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ABSTRACT

Despite the recent popularity of contextual word embeddings, static word embed-
dings still dominate lexical semantic tasks, making their study of continued rele-
vance. A widely adopted family of such static word embeddings is derived by explic-
itly factorizing the Pointwise Mutual Information (PMI) weighting of the cooccur-
rence matrix. As unobserved cooccurrences lead PMI to negative infinity, a common
workaround is to clip negative PMI at 0. However, it is unclear what information is
lost by collapsing negative PMI values to 0. To answer this question, we isolate and
study the effects of negative (and positive) PMI on the semantics and geometry of
models adopting factorization of different PMI matrices. Word and sentence-level
evaluations show that only accounting for positive PMI in the factorization strongly
captures both semantics and syntax, whereas using only negative PMI captures little
of semantics but a surprising amount of syntactic information. Results also reveal
that incorporating negative PMI induces stronger rank invariance of vector norms
and direction, as well as improved rare word representations.

KEYWORDS

word embedding; lexical semantics; pointwise mutual information

1. Introduction

Contextualized word embeddings (Devlin, Chang, Lee, & Toutanova, 2019; Peters et
al., 2018) – where the vector representation of a word is dependent on context – are
the mainstay of natural language processing (NLP) in sequence-related tasks such
as semantic textual similarity and text classification, largely replacing static (non-
contextual) word embeddings such as word2vec (Mikolov, Chen, Corrado, & Dean,
2013) in these applications. However, static word embeddings still dominate most
lexical semantic tasks (such as word synonymy, similarity, relatedness, categorization,
and analogy completion) (Lenci, Sahlgren, Jeuniaux, Gyllensten, & Miliani, 2021)
where words are given out-of-context, making static word embeddings the appropriate
choice. Given the continued importance of static word embeddings (from hereon simply
referred to as word embeddings or vectors), this paper follows a line of work that aims
to understand what contributes to the strong performance of these models in lexical
semantic tasks.

CONTACT Alexandre Salle. Email: alex@alexsalle.com



Word vectors can be learned by exploiting the distributional hypothesis (Harris,
1954), paraphrased by Firth (1957) as “a word is characterized by the company that
it keeps”. One approach is to use as vectors the rows of a word-context cooccurrence
matrix and re-weight it using Pointwise Mutual Information (PMI) (Church & Hanks,
1990). The cooccurrence matrix M is constructed by sliding a symmetric window over
the training corpus and for each center word w ∈ V (V is the word vocabulary) and
context word c ∈ V within the window, incrementing Mw,c. The PMI matrix is then
equal to:

PMIw,c = log
P (w, c)

P (w)P (c)
= log

Mw,c

M∗,∗

Mw,∗

M∗,∗

M∗,c

M∗,∗

= log
Mw,cM∗,∗

Mw,∗M∗,c
(1)

where * denotes summation over the corresponding index. We refer to the set {(w, c) |
PMIw,c ≤ 0} as negative pointwise mutual information (nPMI), the set {(w, c) |
PMIw,c > 0} as positive pointwise mutual information (pPMI), and the set {(w, c) |
Mw,c = 0} as maximally negative pointwise mutual information (mnPMI).

Although the rows of the PMI matrix can be used directly as word vectors (Bulli-
naria & Levy, 2007; Levy & Goldberg, 2014a; Schütze, 1993), performing the low-rank
factorization PMI = WCT (where word vectors W and context vectors C are |V |×d)
yields word vectors which are more computationally friendly – since d ≪ |V |, they
use significantly less memory and require smaller input matrices when used as inputs
to neural networks. They also arguably lead to better generalization by compressing
representations (eliminating noise) through a small set of latent variables (Deerwester,
Dumais, Landauer, Furnas, & Harshman, 1990). The most popular method for gen-
erating this type of factorization is the word2vec Skip-gram model (Mikolov, Chen,
et al., 2013; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), which Goldberg and
Levy (2014) theoretically prove implicitly factorizes the PMI − log k matrix (the M
and PMI matrices are never constructed), where k is the number of negative samples.

Another family of methods (Bullinaria & Levy, 2007; Pennington, Socher, & Man-
ning, 2014; Salle, Villavicencio, & Idiart, 2016; Shazeer, Doherty, Evans, & Waterson,
2016; Turney & Pantel, 2010; Xin, Yuan, He, & Jose, 2018) perform this factorization
explicitly : M is constructed, re-weighted, then factorized. Note that although the pop-
ular GloVe model of Pennington et al. (2014) factorizes logM rather than PMI , bias
terms learnt during factorization correlate strongly to the terms in the denominator
of eq. (1) (Shazeer et al., 2016), suggesting that GloVe is also learning a factorization
of a PMI variant.

Unfortunately, PMIw,c goes to negative infinity when the word-context pair (w, c)
does not appear in the training corpus. Due to unreliable statistics, this happens very
frequently in finite corpora: the matrix M is highly sparse. Models work around this
issue by either: 1) altogether ignoring mnPMI values in the factorization (GloVe, Pen-
nington et al. (2014)); 2) smoothing mnPMI values to make the numerator non-zero
(Shazeer et al., 2016; Turney & Pantel, 2010); or 3) clipping nPMI values at 0, a mea-
sure known as Positive PMI (PPMI)1 (Bullinaria & Levy, 2007; Salle, Villavicencio,
& Idiart, 2016; Shazeer et al., 2016; Xin et al., 2018).

Although these approaches work well in practice, they raise the following questions
about negative pointwise mutual information (for compactness referred to as negative
information from hereon):

1Not to be confused with the pPMI set defined above.
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(Q1) What is lost/gained by collapsing nPMI values to 0 as with the PPMI measure?
(Q2) More interestingly, what kind of information is captured in the word vectors if we

exclusively consider nPMI or pPMI values when performing the factorization?
In other words, if all we knew is that “word w [tends not/tends] to occur with
words ci, . . . , cj” (respectively for nPMI and pPMI), what can we learn about
w? This can help us train better models, but perhaps more importantly, improve
our understanding of natural language.

(Q3) Given that the factorization is low-rank, it leads to reconstruction errors: PMI ≈
WCT . A good factorization should minimize the loss function:

Lfactor =
∑

w,c∈V×V

λ(w, c)(PMIw,c −WwC
T
c )

2 (2)

where λ is the weight placed on the reconstruction error of pair (w, c). As pre-
viously stated, in the extreme case of GloVe, ∀(w, c) ∈ mnPMI λ(w, c) = 0. In
the context of this study, we ask what happens as λ increases for all (w, c) in
nPMI? In other words, if a factorization accounts for more and more negative
information, how are word vectors and the information they capture affected?

Answering these questions would grant greater insights into both (a) methods which
perform explicit factorization of the PMI matrix, and the roles played by negative
and positive information and (b) the implicit factorization performed by the Skip-
gram model, whose strange geometry observed by Mimno and Thompson (2017) is
supported by the results of this paper. It would also lead to a better understanding of
(c) how different types of information are distributed in natural language.

In this paper, we give an initial answer to these three questions by training differ-
ent word embedding models and evaluating them on tasks that test for semantics or
syntax, focusing on English. As described in section 3.2, as representative of similar
methods we use LexVec (Salle, Villavicencio, & Idiart, 2016) for greater experimen-
tal control and interpretability of results, since it allows us to factorize arbitrary PMI
variants, selectively use only nPMI, pPMI, or both, and control the amount of negative
information used in the factorization.

Although augmenting word embeddings with subword information – such variants
include fastText (Skip-gram) (Bojanowski, Grave, Joulin, & Mikolov, 2017) and sub-
word LexVec (Salle & Villavicencio, 2018) – can improve performance on some tasks,
the sharing of information between words through subword vectors makes it impossi-
ble to isolate the effects of negative information on words of different frequencies (i.e.
vector representations of rare word forms are improved not only because of improved
corpus statistics, but because they also directly share vector representation with fre-
quent forms), so we focus on the base variants that do not use subword information,
but include in appendix C matching experimental results for LexVec and fastText
subword models which support the conclusions from the main paper.

In summary, the contributions of this paper are:

• The proposal of two PMI variants, clipped PMI and normalized negative
PMI, that account for the distribution of nPMI both in terms of the range
and distribution of values within a set (Section 3 ). Results explicitly justify the
popularity of PPMI by showing that collapsing the negative distribution to 0
does not substantially hurt results when compared to preserving it.

• An examination of the degree with which nPMI and pPMI capture syntac-
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tic and semantic information (Section 4 ). Using only pPMI strongly captures
both semantics and syntax, whereas using only nPMI captures some semantic
information but (surprisingly) a lot of syntactic information. This deepens our
understanding of distributional semantics and computational linguistics by ex-
tending Firth (1957)’s paraphrase of the distributional hypothesis to “a word
is not only characterized by the company that it keeps, but also by

the company it rejects”.

• Empirical evaluation of how the reconstruction error weights due to win-
dow sampling and negative sampling prioritize correct approximation
of values in pPMI and nPMI respectively in a model like LexVec (Section 5 ).
We find that increasing the relative importance of negative information strength-
ens geometric rank invariant properties – vector norms and direction – of word
vectors and improves the representation of rare words. Additionally, our analysis
reveals that when word analogies are evaluated correctly (Schluter, 2018), per-
formance improves as more negative information is used, suggesting that these
geometric properties are connected to more strongly capturing the linear vector
offsets used in answering analogies.

• Experiments reveal similar results for Skip-gram, GloVe, and SVD mod-
els, showing that the important role played by negative information in LexVec
transfers well to these other models (Section 6 ).

2. Related Work

There is a long history of studying weightings (also known as association measures) of
cooccurrence matrices in general, not only of word-context pairs; see Jurafsky (2000);
Manning, Manning, and Schütze (1999); Schütze (1993) for an overview and Cur-
ran and Moens (2002) for comparison of different weightings. One widely adopted
measure is PMI, and in fact, Bullinaria and Levy (2007) show that word vectors de-
rived from PPMI matrices perform better than alternative weightings for word-context
cooccurrence. Moreover, Levy and Goldberg (2014b) show theoretically that the pop-
ular Skip-gram model (Mikolov, Chen, et al., 2013) performs implicit factorization of
shifted PMI. Another PMI variant is normalized PMI, which Bouma (2009) proposed
for dealing with negative infinity (-∞), for collocation extraction.

Recently, work in explicit low-rank matrix factorization of PMI variants has achieved
state of the art results in word embeddings. GloVe (Pennington et al., 2014) performs
weighted factorization of the log cooccurrence matrix with added bias terms, but does
not account for zero cells. Shazeer et al. (2016) point out that GloVe’s bias terms cor-
relate strongly with unigram log counts, suggesting that GloVe is factorizing a variant
of PMI. Their SwiVel model modifies the GloVe objective to use Laplace smoothing
and hinge loss for zero counts of the cooccurrence matrix, directly factorizing the PMI
matrix, sidestepping the negative infinity issue. An alternative is to use PPMI and
variants as done by Kiela and Clark (2014); Milajevs, Sadrzadeh, and Purver (2016);
Polajnar and Clark (2014); Salle, Villavicencio, and Idiart (2016); Xin et al. (2018).
However, even though PPMI works well in practice, its use may seem unprincipled, as
it is not clear what is lost by clipping the negative distribution of PMI. Accounting
for zero cells in the factorizations of Salle, Villavicencio, and Idiart (2016); Shazeer et
al. (2016); Xin et al. (2018) is motivated by better representing rare words. However,
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they do not test the effect of nPMI and pPMI in isolation, or investigate the geometry
of the resulting word vectors. Moreover, according to Schluter (2018), they do not
perform correct evaluation of word analogies, as described in section 5.2.

The continued relevance of static word embeddings has led to a number of recent
papers that aim to understand their properties. These include research on why word
analogies (“a is to b as c is to ?”) hold (Allen, Balazevic, & Hospedales, 2019; Allen &
Hospedales, 2019; Ethayarajh, Duvenaud, & Hirst, 2019; Hashimoto, Alvarez-Melis, &
Jaakkola, 2016), or conversely why they do not hold (Linzen, 2016; Rogers, Drozd, &
Li, 2017; Schluter, 2018); on their geometry (Mimno & Thompson, 2017); and on pos-
sible biases they incorporate (Bolukbasi, Chang, Zou, Saligrama, & Kalai, 2016; Gonen
& Goldberg, 2019; Nissim, van Noord, & van der Goot, 2019). This paper follows this
line of research into understanding the workings of these models. In particular, Mimno
and Thompson (2017) analysis of the geometry of the Skip-gram model concludes that
it is “strange” as word vectors occupy a narrow cone in space diametrically opposed to
context vectors. Our analysis of model geometry is directly inspired by their work, but
rather than analyzing the implicit PMI factorization of Skip-gram, we look at explicit
factorizations, under which the “strange” geometry of Skip-gram can be explained by
looking at the underlying PMI counts.

Schluter (2018) observed that in analogies of the form “a is to b as c is to ?” if a,b,c
are not excluded from the set of possible answers, performance of the Skip-gram and
GloVe models plummets. Linzen (2016); Rogers et al. (2017) made similar observations
that these models do not quite seem to capture the geometry necessary to correctly
answer analogies. However, none of these works simultaneously relate (a) increasing
negative information with (b) word vector geometry for different frequencies and (c)
analogy performance. Although Allen and Hospedales (2019); Ethayarajh et al. (2019)
theoretically show that these linear analogies should hold in PMI factorizations, there
is no investigation into how the geometry of different factorizations affects results.
Allen et al. (2019) present a theoretical argument for why word embeddings that are
linear projections of PMI capture certain semantic relationships, but do not look at
the distribution of PMI and the importance of its negative values.

3. PMI and Matrix Factorization

In this section, we first look at the distribution of PMI values to get a sense for the
sets nPMI, pPMI, and mnPMI. We then propose PMI variants to address the negative
infinity issue for mnPMI values. Lastly, we describe the matrix factorization method
we use in our investigation.

3.1. PMI & Negative Information

Before we can look at PMI values, a cooccurrence matrix M is needed. We construct
it from a lowercased, alphanumerical 2015 English Wikipedia dump with 3.8B to-
kens, discarding tokens with frequency < 100, for a vocabulary Vw of 303, 517 words.
Throughout this paper, we follow Mikolov, Sutskever, et al. (2013) in using a sym-
metric window of size 5 drawn from U (1, 5) for each target word. We also performed
identical experiments using positional contexts and fixed window size of 2, as used
in Salle, Idiart, and Villavicencio (2016). Results included in appendix B lead to the
same conclusions as those for the larger randomized windows used in the main paper.

We use the additional heuristic of token subsampling (Mikolov, Sutskever, et al.,
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2013) the training corpus: tokens for word w are randomly discarded with probabil-

ity pw = max(0, 1 −
√

t/fw), where t is the subsampling threshold (we follow Levy,
Goldberg, and Dagan (2015); Mikolov, Sutskever, et al. (2013); Salle, Villavicencio, and
Idiart (2016) and set t = 10−5 throughout this paper) and fw is the unigram frequency
(tokens of w divided by total number of tokens in training corpus). For Skip-gram and
LexVec, which perform factorization by sampling word-context pairs from the training
corpus, subsampling accelerates training significantly. Mikolov, Chen, et al. (2013) also
observe empirically that it improves the representation of uncommon words.

We refer to this cooccurrence matrix constructed from Wikipedia as Mwiki , and its
PMI transformation as PMIwiki .

Distribution of PMI: To better understand the distribution of PMI, we examine
the PMI wiki values of 105 non-zero pairs randomly sampled from Mwiki , shown in
fig. 1. We sample only non-zero pairs because Mwiki is sparse: only 0.93% of cells are
non-zero.

To the left of the 0 line, we can clearly see the distribution of nPMI that is col-
lapsed when using the PPMI measure, which maps these negative values – ∼ 22.2%
of cooccurring pairs – to 0.

Preserving the distribution of negative information: To deal with values in
mnPMI, we propose clipped PMI,

CPMIw,c(z) = max(z, PMIw,c) (3)

which is equivalent to PPMI when z = 0 (z is the clipping threshold), and captures
most of the nPMI distribution when z ≤ 2.

We also experiment with normalized PMI (NPMI ) (Bouma, 2009):

NPMIw,c = PMIw,c/− log(Mw,c/M∗∗)

such thatNPMI(w, c) = −1 when (w, c) ∈ mnPMI (never cooccur),NPMI(w, c) = 0
when they are independent, and NPMI(w, c) = 1 when they always cooccur together.
This effectively captures the entire negative distribution, but has the downside of
normalization which discards scale information. In practice we find this works poorly if
done symmetrically, so we introduce a variant called NNEGPMI which only normalizes
nPMI:

NNEGPMIw,c =

{
NPMIw,c if PMIw,c < 0

PMIw,c otherwise

We also experimented with Laplace smoothing as in Turney and Littman (2003) for
various pseudocounts but found it to work consistently worse than both CPMI and
NNEGPMI so we omit further discussion in this paper.

3.2. Matrix Factorization

As stated in section 1, low-rank word vectors obtained through the factorization of the
PMI matrix are advantageous computationally and arguably lead to better general-
ization than directly using rows from PMI as word vectors. Since in our experiments
we need to control whether only positive or negative information is used in the fac-
torization, we cannot use the Skip-gram model since its implicit factorization does
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Figure 1. Histogram (bin width equal to 0.2) of 105 values not in mnPMI sampled from PMIwiki . The
negative distribution of PMI are the values to the left of the dashed line (∼ 22.2% of sampled values), which
are collapsed to 0 when using the popular PPMI association measure. Note that we exclude mnPMI (sample

only non-zero cooccurrences) otherwise the graph would be a single vertical line at -2 (if graphing CPMI(−2))
since 99.07% of values in Mwiki are 0.

not allow us to access the underlying PMI values. This leaves as candidates models
that perform explicit factorization: SVD (Deerwester et al., 1990; Levy & Goldberg,
2014b), GloVe (Pennington et al., 2014), Swivel (Shazeer et al., 2016), LexVec (Salle,
Villavicencio, & Idiart, 2016), and AllVec (Xin et al., 2018).

Although SVD provably provides factorizations with the lowest possible squared loss
L2(w, c) = 1

2λSVD(w, c)(WwC
⊤
c − f(M)w,c)

2, with λSVD(w, c) = 1 and an arbitrary
transformation f(·) (Eckart & Young, 1936), Salle, Villavicencio, and Idiart (2016)
show that, in word embedding where f is some variant of PMI , uniform weights λ
significantly reduce the quality of the word vectors. The intuition is that if both word
and context (w, c) are frequent, the estimated PMIw,c is more statistically reliable than
if they were both rare, and the weights should reflect that. We call this the reliability
principle: the loss function of a word embedding factorization of matrix M should have
a weight λ on the reconstruction error of PMIw,c that is a monotonically increasing
function of both Mw,∗ and M∗,c.

We discard GloVe as a candidate because its weight function entirely ignores values
in the mnPMI set (where Mw,c = 0):

LGloVe(w, c) =
1

2
λGloVe(w, c)(WwC

⊤
c − f(M)w,c + bw + b̃c)

2 (4)

λGloVe(w, c) = min(Mα
w,c/x

α
max , 1) (5)

where f(·) = log(·), α is a constant and b and b̃ are bias terms.
Swivel is not used because of its O(|V |2) computational complexity from calculat-

ing loss terms for every cell in the matrix being factorized, thus requiring a large
distributed computing environment to be practical: in our experiments |V |2 ≈ 9.2e10.
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AllVec improves the GloVe objective by accounting for values in mnPMI:

LAllVec(w, c) =

{
1
2λGloVe(w, c)(WwC

⊤
c − f(M)w,c)

2 if (w, c) /∈ mnPMI
1
2λAllVec(w, c)(WwC

⊤
c − r

-
)2 otherwise

(6)

λAllVec(w, c) = α0 M
δ
∗,c/

∑

c∈V

M δ
∗,c (7)

where r
-
and α0 are constants. While eq. (7) does account for values in mnPMI and

allows us to choose what value to map -∞ to (the term r-), the weight term for
these values depends only on c, not on both w and c, thus not obeying the reliability
principle described previously.

LexVec performs matrix factorization by sliding a symmetric window over the train-
ing corpus (window sampling), in the exact same way as when M was constructed in
section 3.1, and performing one Stochastic Gradient Descent (SGD) step every time a
(w, c) pair is observed, minimizing

l(w, c) =
1

2
(WwC

⊤
c − f(M)w,c)

2 (8)

Additionally, negative sampling is performed, where for every center word w, k negative
samples (Mikolov, Chen, et al., 2013) are drawn from the unigram context distribution:

Pn(c) = (M∗,c)
αcds/

∑

c

(M∗,c)
αcds (9)

where αcds is a smoothing factor – set to .75 in this paper following Levy et al. (2015);
Mikolov, Sutskever, et al. (2013); Salle, Villavicencio, and Idiart (2016) – and SGD
steps are taken to minimize

lneg(w) =

k∑

i=1

Eci∼Pn(c)l(w, ci) (10)

The expected loss for a pair (w, c) in a single pass over the training corpus using
both window sampling and negative sampling is:

E[LLexVec(w, c)] = Mw,cl(w, c) +
Mw,∗

2l
k Pn(c) l(w, c) (11)

=
1

2
λLexVec(w, c)(WwC

⊤
c − f(M)w,c)

2 (12)

λLexVec(w, c) = Mw,c
︸ ︷︷ ︸

λws(w,c)

+
Mw,∗

2l
k Pn(c)

︸ ︷︷ ︸

λns(w,c)

(13)

In λLexVec , the first term prioritizes the correct approximation of frequently cooccur-
ring pairs (window sampling), and the second term of pairs where either word occurs
with high frequency (negative sampling), obeying the reliability principle previously
described. We thus use LexVec as the vehicle of our study for this reason, and addi-
tionally because the complexity is linear in the size of the training corpus and not the

8



vocabulary size, which in the case of the English Wikipedia corpus we use here is 24x
smaller than |V |2.

Connection to Skip-gram: The Skip-gram loss function is very similar to the
LexVec loss function. For each (w, c) pair observed in sliding a window over the training
corpus, k negative samples are drawn from the unigram context distribution and the
following objective function is maximized :

Jsg(w, c) = log σ(WwC
⊤
c ) +

k∑

i=1

Eci∼Pn(c) log σ(−WwC
⊤
ci ) (14)

where σ(·) is the logistic function. The expected loss for a single pass over the training
corpus for a specific (w, c) is:

E[Jsg(w, c)] = Mw,c log σ(WwC
⊤
c ) +Mw,∗ k Pn(c) log σ(−WwC

⊤
c ) (15)

= λws(w, c) log σ(WwC
⊤
c ) + 2l λns(w, c) log σ(−WwC

⊤
c ) (16)

Under the assumption that the embedding dimension is high enough such that J(·)
terms can be maximized independently for different word-context pairs, Levy and
Goldberg (2014b) show that the matrix WCT = PMI − log k maximizes J . This,
combined with the appearance of the LexVec weight terms λws , λns in J suggests
that the geometric observations made for the LexVec model will hold for the Skip-
gram model as well. Both window and negative sampling will draw PMI values that
have the same distribution as in fig. 2, and dot products between word and context
vectors will approach these values minus the log k shift. However, in contrast to this
apparent similarity, there is a subtle difference between the models in the way errors are
weighted. Suppose we have found parameters that perfectly factorize the PMI matrices,
so that in LexVec WCT = CPMI(−2) and in Skip-gram WCT = PMI − log k. We
then introduce a small error ǫ into the dot product WwC

T
c so that

LLexVec+ǫ(w, c) =
1

2
(λws(w, c) + λns(w, c)) ǫ

2 (17)

Jsg+ǫ(w, c) =λws(w, c) log σ(PMIw,c − log k + ǫ) (18)

+ 2l λns(w, c) log σ(−(PMIw,c − log k + ǫ)) (19)

The LexVec loss depends only on the weights and the error, whereas the Skip-gram
objective depends on the weight, the error, and the PMI value; because of the logistic
function, reconstruction errors for PMI values near zero affect the objective much more
than for high and low PMI values. If we re-word small reconstruction errors as sharp
and large reconstruction errors as fuzzy, the fuzziness of LexVec approximations is
entirely determined by the weights: the window sampling weight λws encourages sharp
approximations for high PMI values, the negative sampling weight λns for low PMI
values. The Skip-gram objective, in contrast, has opposing forces, with these same
“sharpnesses” encouraged by λws , λns being opposed by the fuzziness of the logistic
function at extreme PMI values. Despite this subtle difference in error weightings, as
we will see in section 6.2, the models behave very similarly empirically, such that the
ideas developed here apply to the Skip-gram model as well.

Connection to GloVe: GloVe factorizes the logarithm of the cooccurrence matrix
with added bias terms (eq. (5)). Although it is not clear what the optimal values
of these bias terms are, Shazeer et al. (2016) observe that these terms are highly
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correlated to the respective word and context corpus frequencies, such that the matrix
being approximated could resemble PMI (eq. (1)). This, combined with the fact that
GloVe’s loss weighting resembles the window sampling weight λws , suggests that results
for the LexVec model with no negative sampling might hold for the GloVe model as
well. That is, they might exhibit similar task performance and geometry.

Connection to SVD: Since λSV D(w, c) = 1 is uniform for all word-context pairs,
the fraction of |nPMI|/|nPMI ∪ pPMI| gives the fraction of total loss weights as-
signed to negative information, which in the case of PMIwiki is equal to 99.27%. The
SVD is thus an extreme case of prioritizing negative information, and as we will see
in experiments, behaves similarly to LexVec and Skip-gram models with high number
of negative samples.

4. Semantics/syntax in negative/positive information

In this section, we examine the type of information captured by the PMI distribution,
focusing on how syntactic and semantic information are reflected in positive and nega-
tive PMI. In particular, these experiments aim to answer the following questions: Does
negative information capture more semantic or syntactic information? Is the distri-
bution of negative information important? What is captured by positive information?
What is the benefit in using both?

4.1. Materials

Models: In order to identify the role that nPMI and pPMI play in distributional
semantics, we train two LexVec models:

• one that only considers negative information, nPMI, i.e. any pair in pPMI is
skipped during factorization, or equivalently, λLexVec = 0 if (w, c) ∈ pPMI , and

• one model that only considers positive information, pPMI, i.e. any pair in nPMI
is skipped during factorization, or equivalently λLexVec = 0 if (w, c) ∈ nPMI .

We compare these to models that include both negative and positive information
(nPMI ∪ pPMI ) to see how the two interact. To account for values in mnPMI, we use
the four PMI variants described in section 3.1: PPMI, CPMI(-2), NPMI, NNEGPMI.

We use the following LexVec configuration for all PMI variants: window size l = 5,
embedding dimension of 300, 5 negative samples, learning rate of 0.025, no subword
information, and negative distribution power αcds = 0.75.

For all experiments, we use the English Wikipedia corpus described in section 3.1,
resulting in the same underlying Mwiki matrix for all models.

For comparison, we include results for a randomly initialized, untrained embedding
to establish task baselines.

Semantic tasks: To evaluate word-level semantics, we use the SimLex (Hill, Re-
ichart, & Korhonen, 2015) and Rare Word (RW) (Luong, Socher, & Manning, 2013)
word similarity datasets. To evaluate word analogies, we use the Google Semantic
(GSem) analogies (Mikolov, Chen, et al., 2013). We evaluate sentence-level semantics
on the Semantic Textual Similarity (STSB) task (Cer, Diab, Agirre, Lopez-Gazpio, &
Specia, 2017) with averaged bag of vectors representations (BoV, summing the vectors
of each word in a sentence and dividing the sum by sentence length) using SentEval2

2Classifiers for all SentEval tasks are multilayer perceptrons with a single hidden layer of 100 units and
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Table 1. Performance on tasks focused on semantics or syntax by models that use only positive information

(p*), negative information (n*), or both (no prefix), and the random baseline. Using negative information
alone performs far better than the random baseline, especially on the syntactic tasks. Metrics: Spearman
rank correlation (×100) for SimLex and RW word similarity; Pearson correlation for STSB; % accuracy for
GSem/GSyn/MSR word analogies, POS tagging and WC, Dep, TopC probing tasks. Best result for each column
in bold, second best underlined.

model SimLex RW GSem STSB GSyn MSR POS Dep TopC

pPPMI 37.0 40.1 58.8 65.4 52.7 35.1 92.0 27.1 30.4

nPPMI 4.0 1.8 0.0 48.6 0.0 0.0 16.3 17.9 5.0
nCPMI(-2) 22.6 25.2 18.3 41.4 24.5 18.3 90.6 32.9 33.7
nNPMI 9.9 21.8 8.2 38.3 9.6 5.8 89.0 31.1 32.3

PPMI 34.0 45.3 76.5 61.6 55.1 36.7 91.7 25.5 26.6
CPMI(-2) 34.0 41.8 78.4 61.9 58.7 42.6 92.2 27.3 28.4
NPMI 26.0 39.4 60.0 60.6 44.4 30.2 91.4 26.3 27.9
NNEGPMI 34.0 43.0 78.3 61.7 56.3 39.8 92.0 25.1 26.3

Random 4.0 1.9 0.0 45.3 0.0 0.0 59.1 17.9 5.0

(Conneau, Kruszewski, Lample, Barrault, & Baroni, 2018).
Syntactic tasks: Similarly, we use the Google Syntactic analogies (GSyn) (Mikolov,

Chen, et al., 2013) and MRS syntactic analogies (Luong et al., 2013) to evaluate
word-level syntactic information. Google Syntactic analogies are in fact morphological
but many categories test for POS relations and are therefore syntactic in nature.
We employ the Depth (Dep) and Top Constituent (TopC) (of the input sentence’s
constituent parse tree) probing tasks from SentEval (Conneau et al., 2018) to evaluate
sentence-level syntax. Our final syntactic task is part-of-speech (POS) tagging using
FLAIR (Akbik et al., 2019) with the same BiLSTM-CRF setup as Huang, Xu, and Yu
(2015) but using only word embeddings (no hand-engineered features) as input, trained
on the WSJ section of the Penn Treebank (Marcus, Marcinkiewicz, & Santorini, 1993).

4.2. Results

The results shown in table 1 provide insights into the role of negative and positive
PMI for capturing semantic and syntactic information.

Negative PMI: nCPMI (−2) and nNPMI perform similarly to full distribution
models in POS tagging and both syntactic probing tasks (Dep and TopC), but very
poorly on all semantic tasks, suggesting that nPMI mostly encodes syntactic informa-
tion. Our hypothesis to explain this phenomenon is that the grammar that generates
language implicitly creates negative cooccurrence and so nPMI encodes this syntactic
information. Interestingly, this idea creates a bridge between distributional semantics
and the argument by Regier and Gahl (2004) that indirect negative evidence might
play an important role in human language acquisition of grammar.

The nPPMI model is almost identical to the random baseline; this is to be expected
as random initialization gives in expectation perpendicular vectors or equivalently dot

dropout of 0.1.
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products equal to zero, and if the only learning signal is to make dot products equal
to zero nothing changes.

Positive PMI: The pPPMI model which accounts for only values in pPMI performs
similarly to the full distribution models on most tasks, clearly indicating that pPMI
encodes both semantic and syntactic information.

Why incorporate nPMI? pPPMI falters on the RW and analogy tasks, and
accounting for nPMI significantly improves performance on both tasks. Section 5.3
explores how increasing the relative importance of negative information increases rank
invariance in the word vectors and improves results on both these tasks relative to using
only pPMI.

Full distribution models: Of the models which account for all PMI values
(nPMI ∪ pPMI ), the PPMI, CPMI

-2 , and NNEGPMI models perform similarly,
whereas the NPMI model is significantly worst on nearly all tasks. We thus con-
clude that accounting for scale in the positive distribution is more important than in
the negative distribution.

Collapsing the negative distribution: The PPMI model, which collapses the
negative distribution to zero, performs comparably to the CPMI

-2 and NNEGPMI
models that account for the range of negative values on most tasks. However, pre-
serving the scale and distribution of negative values (CPMI

-2 rather than PPMI)
consistently improves performance on all syntactic tasks.

In summary, negative information alone strongly captures syntactic information,
and preserving the distribution of negative values benefits tasks that are syntactic in
nature. In contrast, positive information captures both semantic and syntactic infor-
mation. Using both positive and negative information makes model performance more
robust across tasks.

5. Negative information and geometry

Mimno and Thompson (2017) observed that as negative sampling is increased, Skip-
gram word vectors occupy a narrowing cone in embedding in space and point away from
context vectors. For further insight, it would be interesting to investigate additional
effects of increased negative sampling, and generalize these results to other embedding
models. Thus in this section, we conduct experiments to answer the following questions:
What is the relationship between negative sampling and negative information? How
does increasing the relative weight (or importance) of negative information affect the
geometry of the word vector space?

5.1. Negative sampling vs. negative information

In our study, we need a way to gradually increase the loss weights in the negative distri-
bution of PMI, λLexVec for (w, c) ∈ nPMI, relative to pairs in the positive distribution,
(w, c) ∈ pPMI , to be able to answer the question above. Window sampling weights
λws are fixed given the data, so the only control we have over λLexVec is k, the number
of negative samples. We need to show that increasing the number of negative samples
in the LexVec factorization increases the relative weight of negative information.

To show this, we sample 105 values from CPMI(−2)wiki using window sampling and
negative sampling and plot the distribution of these values in fig. 2. This plot shows
the reconstruction error weights λ∗ different sampling regimes assign to different PMI
values. For example, the peak at −2 tells us that negative sampling weights λns will be
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Figure 2. The distribution (bin width equal to 0.2) of sampled CPMIwiki (−2) values when using window
sampling and negative sampling. Histogram from fig. 1 included for comparison. These window sampling and
negative sampling distributions of PMI values correspond to the reconstruction error weights λws, λns in
eq. (13) as a function of PMI. Negative sampling assigns high weights to values in nPMI, and window sampling
to values in pPMI.

higher for (w, c) pairs in nPMI than for (w, c) pairs in pPMI. The opposite is observed
for window sampling weights, which assign more weight to values in pPMI. Table 2
shows this same result by aggregating values in fig. 2.

These results confirm that, as the number of negative samples is increased, so is the
relative weight of negative information in the factorization. This enables us to use the
LexVec model to investigate the impact of increasing negative information on resulting
word vector geometry.

5.2. Materials

Models: As shown in section 5.1, when using both window sampling and negative
sampling, increasing the number of negative samples effectively increases the relative
importance of negative information. We use the default LexVec setting in which both
nPMI and pPMI are used (no steps are skipped), and increase the number of negative
samples from 0 to 1, 2, 4, 5, 10, 15, and 20. We focus on CPMI(−2) since as described
in section 3.1 it closely mimics the measure of ultimate interest which is PMI.

Analogies: Analogies of the form “a is to b as c is d” are evaluated by finding the
word d∗ such that:

d∗ = argmaxw∈Vw
Cos(Ww,Wc +Wb −Wa) (20)

Cos(u, v) =
u · v
|u||v| (21)

If d∗ = d, the analogy is said to hold in the vector space. Schluter (2018) points out
two flaws in the way this evaluation is conducted in works such as Mikolov, Chen, et
al. (2013); Pennington et al. (2014):

(1) Normalization (Norm/N): The vector space is distorted by normalizing all word
vectors to unit length before the term Wc +Wb −Wa is calculated.

(2) Premise exclusion (Prem/P): The set {w ∈ V } in eq. (20) is replaced by {w ∈
V \ {a, b, c}} – the analogy’s premises are excluded from the set of candidate
answers. In practice this improves performance because it is often the case that
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Table 2. Set (rows) membership of samples for various sampling methods (columns). Cell values are the

percentage of samples for a given method that fall within a set, such that nPMI+pPMI sum to 100. Full:
computed over all cells in PMIwiki. Hist: computed over the same 105 sampled pairs plotted in fig. 1. WS

and NS: computed over the same 105 sampled pairs used in fig. 2 using window sampling (ws) and negative
sampling (ns). Observe that window sampling is heavily skewed towards pairs in pPMI, and negative sampling
heavily skewed towards pairs in nPMI.

Name Set Full Hist WS NS

nPMI: Negative
information

{(w, c) | PMIw,c ≤ 0} 99.27 22.24 19.35 81.75

pPMI: Positive
information

{(w, c) | PMIw,c > 0} 0.73 77.76 80.65 18.25

mnPMI:
Maximally-
negative informa-
tion

{(w, c) | Mw,c = 0} 99.07 0.00 0.00 51.33

nPMI\mnPMI:
Collapsed nega-
tive information
under PPMI

{(w, c) |PMIw,c ≤ 0

∧Mw,c > 0} 0.21 22.24 19.35 30.42

Wb − Wa ≈ 0 and so d∗ = c if c is not excluded from the candidates (Linzen,
2016).

Although these strategies work well in practice, significantly improving accuracy, they
mask the degree to which the linear relationship Wa−Wb ≈ Wc−Wd is present in the
vector space. This is particularly problematic as it may lead to wrong conclusions. For
instance, using the popular GoogleNews word2vec vectors, the answer to the analogy
“man is doctor as woman is to ?” is “nurse” (Bolukbasi et al., 2016) if both Norm
and Prem are performed, when in fact, if analogies are evaluated correctly, the actual
answer is “doctor” as well (Nissim et al., 2019).

In this work, we perform incorrect evaluation where both strategies are used (e.g.
GSem, GSyn, MSR) partially correct evaluation where one strategy is excluded (e.g.
GSem-N, MSR-P), and correct evaluation where both strategies are excluded (e.g.
GSem-N-P).

Geometry × frequency: To understand how increased negative sampling affects
the geometry of words of different frequencies, we evaluate performance using SimLex
(which consists of frequent words) and RW (which consists of frequent-rare word)
word similarity datasets. To perform the same frequency analysis on analogies, we
order the analogies in the analogy datasets by the highest rank of any of the words
in each analogy. We take the first 10% and last 10% analogies to create frequent
(GSemF, GSynF, MSRF) and rare (GSemR, GSynR, MSRR) word analogy datasets,
respectively, with -N and -N-P variants when strategies (N: normalization, P: premise
exclusion) are excluded as described above. Table A1 in the appendix A gives percentile
rank statistics for all datasets we use.
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5.3. Results
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(b) LV-5

0 2 4 6 8 10
norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

de
ns

ity

0-100
100-500
500-5000
5000-70000
70000-300000

(c) LV-20
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(d) Skip-gram
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(e) GloVe
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(f) SVD

Figure 3. The distribution of vector L2 norms for 100 words sampled from various frequency buckets for
LexVec models using 0, 5, and 20 negative samples (LV-0, LV-5, LV-20). As the number of negative samples
increases, the norms become more rank invariant, with means of the different buckets becoming increasingly
closer and variance decreasing. The norm distributions for Skip-gram, GloVe, and SVD are shown for compar-
ison.

Norms: In fig. 3, we plot the distribution of vector L2 norms for 100 words sampled
from different frequency buckets for LexVec models using 0, 5, and 20 negative samples
(LV-k denotes the model with k negative samples). We use the same buckets as Mimno
and Thompson (2017), indexing words by inverse frequency (most frequent first), 0-
100, 100-500, 500-5000, 5000-70000, and defining an additional bucket 70000-300000
for extremely rare words. With an increasing number of negative samples, the relative
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weight of negative information is increased, and vector norms become rank invariant ;
the means of the different buckets becomes increasingly closer and variance decreases
as negative samples are increased.
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(b) LV-5
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(d) Skip-gram
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(e) GloVe
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(f) SVD

Figure 4. In solid lines, the distributions of cosines (eq. (21)) of word vectors from different frequency buckets
with the mean vector of word vectors from all buckets, and in dashed lines the distributions of cosines of context
vectors from different frequency buckets with this same mean word vector. As the number of negative samples
increases, word vectors increasingly point in the same direction and word-context vectors point in the opposite
direction.

Direction: In fig. 4, we perform the experiment of Mimno and Thompson (2017),
where using the same sampled words and frequency buckets as in fig. 3, we calculate
the mean vector of all sampled words from all buckets, and plot the distribution of
the cosine (eq. (21)) of sampled word vectors (solid line) and correponding context
vectors (dashed lines) with this mean vector. Here we observe that as the number of
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negative samples increases, word vectors increasingly point in the same direction, and
context vectors point in opposite direction. As a preface to section 6.2, these are the
same effects observed by Mimno and Thompson (2017) for the Skip-gram model.

Table 3. Nearest neighbors of words sampled from SimLex. Subscripts denote the percentile rank of a word
(0.0 is most frequent word, 100.0 is rarest). All models exhibit semantically coherent neighbors, with the
exception of the SG model which has some unrelated intruders, notably for the word “interest”.

word model neighbors

interest 0.3 LV-0 interests 1.0, conflict 0.5, interested 0.7, scientific 0.5, partic-
ular 0.3, expertise 2.3, reason 0.2, wizardimps 67.2, attention

0.5, desire 1.3

LV-20 interests 1.0, interested 0.7, scientific 0.5, attention 0.5, par-
ticular 0.3, conflict 0.5, focus 0.5, concerned 1.0, nature 0.4,
piqued 26.1

SG bshsu 90.2, conflict 0.5, btheeuropeanlibrary 87.6, bwral

65.5, bepochtimes 41.4, richarddawkins 74.5, thegauntlet

78.0, interested 0.7, wizardimps 67.2, towsonedu 95.1

GloVe interests 1.0, interested 0.7, concern 0.9, attention 0.5, focus

0.5, knowledge 0.5, conflict 0.5, influence 0.6, involvement

1.2, subject 0.2

SVD interests 1.0, interested 0.7, attention 0.5, substantial 1.1,
share 0.7, own 0.1, credit 0.8, benefit 1.0, debt 1.6, financial

0.5

cup 0.1 LV-0 champions 0.5, uefa 1.3, championship 0.2, cups 2.7, league

0.1, finals 0.7, trophy 1.1, tournament 0.4, fifa 1.1, champi-
onships 0.3

LV-20 champions 0.5, cups 2.7, championship 0.2, trophy 1.1, finals

0.7, league 0.1, competitions 0.9, runners 1.5, scorer 2.2,
tournament 0.4

SG cups 2.7, champions 0.5, championship 0.2, finals 0.7, trophy
1.1, league 0.1, supercup 8.5, uefa 1.3, scorers 4.7, intertoto

12.4

GloVe championship 0.2, cups 2.7, champions 0.5, tournament 0.4,
league 0.1, uefa 1.3, finals 0.7, championships 0.3, trophy

1.1, matches 0.4

SVD runners 1.5, nextseason 4.9, champions 0.5, prevseason 4.9,
cups 2.7, scorers 4.7, competitions 0.9, scorer 2.2, fifa 1.1,
matches 0.4

soul 0.9 LV-0 love 0.2, blues 0.8, heaven 1.5, funk 2.7, album 0.1, mind 0.5,
spirit 0.8, souls 3.0, god 0.4, gospel 1.6

LV-20 heaven 1.5, funk 2.7, love 0.2, essence 3.0, souls 3.0, mind

0.5, eternal 2.5, forever 1.7, spirit 0.8, dreams 1.6

SG soulful 11.0, funk 2.7, love 0.2, heaven 1.5, blues 0.8, essence
3.0, funky 6.1, souls 3.0, temptations 9.3, changeless 89.4

GloVe blues 0.8, funk 2.7, mind 0.5, hop 1.1, hip 1.0, love 0.2, rap

2.1, spirit 0.8, pop 0.4, heaven 1.5

SVD heaven 1.5, forever 1.7, dreams 1.6, eternal 2.5, dream 0.9,
love 0.2, souls 3.0, funk 2.7, spirit 0.8, destiny 3.0

Nearest neighbors: We perform qualitative analysis of nearest neighbors of words
sampled from SimLex in table 3 and RW in table 4, where neighbors are ordered by
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Table 4. Same as table 3, but with words sampled from RW. LV-0 neighbors have no clear semantic connection

to the target word. In the LV-20 model, have clear semantic relations to the targets. GloVe behaves like LV-0,
and Skip-gram and SVD like LV-20.

word model neighbors

rooters 77 LV-0 sonorella 98, bhavas 67, recreative 86, wwwjskscoin 98,
wwwlegion 95, damsels 44, hassane 72, maniraptorans 99,
abolboda 52, sympycnus 47

LV-20 cheered 15, cheering 11, howled 73, jubilant 26, hissed 75,
bosox 81, mcgreevy 53, rogell 62, jeers 43, mobbed 33

SG nuxhall 73, sparky 11, yanks 15, strupper 87, whitey 12,
chisox 83, schoendienst 56, altrock 96, clendenon 85, cam-
paneris 62

GloVe paiks 93, trashmen 96, wampanoags 93, mycenaeans 79,
highnesses 60, perseids 89, clubmen 92, thalians 98, guelf

99, housecarls 93

SVD ballplayers 31, shibe 31, semipro 60, ebbets 29, phanatic 71,
kekiongas 80, mudville 73, comiskey 18, mutuals 33, nabbp

48

monocultures 76 LV-0 pegomya 94, atara 81, shebang 40, subsidization 69, kiy-
omori 38, lucullus 23, intercal 76, paaerduag 99, dagbon 80,
voluntas 89

LV-20 monoculture 35, crops 2, agroforestry 34, replanting 35, sil-
viculture 45, replanted 27, overgrazing 26, clearcutting 47,
rainfed 65, seedlings 11

SG monoculture 35, overgrazed 81, polyculture 88, silvicultural

84, crops 2, woodlots 73, intercropping 90, overstory 91,
allelopathic 83, croplands 60

GloVe chlamydospores 88, microbubbles 94, renunciations 92, in-
sectoids 91, monoculture 35, plasmodesmata 87, relaxations

79, contactors 66, urocystis 57, vortexes 90

SVD monoculture 35, polyculture 88, dryland 33, silviculture 45,
fuelwood 62, clearcutting 47, replanting 35, agroforestry 34,
seedlings 11, swidden 59

flighted 83 LV-0 ablabesmyia 31, hydroptila 40, sphex 69, semiotus 82,
sympycnus 47, coelichneumon 60, prajapati 32, diorhabda

98, quizzer 73, wwwtsuru 96

LV-20 ratite 63, ratites 35, dromaeosaurids 50, flightless 14, tina-
mous 38, raptorial 60, parrots 8, psittaciformes 41, mani-
raptorans 99, psittacidae 32

SG raptorial 60, flightlessness 92, tibiotarsus 88, dro-
maeosaurids 50, zygodactyl 57, maniraptorans 99, apomor-
phic 93, ratite 63, rectrices 65, hindlimbs 39

GloVe sunbathe 92, hypnotise 99, maniraptorans 99, illidan 80, lan-
guorous 98, githyanki 95, dichotomius 73, tmesisternus 54,
chloroceryle 89, quadroon 72

SVD zygodactyl 57, raptorial 60, beaks 13, flightless 14, avians
73, opposable 42, featherless 60, ratite 63, forelimbs 17,
pronated 92

descending cosine similarity (eq. (21)) – similarity decreases from left to right – and
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subscripts denote the percentile rank of a word (0.0 is most frequent word, 100.0 is
rarest).

In both the LV-0 and LV-20 model, frequent words have semantically related, fre-
quent word neighbors, showing that increasing negative information has no effect on
the semantic similarity of frequent words. Results change completely with rare words,
where LV-0 neighbors are rare words and – barring a few exceptions – have no obvious
semantic connection to the target word, e.g. the nearest neighbor of “monocultures”
(an agriculutural practice) is “fieldensis” (a species of arthropod). With the LV-20
model, on the other hand, the neighbors of target rare words are generally of higher
frequency than the targets, and have clear semantic relations, as with “monocultures”
and “monoculture” (singular) or “seedlings” (young plants). Qualitatively, and as we
will see in the next section, quantitatively, increasing the importance of negative in-
formation has a positive impact on the representation of rare words.
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(c) Analogies, rare words
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(d) Analogies, frequent words

Figure 5. (a) Word similarity results: RW improves as the number of negative samples increases. There is a
small but consistent drop in performance on SimLex when increasing the number of negative samples. Scores
in WSRel do indeed increase, but there is no clear drop in similarity scores in WSSim. (b) GSem/GSyn/MSR:

Performance increases as the number of negative samples increases. Normalization has a minor effect, whereas
premise exclusion is critical to performance. (c) GSem/GSyn/MSR Rare words: Consistent improvements in all

conditions because rare words are better represented. (d) GSem/GSyn Frequent words: With both strategies
or only the normalization strategy performance is nearly constant. For conditions without premise exclusion
strategy, there is remarkable improvement in analogy performance as negative samples increase, especially for
semantic analogies. Metrics: for (a) Spearman rank correlation (×100), for (b,c,d), Accuracy.
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Word similarity tasks: Shown in fig. 5a, results on RW improve consistently as
the number of negative samples is increased. There is a small but consistent drop
in performance on SimLex when increasing the number of negative samples. Look-
ing at the SimLex nearest neighbor examples in table 3, the semantic similarities are
indistinguishable between the LV-0 and LV-20 models, even though the LV-0 model
has a marginally higher SimLex score. We tested the WS353 word similarity dataset
(Finkelstein et al., 2001), split into relatedness (WSRel) and similarity (WSSim), to
see if this drop on SimLex scores, which measures similarity, is due to an increase
in relatedness; that is, if related pairs such as (psychology,Freud) are being drawn
closer together in space to the detriment of semantically similar pairs such as (psy-
chology,psychiatry). We observe in fig. 5a that relatedness scores in WSRel do indeed
increase, and that there is a small drop in similarity scores in WSSim. This suggests
that as relatedness increases – which happens as the relative importance of negative in-
formation is increased – true similarity drops. This possible tradeoff between similarity
and relatedness is an interesting investigation for future work.

Word analogies: Figure 5b shows how analogy performance varies as the number of
negative samples is increased. Clearly performance increases as the number of negative
samples increases, in particular for the semantic analogies. Removing the normalization
strategy has a minor effect on task performance. Removing the premise exclusion
strategy, however, leads to a tremendous drop in performance. This is why it is crucial
to perform correct evaluation of word analogies without additional strategies, for an
accurate assessment of the semantic and syntactic information represented by the word
embeddings.

The strong results with the premise exclusion strategy might lead one to believe that
the linear offsets corresponding to the analogies are straightforwardly accessible in the
vector space when they clearly are not. However, if the number of negative samples is
increased, we see a stark improvement under the correct evaluation, suggesting that
these linear offsets/regularities manifest more clearly in the vector space.

To determine if this improvement is not merely due to better representations of
rare words induced by increased negative sampling, as discussed previously, we look
at the (GSem/GSyn/MSR)F/R datasets which contain the analogies with most/least
frequent words. For (GSem/GSyn/MSR)R, we see the expected results in fig. 5c:
consistent improvements with and without strategies because rare words are better
represented. The surprising result is for (GSem/GSyn/MSR)F in fig. 5d: with both
strategies or only the normalization strategy performance is nearly constant. Without
the premise exclusion strategy, however, there is a remarkable improvement in analogy
performance, especially for semantic analogies. This suggests that negative sampling
is altering the geometry of the vector space in such a way that the linear offsets used
to solve analogies hold more strongly, without resorting to strategies.

In summary, we established a direct relationship between negative sampling and
negative information, and showed that increasing the relative importance of negative
information within the LexVec model increases the rank invariance of vector direc-
tion and norms, improves the representation of rare words (which can also be cast
as an increase in rank invariance of the coherence of semantic representations), and
significantly improves analogy performance under correct evaluation.
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6. Connection to other models

In this section, we conduct experiments aimed at answering the question: Are these
conclusions generalizable? In particular, do conclusions for the LexVec model apply to
popular models such as Skip-gram, GloVe, and SVD? Given that Skip-gram implicitly
factorizes a shifted PMI matrix, GloVe’s factorization is related to a PMI factorization,
and SVD performs optimal unweighted factorization, we investigate how these factor-
izations compare to the explicit PMI factorization performed by LexVec as regards
increasing negative information. In particular, we are interested in the (dis)similarities
of the geometry of the resulting word vector spaces.

6.1. Materials

Skip-gram: We train a Skip-gram model using the same parameters from the original
paper (Mikolov, Chen, et al., 2013), with window size l = 5 and number of negative
samples in {1, 2, 5} (we refer to these models as SG-1, SG-2 and SG-5). Note that
Skip-gram with 5 negative samples performs the same amount of computation as
the LexVec model with 20 negative samples: Skip-gram draws 5 negative samples
per target-context pair (2 × 2 × 5 = 20 for each window), whereas LexVec draws
20 negative samples per window. Analogous parameters have the same values as the
LexVec models: embedding dimension of size 300, learning rate of 0.025, negative
distribution power of 0.75, subsampling threshold of 1e− 5.

GloVe: The GloVe configuration follows the configuration of the original paper
(Pennington et al., 2014), but with three changes to make the results directly com-
parable to LexVec: (1) unlike in the original paper, the corpus is subsampled using
a threshold of 1e − 5 before constructing the cooccurrence matrix. (2) Window size
l = 5 to match LexVec and Skip-gram models. (3) Word vectors are output without
averaging with context vectors, so that word vectors and context vectors can be ana-
lyzed separately. All other parameters are kept: embeddings of size 300, 100 training
epochs, and learning rate of 0.05.

SVD: A limitation of the truncated SVD is that its computational efficiency is
contingent on the sparsity of the input matrix. This sparsity is lost when using the
CPMI(−2), so we must use the zero-preserving transform PPMI. Given the trun-
cated SVD, PPMI = UdΣdV

T
d , which discards all but the top d singular values,

we follow Levy et al. (2015) and set word and context matrices to W = Ud

√
Σd,

C = Vd

√
Σd respectively. We factorize the PPMI transform of Mwiki , setting d = 300.

6.2. Results

Given these similarities in loss functions presented in section 3.2, we expect the Skip-
gram model trained using 5 negative samples to resemble the LexVec LV-20 model
that draws 20 negative samples (since, as stated in section 6.1, this leads to the same
number of total negative samples) and the GloVe model to resemble the LV-0 which
uses only window sampling. We expect the patterns that emerge as the number of
negative samples increase to manifest clearly in the SVD model, which assigns the
vast majority of its loss weights to negative values. Table 5 shows task results for all
compared models.
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Table 5. Comparing task performance of LexVec, Skip-gram, GloVe, and SVD models in Word similarity

and analogy tasks (-: no strategies excluded, -N: norm strategy excluded, -P: premise strategy excluded, -N-P:
both strategies excluded). The LV-0 model is similar to the GloVe model: strong SimLex results, weaker RW
results, and similar across all analogy evaluations, barring MSR where GloVe is considerably stronger than all
other models. Analogously, the LV-20 model is similar to the Skip-gram and models: strong SimLex and RW
results, and consistently strong performance on all analogy evaluations. SVD has the lowest performance, but
note that it suffers the smallest drop when the -P strategy is excluded. Metrics: Spearman rank correlation
(×100) for SimLex and RW, Accuracy for analogies.

model SimLex RW GSem GSem-N GSem-P GSem-N-P

LV-0 35.3 42.6 76.0 76.1 0.9 1.3
LV-5 34.0 41.5 78.9 78.2 7.6 7.2
LV-20 32.3 44.1 77.7 77.1 24.0 20.7

SG-1 36.0 45.5 75.3 75.3 11.2 10.5
SG-2 36.4 46.5 77.4 76.9 11.7 10.6
SG-5 35.9 46.9 78.9 78.4 11.2 10.1

GloVe 35.4 40.6 74.4 74.3 5.6 6.0
SVD 28.6 41.9 43.9 41.7 20.5 20.6

model GSyn GSyn-N GSyn-P GSyn-N-P MSR MSR-N MSR-P MSR-N-P

LV-0 56.2 55.6 6.5 7.1 40.1 39.4 1.7 2.0
LV-5 59.1 58.5 11.2 11.8 43.0 42.4 4.4 4.5
LV-20 58.1 57.2 13.7 14.7 42.5 41.1 5.8 5.9

SG-1 61.9 60.4 11.4 12.2 45.6 44.8 3.7 3.7
SG-2 63.3 61.8 11.3 12.4 47.3 46.6 4.0 4.1
SG-5 63.0 61.1 10.9 11.8 46.3 45.2 3.1 3.7

GloVe 64.5 64.0 13.3 14.0 58.1 57.6 7.9 8.5
SVD 42.0 40.8 9.2 8.9 26.9 23.1 4.8 3.9

6.2.1. Skip-gram

• Norms: figs. 6a to 6c show the word vector norm distributions for the Skip-gram
models. In contrast to the same figures for the LexVec models (figs. 3a to 3c), for
Skip-gram it is not clear if increasing the number of negative samples increases
the rank invariance of vector norms. Delving deeper, we plot a simple moving
average of period 100 (SMA100(i) =

∑99
t=0 |Wi−t|/100) of vector norms as a

function of word rank in figs. 6d and 6e. Although the shape of both functions
is different, it is clear for both Skip-gram and LexVec that as the number of
negative samples increases the functions become flatter, indicating the increase
in rank invariance of vector norms.

• Directions: In figs. 6f to 6h, we plot the distribution of cosines between words
of different frequency buckets with the mean vector of all buckets for the SG
models, as was drawn in figs. 4a to 4c for the LexVec models. Just as with

22



0 2 4 6 8 10
norm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

de
ns

ity

0-100
100-500
500-5000
5000-70000
70000-300000

(a) SG-1 norms

0 2 4 6 8 10
norm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

de
ns

ity

0-100
100-500
500-5000
5000-70000
70000-300000

(b) SG-2 norms

0 2 4 6 8 10
norm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

de
ns

ity

0-100
100-500
500-5000
5000-70000
70000-300000

(c) SG-5 norms

0 50000 100000 150000 200000 250000 300000
rank

3.0

3.5

4.0

4.5

5.0

no
rm

 sm
a

SG-1
SG-2
SG-3
SG-4
SG-5

(d) Skip-gram norms SMA

0 50000 100000 150000 200000 250000 300000
rank

1

2

3

4

5

6

7

no
rm

 sm
a

LV-0
LV-1
LV-2
LV-3
LV-4
LV-5
LV-20
SVD

(e) LexVec norms SMA

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
cosine with mean

0

2

4

6

8

10

12

14

de
ns

ity

0-100
100-500
500-5000
5000-70000
70000-300000

(f) SG-1 cosines with mean

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
cosine with mean

0

2

4

6

8

10

12

14

de
ns

ity

0-100
100-500
500-5000
5000-70000
70000-300000

(g) SG-2 cosines with mean

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
cosine with mean

0

2

4

6

8

10

12

14

de
ns

ity

0-100
100-500
500-5000
5000-70000
70000-300000

(h) SG-5 cosines with mean

Figure 6. (a,b,c): Word vector norm distributions for Skip-gram models with 1, 2 and 5 negative samples
(SG-1, SG-2, SG-5). In contrast to the same figures for the LexVec models (figs. 3a to 3c), it is not clear if
increasing the number of negative samples increases the rank invariance of vector norms. (d,e): Simple moving
average of period 100 (with accompanying scatter plot of points used in calculating this average) of word vector
norms as a function of word rank. We include additional SG-k and LV-k models for various k to make the trend

clear. Although the shape of (d) and (e) is different, it is evident for both Skip-gram and LexVec that as the
number of negative samples increases the functions become flatter, indicating the increase in rank invariance of

vector norms. SVD displays the extreme case where nearly all loss weight is assigned to negative information,
leading to ideal rank invariance. (f,g,h): Solid lines show distribution of cosines between vectors of words of
different frequency buckets with the mean vector of all buckets, and dashed lines the of cosines of context
vectors of these same words with the mean word vector, as in figs. 4a to 4c. Word vectors increasingly point
in the same direction and word vectors point away from context vectors as the number of negative samples
increases.

the LexVec models, word vectors point in the same direction and word vectors
point away from context vectors as the number of negative samples increases.
This is precisely what was observed as the “strange” geometry of Skip-gram
in Mimno and Thompson (2017), here explained by increasing importance of
negative information.

• Word similarity and analogies: Overall SG results in table 5 are similar to
the LV-20 models, which is to be expected given the similarity in loss functions.
All SG models achieve similar results, with the only clear trend being marginal
improvements in RW performance as the number of negative samples increases.
Thus increasing negative information has little effect on task results. We at-
tribute this to the fact that even with the minimum number of negative samples
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(k = 1), there is one negative sample per observed word-context pair, in con-
trast to LexVec where with k = 1 there are 2l observed pairs. In other words,
the minimum relative importance of negative information within the Skip-gram
model is sufficiently high so as not to observe the poor rare word representations
observed in the LV-0 and GloVe models. Note that setting k = 0 makes the
Skip-gram objective (eq. (15)) ill-defined since it can be made arbitrarily high
by aligning all word vectors and increasing their norms.

• Nearest neighbors: We performed qualitative analysis of word neighbors in
tables 3 and 4 as was done with the LexVec models. Skip-gram neighbors are
semantically related for both frequent and rare words, as is the case with other
models that use negative information (LV-20 and SVD). The exception is the
frequent word “interest” which has some incoherent neighbors. This irregularity
deserves future investigation, but we suspect it is due to a weakness in the local
nature of the Skip-gram model where, independent of the global PMI value for
an observed pair (even if it is negative), a single step of optimization draws
together the corresponding vectors. We omit results for SG-1,2 for there is no
qualitative difference between the SG models as negative samples increase (our
hypothesis for this is described above).

6.2.2. GloVe and SVD

• GloVe: In figs. 4a and 4e, LV-0 and GloVe behave similarly: vectors do not have
a directional preference in respect to the mean vector and to context vectors.
The similarity breaks in the distribution of vector norms in fig. 4e, which in
LV-0 are far less rank invariant than in GloVe. We hypothesize that GloVe’s
vector norm rank invariance is due to bias terms which are responsible for scal-
ing word-context dot products to approximate log cooccurrence count, allowing
word/context vectors to have a similar norm.

Word similarity and analogy results are given in table 5. The LV-0 model is
similar to the GloVe model: good SimLex results, weak RW results, and consis-
tently similar across all analogy evaluations, with the exception of MSR where
the GloVe model outperforms all other models by a wide margin. The similar-
ity is even clearer in the nearest neighbor samples in tables 3 and 4. For both
models, frequent words have semantically related neighbors, and rare words have
incoherent neighbors.

Overall, despite minor differences in their objectives, the GloVe and LV-0
models – which perform only window sampling – behave similarly.

• SVD: As can be seen in fig. 3f, the SVD vector norms are invariant to rank.
When moving from the LV-0 to LV-20 model, increasing the relative importance
of negative information increases rank invariance of vector norms, and the SVD
model which weighs negative information more heavily than any other model
shows this effect to the extreme.

Figure 4f shows less separation of word and context vectors than seen in the
LV-20 and SG models. However, there is a clear separation in modes, with all
word vector buckets having positive modes and all context vector buckets nearing
zero. This is explained by the SVD model using the PPMI transform, which
drives dot products of negative cooccurring pairs to 0 rather than to negative
values as with the CPMI(−2) transform. Cosines of context vectors and the
mean word vector are thus distributed near zero, rather than at negative values.

Looking at table 5, the SVD model is significantly weaker on the SimLex

24



task than all other models. We attribute this to its indiscriminant weighting of
reconstruction errors (not obeying the reliability principle). Weak results on RW
are similarly attributed. Note that one might suspect the PPMI transform to be
at fault, but observe that in table 1 the PPMI variant of LexVec is comparable
to other transforms that do not collapse the negative distribution of PMI.

Under incorrect evaluation – which includes norm and premise exclusion
strategies – SVD has the weakest performance on analogies of all models tested.
However, if both strategies are excluded, it performs nearly as well as the LV-
20 model on GSem-N-P, and marginally worse on GSyn-N-P and MSR-N-P. We
attribute the weaker performance on syntactic analogies to the PPMI metric
(in table 1, PPMI underperforms both CPMI(−2) and NNEGPMI on GSyn
and MSR), and the strong performance with strategy exclusion to the majority
weighting of negative information in the loss function.

Under qualitative analysis of nearest neighbors in tables 3 and 4, the SVD
model returns semantically related words for both frequent and rare words, sim-
ilar to the LV-20 model.

In summary, the SVD model, which accounts for negative information more
strongly than any other model, magnifies the effects of negative information
observed in the LexVec models.

7. Conclusions and Future Work

In this paper, we investigated the role that negative and positive information each play
in distributional semantic models. We evaluated existing and novel ways of incorpo-
rating negative information into word embedding models based on explicit weighted
matrix factorization. Results show that only accounting for positive PMI in the fac-
torization strongly captures both semantics and syntax, whereas using only negative
PMI captures some semantics but (surprisingly) a lot of syntactic information. Our
findings indicate that “a word is not only characterized by the company that it keeps,
but also by the company it rejects”.

Additionally, we investigated how increasing the relative importance of negative
information affects the geometry of word embeddings. We observed that negative in-
formation improves rank invariance of vector geometry, with increase in word similarity
and analogy task performance suggesting the importance of this invariance. We showed
empirically that similar conclusions hold for the popular Skip-gram, GloVe, and SVD
models. An important question for future work is why does word analogy performance
under correct evaluation improve dramatically as negative sampling increases.

Finally, understanding the type of information captured by negative and positive
PMI may also be relevant for studies on the role of negative indirect information for
language acquisition. For example, Regier and Gahl (2004) argue that indirect negative
evidence might play an important role in human acquisition of grammar, but do not
link this idea to distributional semantics.
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Appendix A. Dataset Rank Statistics

Table A1. Percentile rank statistics for words in the datasets used in this paper. Note: µ- mean, σ- standard
deviation, Qk- k-th quartile.

dataset µ σ min Q1 median Q3 max

Rare Words (RW) 19.3 24.4 0.0 1.8 7.9 27.8 100.0
SimLex 2.3 3.1 0.0 0.6 1.5 3.0 46.4
WordSim-Relatedness (WSRel) 1.6 2.3 0.0 0.3 0.8 1.9 22.4
WordSim-Similarity (WSSim) 2.0 2.9 0.0 0.3 0.7 2.3 21.8
MSR Syntactic Analogies (MSR) 5.2 13.2 0.0 0.3 0.7 2.5 97.0
Google Semantic Analogies (GSem) 10.4 15.3 0.0 0.5 2.8 13.5 69.2
Google Syntactic Analogies (GSyn) 3.7 5.2 0.0 0.7 1.8 4.6 38.4
Google Semantic Analogies, Fre-
quent Split (GSemF)

0.9 0.6 0.0 0.3 0.7 1.3 2.3

Google Syntactic Analogies, Fre-
quent Split (GSynF)

0.4 0.3 0.0 0.2 0.3 0.6 1.0

Google Semantic Analogies, Rare
Split (GSemR)

6.1 9.3 0.0 1.1 2.7 6.1 69.2

Google Syntactic Analogies, Rare
Split(GSynR)

3.5 5.3 0.0 0.5 1.5 3.6 38.4

Penn Treebank (POS) 12.3 16.5 0.0 2.2 6.1 15.0 99.8
Tree Depth (Dep) 14.4 17.5 0.0 2.8 7.8 18.8 99.6
Top Constituent (TopC) 14.1 17.2 0.0 2.8 7.6 18.2 99.9

Appendix B. Fixed Window Size l = 2 and Positional Contexts

We performed identical experiments to the main paper, but using positional contexts
and fixed window size of 2, as used in Salle, Idiart, and Villavicencio (2016). Results
lead to matching conclusions as those for the larger randomized windows used in the
main paper, and further highlight the role negative information: accounting for the
zero cooccurrence (pairs in mnPMI) is even more important when using this smaller
window size and positional contexts, which increase the sparsity of the cooccurrence
matrix. Under this increased sparsity, models which ignore pairs in mnPMI (such as
GloVe and LexVec with no negative sampling) see severe degradation in rare word
representations.

Appendix C. Subword Information

Here we repeat the experiments from appendix B, but incorporate subword information
into LexVec (Subword LexVec; SLV) and Skip-gram (fastText; FT). Results follow the
same trend of the main paper, leading to matching conclusions. However, note that
whereas in the main paper and appendix B we are able to isolate the effects of negative
information on words of different frequencies, using subword information breaks this
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Table B1. Same as table 2, but using positional contexts and symmetric context window of fixed

size 2.

Name Set Full Hist WS NS

nPMI: Negative
information

{(w, c) | PMIw,c ≤ 0} 99.75 14.53 12.44 85.42

pPMI: Positive
information

{(w, c) | PMIw,c > 0} 0.25 85.47 87.56 14.58

mnPMI:
Maximally-
negative informa-
tion

{(w, c) | Mw,c = 0} 99.71 0.00 0.00 69.08

nPMI\mnPMI:
Collapsed nega-
tive information
under PPMI

{(w, c) |PMIw,c ≤ 0

∧Mw,c > 0} 0.04 14.53 12.44 16.34

isolation by sharing information between frequent and rare word forms. Nevertheless,
despite this confounding factor, results follow a remarkably similar trend.
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Figure B1. Same as fig. 1, but using positional contexts and symmetric context window of fixed
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Figure B2. Same as fig. 2, but using positional contexts and symmetric context window of fixed

size 2.

Table B2. Same as table 1, but using positional contexts and symmetric context window of fixed

size 2.

model SimLex RW GSem STSB GSyn MSR POS Dep TopC

pPPMI 36.9 34.1 52.8 63.3 47.4 34.0 92.3 31.7 33.7

nPPMI 1.2 -1.2 0.0 48.1 0.0 0.0 16.3 17.9 5.0
nCPMI(-2) 18.3 24.0 6.4 41.0 13.9 13.9 90.8 32.8 35.3
nNPMI 13.7 23.9 4.5 40.1 8.9 7.8 89.8 31.7 34.0

PPMI 36.6 45.1 79.5 63.4 61.3 45.6 92.4 27.5 30.1
CPMI(-2) 35.8 43.1 80.4 63.0 65.2 51.8 92.5 28.0 31.3
NPMI 32.5 43.6 62.4 57.1 57.4 44.8 92.4 29.4 31.7
NNEGPMI 36.2 43.5 80.7 63.3 63.6 49.5 92.4 27.8 30.1

Random 1.2 -1.2 0.0 45.3 0.0 0.0 16.3 17.9 5.0
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Figure B3. Same as fig. 3, but using positional contexts and symmetric context window of fixed

size 2.
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Figure B4. Same as fig. 4, but using positional contexts and symmetric context window of fixed

size 2.
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Figure B5. Same as fig. 5, but using positional contexts and symmetric context window of fixed

size 2.
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Table B3. Same as table 3, but using positional contexts and symmetric context window of fixed

size 2.

word model neighbors

interest 0.3 LV-0 interests 1.0, conflict 0.5, coi 1.2, interested 0.7, thegauntlet

78.0, scientific 0.5, passion 2.0, attention 0.5, concern 0.9,
activity 0.6

LV-20 interests 1.0, interested 0.7, conflict 0.5, attention 0.5, en-
thusiasm 3.9, expertise 2.3, concern 0.9, appreciation 3.5,
scientific 0.5, involvement 1.2

SG interests 1.0, intrest 50.0, wizardimps 67.2, interested 0.7,
richarddawkins 74.5, thegauntlet 78.0, interst 77.4, bluntsde

91.6, conflict 0.5, bizjournals 42.8

GloVe interests 1.0, interested 0.7, conflict 0.5, attention 0.5, influ-
ence 0.6, concern 0.9, expertise 2.3, involvement 1.2, popu-
larity 1.2, passion 2.0

SVD interests 1.0, attention 0.5, interested 0.7, importance 0.4,
profits 2.9, debt 1.6, expertise 2.3, benefit 1.0, contributions
0.5, contribution 1.0

cup 0.1 LV-0 championship 0.2, league 0.1, champions 0.5, cups 2.7, finals

0.7, trophy 1.1, uefa 1.3, final 0.1, tournament 0.4, champi-
onships 0.3

LV-20 champions 0.5, cups 2.7, championship 0.2, finals 0.7, trophy
1.1, league 0.1, competitions 0.9, uefa 1.3, tournament 0.4,
runners 1.5

SG cups 2.7, trophy 1.1, championship 0.2, champions 0.5, finals

0.7, supercup 8.5, pokal 9.4, championships 0.3, uhrencup

90.3, uefa 1.3

GloVe championship 0.2, champions 0.5, finals 0.7, cups 2.7, league

0.1, trophy 1.1, uefa 1.3, tournament 0.4, final 0.1, fifa 1.1

SVD runners 1.5, nextseason 4.9, champions 0.5, cups 2.7, trophy

1.1, scorers 4.7, competitions 0.9, matches 0.4, squad 0.7,
fifa 1.1

soul 0.9 LV-0 souls 3.0, blues 0.8, funk 2.7, gospel 1.6, hop 1.1, mind 0.5,
spirit 0.8, reggae 3.4, jazz 0.6, rap 2.1

LV-20 funk 2.7, blues 0.8, heaven 1.5, essence 3.0, souls 3.0, mind
0.5, spirit 0.8, love 0.2, dreams 1.6, jazz 0.6

SG funk 2.7, souls 3.0, blues 0.8, soulful 11.0, seekerz 81.3,
changeless 89.4, makossa 58.0, spirit 0.8, essence 3.0,
jazzmatazz 98.9

GloVe blues 0.8, funk 2.7, souls 3.0, spirit 0.8, mind 0.5, gospel 1.6,
hop 1.1, pop 0.4, jazz 0.6, love 0.2

SVD heaven 1.5, eternal 2.5, forever 1.7, dreams 1.6, dream 0.9,
funk 2.7, love 0.2, souls 3.0, spirit 0.8, blues 0.8
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Table B4. Same as table 4, but using positional contexts and symmetric context window of fixed

size 2.

word model neighbors

rooters 77 LV-0 bajir 66, ravimy 87, hamerkop 83, argyrodes 68, thaumasia

90, brooklin 43, karuma 99, sorlle 86, valise 69, roaring 7

LV-20 howled 73, cheering 11, roars 27, bosox 81, monumentals 68,
cheered 15, nuxhall 73, booing 30, phillie 56, atlantics 26

SG cheering 11, bosox 81, howled 73, fans 0, lynah 86, cheered
15, landrith 57, clendenon 85, phillie 56, semipro 60

GloVe specifc 84, unserious 99, cusumano 87, whch 65, uninviting

91, overexcited 99, imnsho 89, preffered 91, alread 94, un-
typical 94

SVD ebbets 29, comiskey 18, ballplayers 31, batboy 62, crawfords
37, chisox 83, bosox 81, gothams 59, semipro 60, krichell 79

monocultures 76 LV-0 fieldensis 87, cantillans 87, berbers 13, ritsema 57, boutonii

76, tmutarakan 74, shuhada 67, chisocheton 74, poepp 77,
approvals 12

LV-20 monoculture 35, seedlings 11, saplings 24, conifers 13, hard-
woods 19, crops 2, agroforestry 34, cultivations 64, under-
story 16, broadleaved 47

SG monoculture 35, polyculture 88, overgrazed 81, fuelwood 62,
intercropping 90, rainfed 65, overharvesting 83, cucurbits

81, croplands 60, silvicultural 84

GloVe hereabouts 74, upend 97, controvertial 87, enlivening 79,
pluralisation 92, selfsame 98, herrod 85, overspend 83, un-
serious 99, liquify 89

SVD monoculture 35, cropland 27, windbreaks 68, replanted 27,
orchards 6, silviculture 45, plantations 3, intercropping 90,
cultivations 64, seedlings 11

flighted 83 LV-0 uproot 34, okumoto 96, ratcheted 94, revealer 79, pandey

10, flagpole 15, halvard 66, bersetzungsstufen 74, swiftest
84, stairlift 86

LV-20 feathered 11, flightless 14, quadrupedal 30, ratites 35,
bipedal 16, raptorial 60, necked 6, beak 6, beaks 13, pre-
hensile 26

SG digitigrade 84, plantigrade 84, zygodactyl 57, raptorial 60,
woodcreepers 94, chelae 81, pronated 92, forelegs 30, apo-
morphic 93, stockier 86

GloVe wikispeak 87, similary 82, vandelism 97, specifc 84, valida-
tions 76, demagogic 77, imnsho 89, incentivise 100, smidge

97, geneological 98

SVD flightless 14, shoebill 71, tinamous 38, corvid 76, curassows

78, pratincoles 45, toucans 40, turacos 56, hoatzin 65, anser-
iformes 34
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Table B5. Same as table 5, but using positional contexts and symmetric context window of fixed

size 2.

model SimLex RW GSem GSem-N GSem-P GSem-N-P

LV-0 37.2 37.8 68.7 70.4 0.9 1.3
LV-5 36.0 43.1 80.1 79.6 15.7 15.5
LV-20 34.7 44.6 79.6 78.9 39.9 35.0

SG-1 38.5 46.4 74.7 74.3 18.0 17.8
SG-2 39.0 47.7 77.5 77.5 19.3 18.6
SG-5 39.4 48.8 79.8 79.9 18.9 18.2

GloVe 35.2 36.1 74.8 73.0 3.0 3.5
SVD 31.6 44.0 48.5 41.1 30.9 26.8

model GSyn GSyn-N GSyn-P GSyn-N-P MSR MSR-N MSR-P MSR-N-P

LV-0 57.6 57.3 9.2 9.6 44.0 43.5 2.0 2.3
LV-5 64.9 64.4 15.6 16.1 51.3 51.0 7.0 7.3
LV-20 62.8 62.1 18.3 18.7 51.2 50.5 10.6 10.3

SG-1 67.7 66.8 14.6 15.2 53.7 52.4 6.1 6.4
SG-2 68.7 67.8 14.8 15.6 54.8 53.5 6.0 6.7
SG-5 68.2 67.6 14.9 15.7 56.0 54.7 6.2 6.7

GloVe 59.2 58.2 9.7 9.7 47.5 45.7 2.8 3.2
SVD 49.3 46.5 17.1 15.8 37.3 31.5 9.9 8.5
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Figure B6. Same as fig. 6, but using positional contexts and symmetric context window of fixed

size 2.

Table C1. Same as table 2, but using subword information, positional contexts and symmetric context
window of fixed size 2.

Name Set Full Hist WS NS

nPMI: Negative
information

{(w, c) | PMIw,c ≤ 0} 99.75 14.53 12.44 85.42

pPMI: Positive
information

{(w, c) | PMIw,c > 0} 0.25 85.47 87.56 14.58

mnPMI:
Maximally-
negative informa-
tion

{(w, c) | Mw,c = 0} 99.71 0.00 0.00 69.08

nPMI\mnPMI:
Collapsed nega-
tive information
under PPMI

{(w, c) |PMIw,c ≤ 0

∧Mw,c > 0} 0.04 14.53 12.44 16.34
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Figure C1. Same as fig. 1, but using subword information, positional contexts and symmetric context
window of fixed size 2.
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Figure C2. Same as fig. 2, but using subword information, positional contexts and symmetric context
window of fixed size 2.

Table C2. Same as table 1, but using subword information, positional contexts and symmetric context

window of fixed size 2.

model SimLex RW GSem STSB GSyn MSR POS Dep TopC

pPPMI 33.9 37.3 21.9 64.3 51.4 41.1 92.5 30.6 34.2

nPPMI 2.8 13.5 0.2 30.8 26.1 24.1 16.3 17.9 5.0
nCPMI(-2) 18.2 25.6 2.9 39.9 14.3 13.5 91.1 33.0 35.5
nNPMI 13.8 26.5 1.2 38.8 21.5 24.2 90.9 32.4 34.5

PPMI 38.1 51.4 72.2 63.5 67.5 52.7 92.5 27.9 31.1
CPMI(-2) 37.1 49.6 77.3 64.1 71.7 59.5 92.8 29.0 32.6
NPMI 32.8 46.6 32.8 54.1 74.0 62.5 92.4 31.5 32.4
NNEGPMI 37.2 49.6 76.5 64.0 70.5 57.3 92.6 28.5 31.5

Random 2.9 13.5 0.2 30.1 26.6 24.6 16.3 17.9 5.0
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(b) SLV-5
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(c) SLV-20
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(d) fastText
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(e) GloVe
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(f) SVD

Figure C3. Same as fig. 3, but using subword information, positional contexts and symmetric context
window of fixed size 2.
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(b) SLV-5
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(c) SLV-20
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(e) GloVe
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(f) SVD

Figure C4. Same as fig. 4, but using subword information, positional contexts and symmetric context
window of fixed size 2.
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0 1 2 3 4 5 10 15 20
neg

0

20

40

60

80

%
 a

cc
ur

ac
y

strategies excluded
None
-Norm
-Prem
-Norm-Prem

dataset
GSemF
GSynF
MSRF

(d) Analogies, frequent words

Figure C5. Same as fig. 5, but using subword information, positional contexts and symmetric context

window of fixed size 2.
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Table C3. Same as table 3, but using subword information, positional contexts and symmetric context
window of fixed size 2.

word model neighbors

interest 0.3 SLV-0 pinterest 29.2, interests 1.0, interested 0.7, disinterest 26.1,
conflict 0.5, stuffofinterest 25.6, interesse 66.5, bitterest 51.3,
merest 63.5, chemicalinterest 23.2

SLV-20 interests 1.0, interested 0.7, conflict 0.5, attention 0.5, ex-
pertise 2.3, involvement 1.2, enthusiasm 3.9, disinterest 26.1,
concern 0.9, appreciation 3.5

FT interests 1.0, disinterest 26.1, interested 0.7, pinterest 29.2,
enthusiasm 3.9, fascination 7.0, attention 0.5, enthusiasms

56.1, disinterestedness 98.5, intrest 50.0

GloVe interests 1.0, interested 0.7, conflict 0.5, attention 0.5, influ-
ence 0.6, concern 0.9, expertise 2.3, involvement 1.2, popu-
larity 1.2, passion 2.0

SVD interests 1.0, attention 0.5, interested 0.7, importance 0.4,
profits 2.9, debt 1.6, expertise 2.3, benefit 1.0, contributions
0.5, contribution 1.0

cup 0.1 SLV-0 cups 2.7, championship 0.2, champions 0.5, cupfb 64.7, tro-
phy 1.1, cupen 17.1, cupa 23.7, uefa 1.3, league 0.1, champi-
onships 0.3

SLV-20 cups 2.7, champions 0.5, championship 0.2, finals 0.7, trophy

1.1, league 0.1, competitions 0.9, qualifiers 4.7, tournament
0.4, runners 1.5

FT cups 2.7, championship 0.2, supercups 45.3, supercup 8.5,
trophy 1.1, champions 0.5, finals 0.7, supercupen 55.0,
uhrencup 90.3, pokal 9.4

GloVe championship 0.2, champions 0.5, finals 0.7, cups 2.7, league

0.1, trophy 1.1, uefa 1.3, tournament 0.4, final 0.1, fifa 1.1

SVD runners 1.5, nextseason 4.9, champions 0.5, cups 2.7, trophy

1.1, scorers 4.7, competitions 0.9, matches 0.4, squad 0.7,
fifa 1.1

soul 0.9 SLV-0 souls 3.0, soule 16.8, souli 48.4, nsoul 52.5, sould 40.0, souled

37.4, soulchild 51.7, soulive 72.5, soulful 11.0, soult 18.6

SLV-20 funk 2.7, blues 0.8, souls 3.0, heaven 1.5, essence 3.0, spirit
0.8, mind 0.5, love 0.2, jazz 0.6, reggae 3.4

FT souls 3.0, funk 2.7, soulchild 51.7, soulful 11.0, blues 0.8,
temptations 9.3, soulfulness 97.6, salsoul 42.7, soulmates

48.9, reggae 3.4

GloVe blues 0.8, funk 2.7, souls 3.0, spirit 0.8, mind 0.5, gospel 1.6,
hop 1.1, pop 0.4, jazz 0.6, love 0.2

SVD heaven 1.5, eternal 2.5, forever 1.7, dreams 1.6, dream 0.9,
funk 2.7, love 0.2, souls 3.0, spirit 0.8, blues 0.8
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Table C4. Same as table 4, but using subword information, positional contexts and symmetric context

window of fixed size 2.

word model neighbors

rooters 77 SLV-0 cooters 97, looters 21, booters 75, rooter 61, hooters

18, footers 25, scooters 15, freebooters 74, rootes 24,
troubleshooters 55

SLV-20 rooter 61, cooters 97, booters 75, looters 21, truckers

16, revellers 44, stoners 46, greasers 63, tuckers 72,
stokers 40

FT rooter 61, cooters 97, hooters 18, booters 75, looters
21, footers 25, rootes 24, crosscutters 63, roaders 91,
freebooters 74

GloVe specifc 84, unserious 99, cusumano 87, whch 65, un-
inviting 91, overexcited 99, imnsho 89, preffered 91,
alread 94, untypical 94

SVD ebbets 29, comiskey 18, ballplayers 31, batboy 62,
crawfords 37, chisox 83, bosox 81, gothams 59,
semipro 60, krichell 79

monocultures 76 SLV-0 monoculture 35, monocular 38, protoculture 61, un-
cultured 51, ethnocultural 59, monocarpic 97, mono-
coupe 73, cultureel 99, culturing 34, polyculture 88

SLV-20 monoculture 35, polyculture 88, cultivations 64,
crops 2, intercropping 90, agroforestry 34, cultiva-
tion 3, silviculture 45, seedlings 11, clearcutting 47

FT monoculture 35, polyculture 88, ethnocultural 59, sil-
viculture 45, cultivations 64, crops 2, ecotypes 58, in-
tercropping 90, cultures 1, overgrazing 26

GloVe hereabouts 74, upend 97, controvertial 87, enlivening

79, pluralisation 92, selfsame 98, herrod 85, overspend

83, unserious 99, liquify 89

SVD monoculture 35, cropland 27, windbreaks 68, re-
planted 27, orchards 6, silviculture 45, plantations

3, intercropping 90, cultivations 64, seedlings 11

flighted 83 SLV-0 alighted 52, flighty 43, lighted 9, slighted 25, flight-
plan 93, unlighted 83, benighted 57, flightaware 86,
flightdeck 80, blighted 20

SLV-20 flightdeck 80, flights 1, flight 0, flighty 43, flight-
less 14, taxiing 19, taxied 61, flightaware 86, flown

2, flightline 55

FT flight 0, flights 1, flighty 43, flightdeck 80, flightless

14, flightpath 67, flown 2, taxiing 19, alighted 52,
taxied 61

GloVe wikispeak 87, similary 82, vandelism 97, specifc 84,
validations 76, demagogic 77, imnsho 89, incentivise

100, smidge 97, geneological 98

SVD flightless 14, shoebill 71, tinamous 38, corvid 76,
curassows 78, pratincoles 45, toucans 40, turacos 56,
hoatzin 65, anseriformes 34
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Table C5. Same as table 5, but using subword information, positional contexts and symmetric context
window of fixed size 2.

model SimLex RW GSem GSem-N GSem-P GSem-N-P

SLV-0 38.8 47.7 40.2 39.7 0.4 0.7
SLV-5 37.3 49.8 77.1 75.9 9.7 9.6
SLV-20 35.1 48.3 79.5 78.8 40.2 35.7

FT-1 38.7 51.2 70.4 70.1 18.8 18.7
FT-2 39.4 51.7 74.3 74.1 21.3 21.4
FT-5 40.3 52.1 78.8 78.5 22.1 21.2
GloVe 35.2 36.1 74.8 73.0 3.0 3.5
SVD 31.6 44.0 48.5 41.1 30.9 26.8

model GSyn GSyn-N GSyn-P GSyn-N-P MSR MSR-N MSR-P MSR-N-P

SLV-0 70.1 68.4 9.8 10.7 60.9 59.5 5.5 5.9
SLV-5 71.7 70.6 16.4 17.8 59.9 58.7 9.1 9.3
SLV-20 66.3 65.6 18.8 19.8 55.5 54.7 11.7 11.6

FT-1 74.5 74.0 17.8 19.3 61.2 60.2 12.6 12.9
FT-2 74.0 73.6 17.6 19.1 61.6 60.6 11.5 12.1
FT-5 74.2 73.6 17.4 19.0 62.2 61.3 11.2 11.7
GloVe 59.2 58.2 9.7 9.7 47.5 45.7 2.8 3.2
SVD 49.3 46.5 17.1 15.8 37.3 31.5 9.9 8.5
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(b) FT-2 norms
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(c) FT-5 norms
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(e) Subword LexVec norms SMA
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(f) FT-1 cosines with mean
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(g) FT-2 cosines with mean
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(h) FT-5 cosines with mean

Figure C6. Same as fig. 6, but using subword information, positional contexts and symmetric context
window of fixed size 2.
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