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Abstract

Predictive functional control (PFC) is a straightforward and cheap model-based

technique for systematic control of well-damped open-loop processes. Neverthe-

less, its oversimplified design characteristics are often the cause of diminished

efficacy in more challenging applications; processes involving lightly damped

and/or unstable dynamics have been particularly difficult to control with PFC.

This paper presents a more sustainable solution for such applications by inte-

grating the concept of prestabilization within the predictive functional control

formulation. This is essentially a two-stage synthesis wherein the undesirable

open-loop dynamics are first compensated, using a well-understood classical

approach such as proportional integral derivative (PID), before implementing

predictive control in a cascade structure. The proposal, although comes with

significant implications for tuning and constraint handling, is, nonetheless,

straightforward and provides improved closed-loop control in the presence of

external perturbations compared to the standard PFC and the PID algorithms,

as demonstrated with two industrial case studies.

KEYWORD S

coincidence horizon, constraint handling, modeling uncertainty, prestabilization, predictive

functional control

1 INTRODUCTION

In process industries, a sustainable feedback control loop needs to be one that is easy to maintain and retune using
local staff rather than consultants. Hence, it is advantageous when components of the design are based on simple
classical approaches such as proportional integral derivative (PID) which are well understood. This paper considers
how predictive functional control (PFC), a low-cost approach to model predictive control (MPC), can exploit sim-
ple classical designs within the overall approach and use simple intuitive tuning of the predictive control aspects
thereafter.

PFC, since its introduction in the 1970s,1 has emerged as a strong competitor to the widely popular PID algorithm,
especially for single-input-single-output industrial process control loops. The advantages of PFC significantly outweigh
those of PID in that it systematically handles process dead-times and constraints with an equivalent cost and complexity
threshold, but for which PID requires additional complexity such as Smith predictors2 and anti-windup algorithms.3
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Moreover, controller tuning in PFC is intuitive, relating to the physical characteristic of system time constant, which,
in principle, makes the tuning process relatively meaningful.4 Consequently numerous successful PFC implementations
have been reported in the literature.5,6

Being a model-based approach, PFC has inherited fundamental attributes from the mainstream MPC family,7

yet it differs significantly from other predictive controllers in the parameterization of the input trajectory and the
associated optimization. In PFC, themanipulated variable is predefined as a linear combination of polynomial basis func-
tions, whose order depends upon the shape and characteristic of the target.5,8 For a constant set-point, the predicted
input parameterises to just one degree-of-freedom, eliminating the need for the complex optimisation routines gener-
ally associated with high-end MPC (e.g. DMC,9 GPC10). This on one hand simplifies computation, but on the other
hand necessitates heuristics for constrained predictive control problems.11 Unlike advanced approaches, simple clip-
ping, saturation, or simplified back calculation have been the commonly deployed constraint management protocols
in PFC.

The basic PFC algorithmoperates bymatching output predictionswith a desired first-order response at only one future
point, known as the coincidence point, and with a fixed control action.5-7 Intuitively this approach is effective as long
as the model behavior is smooth and monotonically convergent after immediate transients.12 A prime example is stable
first-order plants for which PFC is proven to drive the controlled variable to any desirable target trajectory provided coinci-
dence occurs exactly one-step ahead.7 Similar closed-loop performance could be expected with well-damped higher-order
dynamics although a coincidence point of one may not suffice due to the initial lag in the response. Nevertheless,
parameter tuning for such simple systems is well understood in literature.12

However, what happens when the dynamic behavior is oscillatory, nonminimum phase or, in the worst scenario,
completely divergent? Simply put, PFC loses efficacy in these difficult situations. The reason is inconsistency within the
implied long-range predictions that deviate from the assumed ideal behaviour after coincidence. Researchers argue that
a constant future input may not be sufficient as this lacks enough degrees-of-freedom to tackle difficult dynamics.4,6,13,14

Although the conventional PFC may still work in some cases due to the application of receding horizon,7,12 the
decision-making is unreliable and prone to failure, especially with tight constraints and/or uncertainties. To overcome
difficulties associated with challenging dynamics, a manual for PFC practitioners6 suggests a variety of possible mod-
ifications on a case-to-case basis. Nevertheless, these solutions lack an over-arching systematic design procedure, and
unsurprisingly have a very limited applicability.

For challenging applications, various modified PFC algorithms implementing different parameterisations of the deci-
sion variable have also been investigated. One proposal13 recommends altering the input by separating and subsequently
cancelling the unwanted dynamics to obtain convergent predictions. This method provides many-fold performance
improvements while retaining the basic PFC characteristics but lacks practicality as the proposed minimummoves shap-
ing may produce aggressive input activity and could be quite sensitive to parameterisation errors. Another input shaping
proposal4 ensures relatively less aggressive control moves by allowing predictions to converge over many more samples.
This method, tested on numerous simulation models and hardware application, outperforms the predecessor but relies
on rather less-intuitive offline computations. Yet another proposal15 suggests decomposing the higher-order model into
multiple first-order subsystems to benefit from simple tuning procedure. But such decomposition for oscillatory dynam-
ics embeds complex number algebra into the computations which may not work easily with general purpose industrial
programmable logic controllers (PLCs).14

A more recently proposed alternative, building on common practice in the more mainstream MPC literature,16,17 is
to prestabilize the undesirable open-loop predictions using an internal feedback compensation loop. While this concept
within PFC has largely been limited to first-order unstable18 or integrator dynamics19,20 and very simple prestabilization
compensators, one recent study21 has extended its scope to higher-order unstable dynamics using some more involved
inner compensation schemes, resulting in promising performance attributes but at the cost of increased constraint
handling complexity. Another recent study22 has suggested an improved and more meaningful parameter tuning after
prestabilization;22 a benefit that significantly outweighs the slight intricacy in constraint handling that may arise due to
the use of complicated internal loops. Nevertheless, the need for a more thorough investigation in this context is evident;
an objective which the current paper aims to accomplish. Therefore, the primary contribution, building on the recent
proposal,21 is the development of a systematic but simple PFC design framework for underdamped and unstable dynamic
processes, integrating an intuitive tuning algorithm along with straightforward guidelines to perform efficient constraint
management.

The remainder of this paper is organised as follows: Section 2 defines the problem and sets control objectives.
The conventional PFC is briefly reviewed in Section 3, followed by a detailed discussion on the prestabilized PFC
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framework in Section 4. Two feedback compensation proposals are discussed next in Section 5 before discussing
the proposal for constraint management with prestabilization in Section 6. The simulation case studies follow in
Section 7 which presents performance comparisons with standard PFC and PID controllers. Finally, the paper concludes
in Section 8.

2 PROBLEM STATEMENT

Consider a dynamic process characterised by an nth-order strictly proper transfer function model G(z) such that:

G(z) = z−ndG0(z); G0(z) =
b(z)

a(z)
, (1)

where a(z) and b(z) are coprime with a(z) = 1 + a1z−1 + a2z−2 + · · · + anz−n, b(z) = b1z−1 + b2z−2 + · · · + bnz−n, respec-
tively, and nd is the process deadtime. It is assumed that the delay-free model G0(z) exhibits oscillatory or divergent
dynamic behaviour demonstrated by complex or unstable open-loop poles. The process may also be subject to the
following limits:

u ≤ uk ≤ ū, Δu ≤ Δuk ≤ Δū, y ≤ yk ≤ y, (2)

where Δ = 1 − z−1. The problem addressed in this paper deals with the design of PFC of the process modeled as G(z),
by stabilising and/or conditioning the difficult open-loop dynamics using a simple classical feedback compensation
approach. The controller is expected to exhibit some degree of robustness against modelling uncertainty and/or external
perturbations.

3 REVIEW OF PFC

This section briefly reviews the basic characteristics of a conventional predictive functional controller along with its fun-
damental weaknesses in handling difficult open-loop dynamics, followed by a detailed analysis of the prestabilized PFC
(PPFC) algorithm proposed for such applications in the subsequent sections.

3.1 Conventional PFC algorithm

For a well-damped open-loop process, the conventional PFC works as follows: at every time sample k, the current control
input uk is used to enforce a match between the predicted plant output yk and a predefined reference trajectory rk at a
coincidence point ny samples ahead in the future. The prediction is based on an assumption of a constant future control
signal uk = uk+1 = · · · = uk+ny, but the decision is re-evaluated and updated at every sampling instant, thus forming a
feedback mechanism. The reference trajectory represents an ideal first-order response, initiated on the current output
given by (for a system with deadtime of nd samples):

rk+nd+i = R − (R − E[yk+nd|k])𝜌
i, i = 1, 2, … (3)

where R is the set-point, E[yk+nd|k] is the current estimate/prediction of the delayed output and 𝜌 is the target pole (0 <
𝜌 < 1), defined as 𝜌 = e−Ts∕𝜏 with Ts and 𝜏 being the sampling time and the target time constant, respectively. Therefore,
at the point of coincidence ny, by definition, one obtains:

yk+ny|k = R − (R − E[yk+nd|k])𝜌
ny = rk+nd+ny , (4)

where the notation k + x|k means the x-step ahead prediction made at the current sample k. The standard practice, as
shown in Figure 1, is to simulate a delay-free independent model G0(z) in parallel with the plant using the same input uk
(a formulation similar to Smith predictor) which in essence provides nd samples out of synchronization output prediction
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F IGURE 1 The standard predictive functional control control architecture with independent internal model

at the current k. Furthermore, the independent structure tends to induce prediction bias due to uncertainties, causing an
offset in the steady-state. For bias-free predictions, a correction term dk must be included in algebra such that:

{dk = yk − ŷk−nd} ⇒ {E[yk+nd|k] = ŷk + dk}, (5)

where ŷk is the independentmodel output. The output prediction at the coincidence point ny is recursively obtained using
the structure a(z)ŷk = b(z)uk such that7

ŷk+ny|k = Hu
⃖⃗ k

+ Pu
⃖⃖ k−1

+Qŷ
⃖⃖k
, (6)

whereH, P, andQ are derived frommodel parameters, with the associated input and output vectors defined accordingly:

u
⃖⃗ k

=

⎡
⎢⎢⎢⎢⎢⎣

uk

uk+1

⋮

uk+ny

⎤
⎥⎥⎥⎥⎥⎦

; u
⃖⃖ k−1

=

⎡
⎢⎢⎢⎢⎢⎣

uk−1

uk−2

⋮

uk−n+1

⎤
⎥⎥⎥⎥⎥⎦

; ŷ
⃖⃖k

=

⎡
⎢⎢⎢⎢⎢⎣

ŷk

ŷk−1

⋮

ŷk−n+1

⎤
⎥⎥⎥⎥⎥⎦

. (7)

As uk+i = uk, ∀i > 0, combining (4)–(6) results in the following PFC control law:

uk =
R − (R − E[yk+nd|k])𝜌

ny − (Pu
⃖⃖ k−1

+Qŷ
⃖⃖k

+ dk)

hny
, (8)

where hny =
∑ny

j=1H(j) and H(j) is the jth element ofH.
One of the core advantages of PFC over some of the similarly placed techniques, such as the PID, is its ability to

integrate constraints within the design instead of treating them as an afterthought.23 Owing to the assumption of constant
future input, it is possible to implement a simple saturation policy to predict and validate the input constraint adherence
using just the following four inequalities at each k:

⎡
⎢⎢⎢⎢⎢⎣

1

− 1

1

− 1

⎤
⎥⎥⎥⎥⎥⎦

uk ≤

⎡
⎢⎢⎢⎢⎢⎣

ū

− u

Δū + uk−1

−Δū − uk−1

⎤
⎥⎥⎥⎥⎥⎦

. (9)

Output/state constraints, if present, can also be implemented efficiently using model predictions,7 such as (6), over
a large validation horizon nc, with nc >> ny, so that future violations (in nominal conditions) could be prevented. Given
y ≤ yk ≤ y, the following inequalities must be validated at each sample k with an input uk selected closest to the one
obtained via (8), such that:

y ≤ hiuk + Piu
⃖⃖ k−1

+Qiŷ
⃖⃖k

+ dk ≤ y, (10)

where i = 1, 2, … ,nc.
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Remark 1. The process of constraint validation based on (9) and (10) guarantees nominal recursive feasibility (no change
in the steady-state target and/or the disturbance), provided the open-loop systemhas stable andmonotonically convergent
dynamic behaviour.7

3.2 Selecting parameters 𝝆 and ny

The primary tuning parameter 𝜌 represents the ideal (first-order exponential) speed of convergence of the tracking error,
that is, how fast or slow the predicted response approaches the set-point. Assuming nd = 0 for simplicity, it is clear from
(4) that the predicted ny-step ahead tracking error ek+ny|k is equal to 𝜌ny times the current error ek, where ek = R − yk.
While the significance of 𝜌 is obvious, its efficacy is highly dependent on the judicious selection of ny. In general, as ny
gets larger, the closed-loop performance tends to the open-loop behavior, albeit with zer steady-state offset, irrespective
of the chosen target pole.12 Clearly 𝜌 has the maximum influence when ny = 1, but in practice enforcing one-step ahead
coincidence may not always be a good choice,7 especially if the predicted response exhibits significant initial lag, as is the
case with overdamped or nonminimum phase dynamics.

Notably one-step ahead coincidence is mostly effective, providing 100% target tracking in nominal conditions, for
processes with dominant first-order behavior.6,7 However, implementations with heavily damped dynamics generally
necessitate coincidence further away in future; a requirement that reduces the efficacy of 𝜌 to some extent. Nevertheless,
to achieve a performance closer to the desired one, coincidence should be enforced as early as possible. In this context,
one suggestion is to use the point of inflection, that is, the point of maximum gradient on the open-loop step response
curve, as the coincidence point.5 However, it is argued that tuning on this criterion alone may be flawed, especially if
the dynamics in question are nonminimum phase.12 Instead, a more sensible ny lies within the time window when the
step response rises from 40% to 80% of its steady-state value with significant gradient, and the first-order reference that
coincides within this time window is a suitable target trajectory.7

3.3 Performance limitations with challenging applications

It has traditionally been difficult to synthesize an effective control law for unstable and/or poorly damped dynamic pro-
cesses using a low cost approach, such as PID.24 The simplistic design attributesmean that conventional PFC too struggles
and performs rather poorly in these applications as reported in many recent studies.4,7,12,13 Researchers mainly link
this inefficacy to the constant future input assumption4,7,12 which, although works well when the open-loop predictions
are stable and monotonically convergent to the implied steady state, is clearly inappropriate in view of the challenging
dynamic characteristics. This results in a large inconsistency between the predicted and the actual behavior, embedding
unreliability in the decision-making. It is further noted that:

• With difficult dynamics, the selection of tuning parameters 𝜌 and ny is far less clear cut, since the available guidelines
mainly rely on the analysis of open-loop step response which clearly becomes meaningless in the presence of large
oscillations/divergence.

• Recursive feasibility under constraints cannot be guaranteed even nominally, as the continued use of previous input
inevitably leads to constraint violation due to oscillations/divergence.

Although the design may still work in some cases due to the receding horizon,12 it is indeed unreliable and prone to
failure especially with uncertainties or tight actuation limits. To tackle this deficiency arising due to the use of constant
future input within predictions, an obvious solution is to implement amore flexible parametrization of the input function
(see for instance References 4,13). In the current proposal, reparametrization of the degree-of-freedom is achieved via
prestabilization of the difficult open-loop dynamics, which is a well-established concept adapted from the mainstream
MPC literature.16,17 The following sections present the proposal in detail.

4 PRESTABILIZED PFC FRAMEWORK

This section presents the concept of pre-stabilisation in the context of PFC and proposes a systematic design framework,
based on the initial proposal,21 to cater for a variety of difficult open-loop dynamics.
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F IGURE 2 Precompensation of internal prediction model G0(z)

4.1 Establishing the PPFC control law

The fundamental idea behind PPFC is to first stabilize the undesirable open-loop dynamics, using a simple and well
understood classical approach, and then implement PFC in the standard way, as an outer loop, for improving perfor-
mance, and managing constraints and deadtimes. The precompensation loop is generally implemented on the internal
model (e.g., see References 18-20) thereby utilizing the internal input as the main decision variable for plant control. This
approach, however, is not recommended, especially with open-loop unstable dynamics, because closed-loop stability can-
not be ensured as even the smallest amount of numerical precision error would trigger a divergent response from the
unstable plant. A particular novelty of this work is separately closing the loop on the plant and the model so implicitly
they do not share the same input signal.

In the current proposal, the delay-free prediction model G0(z) is prestabilized using a classical controller C(z) in the
feedback configuration shown in Figure 2, where C(z) = q(z)∕p(z) with p(z) = 1 + p1z−1 + · · · + pmz−m and q(z) = q0 +

q1z−1 + · · · + qmz−m. It means that a compensated prediction model Gs,0(z), with stable and monotonically convergent
dynamics, given by:

Gs,0(z) =
C(z)G0(z)

1 + C(z)G0(z)
=

𝛽(z)

𝛼(z)
, (11)

is now implemented for decision-making, where 𝛽(z) = 𝛽1z−1 + 𝛽2z−2 + · · · + 𝛽lz−l, 𝛼(z) = 𝛼0 + 𝛼1z−1 + 𝛼2z−2 + · · · +

𝛼lz−l, and l = m + n. The PPFC control law is derived in the conventional way, albeit using the closed-loop prediction
model 𝛼(z)ŷk = 𝛽(z)vk, as follows:

yk+ny|k = Hv
⃖⃗ k

+ Pv
⃖⃖k−1

+Qŷ
⃖⃖k

+ dk, (12)

where P, Q, andH depend upon the parameters of the prestabilized model (11). The control law takes the form:

vk =
R − (R − E[yk+nd|k])𝜌

ny − (Pv
⃖⃖k−1

+Qŷ
⃖⃖k

+ dk)

hny
. (13)

This, however, also transforms the decision variable from uk to vk, with direct implications for parameter tuning and
constraint handling.

4.2 Evaluating the main decision variable uk

Although the PPFC computes vk at each sample, evaluating uk is necessary for plant actuation. However, the implied
relationship between uk and vk is not straightforward owing to the separate closure of plant and model loops. The inner
model input ûk, nonetheless, is directly linked to vk, independent of the fine details pertaining to the internal feedback
loop design.
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F IGURE 3 Proposed prestabilized predictive functional control control architecture

Lemma 1. The control variables ûk and vk after pre-stabilisation are related as follows:

ûk = q(z).
a(z)

𝛼(z)
vk. (14)

Proof. This is obvious from the expressions ŷk = G0(z)ûk = Gs,0(z)vk. Eliminating ŷ(k) results in:

b(z)

a(z)
ûk =

𝛽(z)

𝛼(z)
vk =

q(z)b(z)

𝛼(z)
vk,

which simplifies to (14). ▪

Remark 2. The reader is reminded that the inner loop with G0 is a simulation or internal model and thus the algebra is
exact and with no uncertainty.

The next step is to compute uk, which in principle could be obtained directly from the loop structure if prestabi-
lization were hardwired. Given that C(z) is designed using the delay-free model G0(z), utilising it in conjunction with
the time-delayed plant may not yield desirable performance. A unique contribution of the proposal is summarized by
Theorem 1, which establishes a key relationship between already known quantities to obtain uk indirectly without
hardwiring the prestabilising compensator.

Theorem 1. Prestabilizing the plant separately with C(z), in addition to the model G0(z), is equivalent to computing the

control input uk using the following expression:

uk = ûk − C(z)dk. (15)

Proof. Assuming C(z) stabilises both the plant and the model separately, one gets uk = C(z)[vk − (ŷk + dk)] and ûk =
C(z)[vk − ŷk] for both pre-stabilisation loops, respectively. Eliminating vk then provides:

uk + C(z)ŷk + C(z)dk = ûk + C(z)ŷk,

which simplifies to (15). Since both ûk and dk are known, uk can be computed in effect without hardwiring the
compensator in practice. The resulting control architecture is depicted by the block diagram in Figure 3. ▪

Remark 3. In nominal conditions, that is, without modeling mismatch and external disturbances, uk = ûk.

Corollary 1. The obvious corollary of Lemma 1 and Theorem 1 is that the decision variableûk is redundant after

pre-stabilisation and can be omitted from computation, which means the model is excited with vk whereas the plant

with uk.

Hence, replacing ûk in (15) from (14) results in a direct relationship between the decision variables of interest:

uk = q(z).
a(z)

𝛼(z)
vk − C(z)dk, (16)
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which can be rewritten as:

A(z)uk = B(z)vk + E(z)dk, (17)

with the polynomials A(z), B(z), and E(z) defined as follows:

A(z) = 𝛼(z)p(z) = 1 + A1z
−1 + A2z

−2 + · · ·

B(z) = q(z)a(z)p(z) = B0 + B1z
−1 + B2z

−2 + · · ·

E(z) = −𝛼(z)q(z) = E0 + E1z
−1 + E2z

−2 + · · · . (18)

At each time sample, the plant input uk can be computed directly from vk and vice versa using:

uk = B0vk + fk; fk = −Au
⃖⃖ k−1

+ Bv
⃖⃖k−1

+ Ed
⃖⃖ k
, (19)

where vectors A, B, and E contain appropriate coefficients of the respective polynomials. The main advantage of the
proposal is visible clearly since uk is now reparamerized as a linear combination of a constant term vk (obtained from
the outer PFC loop) and a time-varying term fk (obtained from the inner loop configuration), which can now handle
nonsimple dynamics with ease and efficiency.

Remark 4. The computational requirement of (19) is similar to the open-loop control law (8), but owing to reparametriza-
tion of uk, constraint handling is now expected to be slightly more onerous. Nevertheless, the underlying coding is still
elementary; for instance, vector multiplication can be programmed in few lines with the basic loop instruction.

4.3 Analysing the initial input activity

The dynamics of the initial input produced by the controller is an important metric to assess the expected closed-loop
performance, as it provides valuable insights about the implied transient behavior of the controlled system. Assuming
zero initial conditions and no uncertainty for simplicity, it is straightforward to show using (13) and (19) that for a change
in R:

u1,ny =
B0R

hny
(1 − 𝜌ny), (20)

where u1,ny is the initial input for the chosen ny. It is noted that:

• The initial input is directly proportional to the magnitude of the desired set-point. This is expected since tracking a
large target change usually requires a correspondingly aggressive control action.

• hny , which is computed from the model parameters based on the selected coincidence horizon, inversely affects u1,ny .

• For smaller values of ny, the initial input is inversely related to the term 𝜌ny , which means a faster target pole (smaller
𝜌) requires an aggressive initial control and vice versa. Note that large ny values make 𝜌ny insignificant.

Two instances of particular interest are when either one-step ahead coincidence (ny = 1) is enforced or when ny is
chosen so large (theoretically approaching∞) that 𝜌ny → 0; knowing the initial input activity for both cases can provide
a better understanding of the expected closed-loop performance for various possible choices of 𝜌 and ny.

Theorem 2. For a given set-point R and a target pole 𝜌, the initial control for ny = 1 and ny → ∞ is given by:

u1,ny =

⎧
⎪⎨⎪⎩

B0R

𝛽1
(1 − 𝜌); ny = 1

B0R

Gs,0(1)
; ny → ∞,

where 𝛽1 is the lead coefficient of 𝛽(z), and Gs,0(1) is the steady-state gain of the pre-stabilised system.
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Algorithm 1. Selecting 𝜌 and ny

Withmultiple target poles such that 0<𝜌i<𝜌i−1< · · ·<𝜌1 ≤ zs, where zs is the slowest (dominant) pole of the pre-stabilised
prediction model, plot (20) over a long enough range of ny, preferably up to one time constant (i.e. the time required to
reach approximately 63% of the implied steady-state response). Select a combination of 𝜌 and ny which gives u1,ny ≈ 𝜃u1,∞,
where 𝜃 is the amplification factor roughly chosen within 2 ≤ 𝜃 ≤ 5.

Proof. The one-step ahead prediction (ny = 1) obtained from the prestabilized model 𝛼(z)ŷk = 𝛽(z)vk can be
written as:

ŷk+1 + 𝛼1ŷk + 𝛼2ŷk−1 + 𝛼3ŷk−2 + · · · = 𝛽1vk + 𝛽2vk−1 + 𝛽3vk−2 + …

which can be rearranged in the vector form:

ŷk+1 = 𝛽1vk + [𝛽2 𝛽3 …]v
⃖⃖k−1

+ [−𝛼1 − 𝛼2 − 𝛼3 …]ŷ
⃖⃖k
,

from which it is clear that h1 = 𝛽1. Hence, using (20):

u1,1 =
B0R

𝛽1
(1 − 𝜌); ny = 1. (21)

When ny → ∞, it is known from a previous study12 that hny approaches the static gain of the system. Therefore, (20)
reduces to:

u1,∞ =
B0R

Gs,0(1)
; ny → ∞. (22)

▪

Note that (22) represents a special approach implementing the so called mean-level tuning in which one implicitly
accepts the open-loop (in this case the prestabilized) transient behavior in the closed-loop performance.7 In practice, this

can be achieved by selecting the degree-of-freedom vk = vss =
R

Gs,0(1)
, where vss denotes the expected stead-state input.

Notwithstanding the lack of mathematical rigour, a sensible choice of parameters could then be the one that simply
amplifies u1,∞ by a reasonable amount, such that the resulting initial control is not too aggressive, that is, practically
achievable.

Remark 5. Although prestabilization allows one to implement conventional tuning methods discussed in Section 3.2,
see for instance References 21,22, a key contribution here is the development of Algorithm 1, which utilizes tran-
sient input activity for a more meaningful and performance oriented selection of 𝜌 and ny (as shown in Figure 5).
However, direct implementation of (20) with the complicated open-loop dynamics should be avoided as parame-
ter tuning based on unreliable, that is, numerically infeasible, computations of hny could possibly lead to ill-posed
decision-making.7

4.4 Summary

To sum up, the concept of PPFC works systematically in three simple steps: forming stable and well-damped
closed-loop predictions using a classical feedback compensator, implementing PFC using the prestabilized model,
and analyzing the predicted initial input for a meaningful parameter selection. The proposal is independent of
the underlying open-loop characteristics, and therefore could be applied to a variety of processes including those
exhibiting instability and/or poor damping. The next section will discuss two simple methods to design the
inner controller for such applications, followed by a brief analysis of the impact of prestabilization on constraint
management.
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5 DESIGN OF PRESTABILIZING COMPENSATOR

So far we have examined the impact of prestabilization on the core functionality of PFC by assuming a suitable compen-
sator that stabilizes the undesirable open-loop dynamics for consistent prediction behaviour. In this section, two common
methods of classical feedback control are proposed for this purpose, namely: proportional (plus derivative), and pole
placement designs. It is noted that both alternatives are well-understood and easily implementable with basic technical
know-how. Hence, the proposal assures a cheap and sustainable loop design combined with the fundamental benefits of
predictive control.

5.1 Compensation via P/PD controller

The proportional plus integral plus derivative (PID) compensation is arguably the most popular industrial process con-
troller owing to cheap and straightforward implementation and maintenance thereafter. Hence, it makes intuitive sense
to utilize the benefits of such a universal technique to further enhance the capabilities of PFC, whichwas originally devel-
oped to compete with PID in cost and performance. The idea here is to tune the proportional (plus derivative) part only,
using any standard time-domain or frequency-domain PID tuning method, to prestabilize the difficult dynamics before
implementing PFC. It is noted that for a majority of first and second order processes, a simple P- or PD-type controller
can satisfactorily prestabilize the undesirable dynamics. Nevertheless, there are instances like poorly damped or difficult
higher-order poles which may require a slightly more sophisticated approach such as the one based on pole placement.

5.2 Compensation via pole placement

Themain idea behind pole placement is to design the controller by specifying the desired prestabilized pole configuration.
It is noted that pole placement generally results in higher-order controllers, which in the context of PPFC may slightly
increase the burden of constraint management, but this is an inevitable consequence when simpler alternatives are no
longer effective.

The current pole placement proposal is based on the analytical approach of feedback compensation presented in
reference.21 Assume that a (n − 1)th-order bi-proper compensator C(z) is used to modify the open-loop model G0(z), as
shown in Figure 3, resulting in the prestabilized transfer function Gs,0(z), with a smooth and monotonically convergent
prediction behavior. Then one may write:

Gs,0(z) =
𝛽(z)

𝛼(z)
=

q(z)b(z)

p(z)a(z) + q(z)b(z)
, (23)

where 𝛼(z) is the (2n − 1)th-order prestabilized pole polynomial, and the underlying relationship,

p(z)a(z) + q(z)b(z) = 𝛼(z), (24)

is called the Diophantine Equation. In order to design the C(z), one must define the desired pre-stabilised characteristic
polynomial 𝛼(z) and then utilize linear algebra to obtain the coefficients of p(z) and q(z) with,

M = S−1D, (25)

whereM = [pn−1 · · · p0 qn−1 · · · q0]T , D = [𝛼2n−1 · · · 𝛼0]T and S is the Sylvester Matrix25 given by:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an 0 … 0 bn 0 … 0

an−1 an … 0 bn−1 bn … 0

⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮

1 a1 … an−1 0 b1 … bn−1

0 1 … an−2 0 0 … bn−2

⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮

0 0 … a1 0 0 … b1

0 0 … 1 0 0 … 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)
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Algorithm 2. Unconstrained PPFC

I. First stabilize the open-loop dynamics using, for example, the P(D) or Pole Placement methods discussed above.
II. Select appropriate tuning parameters 𝜌 and ny using the the proposed Algorithm 1, or indeed the standard tuning

guidelines, discussed in Section 3.2.
III. At each sample k, compute the unconstrained values of vk using (13).
IV. Finally, compute the unconstrained value of uk with (19), and update the plant and the model.

Note that 𝛼(z) is factorized as:

𝛼(z) = o(z)a−(z)𝛼+(z), (27)

where o(z) is the (n − 1)th-order observer generally selected as o(z) = zn−1, a−(z) factors the stable open-loop poles and
𝛼+(z) represents the pu prestabilized poles. If a+(z) =

∏pu
i=1(z − zp,i) then: Proposal for unstable poles. With zp,i > 1, design

𝛼+(z) =
∏pu

i=1(z − 1∕zp,i). In case an integrator factor (z − 1) is present, then one may simply replace it with (z − 0.5).4

Proposal for complex poles. With zp,i ∈ C, place the prestabilized poles at the real part of the complex open-loop poles,
that is, 𝛼+(z) =

∏pu
i=1(z −ℜ(zp,i)). This will effectively filter out the undesirable oscillations but without compromising

the convergence speed.
This completes the internal feedback loop design via pole placement.

5.3 Summary

This section has proposed two very simple and straightforward approaches of prestabilization. While the standard P/PD
controllers are generally sufficient, onemay also utilize pole placement for more involved open-loop dynamics, for which
the proposed design steps are fairly elementary.

We are now in a position to sumup the discussion of unconstrained PPFCwith the following algorithm (Algorithm 2):

6 CONSTRAINT HANDLING WITH PRESTABILIZED DYNAMICS

For completeness, this section summarizes how constraint handling can be done in a very efficientmanner for PFCwhere
there is only a single degree-of-freedom.

The addition of an internal feedback loop reparameterizes the input function which implies that uk is no longer
constant within the prediction horizon. This directly affects the way input and rate constraints are handled, as one
now has to observe constraint adherence at each future sample over a validation window extending well beyond
the coincidence point. This is crucial because any unobserved input violation could eventually lead to infeasibil-
ity, invalidating the current optimization. Interestingly though, transforming the degree-of-freedom does not change
the procedure to verify output/state constraints. Specifically, the standard methods, such as the one discussed in
Section 3.1, remain valid, the only change being the use of prestabilized model predictions in the corresponding
inequality (10). Taking all this into account, each row of the following vector inequalities restricts the ith prediction
such that:

Lu ≤ u
⃖⃗ k

≤ Lū

LΔu ≤ Δu
⃖⃗ k

≤ LΔū

Ly ≤ y
⃖⃗ k+1

≤ Ly, (28)

where i = 0, 1, … ,nc and L = [1 1 …]T . Ideally, the validation horizon nc should cover the settling period ofGs,0(z); for
example, the time to reach and staywithin about 95% of the implied steady-state is often sufficient. It ismore convenient to
represent the constraint inequalities in terms of vk as this value remains constant along nc, by noting thatu

⃖⃗ k
= B0Lvk + f

⃗k
,
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Algorithm 3. Constrained PPFC

At each sample k, execute Step III of Algorithm 2 and update f
⃖⃗
k. Verify each row of (29), enforcing saturation at vk = Y j∕X j

for every violation in the jth row. Finally, compute the constraint adhering value of uk using (19).

Δu
⃖⃗ k

= C−1
1∕Δ(u

⃖⃗ k
− Luk−1), and y

⃖⃗ k+1
= hiLvk + Pv

⃖⃖k−1
+Qŷ

⃖⃖k
+ Ldk:7

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0L

− B0L

B0C
−1
1∕ΔL

− B0C
−1
1∕ΔL

hiL

− hiL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
X

vk ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lū − f
⃗k

− Lu + f
⃗k

LΔū − C−1
1∕Δf

⃗k
+ C−1

1∕ΔLuk−1

− LΔu + C−1
1∕Δf

⃗k
− C−1

1∕ΔLuk−1

Ly − Pv
⃖⃖k−1

−Qŷ
⃖⃖k

− Ldk

− Ly + Pv
⃖⃖k−1

+Qŷ
⃖⃖k

+ Ldk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Y

, (29)

where C1∕Δ is a lower triangular matrix defined as follows (Algorithm 3)7

C1∕Δ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 … 0

1 1 0 … 0

⋮ ⋮ ⋮ ⋮ ⋮

1 1 1 … 1

⎤
⎥⎥⎥⎥⎥⎦

. (30)

Theorem 3. Algorithm 3 guarantees recursive feasibility in the presence of constraints, provided the target set-point and

disturbance remain unchanged.

Proof. First it is noted that the long-range predictions after pre-stabilisation will be stable and convergent with a con-
stant input vk+i = vk, ∀i > 0. Next, if one assumes feasibility at the start (i.e., with a reasonable set-point and initial
conditions7), then at every subsequent sample, the choice vk = vk−1will always satisfy constraints andhencewill always be
feasible. ▪

Conversely it is worth emphasising that feasibility cannot be guaranteed with the direct implementation of open-loop
dynamics, as the recursive use of a previous input would eventually result in oscillations/divergence and therefore
unavoidable constraint violations.

Remark 6. Although recursive feasibility is established in principle for the nominal case, the underlying assumption, that
is, a constant target and/or disturbance, is indeed somewhat conservative. For example, only small target/disturbance
changes may be permissible in practice, since a large change is highly likely to cause infeasibility. A common approach
adopted in the mainstream MPC literature to furnish rigorous recursive feasibility properties in more realistic scenar-
ios is to employ some relatively costly computations involving, for instance, reference governing,26 min-max synthesis,27

or tubes,28 which if utilized in conjunction with a technique as inexpensive as PFC would not only undermine its
simplicity but also escalate its price range considerably. Arguably, the lack of concrete feasibility results could be mit-
igated to some extent by following sensible guidelines, such as using large enough validation horizons, specifying
attainable control objectives etc., as is usually the case with many industrial process control algorithms incorporating
constraints.7
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7 SIMULATION CASE STUDIES

In this section, we investigate the efficacy of the proposed PPFC algorithm alongside the conventional PFC and
the PI(D) controllers in practical scenarios with two real world case studies. The first system G1 is underdamped,
whereas the second model G2 is an open-loop unstable process. Detailed discussion is presented in the following
sections.

7.1 Description of case studies

7.1.1 Thermoacoustic oscillations in a combustion process

A typical continuous combustion process in gas turbines or high-speed propulsion engines involves burning a fuel–air
mixture for thrust production. Under the right conditions, the process also generates audible pressure waves, which are
potentially hazardous for structures and personnel.29 The underlying thermoacoustic phenomenon is complex and non-
linear; nevertheless, a simplified laboratory apparatus, known as the Rijke Tube, which demonstrates similar dynamic
characteristics, is generally used for the design and analysis of feedback controllers in a straightforward manner.30

Figure 4A shows a Rijke tube combustion apparatus consisting of a glass cavity with burner, pressure sensor, and
diaphragm actuator. In this setup, the actuator movement produces additional waves that interact with the thermoa-
coustics to damp down the audible oscillations. The linearized second-order model, ignoring the sensor and actuator
dynamics, is given by:

G1 =
y(z)

u(z)
=

10.66z + 10.54
z2 − 1.543z + 0.9671

, (31)

where y is the measured pressure (Pa) and u is the diaphragm velocity (m/s), subject to physical limits: |Δu| ≤ 0.015m/s
and |y| ≤ 4.5 Pa. In the open-loop configuration, the primary pressure wave oscillates at 142Hz with an exponentially
decaying humming sound, at the steady-state operating point yss = 50 Pa and uss = 1m/s.

7.1.2 Temperature control in Jacketed continuous stirred tank reactor

The Continuous Stirred Tank Reactor (CSTR) is a common industrial unit widely employed in different chemical
manufacturing processes. The reaction dynamics converting component A into component B in an ideal CSTR has
a nonlinear first-order behavior. Nevertheless, many chemical reactions require a specific temperature to be main-
tained within the tank for flawless yield. Therefore, the tank is generally equipped with an outer jacket in which

(A) (B)

F IGURE 4 (A) Rijke tube apparatus, (B) Jacketed CSTR process
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the temperature of a flowing fluid TJ is used to regulate the inside reaction temperature T, as shown in Figure 4B.
The overall coupled model has two-state nonlinear dynamics with potential for exotic behavior owing to multiple
steady-states.31 In this study, the linearized model around the operating point depicts unstable second-order dynamics
given by32

G2 =
T(z)

TJ(z)
=
0.00895z − 0.008249
z2 − 1.972z + 0.9719

z−25, (32)

subject to |TJ| ≤ 2.1◦F. Note that both T and TJ are deviation variables around the steady-state values Tss = 560.8◦F and
TJ,ss = 2637.9◦F.

7.2 Preconditioning of open-loop dynamics

We will first prestabilize the prediction models G1 and G2 using the two proposed methods, namely Proportional (plus
Derivative) and Pole Placement, respectively. A P(D) compensator can be tuned easily with the standard tuning meth-
ods. Here, the robust PID tuning algorithm available in the MATLAB environment (see Reference 33 for details) will be
utilized.

For G1, a simple proportional gain, with or without the derivative action, fails to sufficiently damp the output oscil-
lations. Consequently a pole placement compensator will be designed by placing the desired poles at the real part of the
open-loop complex poles (z = 0.7715). The resulting compensator

CPP1 =
−0.00937z − 0.00972

z + 0.106
, (33)

therefore provides the following prestabilized transfer function model

GPP
s1

=
−0.106z2 − 0.2084z − 0.1025
z(z2 − 1.543z + 0.5951)

, (34)

with the now stable poles residing at 0, 0.7715, 0.7715. Note that the additional pole at z = 0 here represents the
minimum-order observer dynamics (refer to Section 5.2 for the detailed design steps). For G2, a P compensator can
comfortably stabilize the open-loop dynamics, with CP2 = 0.502 providing

GP
s2
=
0.004482z2 − 0.004137
z2 − 1.968z + 0.9678

, (35)

having poles at 0.9784, 0.9892. This completes the offline prestabilization step in a straightforward manner.

7.3 Analysis of tuning efficacy

This section demonstrates the power of the proposed approach in this paper. Because the inner loop has better conditioned
behaviour, now an intuitive PFC tuning procedure is straightforward, which is not the case with the original dynamics.
Using Algorithm 1, Figure 5 analyzes the initial input as a function of ny for both G1 (Figure 5A) and G2 (Figure 5B) for
various possible choices of the target pole. It is evident that:

• Depending on the prediction dynamics, ny = 1 may or may not be a suitable choice. For example, it may work with G2

but for G1 it would produce an overactive control, even with the slowest target pole.

• The target pole 𝜌 loses efficacy beyond the system’s time constant (approximately after 8 and 130 samples for both G1

and G2, respectively), with the initial input nearly approaching u1,∞.

• It is possible to obtain similar initial control with different pairings of (𝜌,ny). Faster target poles, however, tend to
intercept the 𝜃u1,∞ horizontal line at longer coincidence points, suggesting a weaker link between the target and the
actual response.
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In order to assess the tuning efficacy, we select two distinct parameter pairs from Figure 5 which provide similar
initial inputs. For G1: 𝜌1 = 0.7215, ny1 = 4 and 𝜌2 = 0.6715, ny2 = 5, and for G2: 𝜌1 = 0.9767, ny1 = 27 and 𝜌2 = 0.9517,
ny2 = 47. The results are shown in Figure 6. Evidently tuning with faster pole but longer coincidence generally provides
comparatively quicker transition to the set point than using a slower target pole with smaller ny, despite a similar initial
control effort. Table 1 tabulates the resulting RMS error values with the selected parameter choices. Expectedly the true
performance with large coincidence points converges quickly to the set point (smaller rms[R − yk]), but weakly linked to
the associated reference trajectory (bigger rms[rk − yk]). This, in practice, should not be an issue as long as a sensible ny
is selected, that is, the one that does not undermine the desirable effect of the faster target pole.

7.4 Effect of uncertainties on the expected closed-loop performance

We analyze the tuning efficacy in the presence of external disturbances, measurement noise and modeling mismatches.
For the underdamped process G1, a −5% constant disturbance is introduced at the process output around 65ms, whereas

(a) (b)

F IGURE 5 Initial input activity for (A) G1 with zs = 0.7715, 𝜌1 = 0.7215, 𝜌2 = 0.6715, 𝜌3 = 0.6215, u1,∞ = 0.00124, 𝜃 = 3 and R = 1 (B)
G2 with zs = 0.9892, 𝜌1 = 0.9767, 𝜌2 = 0.9517, 𝜌3 = 0.9017, u1,∞ = 0.3398, 𝜃 = 4 and R = 1

(A) (B)

F IGURE 6 Analysis of tuning efficacy with the chosen (𝜌,ny) pairs for (A) G1 with (0.7215,4) and (0.6715,5), (B) G2 with (0.9767,27)
and (0.9517,47)
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TABLE 1 RMS of (rk − yk) and (R − yk) for G1 and G2 with the selected tuning parameters

rms[rk − yk] rms[R− yk]

G1 𝜌1 = 0.7215 ny1 = 4 0.0527 0.2194

𝜌2 = 0.6715 ny2 = 5 0.0958 0.2103

G2 𝜌1 = 0.9767 ny1 = 27 0.0374 0.2792

𝜌2 = 0.9517 ny2 = 47 0.0857 0.2695

(A) (B)

F IGURE 7 Comparison of disturbance rejection with both tuning choices for (A) G1 with −5% output disturbance, and (B) G2 with
10% input disturbance

forG2 a 10% constant input disturbance is introduced around the mid of the fifth hour. The results, shown in Figure 7A,B
respectively, suggest a comparatively quicker disturbance rejection with the faster target pole in both examples. Sim-
ilarly, as shown in Figure 8A,B, the closed-loop performances with the selection (𝜌2,ny2) appears to be slightly more
affected by the modeling errors (unmodeled pole at z = 0.25 for G1, and approximately 10% multiplicative uncer-
tainty for G2). Interestingly, both performances appear indistinguishable (Figure 8) with respect to the measurement
noise.

7.5 Comparison of constrained closed-loop performance against CPFC and PID

Finally, a comparative analysis of the constrained closed-loop performance against the conventional PFC (CPFC) and PID
algorithms is presented. The PPFC controller, in both examples, is tuned with the faster pole selection (𝜌2,ny2). For a fair
comparison, the CPFC controller also uses these parameters, albeit with the difficult open-loop prediction dynamics given
in (31) and (32), respectively. Furthermore, the PI(D) controller is synthesized using the robust PID tuning algorithm
available in MATLAB.33 The actual nonlinear models of G1 and G2 act as the plant for a more realistic evaluation, with
the results shown in Figure 9. Here, PPFC-P and PPFC-PP refer to proportional and pole placement precompensation,
respectively.

Figure 9A depicts the scenario for the poorly damped process, where a set point change of 5 Pa from the initial
steady-state is introduced. As evident, the PI controller fails completely, destabilising under constraints. The CPFC,
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(A) (B)

F IGURE 8 Comparison of noise sensitivity (Guassian white measurement noise with 𝜇 = 0.05) and modeling mismatches with both
tuning choices for (A) G1 with unmodeled pole at z = 0.25, and (B) G2 with 10%multiplicative uncertainty

(A) (B)

F IGURE 9 Comparison of the constrained closed-loop performance in the presence of external disturbances and measurement noise
for (A) the process G1 subject to |Δu| ≤ 0.015m/s and |y| ≤ 4.5 Pa, and (B) the process G2 subject to |TJ | ≤ 2.1◦F
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although does not destabilise, clearly fails to damp down the audible oscillations. On the other hand, the proposed
PPFC-PP not only successfully filters out the acoustic signal, but does so by maintaining feasibility despite a large change
in both the set point and the disturbance. Notably the output never reaches the new target due to the restriction imposed
on the process variable.

For the unstable process, the closed-loop performance is displayed in Figure 9B. A step change of 2.5◦F drives
the process away from the nominal operating point causing large uncertainty, which along side the imposed actu-
ation limit proves too demanding for both the CPFC and the PID. The resulting instability with the standard PFC
becomes apparent only after some time owing to the use of numerically infeasible open-loop predictions in the
decision-making. The PI controller too fails to accommodate the effect of constraints and uncertainty. In compari-
son, the proposed algorithm depicts superior performance with highly commendable characteristics despite facing the
challenges.

In conclusion, these examples have clearly validated the rationale behind using pre-stabilised predictions in a PFC
law for a reliable closed-loop performance.

8 CONCLUSIONS

A systematic design framework for PFC using prestabilization is presented to overcome the fundamental weaknesses
of the standard PFC algorithm with oscillatory and unstable dynamic systems. The proposal employs well-understood
classical feedback control mechanisms to modify the difficult open-loop behaviour, thereafter deploying a cascade
structure for a reliable PFC implementation, with improvements observed on two main fronts. Firstly, the con-
troller tuning after prestabilization becomes far more consistent and meaningful, with a stronger influence on the
closed-loop performance. Secondly, the availability of stable and convergent predictions allows nominal recursive
feasibility results under constrained operation, which is generally not the case with difficult open-loop dynam-
ics. An inevitable consequence of prestabilization, however, is a slightly more involved constraint validation pro-
cess, as reparameterizing the main decision variable renders the simple saturation policy less straightforward to
implement.

As for stabilising the open-loop dynamics, two simple and intuitive proposals are discussed. In most cases, the simple
proportional plus derivative compensation proves sufficient. This is fairly generic and based on the fact that the majority
of real-world processes can be adequately represented as dominant second-order dynamics, for which simple tailored
solutions are well understood. Where P(D) alone is insufficient (for instance poorly damped dynamics), pole placement
schemes can be quite effective at preconditioning. Two real-world case studies have been used to analyze and validate
the closed-loop performance of the PPFC in a variety of practical scenarios. In general, the proposed PPFC operates
more efficiently with external disturbances, sensor noise and uncertainties as opposed to the standard PFC and the PID
controllers.

Future work will focus more formally on frequency domain robustness studies to gain clearer understanding of
the pros and cons of different internal feedback designs. Moreover, extending the scope of validation across a range of
industrial case studies and real-time experiments is also under consideration.
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