

This is a repository copy of *Two green roof detention models applied in two green roof systems*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/184649/

Version: Supplemental Material

Article:

Peng, Z. orcid.org/0000-0003-3918-4479, Garner, B. and Stovin, V. orcid.org/0000-0001-9444-5251 (2022) Two green roof detention models applied in two green roof systems. Journal of Hydrologic Engineering, 27 (2). 04021049. ISSN 1084-0699

https://doi.org/10.1061/(asce)he.1943-5584.0002155

This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://doi.org/10.1061/(ASCE)HE.1943-5584.0002155

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

	Parameter	Conventional Green Roof	Innovative Green Roof
System configuration	Length	5 m	6.1 m
	System slope	2%	2%
Substrate layer	$ heta_s$	0.552ª	0.513 ^b
	$ heta_r$	0.042ª	0.119 ^b
	α_1	0.304ª	0.108 ^b
	n_1	2.820ª	2.344 ^b
	α_2	5.094E-04ª	0.002b
	n_1	1.926ª	2.834 ^b
	<i>w</i> ₁	0.622ª	0.579 ^b
	K_s	166.4 mm/min ^a	14.7 mm/min ^b
	$ heta_1$	0.23ª	-
	$ heta_2$	0.33ª	-
	γ_1	-1.5495ª	-
	γ_2	-10.33ª	-
	γ_3	-23.339ª	-
	eta_1	5.019ª	-
	β_2	31.66ª	-
	β_3	88.2267ª	-
	Initial moisture content ($ heta_{FC}$)	0.33ª	0.38 ^b
	Depth	100 mm	50 mm
Droipage (detertion laws	Manning's n	0.0012 ^b	0.017 ^b
Drainage/detention layer	Initial water storage	0	0

Table 1. Value of parameters for the two-stage physically-based (2SPB) model.

^a Values for MCS substrate, as proposed in Peng et al. (2020).
 ^b Values from independent material characterisation tests described in this paper.

	Parameter	Conventional Green Roof	Innovative Green Roof
	<i>W</i> ₁ 1 m		1.1 m
System Configuration	A_1	5 m²	6.71 m ²
	<i>S</i> ₁	0.02	0.02
	Ø ₁	0	0
Surface lavor	D_1	0	0
Surface layer	n _s	0.1	0.1
	$arphi_2$	50	50
	K _s	166.4 mm/min ^a	14.7 mm/min ^b
	D_2	100 mm	50 mm
	Soil wilting point	0.01	0.01
Substrate layer	Ø ₂	0.552ª	0.513 ^b
	$ heta_{FC}$	0.34ª	0.38 ^b
	НСО	20 ^b	25.59 ^b
	Initial substrate saturation	64.10%	72.55%
	<i>n</i> ₃	0.0578 ^b	0.952 ^b
Drainage/detention layer	Ø ₃	0.5	0.5
	D_3	25 mm	55 mm
	Initial water storage	0	0

Table 2. Value of parameters for the SWMM green roof LID control (SWMM-GR) model.

^a Values for MCS substrate, as proposed in Peng et al. (2020).

^b Values from independent material characterisation tests described in this paper.

Slope	Drainage Length	Manning's n	Roughness Coefficient
2%	2 m	0.0022	0.1090
2%	5 m	0.0012	0.0578
17.60%	2 m	0.0025	0.1542
17.60%	5 m	0.0018	0.0914

Table 3. Identified Manning's n and Roughness Coefficient for the FD-25 drainage layer.