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Abstract—We consider a non-orthogonal multiple access aided
ALOHA (NOMA-ALOHA) that can enhance the spectral ef-
ficiency by sending uplink packets of different power levels
in wireless multiuser systems. In particular, we develop an
asymmetric game theory model for NOMA-ALOHA that involves
two different groups of users and analyze the mean rewards
and payoffs of actions made by the users. While taking into
account not only collisions, but also fading, the derived theoretical
results are utilized to formulate a general-sum game with two
groups of users and find mixed strategy Nash equilibrium (NE).
Interestingly, the analytical and numerical results clearly show
that, when the NOMA-ALOHA runs at an NE, a far-user can
exploit an improved channel gain of a near-user in the other
group in terms of the throughput.

Index Terms—Non-Orthogonal Multiple Access; Random Ac-
cess; Asymmetric Game; Throughput

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been exten-

sively studied to improve the spectral efficiency by exploiting

power differences in wireless multiuser systems [1] [2] [3]. For

random access systems, in [4], it is also shown that NOMA can

help improve the throughput. Since random access does not

require coordinated transmissions, it does not have excessive

signaling overhead and becomes suitable for machine-type

communication (MTC) where a large number of devices of

sparse activity are expected to be connected through a shared

limited radio resource in various Internet-of-Things (IoT)

applications [5] [6].

To understand the performance of random access, game

theory is often employed [7] [8] [9]. When NOMA is applied

to ALOHA [10] for MTC as in [11] [12], which results in

NOMA-ALOHA, the model based on non-cooperative game

theory can be used to understand its performance. While non-

cooperative game theory is a tool to see the behaviors of

players (i.e., devices and sensors that compete for access in

random access), it can also be used to derive learning rules

for interacting players [13] [14]. In this setup, for each player,

say player k, the other players become part of the environment

that player k interacts and learns the environment to find

the best strategies, possibly through reinforcement learning

[15]. For example, in [16], reinforcement learning is studied
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for ALOHA. Note that although the application of game

theory helps understand the performance of random access

systems, it is still difficult to find learning rules except for

special cases. For example, when all the players have the same

conditions (i.e., symmetric games), fictitious play [17], which

is a learning rule based on the history of players’ selected

strategies in the past, can help find best strategies.

In this paper, we consider NOMA-ALOHA game and aim to

extend the analysis to more general cases. In particular, after

finding the mean rewards under general settings, we focus

on the case where players can be divided into two groups.

In a cellular system, we can have two groups of users: one

group of users are close to the base station (BS) of a cell

and the other group of users are far away from the BS. The

resulting game becomes an asymmetric game. To characterize

its behaviors, we apply the results in [18] and find mixed

strategy Nash equilibrium (NE). In particular, we show that a

general-sum game can be considered in order to determine the

NE of asymmetric games with the two groups of users. Our

results show that in the NOMA-ALOHA exploiting an NE, a

far-user can exploit an improved channel gain of a near-user

in order to increase the throughput.

II. AN OVERVIEW OF NOMA-ALOHA

Suppose that a system consists of multiple users and a BS in

a cell. For random access, we assume a time slotted system for

slotted ALOHA [10] [19] and a user is to send a packet within

a time slot. As in [4], in order to increase the throughput, while

a number of power levels can be considered for NOMA, we

only consider two power levels, denoted by PH (a high power

level) and PL (a low power level), where PH > PL > 0, in

this paper. The resulting random access scheme is referred to

as NOMA-ALOHA.

In order to see the throughput improvement of slotted

ALOHA by NOMA, suppose that the number of active users

follows a Poisson distribution with mean λ. Then, the through-

put becomes

ηnoma = Pr(one active user)

+ Pr(two active users)
1

2
︸︷︷︸

(a)

2
︸︷︷︸

(b)



= λe−λ +
λ2

2!
e−λ, (1)

where (a) is the probability that one active user chooses PH

and the other active user chooses PL and (b) is the number

of successfully received packets, which is 2 as one transmits

a packet with a transmit power of PH and the other PL.
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Fig. 1. Throughput curves of slotted ALOHA and NOMA-ALOHA protocols
as functions of λ.

Fig. 1 shows the throughput curves of slotted ALOHA and

NOMA-ALOHA. Clearly, NOMA-ALOHA performs better

than S-ALOHA in terms of throughput. From (1), it can be

seen that the throughput of NOMA-ALOHA is maximized

when λ =
√
2 and the maximum throughput becomes

max ηnoma = (1 +
√
2)e−

√
2 ≈ 0.5869.

This shows that the maximum throughput of NOMA-ALOHA

with two power levels is about 1.6-time higher than that of

slotted ALOHA (which is e−1 ≈ 0.3679). In [20], useful

bounds on the throughput are shown.

III. GAME-THEORETIC ANALYSIS

In this section, we consider a game for NOMA-ALOHA

and find the average rewards and payoffs under fading.

A. System Model

Suppose that there are K users (or players or agents)

and M channels for uplink transmissions. It is as-

sumed that each player has the set of actions, A =
{(H, 1), . . . , (H,M), (L, 1), . . . , (L,M), 0}, where H and L

stand for transmissions with power PH and PL, respectively,

and 0 stands for no transmission. Here, PH > PL > 0
and (H,m) is the action of choosing transmit power PH and

channel m. Let hk;m denote the channel coefficient from user

k on channel m to the BS. The received signal at the BS on

channel m is given by

ym =
∑

k∈KH,m

√

PHhk;msk +
∑

k∈KL,m

√

PLhk;msk + nm, (2)

where KH,m and KL,m are the index sets of the users who

choose channel m with power PH and PL, respectively, sk
is the signal transmitted from user k, and nm ∼ CN (0, N0)
is the background noise of channel m. Let E[sk] = 0 and

E[|sk|2] = 1 for normalization.

We also assume that users do not know the channel coef-

ficients, hk;m. As a result, no power control is employed. In

addition, each user can choose only one action at a time. Thus,

the index sets, KH,m and KL,m, are disjoint.

B. Formulation of a Game

We can formulate a K-player normal-form game with the

following elements:

1) the set of players or users, K = {1, . . . ,K};

2) the set of actions of users, A;

3) the payoffs of players, denoted by Rk, for user k.

To define the payoff, suppose that user k chooses an action

of (H,m) or (L,m), which means that this user chooses

transmit power PH or PL, respectively, and sends the signal

through channel m to the BS. Denote by Vk;m and Wk;m the

instantaneous rewards of user k when choosing (H,m) and

(L,m), which become 1 if the transmissions are successful.

Otherwise (i.e., transmission is unsuccessful), the instanta-

neous reward is 0.

Finally, the payoffs can be found as

Rk(H,m) = Vk;m − CH

Rk(L,m) = Wk;m − CL

Rk(0) = C0, (3)

where Ci is the cost of action i ∈ {H, L, 0}. Since the cost

depends on the transmit signal power, we expect that CH >

CL > C0. Note that the payoffs in (3) depend on the others’

actions.

For mixed strategies, let

xk = [xk;H,1 . . . xk;H,M xk;L,1 . . . xk;L,M xk;0]
T ∈ X , (4)

where xk;i,m represent the probability that user k chooses an

action of (i,m), i ∈ {H, L}, and

xk;0 = 1−
M∑

m=1

xk;H,m + xk;L,m,

which is the probability of no transmission. Here, X becomes

a 2M -simplex. In addition, let

x−k = (x1, . . . ,xk−1,xk+1, . . . ,xK). (5)

C. SINR

Suppose that user k chooses action (i,m), i ∈ {H, L}. Then,

the SINR becomes

SINRk(i,m) =
αk;mPi

Im
, i ∈ {H, L}, (6)

where αk;m = |hk;m|2 and

Im =
∑

k′ 6=k

αk′,m (PHZk′;H,m + PLZk′;L,m) +N0. (7)



Here, Zk;i,m, i ∈ {H, L} are the activity variables that depend

on the action selected by user k and are given by

Zk;i,m =

{
1, if user k chooses an action of (i,m)
0, o.w.

(8)

Clearly, E[Zk;i,m] = xk;i,m and
∑M

m=1 Zk;H,m+Zk;L,m ≤ 1.

Throughout the paper, we consider the following assump-

tion.

A1) Independent Rayleigh fading channels are assumed for

|hk;m|. In particular, we have

αk;m ∼ Exp(ᾱk;m), (9)

where ᾱk;m = E[αk;m]

Consequently, we can see that the SINR in (6) is a random

variable that depends on the selection of all the users’ actions

and channel gains.

It is worthy to note that the approaches [4] [11] [21] do not

need to consider the SINR in (6), as it is assumed that users

know the CSI. If the CSI is known at a user, power control can

be performed so that a required SINR for successful decoding

can be achieved if no collision happens. However, as in (2), no

power control is used. As a result, in order to find the average

payoffs, we need to take into account not only collisions, but

also fading (i.e., random channel coefficients, (9)).

D. Mean Rewards

In this subsection, we find the mean rewards for given

opponents’ mixed strategies.

1) Mean Reward with (H,m): Suppose that user k is the

player of interest. The signal transmitted by user k can be

successfully decoded under the following conditions:

Ea1) user k is only the user choosing (H,m);
Ea2) and the SINR is higher than or equal to ΓH.

For convenience, let

βk;i,m =
Γi

Piᾱk;m
, i ∈ {H, L}. (10)

We can find the mean reward when user k chooses (H,m) for

given x−k as follows.

Lemma 1: Under the assumption of A1, for given x−k, it

can be shown that

E[Vk;m] = e−βk;H,mN0

∏

k′ 6=k

φk′;m(1− xk′;H,m)

= e−βk;H,mN0

×
∏

k′ 6=k

(

1− xk′;H,m − βk;H,mPLᾱk′;mxk′;L,m

1 + βk;H,mPLᾱk′;m

)

, (11)

where

φk′;m = 1− βk;H,mPLᾱk′;m

1 + βk;H,mPLᾱk′;m

xk′;L,m

1− xk′;H,m
. (12)

Proof: See [22].

2) Mean Reward with (L,m): In this case, the signal

transmitted by user k can be successfully decoded under the

following conditions:

Eb1) user k is only the user choosing (L,m);
Eb2) at most one another user, say user k′, chooses (H,m);
Eb3) and the signals from users k and k′ (if exists) can be

coded. ΓH.

That is, Wk;m = 1 if all the above conditions are satisfied.

The mean reward can be found as follows.

Lemma 2: Under the assumption of A1, for given x−k, the

average reward when user k chooses action (L,m) is given by

E[Wk;m] = e−βk;L,mN0

∏

k′ 6=k

(1− xk′;m)

×



1 +
∑

n 6=k

xn;H,m

1− xn;m
θk,n;m





= e−βk;L,mN0

[
∏

k′ 6=k

(1− xk′;m)

+
∑

n 6=k




∏

k′ 6=k,n

(1− xk′;m)



xn;H,mθk,n;m

]

, (13)

where xk;m = xk;H,m + xk;L,m and

θk,k′;m =
e
−Γ

H
(Γ

L
+1)N0

P
H
ᾱ
k′;m

1 + ΓH

PLᾱk;m

PHαk′;m

=
e−βk′;H,m(ΓL+1)N0

1 + βk′;H,mPLᾱk;m
.

Proof: See [22].

It is noteworthy that we do not consider the capture effect

in finding the average rewards as shown above. For coherent

decoding, the BS needs to estimate the channel coefficients.

To this end, each user can send a pilot signal prior to data

packet. In NOMA, there can be two different pilot sequences:

one for H (i.e., the case of high transmit power PH) and the

other for L (i.e., the case of low transmit power PL). We may

assume that the two pilot sequences are orthogonal. The BS

can use two correlators with the pilot sequences to estimate

the channel coefficients. If there are multiple users that choose

H, they will transmit the pilot sequence for H. Then, the

channel coefficient as the output of the correlator with the

pilot sequence for H becomes a superposition of multiple

channel coefficients. Although only one user’s channel gain

is sufficiently strong (to exploit the capture effect), since the

estimated channel coefficient has the other users’ channel

coefficients, the performance of coherent decoding would be

degraded (due to the channel estimation error), which will

likely lead to unsuccessful decoding. From this, in above, we

only considered the case that there is only one signal (see the

conditions of Ea1 and Eb1 for Vk,m = 1 and Wk,m = 1,

respectively).

IV. ASYMMETRIC GAME

In this section, we focus on a special case with two different

groups of players. As mentioned earlier, we can consider that

one group of users are close to the BS and the other group of

users are far away from the BS.



A. A General-Sum Game with Two Players

As shown in (11) and (13), the average rewards are (non-

linear) functions of x−k. Thus, the average payoff for each

action of player k can be given by

R̄k;H,m(x−k) = E[Vk,m]− CH

R̄k;L,m(x−k) = E[Wk,m]− CL

R̄k;0(x−k) = C0.

For given x−k, the best response is

BR(x−k) = argmax
xk∈X

uk(xk,x−k), (14)

where uk(xk,x−k) is the (average) payoff when player k

chooses the mixed strategy xk when the others’ mixed strate-

gies are x−k, which is given by

uk(xk,x−k) = x
T
k dk(x−k). (15)

Here,

dk = [R̄k;H,1 . . . R̄k;H,M R̄k;L,1 . . . R̄k;L,M R̄k;0]
T, (16)

where x−k is omitted for brevity. In addition, the mixed

strategies, denoted by x
∗
k, are a NE if

uk(x
∗
k,x

∗
−k) ≥ uk(xk,x

∗
−k), ∀xk ∈ X , k = 1, . . . ,K. (17)

If the number of users is two, i.e., K = 2, the game with

the payoff in (15) becomes a general-sum game. In particular,

it can be shown that

u1(x1,x2) = x
T
1 A1x2

u2(x2,x1) = x
T
2 A2x1, (18)

where Ak, k = 1, 2, are independent of xk. For simplicity,

consider that M = 1.

A1 =






0 e
−β1;HN0

1+β1;HPLα2
e−β1;HN0

θ1,2e
−β1;LN0 0 e−β1;LN0

0 0 0




− c1

T,

where c = [CH CL C0]
T and 1 is a vector of all 1’s.

Likewise, we can find A2. In general, if α1 6= α2, the resulting

game becomes a two-person general-sum game with bimatrix

(A1,A
T
2 ).

B. Extension to Two Groups of Players

In this subsection, we consider the case that players or users

can be divided into two groups depending on their distances

from the BS located at the center of a cell. When a disc with

radius D is used to model a cell, we can consider an inner

disc with radius D̄ (< D). The near-group is the set of users

located within the inner disc and the far-group is the set of

the other users.

To apply the general-sum game with bimatrix (A1,A
T
2 )

obtained with K = 2, we consider the notion of evolutionary

game [23] with two different populations. Consider two evolu-

tionary games with the two payoff tables A1 and A2 that are

not coupled. For symmetric games (i.e., A1 = A2), replicator

dynamics can be used to find the evolutionary stable strategy

(ESS), which is also a NE [17]. That is, with A = A1 = A2,

the following replicator dynamics can converge to an ESS:

dxi

dt
= xi[(Ax)i − x

T
Ax]. (19)

In [18], with two different groups (populations) of players with

A1 6= A2, under certain conditions, it is shown that the NE

of asymmetric games can be found. In particular, if

x
∗
1 ∈ NE(A2) and x

∗
2 ∈ NE(A1), (20)

where NE(A) is the set of NE of a two-person symmetric

game with a payoff matrix A, and x
∗
k has the same support,

(x∗
1,x

∗
2) becomes an NE of the general-sum game with a

bimatrix (A1,A
T
2 ). As a result, using the replicator dynamics1

for each symmetric game, we can find the NE of the general-

sum game with a bimatrix (A1,A
T
2 ). Note that in order to

hold this result, it has to be assumed that the supports of x∗
k,

k = 1, 2, should be the same.

V. NUMERICAL RESULTS

In this section, we present numerical results with M = 1 to

see how the users in different groups interact. To find the NE,

replicator dynamics is used. The user index k = 1 is assigned

to the near-user and k = 2 to the far-user.

In Fig. 2 (a), with ΓH = ΓL = 4 (or 6 dB), PH = ΓL(1+ΓL),
PL = ΓL, and c = [0.5 0.25 0.01]T, the mixed NE is shown

when ᾱ1 increases, while ᾱ2 = 1 is fixed. Note that user 1

is the near-user, we expect that ᾱ1 is larger than ᾱ2. It is

also observed that x1,H (i.e., the probability that the near-user

chooses the high transmit power) decreases as the channel

gain, ᾱ1, increases, while x2,H increases.

In Fig. 2 (b), we also show the throughput, which is

ηk = E∼x
∗

−k
[Vk]x

∗
k;H + E∼x

∗

−k
[Wk]x

∗
k;L, (21)

where E∼p stands for the expectation over distribution p.

That is, the throughput is the average number of successfully

transmitted packets with the mixed NE. It is interesting to see

that the throughput of user 2 increases as the channel gain

of user 1, ᾱ1, increases. That is, the opponent can exploit

a user’s improved channel gain when the NOMA-ALOHA

system operates at an NE as shown in (20). This behavior

is explained in [24], where the users in each group compete

themselves, not the users in the other group. Thus, the increase

of the channel gain of the near-user does not necessarily

provide the throughput gain of themselves, but the far-user.

Another important observation is that there is an optimal ᾱ1 for

given ᾱ2 (i.e., ᾱ1

ᾱ2
≈ 3), which maximizes the total throughput

as shown in Fig. 2 (b). That is, if a pair of users whose average

channel gain ratio is about 3 can be assigned to a channel, it

can locally maximize the throughput. Thus, the mixed strategy

NE can be used for deriving user-pairing criteria when M > 1.

1Note that ESS has no meaning for asymmetric games - see [24]. As a
result, the mixed strategy NE obtained by the replicator dynamics with the
opponent’s Ak is not ESS.
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Fig. 2. Mixed strategy NE and throughput of the two-person general-sum
game with (A1,A

T

2
) for different values of channel gain ratio,

ᾱ1
ᾱ2

when

ΓH = ΓL = 4, PH = ΓL(1 + ΓL), PL = ΓL, and c = [0.5 0.25 0.01]T: (a)
Mixed strategy NE; (b) Throughput.

VI. CONCLUDING REMARKS

We considered the NOMA-ALOHA system that has the

two groups of users to randomly access channels without

the channel state information for uplink transmissions. In

particular, the users in a cell were divided into the two groups

such that one near-group of users are located near the BS

while the far-group of users are the set of the other users.

We developed the game theoretic model for the NOMA-

ALOHA and analyzed the average rewards and payoffs of

actions independently made by the users. We found the mixed

strategy NE of asymmetric games for the NOMA-ALOHA,

applying the general-sum game with the two groups of users.

Interestingly, the results showed that a far-user can increase

the throughput by exploiting the improved channel gain of a

near-user. This work revealed that the random access users

in each group compete themselves, not the users in the other

group, when the NOMA-ALOHA operates with an NE. As

further research topics, we will consider optimal user-pairing

to maximize the throughput and channel allocation based on

fairness.
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