) can be written as o = (a, 0) for a € [X]<“ and

oo € D(|a|) with supp|,|(c0) = |a|. In the following we consider the inclusions

A% (@)Ul (a AT %(@)U]g] <% (a
s I a1y

By [8, Definition 2.2], the desired inequality D(f)(o) <Bw) D(g)(o) amounts to
D(|esD(@0) <p(is1<@uig<= (@) Dllegl) (o).
Due to the implication in Definition 5.1, this inequality reduces to the claim that
|0£1(i) < leg|(d)  holds for all i < |[f]=*(a)| = |a| = [[g]~*(a)].
Since the increasing enumeration of [f]<“(a) C Y is unique, we have
CN[f]<w (a)U[g]<w(a) O|Lf| = Lf OCL[f]<w(a) = Lf© (f [a) O €Ny,

and an analogous equation holds for g. The required inequality |c¢|(7) < |¢g](2) is
thus equivalent to f(en, (7)) <y g(en,(i)), which holds by assumption.

As shown by Girard [17, Proposition 2.3.10], monotonicity is automatic in the
well founded case. We translate Girard’s proof into our terminology, for the reader’s
convenience and to ensure that the proof can be formalized in reverse mathematics.

Lemma 5.3 (ACAy). Any WO-dilator is monotone.
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Proof. Recall that the ordinal w“ can be represented by the set of finite non-
increasing sequences of natural numbers. To suggest the intended interpretation as
Cantor normal forms, we write this set as

w’ ={w" + Wt nog < - <mg < wh

In the appropriate order we have w0 4 -+ - 4 w™k=1 < W"0 4 ... 4 wW™-1 if there is
an ¢ < min{k, [} with m; < n; and m; = n; for all j < ¢, or if we have k <[ and
m; = n; for all i < k. The fact that (w*, <) is a well order can be proved in ACA,
but not in RCAj (see e. g. [24]). If D is a WO-dilator, then D(w®) is well founded.
To deduce that D is monotone we consider strictly increasing functions f,g: m — n
with f(z2) < g(i) for ¢ < m. The point of w* is that it admits strictly increasing
functions h : n — w® and A’ : W — wW* with hog = h' o ho f. Before we justify
this claim, we show how it allows us to conclude: Since D(w*) is well founded and

D(h') is an embedding, we have

T <p(uwy D(')(1)  for all T € D(w®).

Indeed, if 7 was minimal with 7 >5,. D(h')(t) =: 7/, then we would get
D(W)(7) = 7" <puy DIV)(T') <y DIW)(7),

which is impossible. To show monotonicity we now deduce D(f)(c) <p(,) D(g)(0)
for a given element o € D(m). The latter can be written as o = D(¢{"oen, )(o¢) with
a = supp,, (o) and o¢ € D(Jal), due to the support condition in [8, Definition 2.1].
As in the proof of Theorem 2.11, the naturality of supports ensures supp, (o) = |a|

and hence (a,0() € D(m). By the above we get
D(ho 1)((a,00)) <pey D) 0 Dl o f)(a,00)) = D(h o g)((a,00)),

which implies D(f)((a,00)) <5,y D(9)((a,00)). The latter is equivalent to

n

D(|e')(00) <pmy D(|e7])(00),

where o/ : [f]<¥(a) < n and 19 : [g]<*(a) < n are the inclusions (note that we
have o/ = 1oy for v : [f]<%(a) U [g]<“(a) = n and ¢y as in the previous proof).
Since en,, is the identity on |n| =n ={0,...,n — 1}, we have

|t/ = eny, o|uf| =/ oenppy<u(q) =t/ o (fla) oen, = f o oen,,

as well as [19] = g o " o en,. Hence the above implies

D(f)(o) = D(f) o D(17 0 eng)(00) = D(|¢! [)(00) <p(n)
<p(m) D(||)(00) = D(g) o D(zg" o ena)(00) = D(g)(0),
just as required. It remains to construct embeddings h : n — w® and b’ : W* — wW*
such that hog(i) = h'oho f(i) holds for all i < m. We only consider the non-trivial
case of m > 0. Recall that addition on w* can be represented by
(wmo + .- ,+wmk—1)+(wn0 + - ..+w”171) = WM oM 0 ._|_w”lfl’

where 4 is minimal with m; < ng (take i = k in case mp_1 > ng or k =0 or I = 0).
Basic facts of ordinal arithmetic are readily verified. For w/(®) < o € w* we now
define e(a) € N and r(a) € w* by stipulating

e(a) =max{i < m|w’® <a} and a=w 4 r(a).
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The desired functions h : n — w* and h' : w* — w* can then be defined by

w9 4 () if WO <aq,

o otherwise.

h(k) =w® and h’(a):{

For i < m we have ho f(i) = w/(® which yields e(ho f(i)) =i and r(ho f(i)) = 0.
Hence we get

Woho f(i) =w M) +r(ho f(i)) = w'™ = ho g(i),
as desired. To show that &/ is strictly increasing, we first observe that o < w/(©) < g
implies A’ (a) = a < 8 =< K/ (B), where the last inequality relies on foe(8) < goe(f).
For w/(® < o < 3 we clearly have e(a) < e(8). If we have e(a) = e(B), then we

get 7(a) < r(B) and thus h'(a) < A/(8). Now assume that we have e(a) < e(f).
By the maximality of e(«) we then get

ra) < a < wl°®) < yooed),
Since w9°¢(A) = y9°¢(®) s additively principal, we obtain
h(a) = w9°®) 4 r(a) < wI°eB) < w9oe®) 41 (B) = B (B),

as needed to show that A’ is strictly increasing. O
Our next goal is to extend an LO-dilator into a PO-dilator. Let us begin with
some terminology: Given a partial order X, we write Emb(X) for the set of finite
quasi embeddings u : n — X, where n = {0,...,n — 1} carries the usual linear
order. In this context we write [u] = n for the domain of u. For u,w € Emb(X) we
define Hig(u,w) as the set of strictly increasing functions h : [u] — [w] such that
u(i) <x wo h(i) holds for all ¢ < [u] (note the connection with Higman’s lemma).
In RCAj one should represent Emb(X) by the set of pairs (a,up), where a € X
is a finite suborder and ug : m — a is a surjective quasi embedding. Since (a,ug)
corresponds to an obvious u : n — X, we will not make this representation explicit.

The following definition can be made for any LO-dilator D. However, we will need
to assume that D is monotone to construct a quasi embedding v : D = Wp.

Definition 5.4 (RCAy). Let D be an LO-dilator. For each partial order X we
define a set Wp(X) and a relation <y, (x) by stipulating

Wp(X) = {(u,0) [u € Emb(X) and ([u], o) € Tr(D)},
(u,0) <wp(x) (w,7) < there is an h € Hig(u,w) with D(h)(0) <p(juw)) T-
Given a quasi embedding f : X — Y, we define Wp(f) : Wp(X) = Wp(Y) by

Wp(f)((u,0)) = (fou,o).
Finally, we define functions supp¥ : Wp(X) — [X]<* by setting

supp¥ ((u,0)) = rng(u) = [u]<“([u])
for each element (u,0) € Wp(X).
Let us point out that our order Wp(X) is similar to the order Q(X) of Kiiz and
Thomas [25], if we take Q to be the category with objects Tr(D) and a suitable set

of morphisms. However, the first component of an element (u,o) € Q(X) can be
an arbitrary function w : [u] — X, while we restrict to quasi embeddings.
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If the construction from Definition 5.4 is restricted to the category POy, then it
can be represented as a single set, which is available in RCA, (cf. Example 2.6).
The following result is concerned with this set-sized restriction.

Proposition 5.5 (RCAy). If D is an LO-dilator, then Wp is a normal PO-dilator.

Proof. We first show that Wp(a) is a partial order for any a € POgy. Concerning
reflexivity, we observe that (u,o) <w, () (u,0) is witnessed by the identity on [u].
In order to establish antisymmetry, we assume that the inequalities

(u,0) <wp(a) (w,7) and  (w,7) <w,(a) (u,0)
are witnessed by h € Hig(u,w) and b’ € Hig(w,u). As the functions h : [u] — [w]
and A’ : [w] — [u] are strictly increasing, they must both be the identity on [u] = [w].
In view of u() <, woh(i) = w(i) and w(i) <, uoh’/(i) = u() we get u = w. Since D
is a functor, we also obtain 0 = D(h)(0) <p(u)) 7 and 7 = D(R')(T) <p(pu)) o-
Hence antisymmetry in D([u]) yields o = 7. For transitivity we assume that

(U,U) gWD(a) (va) and (’LU,T) SWD(a) (Uap)
are witnessed by h € Hig(u, w) and b’ € Hig(w,v). Then we have b’/ oh € Hig(u,v).
As D(W) : D([w]) — D([v]) is an embedding, we also get
D(1" o h)(o) = D(h') o D(h)(0) <p(p) D(W)(7) <p(0)) p-

Hence h' o h witnesses (u,0) <y, () (v,p). Let us now discuss the action of Wp
on morphisms. Given a quasi embedding f : a — b, we consider an inequality

(fou,0) = Wp(f)((u,0)) Swpm) Wo(f)(w, 7)) = (fow,7).

Assume that the latter is witnessed by h € Hig(f ou, f ow). Recall that [v] denotes
the domain of v. Hence we have [f o u] = [u] and [f o w] = [w]. Since f is a quasi
embedding, we see that f o wu(i) <, f ow o h(i) implies u(i) <, w o h(¢). Thus
we get h € Hig(u,w), and this function witnesses (u,0) <w, @) (w,7). If f is
an embedding, then h € Hig(u, w) does also imply h € Hig(f o u, f o w). One can
conclude that Wp(f) is an embedding, as required by condition (i) of Definition 2.4.
It is straightforward to verify that Wp is functorial. To see that supp" is a natural
transformation we consider a quasi embedding f : a — b and compute

suppy” oWp(f)((u, ) = suppy” ((f 0w, 0)) = [f o u]<“([f o u]) =
=[5 o [u] = ([u]) = [f]=* o suppg’ ((u,0)).
Let us now establish the support condition: Given an embedding f : @ — b and an
element (w, o) € Wp(b) with
mg(w) = supp;’ ((w, o)) C mg(f),
we find a function u : [u] = [w] — a with f ou = w. In order to show that u is a
quasi embedding, we consider an inequality u(i) <, u(j) with 7,7 < [u]. Since f is
an embedding, we obtain w(i) = fou(i) <p fowu(j) = w(j) and then i < j. Due
to u € Emb(a) we now get (u,0) € Wp(a). By construction we have
(w,0) = (f ou,0) = Wp(f)((u,0)) € mg(Wp(f)),

as required. Finally, we establish the normality condition from Definition 3.1:
Consider an inequality (u,o) <y, () (w,7) that is witnessed by h € Hig(u,w). An
arbitrary element of supp!” ((u, o)) has the form u(i) with i < [u]. We have

ul(i) <a wo h(i) € mg(w) = supp ((w, 7)).
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Hence h ensures supp)” ((u, o)) <i* supp ((w, 7)), as required. O
As promised, monotonicity allows us to view Wp as an extension of D:

Proposition 5.6 (RCAy). Assume that D is a monotone LO-dilator. Then there
is a quast embedding v : D = Wp.

Proof. In view of Definition 4.1 we need to define a natural family of quasi embed-
dings vy, : D(m) — Wp(m) for the linear orders m = {0,...,m — 1}. Due to the
support condition from [8, Definition 2.1], each element o € D(m) can be written
as 0 = D(1 o en,)(0p) with a = supp? (¢) and oy € D(|a|), where /™ : a < m
is the inclusion and en, : |a| = {0,...,|a| — 1} — a C m is the strictly increasing
enumeration. Note that o is unique since D(.* o en,) is an embedding. Due to

a = suppl (D(/™ o eng)(0g)) = [1™ o ena]<‘”(supp|2|(00))
we get supp‘Da‘(ao) = |a| and hence (Ja|,09) € Tr(D). Also note that we can view
(o en, as an element of Emb(m), with [t* o en,] = |a|. Thus we may set
Um(0) = (1™ o eng, 00) € Wp(m) for ¢ = D(4™ o eng)(0g) with a = suppZ (o).
To show that v, is a quasi embedding we consider an inequality
(tg" oeng,00) = Um(0) <wpm) Vm(T) = (15" 0 eny, 7o)

with o = D" o engy)(0p) and 7 = D(4]* o enp)(1p). According to Definition 5.4
there is a function h € Hig(s" o eng, ¢ o enp) with D(h)(o0) <p(ps|) T0- Now we
use the assumption that D is monotone. Since we have (' oeng (i) < ¢J* o eny, oh(%)

for all ¢ < |al, it allows us to conclude
o = D(i5" oeng)(00) <p(m) D(ty" 0 eny) o D(h)(00) <p(m) D(1y" 0 eny)(10) = 7.

a
To show that v is natural we consider a strictly increasing function f : m — n and
an element o € D(m). As above, we write 0 = D(:™oen,) (o) with a = supp?) (7).
Since (f[a)oen, : |a] = [f]<¥(a) =: b is strictly increasing and surjective, we get
fotltoen, =1y o(fla)oen, =ty oeny.
Hence we have D(f)(o) = D(¢} o eny)(0y), as well as

suppy, (D(f)()) = [f]<“(supp;, (o)) = b.
Invoking the definition of v, we can infer
v 0 D(f)(0) = (1} 0 ey, 00) = (f 0 127 0 ena, 30) = Wi (f) © Um0,

as required for naturality. O

In the following we prove a main technical result of our paper, which states that
Wp preserves well partial orders whenever D preserves well orders. To begin, we
note that Emb(X) can be seen as a subset of the set of finite sequences with entries
from the partial order X. The order from Higman’s lemma can be given as

u<gw & Hig(u,w)#0

for u,w € Emb(X). Assuming u <y w, we construct a minimal h[u, w] € Hig(u, w)
by recursion: For ¢ < [u] we define hfu, w]() as the smallest j > hfu, w](i — 1) with
u(i) <x w(j) (read hu,w](—1) = —1 to cover the case i = 0). A straightforward
induction on ¢ shows that we have

hlu, w](i) < h(i) for any h € Hig(u,w) and any ¢ < [u].
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The following result suggests a strategy to prove that Wp(X) is a well partial order.

Proposition 5.7 (RCAy). Consider a WO-dilator D and a partial order X, as
well as an infinite sequence
(UO,00)7(U1701)7...QWD(X) with Ug SH U1 SH
Assume that there is a wpo Z and a family of quasi embeddings u® : [u;] — Z with
ul o hlug,u;] = u' for all i < j. Then there are i < j with (u;,0:) <wp(x) (uj,05).
Proof. For i < j we abbreviate h;; := hlu;, u;]. Note that h;; is the identity on [u;].
The assumptions of the proposition imply hj, o hy; = by, for i < j <k, via
ukohjkohij :ujohij =u' =uf o hy.

In RCAy, the direct limit of the embeddings h;; : [u;] — [u;] can be given as

Y ={(j,n)|n < [u;] and n ¢ rg(h;;) for all i < j},

(i,m) <y (j,n) & hix(m) < hjx(n) with k& = max{i, j}.
It is straightforward to check that Y is a linear order. Furthermore, a family of
embeddings w; : [u;] = Y with w; o h;; = w; for i < j can be defined by
wi(m) = (j,n) with j =min{j <i|m € rng(h;;)} and m = hj;;(n).
Note that any (i,m) € Y arises as (i, m) = w;(m) € rng(w;). If we definew : Y — Z
by u((i,m)) = u’(m), then we get uow; = u' for all i € N. One readily verifies that
u is a quasi embedding. Since Z is a well partial order, it follows that Y is a well
order. Recall that D denotes the class-sized extension of the coded LO-dilator D
(cf. [8, Section 2], where T is written as DT). Given that D is a WO-dilator, we
learn that D(Y) is a well order. Put a; := rng(w;) € [Y]<“ and observe |a;| = [u].
As (ui,0;) € Wp(X) entails ([u;],0;) € Tr(D), we can consider the sequence
((10,0'0), (al,al), e Q E(Y)

Since D(Y) is a well order, we get indices i < j with (a;, 0;) <Bw) (aj,0;). In view
of [8, Definition 2.2] and a; C a; = a; U a;, this inequality amounts to

D(|e])(ei) <p(la,) 05 for the inclusion ¢ : a; — a;.
Recall that the function [¢| : |a;| — |a,| is uniquely characterized by en; o|¢| = roen;,
where en; : |a;| — a; is the increasing enumeration. If we write ¢; : a; < Y for
the inclusion, then the function ¢; o en; : |a;| = [u;] = Y is strictly increasing with
range a;, so that it must coincide with w;. Hence we get

tjoenjoh;; =wjoh;y; =w;=1;0en; =tj0Loen;.
This yields en; oh;; = toen; and then h;; = [¢|. We thus get D(hi;)(0:) <p((u,)) Tj>
which means that h;; € Hig(u;, u;) witnesses (u;, 03) <w,(x) (uj,05). O

The first part of the previous proof suggests to single out the following notion.
Definition 5.8 (RCA,). For a partial order X, a sequence ug, ug, ... C Emb(X)
is called directed if we have uy <g w1 <p ... and hlu;, ug] = hlu;, ux] o hlu;, u;]
forallt < j <k.
As the next result shows, a directed sequence is all we need in order to satisfy

the assumptions of Proposition 5.7. In the following we consider Emb(X) with the

partial order <y from Higman’s lemma. The latter is provable in ACA, (due to
Simpson [38]) and ensures that Emb(X) is a wpo whenever the same holds for X.
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Proposition 5.9 (RCAy). For any directed sequence ug, u1, ... € Emb(X) there is
a family of quasi embeddings u* : [uy] — Emb(X) with u' o hlug,w] = u* for k <.

Proof. As before, we abbreviate h;; := h[u;,u;] for ¢ < j. Since hgy, is the identity,
any number n < [ug] can be written as n = h;r(m) with i < k and m < [u;]. Note
that m is uniquely determined once a choice for i has been fixed. We define

uF(n) =wu; [ (m+1) for n = hjx(m) with i < k as small as possible.

To avoid confusion we emphasize that u; € Emb(X) is a function with codomain X
while u* is a function with codomain Emb(X). For k < I we see that n = h;;,(m)
implies hy(n) = hg o hik(m) = hy(m). Furthermore, if we had j < ¢ and m’ < [u;]
with hgi(n) = hji(m') = hg o hji(m'), then the fact that hy; is strictly increasing
would yield n = hj;,(m’), against the minimality of ¢ in n = h;,(m). Hence we get

ul o hyg(n) = ul o hy(m) = u; [ (m + 1) = uF o hip(m) = u®(n).

It remains to show that each function u* : [ux] — Emb(X) is a quasi embedding.

For this purpose we consider an inequality u*(n) <g u*(n’). Writing n = h;,(m)
and n’ = h;i(m’) with ¢ and j as small as possible, the latter amounts to

u; [ (m+1) <g uj[(m' +1).

This inequality is witnessed by a strictly increasing h : {0,...,m} — {0,...,m'}
such that u;(!) <x u;(h(l)) holds for all { < m. Let us first assume j < 4. In this
case we observe that m < h(m) <m/ < hj;(m’) implies

n = hig(m) < hig o hj;(m') = hjp(m') =n'.
Now assume ¢ < j. We recall that h;; = hlu,;, u;] € Hig(u;, u;) was defined as the

element with the smallest possible values. By induction on [ < m < [u;] one can
deduce h;;(1) < h(l). For | = m this yields h;;(m) < h(m) < m' and then

n = hik(m) = hjg o hij(m) < hjp(m') =n',
as needed to show that u* is a quasi embedding. O

Finally, we satisfy the precondition of the previous proposition:

Proposition 5.10 (ACAy). If X is a well partial order, then any infinite sequence
in Emb(X) has a directed subsequence.

Proof. Recall that ACA( proves Higman’s lemma, as well as the infinite Ramsey
theorem for each finite exponent (see e.g. [39]). We want to construct a directed
subsequence of a given sequence wg, wi, ... € Emb(X). Ramsey’s theorem for pairs
yields a strictly increasing function f : N — N such that one of the following holds:
Either we have wy;y <g wy(j for all i < j, or we have wy;y £u wy(j for all i < j.
The latter is excluded by Higman’s lemma, given that X is a well partial order.
With u; :=w TORY suffices to construct a directed subsequence of ug <y u; <g ....
For i < j we abbreviate h;; := h[u;, u;] € Hig(u;, u;) and set

0i(4) = (u; [ (hi(0) + 1), ..., uy | (hij([ui] — 1) + 1)) € Emb(X)M.
Write <; for the usual partial order on the product Emb(X )[“1‘], so that we have
0i(4) Rioi(k) & ujl(hi(0)+1) <g upl(hi(l) + 1) for all I < [u;].



32 ANTON FREUND, MICHAEL RATHJEN, AND ANDREAS WEIERMANN

Given i < j < k, we now put

(i, j, k) = {1 if 0i(d) % oulk),

0 otherwise.

By Ramsey’s theorem (for exponent 3) there is a value ig € {0,1} and a strictly
increasing function g : N — N with ¢(¢(¢), g(4), g(k)) = io for all i < j < k. For
any ¢ € N, another application of Higman’s lemma tells us that =<, is a well
partial order. This yields indices i < j < k with

041y (9(7)) 2ge) 0g(iy(g(k))-

Hence we get 1o = ¢(g(i),9(j), g(k)) = 1, which means that the last inequality holds
for all indices ¢ < j < k. We want to conclude that uy), ug(1), .. is the directed
subsequence required by the proposition. It suffices to show that

Ol(']) =i Oz(k) = hik = hjk o hij

holds for all ¢ < j < k. One readily verifies hj, o h;; € Hig(u;, up). We have already
observed that h;;, = h[u;, ug] is minimal in this set, so that we have

hzk(l) < h'jk o h”(l) for all [ < [uz]

To establish the converse inequality for a given | < [u;], recall that o;(j) <; 0;(k)
entails the inequality

;| (hig(1) + 1) <a wg | (har(l) + 1)

The latter is witnessed by a strictly increasing h : {0,...,h;; ()} = {0,..., hix(D)}
such that we have u;(m) <x ug(h(m)) for all m < h;;(l). By induction on m one
shows hji(m) < h(m). In particular we get hj, o hij(1) < h(hij(1)) < hir(l). O

By combining the previous propositions, we obtain our main technical result:
Theorem 5.11 (ACAy). If D is a WO-dilator, then Wp is a WPO-dilator.

Proof. In view of Proposition 5.5 it suffices to show that Wp(X) is a well partial
order whenever the same holds for X. Here W p is the class-sized extension of the
coded PO-dilator Wp, as constructed in Section 2. According to Theorem 2.11 we
have W p(X) = Wp(X). While the general version of the cited theorem cannot be
formulated in reverse mathematics, the present instance is provable in RCAg, as
in the case of Example 2.15. Given a wpo X, it thus remains to show that Wp(X)
is a wpo. For this purpose we consider an infinite sequence

(U07UQ)7 (uhal), . g WD<X)

By Proposition 5.10 we may assume that ug <g u; <pg ... C Emb(X) is directed.
Then Proposition 5.9 yields a family of quasi embeddings u® : [u;] — Emb(X) such
that we have v’ o hlui, uj] = u® for all i < j. We can now apply Proposition 5.7
with Z = Emb(X), which is a well partial order by Higman’s lemma. This yields
indices i < j with (us,0:) <w,(x) (uj,0;), so that the sequence above is good. [

Finally, we are able to deduce our main equivalence:
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Theorem 5.12. The following are equivalent over RCAy extended by the chain-
antichain principle:
(1) the principle of 111 -comprehension,
(2) the uniform Kruskal theorem: if W is a normal WPO-dilator, then TW is
a well partial order,
(8) any normal WPO-dilator has a well partial ordered Kruskal fixed point.

Proof. From Theorem 3.10 we know that (1) implies (2). The implication from (2)
to (3) holds because TW is a Kruskal fixed point of W, due to Theorem 3.8.
The same theorem tells us that any other Kruskal fixed point X of W admits a
quasi embedding f : TW — X. The latter ensures that 7W is a well partial
order if the same holds for X, which shows that (3) implies (2). To complete
the proof we assume (2) and deduce (1). In view of Lemma 4.6 (which uses the
chain-antichain principle) we can work over ACAy. Freund [8, Theorem 4.3] has
shown that ITj-comprehension is equivalent to a computable Bachmann-Howard
principle, which asserts that ¥(D) is well founded for any WO-dilator D. So it
suffices to establish this principle. Given a WO-dilator D, we consider the normal
PO-dilator Wp from Proposition 5.5. Lemma 5.3 (originally due to Girard) ensures
that D is monotone. Then Proposition 5.6 yields a quasi embedding v : D = Wp.
The latter can be transformed into a quasi embedding f : $(D) — TWp, due to
Theorem 4.5. We now invoke Theorem 5.11 to learn that Wp is a WPO-dilator. By
the uniform Kruskal theorem from (2) it follows that 7Wp is a well partial order.
Due to the quasi embedding f, this implies that J(D) is well founded, as required
by the computable Bachmann-Howard principle. O

We do not know if the equivalence holds without the chain-antichain principle.
The obvious attempt at a positive answer would go via a variant of the transforma-
tion X +— 142 x X from Lemma 4.6. It would certainly be interesting to investigate
TW in cases where RCA( proves that X — W(X) preserves well partial orders.
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