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Purpose: Diffusion-weighted MRI is sensitive to incoherent tissue motion, which 
may confound the measured signal and subsequent analysis. We propose a “motion-
compensated” gradient waveform design for tensor-valued diffusion encoding that 
negates the effects bulk motion and incoherent motion in the ballistic regime.
Methods: Motion compensation was achieved by constraining the magnitude of gra-
dient waveform moment vectors. The constraint was incorporated into a numerical 
optimization framework, along with existing constraints that account for b-tensor 
shape, hardware restrictions, and concomitant field gradients. We evaluated the effi-
cacy of encoding and motion compensation in simulations, and we demonstrated the 
approach by linear and planar b-tensor encoding in a healthy heart in vivo.
Results: The optimization framework produced asymmetric motion-compensated 
waveforms that yielded b-tensors of arbitrary shape with improved efficiency com-
pared with previous designs for tensor-valued encoding, and equivalent efficiency to 
previous designs for linear (conventional) encoding. Technical feasibility was dem-
onstrated in the heart in vivo, showing vastly improved data quality when using mo-
tion compensation. The optimization framework is available online in open source.
Conclusion: Our gradient waveform design is both more flexible and efficient than 
previous methods, facilitating tensor-valued diffusion encoding in tissues in which mo-
tion would otherwise confound the signal. The proposed design exploits asymmetric 
encoding times, a single refocusing pulse or multiple refocusing pulses, and integrates 
compensation for concomitant gradient effects throughout the imaging volume.
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1  |   INTRODUCTION

Tissue movement during diffusion encoding can lead to phase 
dispersion that is erroneously attributed to diffusion or cause 
gross signal dropout. For example, the relatively slow and 
incoherent movement of blood in capillaries has a measur-
able impact on the diffusion-weighted signal at low b-values  
and carries information about the vasculature and can be 
mistaken for fast diffusion, or so called “pseudo diffusion.”1 
Other sources of motion include cardiac and pulmonary mo-
tion. These influence diffusion measurements in the brain by 
arterial pulsation2,3 and by gross movement of tissue, such as 
in chest, cardiac and kidney imaging,4-6 or from vibrations 
induced by the diffusion encoding itself.7-9

To combat this artifact, diffusion-encoding gradient wave-
forms have been designed to be “motion-compensated”4,10 
(ie, modulated in a way that introduces no phase shift in spin 
that move without changing direction during the encoding). 
Efforts have previously covered conventional diffusion en-
coding along a single direction at a time, here referred to 
as “linear b-tensor encoding.” For example, constant gradi-
ents with multiple refocusing pulses have been used to yield  
velocity compensation, and bipolar gradient waveforms have 
been used for the same purpose.11-15 More recently, Aliotta 
et al16 developed a flexible optimization framework to tailor 
motion-compensated waveforms to arbitrary encoding times, 
and Peña-Nogales et al17 used a similar approach to also in-
clude compensation for concomitant gradients.18

In addition to conventional linear b-tensor encoding, it 
has been shown that complementary information about tis-
sue microstructure can be extracted using diffusion encoding 
along more than one direction per signal readout.19,20 In this 
work, we describe such “multidimensional” encoding with a  
b-tensor21 (because it cannot be described merely by a di-
rection and b-value), and therefore refer to the diffusion en-
coding as “tensor-valued.”22 Because the diffusion encoding 
b-tensor can have varying encoding strength along different 
directions, the b-tensor can be said to have a “shape.” By 
modulating the b-tensor shape, the effect of microscopic dif-
fusion anisotropy can be teased out, facilitating the quantifi-
cation of parameters that are not accessible by conventional 
means.23-25 This and related methods have been used to mea-
sure the microscopic fractional anisotropy without the influ-
ence of orientation dispersion in brain,25-27 brain tumors,28 
and multiple sclerosis lesions,29,30 among others.

Recently, a design scheme for motion-compensated wave-
forms that yield tensor-valued diffusion encoding were pro-
posed by Lasič et al,31 thereby extending the range of organs 
that could be probed by such methods. The waveform design 
was based on an elegant principle of symmetry32 and pro-
vides a robust tool for waveform generation. However, the 
design cannot exploit asymmetric encoding times, only pro-
vides compensation for concomitant gradients for a small set 

of rotations of the waveform, and has suboptimal encoding 
efficiency.

In this work, we aim to develop a numerically optimized 
gradient waveform design for tensor-valued diffusion en-
coding that uses asymmetric timing with nulling of arbi-
trary moments of motion as well as concomitant gradients. 
The proposed design has a superior encoding efficiency and 
suppresses concomitant gradient effects throughout the im-
aging volume for arbitrary rotations of the waveform. We 
also formulate a signal representation that is generalized to 
tensor-valued diffusion and motion encoding. Finally, we 
demonstrate the technical feasibility of several optimized 
waveforms in the challenging application of in vivo cardiac 
tensor-valued diffusion MRI.

2  |   THEORY

Diffusion MR uses magnetic field gradients to encode for the 
incoherent motion of an ensemble of MR-visible particles, or 
“spins.” The signal from an ensemble of spins is the average 
over all complex spin vectors

where S0 is the relaxation weighted baseline signal; � is the 
phase of each spin packet; and ⟨⋅⟩ is the average operator across 
the ensemble. In the presence of a magnetic field gradient (g (t)),  
the time-dependent position of spin (r (t)) is encoded in the 
phase

where tis the time since excitation; �is the TE; and �is the 
gyromagnetic ratio.33 In this paper, we take g (t) to be the ef-
fective gradient (ie, including effects of refocusing pulses). 
A coherent shift of positions, or bulk motion, will result in 
a global phase shift, whereas incoherent movement reduces 
the phase coherence and signal magnitude.11,34 To exem-
plify the principle, we may approximate the signal by using 
the cumulant expansion,35,36 such that S≈S0exp(−⟨�2⟩∕2). 
For simplicity, we have assumed that there is no bulk flow 
(⟨�⟩=0), such that the first nonzero term is the second cu-
mulant (ie, the variance of phases). The phase variance can 
be decomposed into effects of diffusion (including pseudo 
diffusion) and ballistic motion (constant direction during 
the observation time), according to ⟨�2⟩= ⟨�2⟩diff+⟨�2⟩bal.  
In analogy to anisotropic Gaussian diffusion, described 
by a diffusion tensor37 (D), we may capture the nth mo-
ment of ballistic flow with a covariance tensor, according 
to Fn =

�
f⊗2
n

�
−⟨fn⟩⊗2. For example, f1 is a distribution of 

velocity vectors, such that multiplication with time gives a 

(1)S=S0⟨exp(− i�)⟩,

(2)�=γ ∫
�

0

g (t) r (t) dt,



      |  2119SZCZEPANKIEWICZ et al.

distribution of position vectors, given negligible contribu-
tion from higher order moments. If the distributions of mo-
ment vectors are uncorrelated, normally distributed with 
zero mean (⟨fn⟩=0), the diffusion and motion-weighted 
signal can then be written as

where B= ∫ 𝜏
0

q (t)⊗2 dt is the b-tensor21;q (t)=γ ∫ t

0
g
(
t�
)

dt� is 
the dephasing vector; Mn =m⊗2

n
 is the rank-1 motion encoding 

tensor; “⊗2” denotes the vector outer product; and “:” denotes 
the double inner product. The motion-encoding moment of nth 
order is a vector (mn), defined from the gradient waveform ac-
cording to

where � is the gyromagnetic ratio; � is the TE; and t is the 
time from excitation. We assume that the zeroth-moment 
vector is always designed to be zero to satisfy the spin-
echo condition, whereas nonzero values for mn encode the 
velocity (n = 1), acceleration (n = 2), jerk (n = 3), snap 
(n  =  4), and so on. To our knowledge, the formalism in 
Equation 3 is novel and motivated by the use of gradient 
waveforms that are not colinear in time (ie, yield high-rank 
b-tensors). For example, when rank (B)>1, the direction 
of a given motion-encoding vector must not coincide with 
other orders of motion encoding, or any b-tensor eigenvec-
tors. Therefore, we must track each mn as a vector, rather 
than just a magnitude. Furthermore, the assumptions that 
fn is normally distributed may not hold in general, reduc-
ing the accuracy of Equation 3. Nevertheless, the effects 
of incoherent motion in the ballistic regime will be sup-
pressed by gradient waveforms with vanishing motion en-
coding. For example, given sufficient m1-nulling, the phase 
contribution caused by movement at constant velocity is 
zero (�velocity =m

1
⋅v≈0, becausem1 ≈0), regardless of the 

actual distribution of velocities.

3  |   METHODS

3.1  |  Numerical optimization of motion-
compensated tensor-valued diffusion encoding

We generate motion-compensated gradient waveforms for 
tensor-valued diffusion encoding by extending the numeri-
cal optimization framework by Sjölund et al38 to include 
constraints on motion encoding. This is in addition to the 
original constraints that can be applied to the zeroth moment 

(m0), b-tensor shape, gradient amplitude, slew rate, and heat 
dissipation,38 as well as compensation of concomitant gra-
dients.39 Because the motion encoding is treated as a vec-
tor (rank(Mn)≤1), we may impose a nonlinear optimization 
constraint on the magnitude of the nth-moment vector to an 
arbitrary magnitude threshold (Ln), such that

or impose a linear equality constraint

Although both methods were implemented in the optimi-
zation framework, the type and limits on motion encoding 
should be adapted to the intended use case. For example, the 
linear constraint in Equation 6 results in faster optimization 
and is useful for removing motion encoding entirely (nulled 
to within numerical precision), whereas Equation 5 facilitates 
motion encoding of a specified value, which allows a larger 
solution space and may be beneficial with respect to encod-
ing efficiency. For the purposes of a general demonstration, 
we used relatively restrictive thresholds on motion encoding, 
such that L0 = 0, L1 = 10−4, L2 = 10−4 in units of sn/m, assum-
ing that � =2.675 ⋅108 rad/s/T for hydrogen in Equation 4.  
For comparison, ||m1

|| and ||m2
|| for the noncompensated mo-

nopolar waveforms, optimized for the same imaging condi-
tions, are approximately eight orders of magnitude larger. We 
adopt the convention that “m n-nulling” means constraining 
the magnitude of all moment vectors up to, and including, the 
nth order.

Throughout the optimization, we also constrained the 
maximal gradient amplitude to 80 mT/m, the maximal slew 
rate to 60 T/m/s, without additional constraint on heat dissi-
pation.38 Waveforms were optimized for linear, planar, and 
spherical b-tensor encoding using both max-norm and L2-
norm constraints. Briefly, the max-norm means that g (t) is in-
scribed within a cube that is 160 mT/m on each side, whereas 
the L2-norm limits g (t) within a sphere with diameter 160 
mT/m, the latter being less efficient but can be arbitrarily ro-
tated without exceeding the maximal gradient amplitude.22 
All variants were compensated for concomitant gradients by 
“M-nulling,”39 whereby the Maxwell index was limited to 
100 (mT/m)2 ms. Additionally, a variant for spherical b-ten-
sor encoding was optimized using “K-nulling” to be more 
comparable to the design proposed by Lasič et al.31 Briefly, 
K-nulling yields slightly higher encoding efficiency, but un-
like M-nulling, the waveforms are not compensated for con-
comitant gradients when rotated39 and/or affected by gradient 
nonlinearity.40 The duration of the waveform was minimized 
under the requirement that it yield a b-value of 2 ms/µm2,  
assuming a spin-echo sequence with a timing asymmetry 
such that the encoding period before the refocusing pulse was 

(3)S=S0exp

(
−B: D−

∑

n

Mn: Fn

2 (n!)2

)
,

(4)mn = � ∫
�

0

g (t) tndt,

(5)||mn
||≤Ln,

(6)mn =0.
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3 ms longer than the period after, and in which the refocusing 
required 8 ms.

3.2  |  Evaluation of waveform efficiency and 
simulation of motion compensation

The efficiency of waveforms with variable limits on motion 
encoding was investigated in terms of the necessary encoding 
time to reach b = 2 ms/μm2 as well as the encoding efficiency 
factor (�)38,41

where the achievable b-value is related to the maximal gradient 
amplitude per axis gmax and the total duration of the diffusion 
encoding gradient waveform ttot. For completeness, we also de-
scribe the efficiency for nulling up to m6. This is performed 
for symmetric encoding times, such that periods available for 
diffusion encoding before and after the refocusing are equal  
(δ1 = δ2 = 30 ms), and a realistic42 asymmetric timing (δ1 = 33 
ms, δ2 = 27 ms). In both cases, periods are separated by 8 ms to 
accommodate the refocusing block.

We perform numerical simulations to explore the con-
ditions under which the generated waveforms are compen-
sated for motion when they are scaled to yield b = 2 ms/μm2.  
We simulate the signal from 105 spins according to 
Equations 1 and 2, where the time-dependent position is 
r (t)=

∑
n=0fntn∕n!= r0+vt+at2∕2+ jt3∕6+st4∕24+⋯. The 

initial position (r0) can be set to zero, and values for all 
other moments are defined at t=0. Each kind of motion 
is assumed to be normally distributed with zero mean and 
a given SD, such that the elements of the motion moment 
vector fn =

[
fn,xfn,yfn,z

]Tare independently sampled from a 
normal distribution fn ∈ (0, �2

fn

). During tests of the effi-
cacy of m1 and m2-nulling, the maximal values for the SDs 
were �v =10 m/s and �a = 100 m/s2, while higher-order 
terms were equal to zero. These limits are orders of mag-
nitude greater than the motion observed for in vivo cardiac 
imaging,43,44 and should therefore cover the worst-case 
scenario. Furthermore, we gauge the sensitivity to higher- 
order moments of motion that are not explicitly accounted 
for in the optimization. To this end, we estimate the SD of 
“jerk” and “snap” (�j, �s) required to reduce the signal by 
approximately 1% for waveforms that were m2-nulled.

3.3  |  Optimized waveforms in 
cardiac imaging

To demonstrate the technical feasibility of this approach, we 
deployed motion-compensated waveforms in a healthy heart 

in vivo. The heart provides a challenging testbed where the 
effects of motion and motion compensation can be easily 
appreciated. Data acquisition was conducted in accordance 
with the Declaration of Helsinki and was approved by the UK 
National Research Ethics Service (18/YH/0168). The volun-
teer provided written, informed consent.

Images were acquired on a 3T Prisma (Siemens Healthcare, 
Erlangen, Germany) with a prototype spin-echo sequence42 
using linear and planar b-tensors with m0, m1 and m2-nulling. 
We used these two b-tensor shapes for their superior encoding 
efficiency22,38 and because they are likely to contribute the 
most information in the context of microstructure imaging.45 
We used a reduced FOV echo-planar readout (ZOOMit46), 
TR = 5 RR-intervals, TE = [77, 93, 99] ms, partial Fourier =  
6/8, resolution = 3 × 3 × 8 mm3, five slices, in-plane FOV =  
320 × 118 mm2, slice gap = 8 mm, and b = [0.1, 0.4, 0.7, 
1.0] ms/μm2 in 6, 6, 15, and 30 rotations, respectively (sin-
gle repetition). At the highest b-value, the maximal per-axis 
gradient amplitude was 78.6 mT/m (Supporting Information 
Figure S1). The rotations aligned the symmetry axis of the 
b-tensors along direction sets based on platonic solids.21,47 
The acquisition was cardiac-triggered under free breathing, 
and images were acquired in midsystole. To maintain consis-
tency in cardiac phase, while accounting for different diffu-
sion waveform durations and TE, the trigger delay was set to 
approximately 50% of time to maximum systole minus TE. 
Finally, we note that the optimized gradient waveforms had 
large enough zeroth moments after the refocusing pulse to act 
as crushers even at the lowest b-value (all above 3∙104 m−1). 
Therefore, crushers were never engaged and did not contrib-
ute to motion encoding.

In addition to diffusion-weighted images, we visualize 
signal dropout in terms of the initial slope of log(S) versus 
b, or mean diffusivity (MD=Trace(D)∕3), where D is esti-
mated from a diffusion tensor representation (Equation 3 
without influence from motion). In this context, we do not 
use MD to evaluate microstructure; rather, high MD values 
are used to detect strong signal dropout as a function of 
encoding strength, which indicates poor motion compen-
sation. The fitting was adapted for tensor-valued diffusion 
encoding and used the open-source multidimensional dif-
fusion MRI framework48 (https://github.com/marku​s-nilss​
on/md-dmri).

4  |   RESULTS

The optimization framework robustly generated wave-
forms that fulfilled all optimization criteria for arbitrary 
shapes of the b-tensor. Figure 1 shows examples of wave-
forms that yield b = 2 ms/µm2 for varying b-tensor shapes 
and levels of motion compensation. As expected, the ef-
ficiency generally deteriorates as higher moments are 

(7)�=
4b

γ2g2
max

t3tot

,

https://github.com/markus-nilsson/md-dmri
https://github.com/markus-nilsson/md-dmri
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nulled, as indicated by longer encoding times, and lower 
efficiency factors. We also observed that K-nulling yields 
a slight efficiency advantage over M-nulling (Supporting 
Information Figure S2). Figure 2 shows the achievable 
b-values for symmetric and asymmetric timing up to  
m6-nulling. Again, constraints on ever higher moments re-
duce the encoding efficiency. The proposed design is more 
efficient than that by Lasic et al,5 reducing the necessary 
encoding time for m1 and m2-nulled waveforms by 9-20 ms,  
and the benefit of the current design increases dramati-
cally with increasing order of nulling. Our design can 
also yield waveforms for linear b-tensor encoding without 

compensation for concomitant gradients that match the 
efficiency of the framework by Aliotta et al,16 and with 
M-nulling it yields results similar to those by Peña-Nogales 
et al17 (Supporting Information Figure S3). Somewhat un-
expectedly, we observe that waveforms for linear b-tensor 
encoding and symmetric timing can be more efficient when 
nulling even moments compared with preceding odd mo-
ments (see Figure 2 where m6-nulling is more efficient 
than m5-nulling), which indicates that the global minimum 
was not found. We observed that the combination of linear 
b-tensors, symmetric timing, and nulling of odd moments 
tends to produce self-balanced waveforms (q(�∕2)=0) that 

F I G U R E  1   Gradient waveforms generated by the proposed design (top four rows) and the design by Lasic et al5 for reference (bottom row). 
The duration of all waveforms is minimized under the condition that they produce b = 2 ms/µm2 and spherical b-tensors, at maximal gradient 
amplitude of 80 mT/m, maximal slew rate of 60 T/m/s, in a spin-echo sequence in which the refocusing requires 8 ms, and the first encoding period 
is 6 ms longer than the second. The waveforms from this work use M-nulling for compensating concomitant gradients, whereas the bottom row 
uses K-nulling.39 The notation in parenthesis denotes waveforms constrained within a sphere (L2-norm) or a cube (Max-norm).38 The proposed 
method for m1 and m2-nulling is more efficient than that by Lasic et al,5 as evidenced by the 10-20 ms reduction to encoding time (compare bottom 
two rows using similar optimization constraints)
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do not exert diffusion encoding during the refocusing pe-
riod, and therefore suffer a loss to efficiency.

Numerical simulations in Figure 3 show signal dephasing 
due to motion for different levels of motion compensation. 
In general, noncompensated waveforms suffer a gross loss 
of signal due to all kinds of incoherent motion; m1-nulling 
removes the effects of velocity, whereas m2-nulling removes 
the effects of both velocity and acceleration, as intended by 

the design. Note that the intervals of �v and �a depicted in 
Figure 3 are relatively narrow to show the regions where sig-
nal is dynamic, but that waveforms nulled for m1 were in-
variant to velocity, and m2-nulled waveforms were invariant 
to velocity and acceleration throughout the entire simulated 
interval. For reference, we report that the resulting magni-
tude of the jerk and snap-encoding vectors for m2-nulled 
waveforms were |m3| = 56-300 m/s3 and |m4| = 1.5-14 m/s4.  

F I G U R E  2   The achievable b-value is reduced as higher moments of the waveform are constrained. Plots show b-values for symmetric 
and asymmetric encoding periods, both separated by 8 ms (for refocusing), as a function of the order of motion compensation from m0 to m6, 
corresponding to position, velocity, acceleration, jerk, snap, crackle, and pop. The proposed design yields superior encoding efficiency compared 
with Lasic et al5 (compare Max-norm waveforms with square markers), especially for increasing timing asymmetry and order of moment that 
is nulled. Note that for a symmetric timing and linear b-tensor encoding, the efficiency does not strictly decrease with the nulled moment order. 
Abbreviations: LTE, linear b-tensor encoding; PTE, planar b-tensor encoding; STE, spherical b-tensor encoding

F I G U R E  3   The surfaces show signal attenuation as a function of velocity and acceleration distributions for waveforms that are nulled for 
different orders of motion encoding. The simulation assumed ballistic motion with normal velocity and acceleration distributions with SDs in the 
intervals �

v
∈ [0, 0.3] mm/s and �

a
∈ [0, 15] mm/s2. All waveform designs exhibited similar behavior: The m0-nulled waveforms were sensitive to 

velocity and acceleration (left); m1-nulling removed the effects of velocity but not acceleration (middle); and m2-nulling made the measurement 
insensitive to both velocity and acceleration (right). The relatively narrow intervals for �

v
 and �

a
 are selected to show regions where the signal 

is dynamic. However, we note that m1-nulling was invariant to velocity up to at least �
v
=10 m/s, and m2-nulled waveforms are invariant to 

acceleration up to at least �
a
=100 m/s2
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Both numerical simulations and Equation 3 show that this 
leads to a loss of approximately 1% of signal for distributions 
where �j =50 mm/s3 and �s =1 m/s4.

Figure 4 shows a single slice of the signal maps averaged 
over directions in the cardiac muscle when using different lev-
els of motion compensation and b-tensor shapes. As expected, 
there is marked loss of signal in the myocardium for all non-
compensated waveforms, regardless of b-value. In contrast, 

m1 and m2-nulled waveforms consistently retain signal and 
provide a marked improvement on the data quality. The im-
proved data quality of motion-compensated waveforms can 
also be appreciated in the MD maps, where signal dropout 
is indicated by high MD values in Figure 5. Although some 
regions were still hyperintense for m1-nulled waveforms, 
m2-nulling appeared homogeneous throughout the cardiac 
muscle for linear and planar b-tensor encoding (Supporting 

F I G U R E  4   Signal maps in the mid-myocardium encoded by linear and planar b-tensors, averaged over directions, show that motion 
compensation improves the data quality. Noncompensated waveforms suffer gross signal loss due to motion, whereas the proposed method for 
nulling m1 and m2 retains the signal even at relatively high b-values

F I G U R E  5   Maps of mean diffusivity 
show that waveforms that are not 
compensated for motion cannot be used 
reliably for in vivo cardiac imaging. 
Waveforms that are m1-nulled (velocity 
compensation) result in a marked 
improvement in image quality; however, 
some regions still exhibit elevated mean 
diffusivity, whereby artifacts cannot be 
ruled out (white arrows). As expected, 
m2-nulled (velocity and acceleration 
compensation) waveforms appear the 
most robust. Maps from multiple slices are 
available in the Supporting Information
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Information Figure S4). Although the motion-compensated 
waveforms were successfully executed, it remains difficult 
to distinguish features caused by artifacts related to cardiac 
imaging versus motion compensation.

5  |   DISCUSSION AND 
CONCLUSIONS

We have proposed and demonstrated a novel design for 
motion-compensated gradient waveforms for tensor-valued 
diffusion encoding. The suggested design has several ben-
efits over previous designs: (1) higher encoding efficiency 
than previous designs for tensor-valued diffusion encoding; 
(2) a flexible optimization framework that leverages asym-
metric waveform timing with arbitrary distribution of the en-
coding time, user defined energy consumption, and level of 
motion compensation; and (3) compensation for concomitant 
gradient effects by M-nulling, which allows for arbitrary ro-
tations39 and is robust to gradient nonlinearity.40 We empha-
size that compensating for concomitant gradients should not 
be overlooked, especially in body imaging in which FOVs 
and voxels are relatively large, and the target tissue may be 
far from the isocenter.49,50 Concomitant gradients can also 
be suppressed by estimating them in a point in space and 
subtracting them from the desired gradient waveform during 
execution of the pulse sequence.16,50 However, the benefit of 
the current method is that concomitant gradient effects are 
removed throughout the entire imaging volume, rather than 
one point at a time, and therefore is more compatible with 
large FOVs and multislice imaging. We also note that the 
current design does not force “self-balanced” waveforms 
(q (t) is not zero during the refocusing pulse), which provides 
improved efficiency and may remove the need/influence of 
additional crusher gradients that disturb the motion compen-
sation. Consider that the motion encoding of a pair of crush-
ers is on the order of |m1| = 10-100 s/m and |m2| = 1-10 s2/m. 
However, the inclusion of crushing is currently not enforced 
by the optimization, and an investigation of the effects of var-
ious pulse-sequence configurations and imaging gradients on 
the motion compensation was outside the scope of this study.

We expect that this waveform design will improve the 
feasibility and quality of microstructure imaging that relies 
on tensor-valued encoding in organs that require special at-
tention to ballistic motion, such as cardiac, liver, and kidney 
imaging.5,6,12,13,51 In this work, we explored the numerical 
effects of flow and acceleration over a wide range of values, 
and established the magnitude at which the higher moments, 
jerk, and snap become relevant. However, it remains the re-
sponsibility of the user to determine the appropriate level and 
order of motion compensation to use in gradient waveform 
optimization, and to account for organ-specific challenges in 
the remainder of the experimental design.

The design presented herein can also be extended to incor-
porate effects of diffusion time and exchange by using similar 
constraints on related metrics.22,52-54 Doing so allows us to 
emphasize or suppress diffusion time and exchange effects, 
which may otherwise confound the measurement.22,31,55-58 
Furthermore, the current design can already produce 
waveforms with independently controlled motion and dif-
fusion sensitization, facilitating an interesting probe of diffu-
sion-motion-correlation experiments. Such multidimensional 
experiments will be explored in future studies.
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FIGURE S1 Gradient waveforms used in the in vivo ex-
periments nulled for m0, m1, and m2. Each plot shows the 
maximal gradient amplitude exerted on any one axis, and the 
duration of encoding before (δ1) and after (δ2) the refocusing. 
For each order of nulling, the sequence timing for linear and 
planar b-tensors was the same due to the fixed TE
FIGURE S2 Gradient waveforms with m0, m1, and m2-null-
ing from spherical b-tensor encoding, in which the optimiza-
tion in the top row used K-nulling, and the bottom row used 
M-nulling.39 The title of each plot shows the achieved b-value 
for the given timing. M-nulling is generally somewhat less 
efficient, but more versatile, as it allows arbitrary rotations of 
the waveform and is robust to gradient nonlinearity39,40

FIGURE S3 Comparison of waveforms for linear b-tensor 
encoding, nulled for moments up to m2 using optimization 
frameworks of the present work38,39 (NOW, https://github.
com/jsjol/​NOW), by Aliotta et al.16 (CODE, https://github.
com/ealio​tta/code-gradi​ent-design), and by Peña-Nogales 
et al17 (ODGD, https://github.com/openn​og/ODGD). “MX” 
in the name indicates that the waveform is compensated for 
concomitant gradient effects. Overall, the different frame-
works yield similar results. The case in the lower right is an 
outlier, likely due to an incorrect derating of the gradient. 
Red lines show the evolution of the motion-encoding vectors, 
scaled to arbitrary units for visibility
FIGURE S4 Maps of mean diffusivity (MD) indicate re-
gions of signal dropout in multiple slices in a healthy heart. 
Although m1-nulling provides a vast improvement in data 
quality over m0, some hyperintense regions remain, seen es-
pecially for planar b-tensor encoding. However, m2-nulling 
appears to yield high data quality throughout the heart muscle
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