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Abstract

A fuzzy sets based computational fuzzy inference system has been used to esti-

mate the failure strength of 3D-printed polylactide components. The research

has confirmed and validated the accuracy and reliability of this approach with

a satisfying level of reliability. As far as failure strength is concerned, the fol-

lowing two types of input parameters have been considered: (i) manufacturing

variables (i.e., manufacturing angle, infill density, and size of manufacturing

voids) and (ii) geometrical features (i.e., notch root radius). The individual sig-

nificance of the various parameters under investigation has been identified

together with the influence on the estimation accuracy of the number of speci-

mens being used. The fuzzy inference system has shown an accuracy improve-

ment compared to the failure strength estimation, obtained as a result of an

existing analytical method. The fuzzy inference system approach has also been

shown to have a good potential as a decision-making tool in design problems.
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1 | INTRODUCTION

Additive manufacturing is one of those novel technolo-
gies which allow objects to be manufactured by deposit-
ing and solidifying materials layer by layer. Compared
with conventional subtractive technique, 3D printing
leads to less material waste and usage. Depending on
manufacturing technologies, different materials can be
used in 3D printing, such as ceramics,1 metals,2 or ther-
moplastics.3 One of the most common 3D printing mate-
rials is polylactide (PLA), which is biodegradable and can
be manufactured at a low cost from renewable resources
such as corn starch and sugarcane, making it economi-
cally and environmentally sustainable. PLA has a

relatively low melting temperature (around 180�C),4

which clearly makes it suitable for 3D printing.
One of the basic technologies used to 3D-print poly-

mers is the so-called fused deposition modeling (FDM).
The FDM requires the use of a heated nozzle through
which material filaments are melted and extruded onto
the build plate.5 As the filament cools down and hardens,
it is deposited along with the horizontal movement of the
nozzle, creating a desired geometry in the layer. The
internal geometry of printed layers can be in form of vari-
ous infill patterns (triangle, square, honeycomb, hexagon,
etc.). With one layer finished, the build plate goes down
so that the filament can be deposited on top of the exis-
ting layer, forming the 3D structure.
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During the 3D printing process, there are multiple
manufacturing parameters that can be changed and con-
trolled individually. In the following sections, attention
will be focused mainly on two particular manufacturing
parameters, namely, infill density and manufacturing
angle (introduced in Section 2) which can strongly affect
the strength performance of 3D-printed objects.

Apart from the two parameters introduced above,
there are other manufacturing specifications that affect
the strength performance of 3D-printed objects such as
printing direction,6 layer thickness,7 nozzle temperature,8

and feed rate.7

One of the key aspects associated with additive
manufacturing is that 3D-printed materials can be char-
acterized by an evident level of anisotropy.9 This
manufacturing-related anisotropy is seen to affect their
overall mechanical response,9 with this holding true
under both static10 and fatigue loading.11–13 In this con-
text, as far as the mechanical behavior of 3D-printed
polymers (such as, for instance, ABS and PLA) is con-
cerned, much experimental evidence suggests that, cer-
tainly, the anisotropy associated with the building
direction plays a role of primary importance.14–17 For
instance, it is seen from the experiments that the ultimate
tensile strength and the yield stress of 3D-printed
ABS/PLA manufactured perpendicularly to the build
plate are lower than the corresponding mechanical prop-
erties that are obtained when objects are manufactured
either on-edge or flat.14,15 Similarly, when components
are fused-filament fabricated flat on the built plate, their
mechanical response is influenced by the intrinsic anisot-
ropy resulting from the value being set for the
manufacturing raster angle.16,17 In more detail, the
mechanical performance of 3D-printed polymers is seen
to be higher when the loading is applied along directions
that are parallel to the 3D-printed filaments. This is
because under the above circumstances the overall
mechanical response of additively manufactured poly-
mers mainly depends on the axial mechanical strength of
the extruded filaments.14–17 In contrast, when the loading
is applied along directions that are perpendicular to the
3D-printed filaments, the overall strength of the polymer
under investigation markedly depends on the forces
bonding together adjacent filaments/layers. Since, by
their nature, these bonding forces result in a lower
mechanical performance/strength than the
corresponding mechanical performance/strength charac-
terizing the extruded filaments themselves, overall 3D-
printed materials are seen to be weaker when the loading
is applied along a direction perpendicular to the direction
of the filaments.15

Multiple possible combinations of the manufacturing
parameters briefly discussed above make it very difficult

for the strength to be estimated in conventional ways
which are based on building empirical relations and
material models.18 These models and relationships rely
on previous knowledge and a large quantity of costly and
time-consuming experiments. At the same time, they
become less flexible and more complex due to a large
number of aforementioned possible combinations of
manufacturing parameters. Therefore, in recent years,
the international scientific community has made a big
effort to formulate alternative approaches such as data-
driven methods. Data-driven methods learn from a group
of existing raw data and can estimate the behavior of
required variables based on this previous learning pro-
cess. One of these data-driven approaches is known as
fuzzy inference system (FIS) which is based on the theory
of fuzzy sets. In what follows, this FIS framework will be
used to perform the failure strength assessment of 3D-
printed plain and notched components of PLA.

In Section 2, details on the manufacturing of the 3D-
printed specimens (plain and notched) being considered
will be presented for the readers' benefit. Section 3 will
introduce and discuss the theory of FIS methodology in
detail, going through all necessary steps to build up FIS
models. Section 4 will adapt the generic FIS model to the
3D-printed plain specimens being considered in the pre-
sent investigation. Subsequently, the FIS approach being
devised will be tested and validated, with this being done
to discuss the influence of the number of tests as well as
of the key manufacturing parameters on the estimation
accuracy. Section 5 will analyze 3D-printed notched spec-
imens, looking at both manufacturing and geometrical
parameters and comparing the performance of FIS with
reported previously analytical methodologies.

2 | MANUFACTURING OF 3D-
PRINTED COMPONENTS

Not being itself the main focus of this paper, the
manufacturing process of 3D-printed specimens deserves
a special attention. In this section, some important termi-
nology and necessary variables used in what follows will
be introduced.

As mentioned in Section 1, two different geometries
will be used in our investigation: plain and notched (U-
notched) components (see Figure 1 for illustration). Both
types of specimens were manufactured using 3D-printer
Ultimaker 2 Extended+ with PLA filaments having
diameter equal to 2.85 mm. The manufacturing parame-
ters were set as follows: nozzle size 0.4 mm, nozzle tem-
perature 240�C, build-plated temperature 60�C, printing
speed 30 mm/s, layer height 0.1 mm, and shell thickness
0.4 mm.

2 TU ET AL.



The particular choice of 3D-printed specimens'
geometries was dictated by (i) extensive testing of the
FIS methodology on relatively simple geometry where
the parameters of interest are only manufacturing pro-
cess parameters (plain specimens in Figure 1A) and
(ii) the desire to expand and test the FIS methodology
on mixed types of input parameters, that is,
manufacturing and geometrical/design parameters (U-
notched specimens in Figure 1B). The latter potentially
will pave the way to a class of design related problems,
which is particularly important in industrial
applications.

As mentioned earlier, infill density and manufactur-
ing angle were parameters chosen to assess the strength
of components. The infill density quantifies the percent-
age of volume infilled with filaments, and it normally
ranges from 10% to 100%. The unfilled space forms
manufacturing voids which allow a considerable reduc-
tion of material usage and object weight with tolerable
sacrifice in general structural strength. It is therefore nec-
essary to assess precisely whether the object being man-
ufactured meets the strength requirements before being
used in applications of practical interest.

The manufacturing angle, denoted here as θp, is
defined as the angle between printing direction yp (see
Figure 1C) and the longitudinal axis l of the specimen.
Note that it is different from the raster angle which is the
angle between the path of the nozzle and the longitudinal
axis of the specimen. This is because the 3D printer used
for manufacturing always has a 45

�
angle between the

nozzle path and the longitudinal axis.19 The nozzle path
is marked as crossing lines in Figure 1C, which forms a
diamond-like internal structure of the specimen. As such,
in the following investigations, the manufacturing angle
ranged from 0

�
to 45

�
to study of its effect.

All printed specimens were tested using a Shimadzu
universal axial machine with a displacement rate of
2 mm/min. Both plain and U-notched specimens were
tested up to complete breakage.19 The results from these
experiments will feed into and be presented in later
sections.

3 | FUZZY INFERENCE SYSTEM

The main focus of this paper is an introduction and an
analysis of an alternative data-driven approach, allowing
the estimation of the strength performance of 3D-printed
objects. In this section the main aspect of FIS methodol-
ogy will be discussed in detail for a simplified illustrative
example, with attention given to all necessary stages of
building up FIS models.

An FIS is based on the theory of fuzzy sets which was
first proposed by Zadeh.20 It can be used to model com-
plicated systems with simple logic rules, similar to
human reasoning. The term fuzzy refers to indeterminis-
tic relationships between the input and the output of an
FIS. In this study, the input relates to manufacturing and
geometrical parameters and the output refers to as
object's strength performance. The main steps of FIS con-
sist of (i) formulating aforementioned indeterministic
relationships, in a form of fuzzy rules, between known

input and output parameters (historical data) where the
process can be considered as the training of an FIS and
(ii) using this trained FIS to provide an estimation of an
unknown output (strength performance) for the case of
new input (manufacturing and geometrical parameters).

Although there are alternative data-driven methodol-
ogies that can be used for estimation such as artificial
neural networks,21 the FIS is popular due to its structural

FIGURE 1 3D-printed specimens:

(A) the plain specimen geometry; (B) the

U-notched specimen with symmetrical

U-notch on both longitudinal sides with

R1 denoting notch root radius; all values

in the figure are in millimeter (mm);

(C) manufacturing angle, the diamond-

like raster structure and printing

direction used for 3D printing
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simplicity. As shown in Figure 2, an FIS is composed of
four sections which are fuzzification, fuzzy rule base, fuzzy
inference engine, and defuzzification. With the assist of
fuzzy rules, mapping can be performed between input
and output variables, which is in line with human
thoughts. The detailed setup of all four FIS components
is illustrated below (Sections 3.1–3.4) using, as an exam-
ple, parameters of 3D printing.

3.1 | Fuzzification

In fuzzification, each input data are mapped according to
its degree of membership, ranging from zero to one, and
all these membership values together are defined as fuzzy
sets. The membership value represents how much the
data belongs partially to each subset of a universal set.22

Numerically, this mapping of each membership value is
characterized by membership functions (MF), whose
parameters are defined by users.

There are several existing MFs,23 with the triangular24

MF being particularly known for its simplicity. It can be
expressed mathematically as Equation (1 where users can
define the MF by changing parameters, or graphically as
Figure 3. In Figure 3, line segments aAc represent the
MF of x from a to c where the lower limit (a) and the
upper limit (c) both locate the “feet” of the triangle. The
MF will reach the peak and be equal to one when x is
equal to b (a < b< c).

μ xð Þ¼

0, x ≤ a

x�a

b�a
, a< x ≤ b

c� x

c�b
, b< x < c

0, x ≥ c
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To illustrate fuzzification, two 3D-printed parts
with 10% and 90% infill densities separately are consid-
ered. Here, the infill density is treated as an input var-
iable which will be fuzzified. Assuming the lowest and
the highest possible infill densities (known from per-
formed experiments) are 0% and 100%, both 10% and
90% are high infill density to some degree. The term
high here refers to the maximum known infill density
100%. In this case, 90% infill density is significantly
higher than 10%, that is, it belongs to the category high

significantly more, than 10% infill density belongs to
the same category. Mathematically, the above phrase
can be interpreted using membership values. Following
the second row of Equation (1, membership values of
10% and 90% infill density can be calculated. The
results of this simple calculation are presented in
Figure 4A, showing μ (MF value) for 10% is 0.1 and μ for
90% is 0.9. Note that, for the simplicity of illustration, a is
set to be zero and b is equal to 100% infill density in this
example. Note also that, in general, triangular MF has a
triangular shape, but here, only the left half of the trian-
gle is considered (Figure 4A). This is due to the high

membership value being defined as 1 when the infill den-
sity reaches 100% (i.e., the maximum infill density has
the highest potential membership degree). Therefore,
there is no need to show the other half of the function
which lies out of the range of interest (0–100% infill
density).

Similarly, MFs can be formulated to describe how
low the infill density is. The term low refers to the
minimum known infill density, in our example 0%.
Considering again 10% and 90% infill densities in our
3D-printed parts, we can conclude that the former is
considerably lower (and its new degree of membership,
following the third row of Equation (1, is μ¼ 0:9) than
the latter (with the new degree of membership μ¼ 0:1),
see Figure 4B. Note that here only the right half of
the triangle is considered because the highest potential
membership value 1 can be achieved at the minimum
(lowest) infill density 0% and the membership value for
100% infill density is 0.

FIGURE 2 Illustration of a fuzzy inference system

FIGURE 3 Illustration of triangular membership function

where x is the input of MF and μ is membership value
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3.2 | Fuzzy rule base

Fuzzy rule base contains all IF-THEN statements that
build connections between inputs and outputs. With exis-
ting information or data, the mapping between input and
output can be described as inference by these rules. A
single rule consists of one or more antecedents and con-
sequents. For example, a fuzzy rule can be a sentence like
“if the infill density is high (antecedent A) and
manufacturing angle is large (antecedent B), the failure
strength is large (consequent)”. If the corresponding
experimental data, including both manufacturing param-
eters and failure strength, is already known, the fuzzy
rule can also use values directly, for example: “if the infill
density is 10% (antecedent A) and the manufacturing
angle is 0� (antecedent B), the failure strength of a 3D-
printed part is 1 MPa (consequent).” This a typical fuzzy
rule that contains two antecedents and one consequent.
If another 3D-printed part is known to have infill density
of 90%, the manufacturing angle of 40� and failure
strength of 10 MPa, a second fuzzy rule can be written as
“if the infill density is 90% and the manufacturing angle
is 40�, the failure strength is 10 MPa.” The detailed
parameters and values depend on existing data, and there
are normally two or more rules in a fuzzy rule base.

3.3 | Fuzzy inference engine

The input of a fuzzy inference engine is multiple mem-
bership values acquired from fuzzification, and the out-
put is one fuzzy set which contains membership values
for each output variable. The main body of a fuzzy infer-
ence engine contains multiple operations such as fuzzy

operator, implication, and aggregation.

To illustrate the working principle of fuzzy inference
engine, similar example (as discussed in Section 3.2) will
be used. Let us assume that for the two 3D-printed parts,
infilled densities, manufacturing angles, and failure
strengths are known and formulated as rules 1 and 2 (see
Table 1, top two rows); then for the new third 3D-printed
part, with the new infill density and the manufacturing
angle 50% and 30� respectively, the failure strength are to
be estimated using FIS (see Table 1, third row).

3.3.1 | Fuzzy operator*

Following the fuzzification of input values, the degree of
membership for each antecedent can be obtained. Gener-
ally, a single rule can have multiple input parameters
(see Table 1 where both the infill density and the
manufacturing angle are present for each rule). In this
step, a fuzzy operator is applied, that brings together
information from aforementioned multiple input param-
eters to a single value corresponding to a resulting conse-
quent. The standard logical operator AND is used at this
stage, resulting in a consequent being true only when all
antecedents are true (i.e., when all input requirements
are met).

Mathematically, logical operator AND refers here to
minimum (min) operator, so the output of this operation
is the smaller membership value. With input of the FIS
in this example being 50% infill density and 30�

manufacturing angle, corresponding membership values
can be calculated using the second row of Equation (1 as
follows:

μ 50%ð Þ¼
50�10

90�10
¼ 0:5, μ 30�ð Þ¼

30�0

40�0
¼ 0:75 ð2Þ

FIGURE 4 Degree of membership versus

infill density with triangular membership

function for (A) high infill density and (B) low

infill density

TABLE 1 Fuzzy rules, illustrative examples

Experiment no. Infill density (%) Manufacturing angle (�) Failure strength (MPa)

1 (fuzzy rule 1) 90 40 10

2 (fuzzy rule 2) 10 0 1

3 (new experiment) 50 30 To be estimated

TU ET AL. 5



where the smaller (min) membership value is 0.5 (see
Figure 5, steps 1 and 2, top row). Note that the infill den-
sity in Figure 5 ranges from 10% to 90% not 0% to 100%
and that is due to the minimum and the maximum
values for a MF here being taken directly from the
known experimental data (see fuzzy rules in Table 1).
The same comment holds for the manufacturing angle.

3.3.2 | Implication

The outcome of a fuzzy operator is a single membership
value, and the next step is applying the implication

method to each fuzzy rule and reshaping the output MF
using the obtained single membership value. One of the
commonly used implication methods is a truncation,
which is again based on AND (min) operator (see
Figure 5, step 3 at first row).

As introduced at the beginning of Section 3.3, the fail-
ure strength ranges from 1 to 10 MPa, and the MF of fail-
ure strength is chosen to be triangular, similar to MFs of
the infill density and the manufacturing angle.† The term
large for describing failure strength represents the maxi-
mum value which is 10 MPa. Since 0.5 is the min mem-
bership value in fuzzy operator, the MF of failure
strength is truncated by this single value (0.5) and with
simple step of bringing 0.5 back into Equation (1, it can
be calculated that the failure strength, where the trunca-
tion starts, is equal to 5.5 MPa. Note that the input of
implication is the single membership value and the out-
put of implication is a fuzzy set (see Figure 5, shadow
area from step 3 at first row) relevant to consequent. It
can be represented mathematically as {μ1=x2, μ2=x2, …,
μn=xn}, here a set of pairs μi=xi represents membership
values μi of output parameters xi (values of failure
strength). For our example, the fuzzy set can be represen-
ted as {0/1, 0.5/5.5, 0.5/10}.

3.3.3 | Aggregation

The final output of FIS is based on considering all

rules together. In Figure 5, the first row represents
fuzzy rule 1, and the second row represents the fuzzy
rule 2. Outcomes of each individual rule are aggregated

so that the result of aggregation is a single fuzzy set.
One of the most common aggregation operations is
maximum (max), which picks the maximum segments
among all MFs and combines them together (see
Figure 5, step 4).

In our example, for rule 1, see Equation (2, μ 50%ð Þ¼

0:5 and μ 30�ð Þ¼ 0:75, resulting in
μ1 50%&30�ð Þ¼min1 0:5,0:75ð Þ¼ 0:5. For the second rule
where the MF describes the low infill density and small
manufacturing angle, as explained at the end of
Section 3.1, the membership values for both infill density
and manufacturing angle are calculated using the third
row of Equation (1 as follows:

μ 50%ð Þ¼
90�50

90�10
¼ 0:5, μ 30�ð Þ¼

40�30

40�0
¼ 0:25 ð3Þ

resulting in μ2 50%&30�ð Þ¼min 0:5,0:25ð Þ¼ 0:25.
Since manufacturing angle has the smaller member-

ship value in rule 2, the MF of failure strength for the
second row is truncated at 0.25 where failure strength is
calculated as 7.75 MPa. Then the implication result of the
second row in Figure 5 can be represented as {0.25/1,
0.25/7.75, 0/10}.

Thus, inputs of the aggregation process are two fuzzy
sets acquired from individual implications (top two
graphs in the fourth column, Figure 5) and the output is
a single aggregated fuzzy set (bottom graph in the fourth
column, Figure 5). The output fuzzy set after aggregation
can be represented mathematically as {0.25/1, 0.25/3.25,
0.5/5.5, 0.5/10}.

FIGURE 5 Decomposition of a

fuzzy inference system
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3.4 | Defuzzification

Since the output of fuzzy inference engine is still a fuzzy
set (or a number of fuzzy sets if there are more than one
output parameters), it is not a “meaningful” value.
Defuzzification is the inverse operation of fuzzification,
similar to encoding and decoding and the fuzzy sets can
be turned into a meaningful value after being defuzzified.
There are different types of defuzzification techniques
such as center of gravity, mean of maxima, and bisector
of area.25 In this study, the COG technique is chosen
since it is most commonly used in practical applications.

The defuzzified value x� can then be expressed as fol-
lows, if the fuzzy set is discrete26:

x� ¼

Pn
i¼1μ xið Þxi

Pn
i¼1μ xið Þ

ð4Þ

where μ xið Þ refers to the membership value of the ele-
ment xi (failure strengths) and n is the total number of
elements in the sample. Similarly, for continuous MF,
the summations in Equation (4 are replaced by integrals.
In our example, following simple calculations,

x� ¼

Pn

i¼1
μ xið Þxi

Pn

i¼1
μ xið Þ

≈ 6:1. In conclusion, the result of

defuzzification step is 6.1 MPa which is the estimated
failure strength for the 3D-printed part with the infill
density 50% and the manufacturing angle 30�.

4 | FIS FOR 3D-PRINTED PLAIN
SPECIMENS

In the present and in the following sections, the discus-
sion will return to the analysis of the experimental data
obtained from manufacturing and testing the 3D-printed
specimens being considered in this study (see Section 2
for details). The construction and the performance of the
FIS, following the methodology introduced in Section 3,
will now be evaluated using the data from the aforemen-
tioned experiments.

4.1 | Manufacturing void size as an
additional parameter

As mentioned in Sections 1 and 2, infill density and
manufacturing angle are parameters commonly chosen
to assess the strength of 3D-printed components. Another
parameter, frequently associated with assessing the
strength is the size of manufacturing voids.19 Note, how-
ever, that the manufacturing angle θp and infill density
are independent variables that can be changed

individually; contrary to that, the size of manufacturing
voids (see Figure 6) depends on the infill density as void
sizes will decrease if more internal space are infilled
(higher infill density). Therefore, in order to demonstrate
the performance of the FIS with multiple interconnected
input parameters,27 the effective size of manufacturing
voids, dv, was included in the research. It was measured
by using an optical microscope.19 In particular, parame-
ter dv was the calculated average value of measured void
sizes which had the same infill density. The analysis
based on both infill density and dv will show whether an
additional interconnected parameter can influence the
performance of the FIS and which of the two parameters
can lead to better accuracy.

4.2 | Experimental results for plain 3D-
printed components

The experimental failure strength of plain specimens was
calculated as the applied force upon breakage divided by
the cross-sectional area of specimens. The calculation
was based on the assumption that mechanical strength of
a 3D-printed part with infill density lower than 100% can
be estimated via an equivalent material which is contin-
uum, homogeneous, linear-elastic, and isotropic.19 The
experimental data are summarized in Table 2 (adapted
from Table 1 in Ahmed and Susmel19), where θp (�)
=manufacturing angle, infill density (%), dv (mm)= size
of manufacturing voids, and σf (MPa) failure strength.
According to experimental investigation discussed in
Ahmed and Susmel,19 27 combinations of input parame-
ters were tested, with each combination being based on

FIGURE 6 Manufacturing voids of a 3D-printed object: Gray

lines are printed filaments and blank areas are manufacturing voids
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three individual tests. For the sake of simplicity, in this
paper, an average value of the failure strength for these
three tests is calculated and taken as the failure strength
of the corresponding input parameter combination.
Accordingly, 27 experimental results are presented in
Table 2, each of them having a unique combination of
manufacturing angle, infill density, the size of
manufacturing voids, and the failure strength.

4.3 | Specimens for fuzzy rule base and
validation

For examining the performance of the FIS in estimating
failure strength properties, a number of results in Table 2
were used for building the necessary fuzzy rules, and the

remaining samples were used to validate the estimation
accuracy of the FIS. Note that, to minimize the experi-
mental errors, more than one sample was used for valida-
tion purposes.

In order to determine the specimens to be used for
fuzzy rule base and validation, respectively, 27 specimens
were divided into three sections (see dotted lines in
Table 2): specimen 1–9, 10–18, and 19–27, respectively
(9 specimens in each group). The groups were chosen so
that, in each group, manufacturing angles were identical
and the infill density ranged from 10 to 90 in sequence.
Every second, fourth, sixth, and eighth specimens were
chosen for validation in each group. For the representa-
tiveness of estimation results, the selected validation
specimens were evenly distributed in each group. Note
that this is not a unique way of choosing validation and

TABLE 2 Summary of experimental results for plain specimens

Input Output

Specimen θp (�) Infill density (%) dv (mm) σf (MPa)

1 0 10 10.7 8.6

2 0 20 4.98 9.2

3 0 30 1.36 10.4

4 0 40 0.88 11.9

5 0 50 0.62 13.6

6 0 60 0.45 16.4

7 0 70 0.33 19.8

8 0 80 0.24 22.5

9 0 90 0.14 25.8

10 30 10 10.72 8.7

11 30 20 5.06 7.9

12 30 30 1.39 9.8

13 30 40 0.96 10.1

14 30 50 0.66 14

15 30 60 0.41 15.9

16 30 70 0.29 18.5

17 30 80 0.25 19.4

18 30 90 0.11 23.4

19 45 10 10.65 8.3

20 45 20 5.12 9.6

21 45 30 1.37 10.8

22 45 40 0.93 12.4

23 45 50 0.65 14.1

24 45 60 0.43 15.8

25 45 70 0.31 18

26 45 80 0.22 20.5

27 45 90 0.13 22.8

8 TU ET AL.



FIS-building specimens, and it has been considered here
for convenience reasons. All validation specimens are
marked as gray rows in Table 2, and the rest of the speci-
mens are used for building fuzzy rules of the FIS (see
Figure 7). Thus, in our case, n is the total number of spec-
imens n is equal to 27, x is the number of specimens used
for validation is 12, and the number of specimens used
for building fuzzy rules is n�x¼ 15.

4.4 | FIS construction

As mentioned in Section 3, one of the main stages in FIS
construction is building a fuzzy rule base using existing
data. As discussed above, there were 27 data sets in total,
where 15 of them were used for building the fuzzy rule
base, while the remaining 12 results were used to evalu-
ate the accuracy of estimation (as discussed in Section 4.3
above). In fuzzy rule base, as discussed in Section 3.2,
each rule can be presented in the form of “IF-THEN”

statements.
To illustrate an example of MFs, Figure 8 presents tri-

angle MFs of one of the manufacturing parameters—
manufacturing angle, θp. Rather than be in the adjective
form of “large, medium, & small”, MFs were named with
their corresponding parameter values for simplicity of
establishing rules.

To clarify MFs presented in Figure 8A, Figure 8B, C,
and D shows detailed MFs for all manufacturing angles
separately: The MF of manufacturing angle consists of
three parts which are 0� (small), 30� (medium), and 45�

(large). For example, in Figure 8B, manufacturing angle
of 0� has the largest membership value of describing
“small manufacturing angle” hence μ xð Þ¼ 1. However,
with increasing the manufacturing angle, it can hardly be
represented by the “small angle” category, thus the mem-
bership value drops to zero at 30�. Finally, three MFs
constitute the general MF of the parameter (Figure 8A).

4.5 | Estimation results of using FIS

After the FIS being built, the input parameters of valida-
tion specimens were fed to the FIS, and the corresponding
output was the estimated failure strength. The estimated
results were then used to evaluate the accuracy of the
FIS, represented by the error calculated as:

Error¼
σe�σf

σf

�

�

�

�

�

�

�

�

�100% ð5Þ

where σf is the failure strength recorded in the experi-
ment and σe is the value estimated using the FIS. Errors
for all validation specimens were then averaged, and this
mean value was considered as the estimation error of
the FIS.

The detailed experimental and estimation results,
together with corresponding errors, are listed in Table 3.
Errors for all validation specimens were then averaged,
and this mean value was considered as the estimation
error of the FIS (7.6%). As can be seen from Table 3, for
the case of plain 3D-printed specimens, the FIS produced
an accurate (with average error of 7.6%) estimation result.

4.6 | Analysis of results from FIS

Following estimation results of 3D printed plain speci-
mens, presented above, Section 4.6 includes discussions
of the effect of specimen numbers and the key
manufacturing parameter on estimation accuracy.

4.6.1 | The effect of the number of
specimens on estimation accuracy

In order to analyze the effect of experiment quantity “ n ”

on estimation accuracy, three groups of specimens were
adapted from Table 2 where the composition of each
group were also introduced. Group A had only n¼ 9
specimens, group B had n¼ 18, and group C had all n¼
27 specimens. The FIS was then applied to Groups A, B,
and C separately for estimating failure strength. The con-
trast of the outcome for all three groups explained the
effect of the number of specimens on estimation accu-
racy. The estimation error for groups A, B, and C were
found to be:

A. 9 specimens (specimens 1–9): estimation error 10.3%;
B. 18 specimens (specimens 1–18): estimation error

8.6%;
C. 27 specimens (specimens 1–27): estimation error 7.6*

%.
FIGURE 7 Classification of validation and fuzzy rules

specimens
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As such, it could be concluded that first of all with
the given experimental data, the FIS could provide satis-
fying outcomes for estimating failure strength based on
manufacturing angle and infill density with reasonable
accuracy. Furthermore, the estimation accuracy
improved with the growing number of specimens. How-
ever, it has to be said that, from an industrial design
point of view, the increment in accuracy from using 9 cal-
ibration specimens to using 27 calibration specimens is
very little. This suggests that estimates that are accurate
from an engineering point of view can be obtained by

using a limited number of calibration values. In this con-
text, further study can be focused on the minimum num-
ber of experiments required for user-defined estimation
accuracy.

4.6.2 | Key manufacturing parameter to the
best estimation result

Next, an investigation of the key manufacturing parame-
ters was performed. Following Section 4.6.1, for the best

FIGURE 8 (A) Triangular membership

functions for manufacturing angle θp; (B, C, &

D) Decomposition of membership functions for

manufacturing angle

TABLE 3 Experimental and estimated results with the error between both results

Input
Output Estimation

Specimen θp (�) Infill density (%) dv (mm) σf (MPa) σe (MPa) Error (%)

2 0 20 4.98 9.2 9.9 7.2

4 0 40 0.88 11.9 12.2 2.5

6 0 60 0.45 16.4 17.3 5.5

8 0 80 0.24 22.5 21.8 3.1

11 30 20 5.06 9.3 9.45 1.6

13 30 40 0.96 10.1 10.6 5

15 30 60 0.41 15.9 17.9 12.6

17 30 80 0.25 19.4 21.6 11.3

20 45 20 5.12 9.6 11.4 18.8

22 45 40 0.93 12.4 14 12.9

24 45 60 0.43 15.8 16.3 3.2

26 45 80 0.22 20.5 18.9 7.8

Average error 7.6
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estimation accuracy, group C has been analyzed. The sig-
nificance of each manufacturing parameter was
addressed by evaluating the change of error, while
excluding a respectful input variable at a time.28 It is
important to recall here that the estimation error while
considering all three parameters (manufacturing angle
θp, infill density, and manufacturing void size) was found
to be 7.6%. Next, without changing θp, infill density and
dv were excluded separately in order to study the impor-
tance of each of these parameters. The estimation error
was found to be equal to 7.1% for considering θp & infill
density, and 8.2% for considering θp & dv (see Table 4).

It shows the error was smaller than the previously
reported, when excluding dv, that is, the estimation could
be more accurate without considering the manufacturing
void size as an input parameter of the FIS. On the con-
trary, the estimation error increased when excluding the
infill density, that is, a more accurate estimation result
could be achieved when considering the infill density. As
mentioned previously, dv is a function of the infill density
as it decreases while the infill density increases. So it is
recommended to consider only one of them as the input
parameter of the FIS. Analyzing the estimation errors, the
infill density can be considered a slightly better choice.

Next, the importance of the manufacturing angle and
the infill density were compared. With only θp, the FIS
gave an estimation error of 40.8%, and with only the infill
density, the FIS had an error of 9.3%. As it can be seen,
both errors increased considerably, indicating that having
only one input parameter could lead to an unaccepted
accuracy. Note also that excluding the infill density led to
much larger estimation error, thus it can be concluded
that for estimating failure strength, it is very important to
record the infill density.

Summarizing the above outcomes, the manufacturing
void size dv led to a worse estimation accuracy when
using the FIS, whereas both the manufacturing angle, θp,
and the infill density led to better estimation accuracy
and, finally, the infill density had more significance on
the estimation result.

5 | FIS FOR 3D-PRINTED U-
NOTCHED SPECIMENS

In this section, we will take a further step in evaluating
the performance of the FIS by considering two aspects:

i. the ability of the FIS to estimate fracture strength as
a function of manufacturing and geometrical

parameters;
ii. comparison of the FIS performance with analytical

methods, used in literature.

In order to address the first question, a new set of
experimental data, namely, data for U-notched speci-
mens (Figure 9) were analyzed. Experimental results
(adapted from Ahmed and Susmel19) are presented in
Table 5. A particular choice of the aforementioned data
set was dictated by an introduction of a qualitatively
new parameter: so far, the discussion circled around
the manufacturing input parameters (i.e., the
manufacturing angle, the infill density, and the size of
manufacturing voids), but the analysis of U-notched
specimens would allow to introduce geometrical input
characteristics of samples as well.

For the second aim, the FIS performance was
compared to the analytical method, based on the
equivalent homogenized material concept and the the-
ory of critical distances as proposed in Ahmed and
Susmel.19

Notched specimens had similar manufacturing and
testing processes as discussed in Section 2, but the previ-
ously mentioned difference was in sample geometry: new
specimens had symmetrical U-shape notches on each
longitudinal side (Figure 9). Three different geometries of
notched specimens were considered, all had 5-mm notch
depth, but the notch radii were 0.5, 1, and 3 mm,
respectively.

Similar to previously discussed plain specimens
(Section 4), notched specimens also had various combina-
tions of manufacturing angles and infill densities. The
varied radius of the notch was added as an extra geometri-

cal input parameter. Therefore, for notched specimens,
input parameters of the FIS were the manufacturing

TABLE 4 Estimation error (%) versus various input variable combinations

Parameters combination θp, infill density & dv θp & infill density θp & dv θp Infill density

Estimation error (%) 7.6 7.1 8.2 40.8 9.3

FIGURE 9 The U-notched specimen with symmetrical U-

notch on both longitudinal sides where notch root radius R1
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angle, the infill density, and the radius of the notch,
while the output remained to be failure strength (see
Table 5).

Experimental results of U-notched specimens (pres-
ented in Table 5) were adapted from Table 2 in Ahmed
and Susmel,19 which contained failure strength of tested
parts for different infill density levels, manufacturing
angles and radius of notches. Note the difference in infill
density: For U-notched analysis, it ranged between 30%
and 70% (10% to 90% for the case of plain specimens, dis-
cussed in Section 4). As for the output, similar to plain
specimens, failure strength was calculated as applied
force upon breakage divided by the cross-section area of
the breakage.

The total number of 27 manufactured U-notched
specimens were considered. The selection of fuzzy rules

and validation specimens were chosen to be similar to
the one discussed in Section 4.3. Validation specimens
were chosen to be specimens 2, 4, 6, 8, 11, 13, 15, 17,
20, 22, 24, and 26, that is, 12 validation specimens (mar-
ked as gray rows in Table 5). The remaining 15 specimens
(1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 19, 21, 23, 25, and 27)
were taken as fuzzy rules.

The comparison between the analytical method and
the FIS methodology was based on the accuracy of
using both techniques to estimate the failure
strength of U-notched specimens. FIS-based estimation
errors of failure strength for all 12 validation speci-
mens are presented in Table 6. For the accuracy of the
adapted analytical method, error values were directly
acquired from Ahmed and Susmel,19 and these error
values are also presented for readers' benefits in

TABLE 5 Summary of

experimental results for U-notched

specimens

Input
Output

Specimen θp (�) Infill density (%) Radius (mm) σf (MPa)

1 0 30 0.5 9.7

2 0 30 1 9.5

3 0 30 3 10.9

4 0 50 0.5 13.1

5 0 50 1 13.8

6 0 50 3 14.4

7 0 70 0.5 17.4

8 0 70 1 16.9

9 0 70 3 18.6

10 30 30 0.5 8.2

11 30 30 1 8.5

12 30 30 3 10.0

13 30 50 0.5 11.5

14 30 50 1 12.0

15 30 50 3 12.5

16 30 70 0.5 12.2

17 30 70 1 11.9

18 30 70 3 13.9

19 45 30 0.5 8.0

20 45 30 1 8.1

21 45 30 3 9.8

22 45 50 0.5 11.0

23 45 50 1 11.9

24 45 50 3 13.5

25 45 70 0.5 15.1

26 45 70 1 15.2

27 45 70 3 16.4
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Table 6. It is necessary to point out that the analytical
method used the same 12 validation specimens men-
tioned above.

As it can be seen from Table 6, estimation errors
lied within an interval of 11.7% for FIS and 24.9% for
the analytical method, respectfully. Note that the maxi-
mum estimation error almost was almost halved while
using the FIS methodology. Interesting to point out
that the average estimation error also decreased from
9.4% (for the analytical method) to 6.1% (for FIS). As
such, it can be concluded that the FIS was at least as
functional as analytical methods in estimating failure
strength and, in the above cases, showed improved
accuracy.

As it has been mentioned above, a particular choice
to analyze U-notched specimens has been made not
only to validate the FIS using existing experimental
data and to compare its performance to the existing
methodologies but also to test its ability to perform on
mixed type of data: manufacturing and geometrical
input parameters. As it can be seen, the FIS methodol-
ogy reacted very well (with high accuracy) on the intro-
duction of this new geometrical data. Notch root radius
is an important geometrical characteristic, and the FIS
approach was shown to be capable of estimating failure
strength depending on the radius value (estimations
show a similar trend in failure strength as a function of
radius, as seen in experiments19). Considering the
importance of this geometrical characteristic as a possi-
ble design parameter, it can be concluded that the FIS
has a potential to become a simple, robust, and

accurate methodology that can be expanded as a deci-

sion-making tool in design problems.

6 | CONCLUSIONS

In this study, the key steps to be taken to use the FIS
were presented and discussed. The FIS-based methodol-
ogy being formulated was then used to estimate the fail-
ure strength of PLA 3D-printed parts. By making use of a
large number of experimental data, the performed valida-
tion exercise allowed us to demonstrate that the use of
this methodology led to reliable and accurate results. It
was concluded that more experimental data improve
markedly the estimation accuracy. Further studies can be
conducted to find out the minimum number of experi-
mental data that are required to reach the wanted estima-
tion accuracy while the costs associated with the
calibration process are minimized.

It is important to highlight that, thanks to its intrinsic
versatility, the FIS methodology is expected to be equally
successful in predicting other mechanical properties such
as, for instance, strength under fatigue as well as under
dynamic loading. Given the FIS methodology's modus

operandi, the accuracy in estimating other mechanical
responses is obviously expected to increase as the size of
the data population used to train the method itself
increases.

Compared to other existing approaches, the FIS meth-
odology was seen to offer better performance and higher
accuracy. The FIS methodology was tested on different
types of input parameters (i.e., manufacturing and geo-
metrical variables) and was seen to be a simple, robust
tool that can produce highly accurate estimations.
Accordingly, the FIS approach has a great potential as a
decision-making tool in design problems. In particular,
the FIS approach is expected to be very successful when
used together with big data for its calibration. Accord-
ingly, in the near future, this approach could be effec-
tively coupled with 5G, real-time data acquisition
technologies, big data streams, artificial intelligence, and
automated machine learning to model and predict the
mechanical behavior/strength of engineering compo-
nents and structures.
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TABLE 6 Error contrast between fuzzy inference system and

the adapted analytical method

Specimen FIS error (%) Analytical method error (%)

2 0.1 12.5

4 0.2 11.5

6 8.6 15.5

8 2.9 2.1

11 8.7 0.9

13 9.0 5.3

15 7.6 3.6

17 11.7 24.9

20 10.3 5.7

22 5.4 16.4

24 8.6 9.0

26 0.2 5.1

Average 6.1 9.4
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NOMENCLATURE

dv effective size of manufacturing voids
n total number of specimens
R notch root radius
yp printing direction of 3D-printer
θp manufacturing angle of 3D printing
μ membership value of corresponding data
σf tensile failure strength
σe estimated failure strength
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ENDNOTES

* This step and the step below (implication) need to be performed

for each fuzzy rule (rows in Table 1); however, for clarity of pre-

sentation, an example rule (rule 1) will be presented here.
† Note that, although MFs in our example are all triangular for the

simplicity of demonstration, both input and output parameters

can have different types of MFs in general cases and are deter-

mined by users.
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