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We propose a new method for obtaining an effective Friedmann—Lemaitre—Robertson—
Walker (FLRW) cosmology from the quantum gravity dynamics of group field theory (GFT),
based on the idea that an FLRW universe is characterised by a few macroscopic observables.
Rather than relying on assuming a particular type of quantum state and computing expectation
values in such a state, here we directly start, from relations between macroscopic observables
(defined as one-body operators) amd.formulate dynamics only for those observables. We
apply the effective approach to constrained quantum systems (as developed by Bojowald
and collaborators) to GFT, providing a systematic expansion in powers of . We obtain a
kinematical phase space of expectation values and moments, which does not require an a
priori choice of clock variable. We identify a gauge fixing of the system which corresponds to
choosing one of the cosmological variables (with the role of extrinsic curvature) as a clock
and which allows us to/rewrite the effective dynamics in relational form. We show necessary
and sufficient conditions for the resulting dynamics of expectation values to be compatible

with those of classical ELRW cosmology and discuss the impact of quantum fluctuations.
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I. INTRODUCTION

Many modern approaches to quantum gravity suggest that the classical continuum notions of
space and time are emergent concepts, to be obtained from an underlying fundamental description
in terms of different quantum degrees of freedom. Extracting continuum physics from such theories
is generally a very complicated task, because of both conceptual and technieal problems. Some of
the most important outstanding issues, in relation to this task, are the problem of time, the problem
of Hilbert space and the problem of the classical limit |1, 2|. There aré of course many other issues,
such as the implementation of diffeomorphism invariance in a discrete formalism [3] or the reliance
on preferred foliations, but in the following we will focus only on these three. They are present in
one form or another in any formulation of quantum gravity, but they are particularly visible in a

canonical formalism.

The problem of time refers to the fact that, due.teo,the diffeomorphism invariance of general
relativity, there are no external structures withi respeet to which one can define (time) evolution. As
a result, the Hamiltonian of general relativity(or, more in general, of any background independent
theory) is forced to vanish in absence of boundaries [4-6]. At the quantum level, the vanishing of
the Hamiltonian results in “frozen” dynamics, where states do not evolve in “time”. Change and
evolution can however still be defined in termsofsinternal physical quantities. This is the relational
strategy, which is based on the ‘use of evolving constants of motion [7, 8] (see [9] for a review), i.e.,
Dirac observables encoding corrélations between the physical variable chosen as a clock and the
remaining ones. Though theserobservables can be formally defined in the classical theory [10, 11],
their explicit construction, especially at the quantum level, is extremely complicated. One main
reason is that one has in general very little control over the physical Hilbert space on which they
should be represented. The construction of a Hilbert space by endowing the space of solutions to
the quantum constraint with an appropriate inner product is a poorly understood issue; this is
the Hilbert space problem mentioned above. Lastly, the problem of the classical limit refers to the
extraction of (Semi)elassical physics from full quantum gravity, which has been often addressed
through an explicit construction of specific classes of states. Semiclassicality is however not a sharp
notiongrand itiis therefore important to clarify which results are general to semiclassical states and
which ones lare instead only valid for the states considered. Moreover, in approaches (like GFT
or spin foam models or lattice quantum gravity) in which the basic structures of the theory are
discrete, the semiclassical approximation leading to general relativity is necessarily accompanied by

some form of continuum approximation, implemented via coarse graining or renormalisation group
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techniques. The two kinds of approximations are conceptually and technically distinct [12]3albeit
intertwined.

Effective techniques, describing quantum systems in terms of (a finite set of) expeetation values
and moments of observables associated to a given state, may play a crucial role in order,to practically
bypass the above difficulties, while still allowing to extract physical semiclassicalpredictions from the
theory. These techniques have been employed already in the context of simple quantum systems for
instance in [13-18|. In principle, in order to apply the framework developed in [13, 15| to quantum
gravity, it should be generalised to a field theoretic context, which will in general pose formidable
technical challenges. However, in quantum gravity one is often not interested in all degrees of freedom
in the theory, but rather in situations where only some degrees of freedomsare relevant. In particular,
the relevant physical scales where quantum gravity effects might be'seen are far away from the
microscopic Planck scale, and will thus involve a form of gellective o1’ coarse-grained characterisation
of the fundamental quantum gravity theory. One may.then develop an effective framework only for
those observables which are most relevant at this coarse-grained (“hydrodynamic”) level: this extends
the effective framework in a more minimal way, essentially replacing the algebra of observables
of the quantum particle with a similarly finitely generated algebra of collective and macroscopic
observables. Expectation values and /moments of these observables are then the quantities in terms
of which the effective hydrodynamic description/is defined. This focus on such a coarse-grained
regime can also be seen as a way to implement a continuum approximation, as part of the extraction
of semiclassical physics via the chosen effective framework.

In quantum gravity, a system,which'can be characterised by a few collective observables is the
homogeneous and isotropic ELRW universe [19]. The hydrodynamic description of the fundamental
quantum gravity dynamigs. to capture homogeneous and isotropic cosmology has been employed
especially in the coutext of group field theories (GFTs) [20]. GFTs can be seen as quantum field
theories whose fundamental quanta are three-dimensional discrete chunks of space, i.e., quantum
tetrahedra, whose geometrie,properties are encoded in group variables (these variables are equivalent
to the data on'@pen spin networks in loop quantum gravity [21]). Continuum spacetime notions are
expected to emerge from these theories only after an appropriate coarse-graining is performed. Their
Fock.space structure is perfectly suited for the construction of non-perturbative collective states,
such as coherent states, which have an interpretation in terms of continuous and homogeneous
three-geometries [22, 23|. Using these states and mean field methods one can obtain (in the weak
interagtion limit) an effectively hydrodynamic description characterised by Friedmann dynamics

with a quantum bounce for the averaged volume of the universe [24-27]. These results have sparked
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further works addressing for instance the role of quantum fluctuations, especially for late times and
around the bounce [28, 29] and the definition of relational evolution in such emergent quantum
gravity theories |25, 30].

In this paper, we aim to provide a new perspective on the derivation of cosmological dynamics
from GFT by extending the effective techniques developed in [13-15] to the GET setting. As in"|24]
and many subsequent papers, we consider a GFT model minimally coupledswith a méssless scalar
field, and assume that the self-interactions of the GFT field are negligible\in the regime of interest.
As mentioned above, the effective techniques were developed for a quantum algebra generated by
a finite set of operators. We propose to use a suitable finite set of one-body GFT operators!. In
particular, the quantum constraint of [13] is given by the integrated (frée) equation of motion in our
set-up. Truncating the system in this manner is motivated by the interest in only some collective
(hydrodynamic) variables, and is the most crucial approximationsthat we perform; we see it as a
requirement to be imposed on the kind of states employed in theveffective description. One important
consequence of this assumption is that the nimber eperater of GFT quanta? trivially commutes
with the constraint, so that its expectation value and all its ' moments will be constant. The quantum
algebra thus obtained allows to construct a quantum phase space coordinatised by expectation
values and moments of the relevant ‘operators; aceording to standard techniques [13, 15, 31]. By
imposing that the states of interest are also semigclassical, one can truncate the hierarchy of moments
to a desired order in h. The quantum constraint then produces a finite set of effective constraints,
generating gauge flows on the variables of the truncated quantum phase space. Similarly to [15-17],
all but one of these gauge flows-are fixed so that one of the geometric operators in the algebra (here
chosen to classically matchithe extrinsic curvature) is effectively classical, and can be used as a
proper clock. Through this,procedure, one ends up with a relational description of a reduced system
of variables which effectively represents the physical Hilbert space.

We show how /tohrecover the Friedmann dynamics of a flat FLRW universe at the level of
expectation values. Moreovers assuming that quantum fluctuations are small at small curvature,
they remain under control also large curvature, a feature shared with loop quantum cosmology

(LQC) models [32, 33]. We compare these results on fluctuations with previous works [28, 29| which

! By “one-body operator” we mean an operator which can be written as an integral over a single combination of
creation and annihilation operators.
2/Note that this is the fundamental number operator and not the effective relational number operator, a function of a

relational clock value, typically used in GFT cosmology [24].
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stressed the importance of a changing particle number in order to suppress or enhance quantum
fluctuations. This is in contrast with our approach here in which the particle numbers constant
(keeping in mind that the notions of dynamics and time dependence differ in these different papers —
see next paragraph). Our results also provide additional insights into the role of relational dynamics
in emergent quantum gravity theories, emphasising the importance of coarse-graining (in our ‘case
given by explicit truncation) before defining a notion of relationality, as suggested in{25].

Our method for implementing relational dynamics in GFT differs from what was done in previous
papers such as [24, 25, 27]. More precisely, while the approach pfoposed in this paper shares
with [25] the fact that relational evolution is defined only in an effective sense, in contrast to
[25] it does not require a specific form of states. In [24], instead, a relational notion of dynamics
was implemented by defining “relational operators” (which howevermieed smearing in order to be
well-defined |25, 34]), while |27] employed a deparametgised framework from the start (the two
last approaches are connected in [30]). In our approach, we do.not attempt to define microscopic
relational observables, nor we try to construct reduced/physical Hilbert space; these difficulties are
in fact bypassed by the effective approach and the notion of relationality is defined in the usual
sense of constrained dynamics on a phase space. ‘A complete understanding of how these approaches
to relational dynamics are related to‘each otheris still missing, and certainly deserves more study.

Finally, let us stress again that in order to obtain our results one does not need to specify a state
— only general semiclassicality and “hydrodynamic”’ conditions are assumed — thus suggesting that
the connection between GFTs and cosmelogical solutions may go beyond the choice of coherent

states (as in the simpler settingrof [29]):

II. "REVIEW OF THE EFFECTIVE APPROACH

In this section wexeview the effective approach to constrained systems [14, 15] and to relational
dynamics [16](see also [173,18]). While there are many fascinating aspects of this approach that
deserve to be discussed at length, we touch only the points necessary for the understanding of the

procedure develdped in this paper, referring to [14—18] for more details.

A. Effective constraints

The effective approach to quantum constrained systems is formulated in the quantum phase

space, which can be constructed from first principles as follows [35, 36].
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The starting point is a set of elements A; with i = 1,...,n generating an associativerunital

algebra A (which contains all finite polynomials in the AZ) and satisfying the commutation relations
[Ai, A;j] = inf, Ay, (2.1)

for some real constants fijk. One usually assumes that this is an involutive algebraji.es, there is a *

operation corresponding to the adjoint (where the generators are often thought of as self-adjoint).

Monomials of the form AT A2 ... A7 with m; > 0 form a lineaf countable basis for A. Now
a quantum state 1 can be seen as a linear functional on A, i.e., a map 9 : A — C, with the
conventional notation (A;) = Y(A;) (and with (1) » = 1). From an algebraic viewpoint this is the
definition of the notion of state. One connection between this algebraieframework and the canonical
description in terms of operators acting on Hilbert spaces,is provided by the Gelfand, Naimark and
Segal (GNS) theorem [37, 38] according to which, given any algebraic state «, it is always possible
to construct an Hilbert space H,, on which the algebra of observables act as an algebra of linear
bounded operators 7Ta<Ai), such that 7, is a %-representation of A. This Hilbert space H, contains
a cyclic vector |a) € H, such that a(A;) = (alma (Ai)Ja). More generally, one may start from a
Hilbert space H on which the elementsiin A act as operators; then one can again think of each
1 € H as a linear functional by defining 1/;(1211) — <¢|AZ|¢> In either viewpoint, the statement
relevant in the effective approach igthat one is interested in elements of A, the dual vector space
to A. A subtle point here is that/the existénce of a Hilbert space representation would imply that

(A*A;) » = 0 but it is mentioned, in‘[35;736] that this condition need not hold in the more general

algebraic framework.

Because of linearity, any. 1) € A is determined by the values it assigns to a linear basis of A. So,
one could coordinatige A'through the expectation values <AZ> with ¢ = 1,...,n and moments

A (AT, AT = <(A1 - <A1>)m1 . (An - <An>)m"> (2.2)

Weyl ’
where the subscript indicates a total symmetrisation of the product of operators inside the expectation
value abovepand where > 7" ; m; > 2. This choice of coordinatisation proves especially useful in
effective approaches, where the states chosen are such that there is a clear hierarchy of moments, as

we will"discuss below.

The Poisson structure turning the state space A coordinatised by expectation values and moments

into the quantum phase space is directly inherited from the commutation relations of the elements
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in A: one defines?
{(A).(B)} = m) ([4,8)) (2.3)

for any fl, BeA (it is enough to demand this for monomials in the generators 121@) For constrained
systems, the quantum phase space corresponds to a kinematical Hilbert spacéy since nojconstraint
has been imposed yet. In this sense, variables in A are kinematical quantumpvariables.

In the algebraic framework, we can now define a quantum constraint C as an algebra element
satisfying? (AC) = 0 for any A € A [15]. In other words, the constfaint _can be characterised by

requiring that its expectation value and all of its fluctuations are.zero:

~

CA),A(..))=(C)=0, (2.4a)

Cpar((4i), A(-..)) = {(pol - (Bol) Ji&) = 0, (2.4b)

with p/(;l being a polynomial in the algebra elements.» The notation here emphasises that the
constraint functions should be expressed in tefms of expectation values and moments®. Notice that,
contrary to what is done for moments, the quantum constraints are not defined by a symmetric
ordering. In turn, this implies that the,quantum constraint functions can take complex values. This
was however shown not to be an issue for deparametrisable systems, basically because the moments
appearing in the constraints are kinematical moments and do not need to be restricted to real values.
On the other hand, physical expectation values and moments must be real® [15, 17].

The reason for this ordering choice is that a symmetric ordering would not in general lead to a
first class system of constraints [15]., On the other hand, with the definition above it is easy to show

that for any Cpo and (g definedas in (2.4b) we have
—~ A —~ A
{Cpol, C'poy} = (ih) ™! <[polC,pol C}> ~0

where ~ is Dirac’s “weak equality” (equality up to functions that are multiplied by constraints), and

so the system (closes. As a consequence, these quantum constraint functions induce quantum gauge

3 This form of Poisson brackets can also be motivated by the geometrical formulation of quantum mechanics [31].
4 Thi§ can be seen as the algebraic counterpart of the Dirac condition C|t) = 0 for any state |¢) in a Hilbert space,

the connection between algebraic and Dirac formulation being provided by the GNS construction discussed above.
5 For non-polynomial constraints, this can be achieved via a Taylor expansion.

6/Notice that in the usual Hilbert space approach, C |1) = 0 likewise only implies that AC |y = 0 for any A but not
necessarily (AC’ + C’/l) |) = 0, which could lead to an analogous discussion.
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transformations on their solution space through their Hamiltonian flows. The presence ofigauge
flows even after solving the quantum constraint functions in the quantum phase space approach can
be understood again as an effect of working with kinematical variables, which are indeed,affected by
gauge even at the classical level. Moments and expectation values of Dirac observables, instead, are
gauge invariant also from this effective quantum phase space perspective. Indeed, if O is a Dirac

observable, the flow of its expectation value,

() (1) = {10} ((pol - (poD)) €) | 25)
! |

(i) [{ (ol = (po1)) 10,€1) + ([0 =(C)))]

where 7 is parametrising the flow, vanishes weakly. The same,of course is true for moments of
Dirac observables. In this approach, the difficulty in solving the quantum constraint and explicitly
constructing a physical Hilbert space has been traded for an infinite set of variables and constraint
functions. These are in general intractable, unless one can-ddentify some approximation that allows
to reduce them to a finite set, neglecting subdeminant-contributions, and thus characterising the
approach as an effective one. An example of sueh approximations is the semiclassical one, where
it is assumed that moments of higher order,are, also higher order in h. More precisely, for the
semiclassical expansion one assumes that A(A" ... A7) ~ mat+ma)/2 At a given order in f,
only a finite number of constraintg and moments are relevant. By construction this hierarchy is also
preserved by the Poisson structuresnIndeed, one can show from (2.3) that the Poisson bracket of a

moment of order ™2 and 4 moment of order A™/2 is of order h(m+n—2)/2,

In the following, we \will assume that a truncation at order A captures the dynamics of suitable
semiclassical states t0 a good approximation. This means that we will neglect all terms explicitly
proportional to h3/2 er higher and all third or higher order moments. For an algebra generated by
n elements A;fwe then have n + 1 constraints C = (C) = 0 and Cy, = ((4; — (4;))C) = 0 and

n+n(n+1)/2= n(@+ 3)/2 expectation values and moments.

The extension of the Poisson bracket (2.3) for an algebra with commutation relations (2.1) is, at

the given truncation to order A, given by the relations

{(A:), A(Aj AR} = fi' A(AAL) + (< k), (2.6a)
(A4, A(AAD} = (Lo (An) A4 A) + (0 5 ) ) + (kD). (2.6b)

Page 8 of 33
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B. Effective relational dynamics

Within the effective framework described above, the way physical variables are selected is through
an effective local deparametrisation of the system [15, 17]. This is obtained viaya partial-gauge
fixing of the aforementioned gauge freedom (Zeitgeist), leading to a projection info a classieal “time”,
and consequently to the definition of transient relational observables called fashiomables. In [15, 17|
most of the features of this effective approach to relational dynamics are explained through different
(classical deparametrisable and non-deparametrisable) examples. Here wewwill try to provide a
general summary of such features, most of which will also be true for the system we aim to study in
the rest of this paper. An important feature of the effective approach explained above is that the
quantum phase space generically has a degenerate Poisson structure, i.e., is not symplectic. Indeed,
moments of any arbitrary order are characterised, in genéral, by a degenerate Poisson tensor’. A
crucial consequence of this degeneracy of the Poisson structure is that even though the constraints
Chpol, C are independent, the gauge flows generated by themhare generally not. The Poisson geometry
of constrained systems is discussed in [39].

In the examples studied in [17], at order 7 there are/n + 1 constraints, but only n gauge flows
generated by them are independent. This'means that of the n(n + 3)/2 variables relevant at that
order, 2n variables can be eliminated using'the constraints (n + 1 conditions) and n — 1 by fixing
all the gauge flows but one. Thisleaves n(n +3)/2 — 2n = n(n — 1)/2 remaining variables. The
importance of this counting can b¢ understood when one is interested, as we have mentioned above,
in an effective deparametrisation of the system. Classically, such a deparametrisation would result in
the complete elimination of a (possibly canonical) pair of variables. At the effective level, eliminating
all variables related to'a/air ofioperators having closed non-trivial commutation relations among
themselves leads to a total of (m=2)(n+1)/2 = n(n—1)/2 —1 variables. So, by appropriately fixing
n—1 gauge flows and using the n+1 constraints (see below), one could obtain a set of (n—2)(n+1)/2
physical variables,and one classical “clock variable”; all of them subject to the remaining, unfixed
gauge flow. In tuarn, this allows constructing local relational observables (fashionables) describing
the evolution of the physical variables with respect to the clock.

Let usidiscuss in more detail how this procedure can be realised concretely. The theory is entirely
clock neutral, since all physical variables are treated on equal footing. The partial gauge fixing

mentioned above, or Zeitgeist, has exactly the purpose of choosing a specific clock, projecting the

7/As an example, consider a canonical pair ¢, p. At order A, we have 3 moments, so the space is odd-dimensional and

the Poisson structure of second order moments must be degenerate.
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quantum clock we are interested in onto a classical parameter. Of course, such a clock, say T, needs
to have non-trivial commutation relations with C , i.e., the clock may not be a Dirag‘observable
since otherwise it is constant (cf. (2.5)).

We will assume this, and we will again further restrict to an order A truncation: If.the clock also
forms a closed subalgebra with another operator, say P (which is the situation studied in [15] 17|

and considered below), the n — 1 conditions

ba = A(TAL) =0, ae A\{P}, (2.7)

fix n — 1 gauge flows at order %, and make the clock classical on,the space of physical variables.

Then, if the expectation value and the n moments of the variable P can be eliminated using the n+1
effective constraints®, one indeed arrives at a physical deseription ifivolving the (n — 2)(n + 1)/2
expectation values and order 7 moments of the remaining n — 2 variables, and <T>

Once the gauge fixing conditions (2.7) are imposedgione is left’ with a mixture of first and second

class constraints. However, since

{Ba 05} = = (|7 = (1)) (Aa — (AN, (BEAT)) (A5 — (4p))] )

where in the third line we have neglectedvhigher order terms, we notice that the matrix of Poisson
brackets A;; = {xi, X;}, where x; inelude first order constraints and the gauge fixing conditions
(2.7), is actually off-block diagonal,iwith non-zero values only involving physical constraints and
gauge fixing conditions. This, tegether with the fact that the n(n — 1)/2 remaining variables have
weakly vanishing Poisson brackets with the gauge fixing constraints (which can be proven in an

analogous way), shows that the Dirac brackets

{fag}Dirac = {f> g} - {f: Xi}Aij{Xja g} ) Aij = (A_l)ij (28)

for the n(n —1)/2 remaining variables are identical to the Poisson brackets introduced above. Notice
that the remaining moments must, at this point, be real, contrary to what may happen for moments

of P (see for instance [15, 17]) or for the expectation value of T itself (see [17]).

€/This for instance happens if the quantum constraint is linear in the variable ]3'7 which will be a case of interest in

the following.
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Once a Zeitgeist has been chosen, for instance T' = <T> as specified above, one looks for the
remaining gauge flow that preserves the gauge fixing conditions and, through that, one constructs
relational quantities of the form (A,) o T~ and A(AqAg) o T~ These observables are transient in
nature, since they can only be meaningful as long as the clock does not reach amy,turning point
and maintains a monotonic evolution. When this is the case, one is forced to move from one
Zeitgeist to another one; correspondingly, these observables may “fall out of fashion”.»As such, these
“fashionables” can only be state dependent. We refer again to [16, 17| for more details on this topic,
and [18] for an explicit example of a model that does not have a globally defined clock. In the case
we will be interested in, we will choose a clock variable with globally monotenic evolution, so that

the Zeitgeist is valid globally.

C. Extending the effective approach to field theory

The effective approach to constrained systems is tusually applied to quantum-mechanical systems
of a finite number of degrees of freedom, often with a single constraint C. The generators A; of A
then usually represent the quantum analogue of\phase'space coordinates for a classical system one
proposes to quantise (e.g., positions and momenta of a system of particles). We saw above that the
quantum phase space A can be identified with,an,(algebraically constructed) set of quantum states
on the algebra A, or with a Hilbert,space that the elements of A could be seen as acting on.

In this paper, we want to exténd therapplication of this approach to a field theory setting. A
quantum field theory can be seen asithedquantisation of a system with already classically infinitely
many degrees of freedom, and/would therefore be associated with a very large observable algebra
Aqrr (as is the starting point, e.g., in algebraic quantum field theory). We will however restrict to
a much smaller algebrarrepresenting only a few coarse-grained observables we are interested in. That
is, our algebra A will only be a very small subalgebra of the full Aqpr. It then follows that the
quantum phasesspace A of interest to us is much smaller than the field theory quantum phase space
AQFT. The smaller A'can then perhaps still be identified with some Hilbert space, but this will not
be the Hilbert space of the field theory Hqrr, which is much larger. Indeed there are in general
different elements of Hqpr that would be identified with the same element of A in the effective
approach; these are states that agree on expectation values and moments of macroscopic observables

even thouigh their microscopic definition may be different?.

9 This is consistent with a coarse-graining interpretation of the reduction to an observable sub-algebra.
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Since the effective approach as reviewed here starts from the algebra A and a set of constraints
only involving elements in A, the question of how the quantum phase space A might&itlinside a
much larger Hilbert space is not of direct relevance for its application. In this sense, we will not
need to give an explicit construction of A as a subspace of ‘Hqrr which in our case will be the, GET
Fock space. Our interpretation is that 4 is a quantum phase space resulting frem a coarse graining
of the field theory, which leads to an effective description characterised by asfew operators (among
the infinitely many that can be constructed out of the field operators) whose expectation values and

moments coordinatise an effective quantum phase space.

III. TRUNCATING THE DYNAMICS TO ONE-BODY OPERATORS

In this paper we apply the effective approach outlined in the previous section to the dynamics of
group field theory, in order to obtain a systematic/semiclassical expansion that does not require
specifying either a particular state or a particular relational clock. Instead, we will only assume
that the state is sufficiently semiclassical for an 'k expansion to make sense, and we will construct a

clock using the strategy of deparametrisation and gauge fixing by a Zeitgeist explained above.

As we already outlined at the end of the previgus section, out of the infinitely many independent
observables that can be constructed out of the GFT field operators we will only study a few “global”
one-body operators, and truncate the dynamics to a system of equations that only makes reference
to those operators. Clearly theschoice of operators in our algebra is to some extent determined by the
dynamics of the theory. We implicitly assume that those few global quantities are sufficient to capture
the most relevant dynamieal information of the field theory. Such an assumption is conceptually
similar to assuming a’homogeneous cosmology in general relativity, which amounts to the assumption
that a few global quanmtities (the volume of space, a homogeneous energy density, etc.) capture the
dynamics of the Universe. Here we see this truncation as representing a coarse-grained description of
the field theory in which one is only interested in some macroscopic variables, which is justified for
states for which the coarse-grained description is “reasonably close” to the full microscopic dynamics
of thedfield theory. This viewpoint is then the quantum analogue of the classical perspective that
a homogeneous, isotropic universe in classical cosmology is not a very symmetric solution to the
Einstein equations but should rather be seen as obtained from averaging over inhomogeneities on
small'scales |40, 41]. In the setting of quantum field theory, understanding the conditions for this

truncation to be valid is a more challenging problem.
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A. Effective GFT quantum constraint

We now introduce the details of our effective approach to GF'T dynamics. First,swe introduce
the type of field theories we are studying. We consider GFT models with domain G* x R, swhere G
is a Lie group representing gravitational degrees of freedom and R represents a scalar matter field.

Writing the field as ¢(gr, x) the dynamics are then schematically defined by an aetion

Slp, ¢l = /d4g dx @91, X)D(g1, x) + IL[p, @] (3.1)

where D is a differential operator on G* x R and I[p, @] is the “intefaction” part of the action
which includes terms of higher than second order in the fields. Wewill focus on the free part and
mostly neglect the contribution from interaction terms in the following.|Such an action gives rise to

equations of motion

Do(gr, x) + %([sf;‘(’;]) =0 (3.2)

and the complex conjugate equation for @, but rather thanolving this local equation (either at the
full quantum level or in a mean-field approximation) we.¢an multiply from the left with a conjugate

field and integrate to obtain

/d4g dx @(g1, X)Dp(g1, x) + higher order =0, (3.3)

i.e., the quadratic part of the GF'T' actiomyhas to vanish if we again neglect the effect of higher order

contributions. (3.3), with the higher.ordér parts assumed to be negligible, is our starting point.
We can now specify the form of D further in order to make the form of the resulting dynamics

more explicit. A minimal non-trivial D would include a “mass term” and second derivatives with

respect to the group argumentsji.e.,

W &
D=m?+ o > Ay + AR (3.4)
=1

where Ay, is a Laplace-Beltrami operator on G, acting on the argument I (the reason for the factor
% will be clear shortly). (3.4) is a standard form for the kinetic term of a GFT model, which has
been studiediin previous papers on GFT cosmology such as, e.g., |22, 42, 43|. It can be motivated
by results from GF'T renormalisation which show that Laplace—Beltrami operators with respect to
group arguments are generated by radiative corrections [44, 45|, even if one started with a pure mass
term as is often done in the spin foam literature [46]. It could also be motivated by an effective field

theory expansion in derivatives, with the further assumption that the theory should be invariant
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with respect to arbitrary translations in G* x R so that explicit dependence on gy or Y is exeluded.
We will consider (3.4) for now but discuss possible extensions below. Notice the appearance of
factors of h associated to each derivative, which are standard in quantum mechanics but often
dropped in quantum field theory by setting & = 1. In our setting we will perform a semiclassical
expansion in powers of & so it is important to keep these powers manifest.

The discussion so far was classical. In the quantum theory, we would expect any,physical state

|1) to satisfy

h? < .
<m2 o D Ay, AR 8§> @91, X)) =0 (3.5)
I=1

but we will now replace this local condition by a much weakerjintegrated version
A 4 o W - 2 12
Clp) = /d gdx @' (gr, x) | m* + T D Ag + ARG | Ggr, X)) =0 (3.6)
I=1

which we can see as a constraint equation C |1)) = (/for ajeertain one-body operator C.

It is clear that (3.6) is only one out of animyprinciple infinitely long list of similar conditions'?,
obtained by integrating the local equation of motion with-different operators from the left!!. Having
made this truncation, the next step is/an eéxpansion in’ powers of /& in which the still fully-quantum

mechanical condition (3.6) is replaced by a,series of statements about expectation values. This

expansion is the essence of the ¢ffective approach which we are importing into the GFT setting.

B. Defining the observable algebra A

In the discussion of Section/ll we/presented the construction of a quantum phase space as starting
from an observable algebrand generated by a finite number of elements; quantum constraints were
constructed from the elements of A. In the field theory setting of GFT, it is advantageous to proceed
in the opposite direction: having defined a constraint (3.6) we now introduce a number of one-body
operators whase dynamics aré controlled by (3.6). This set should be large enough to capture at
least some _physically‘interesting and non-trivially evolving quantities, but still small enough to keep
calculations under control. We will find that this balance between making non-trivial statements

about effective dynamics and keeping the complexity of the approach under control will already

10 Tt can be seen as the counterpart of the infinite set of Schwinger-Dyson equations.

1 Here, due to the linearity of (3.5), the constraints obtained by this procedure only relate operators constructed out

of the same number of field operators: each integrated constraint only involves n-body operators with the same n.
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1
2
2 impose quite stringent limitations on how many quantities we can and should include. The, basic
5 operators we define are then the A; appearing in (2.1), i.e., the generators of A.
6
7 The form of (3.6) suggests the definitions
X C 4
9 N = /d gdx ' (gr, )¢ 91, x) , (3:7a)
10
1 Ap=—n? [ dtgdy gl Ay d 3.7b
. = gdx @' (g1, x) D¢, ¢(91,X) , (3.7b)
13 .
14 Iy = —hz/d”‘g dx ' (91, X)03@(gr, x) - (3.7¢)
15
16 N corresponds to the GFT number operator. As a further simplificatiofi' we will assume that the
17 « «
18 state |¢)) we are working with satisfies Ar|¢)) = As|¢) for any I and J. (whieh one might interpret as
;g a notion of isotropy). We will then simply write A instead of A rygiveni that all equations involving
21 any of the operators Ay will be independent of the label I, @and the sum over I will cancel the factor
22
23 1 in (3.9). With these considerations the quantum constraint operator defined in (3.6) is given by
24
25 C =m*N — A— \la» (3.8)
26
;é We will later replace the operator equation c |h).= 0 by a series of constraints for expectation
29 values and higher moments, based on the effective approach introduced in Section II. This set of
30
31 equations corresponds to a semiclassical éxpansion in powers of . At lowest order A°, we have the
32
33 non-trivial requirement that the,sum of expectation values
34 R R R R
35 Q=1{C).= m?*(N) — (A) — \(II,) (3.9)
36
37 should vanish.
38
39 The one-body operators we have defined so far all commute with each other, and thus are not
40
41 governed by any non-trivial dynamics. We therefore also introduce a one-body operator
42 )
43 X = /d4g dx x @' (g, x)@(91,X) (3.10)
44
22 which we will interpret as corresponding to the value of a matter scalar field (summed over all
47 quanta in a state, since this’is an extensive quantity). If we assume the commonly used canonical
48
49 commutation relations
50 4
5 (£(1.20: €165 ) = 30 x) [ ab [T otarhln) ™) (3.11)

I=1

53 . . . . .
54 for the'field operators, where the slightly unusual integration over h ensures that this commutator is
gg compatible with the gauge invariance property [22]
57 R R
58 ¢(g1,x) = ¢(grh,x) ¥V heSU_2), (3.12)
59
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we find

(X, 1] = 2ih (—iﬁ/d4g dx @T(gz,x)axs@(gz,x)) = 2k 1T (8.13)

so that II; defined by this equation also needs to be added to our algebra of one-body operators.

We then also find
[X,I;] =iAN (3.14)

while all other commutators among quantities we have considered so far (ineluding all commutators

of N or A) are zero. We also add a one-body operator K which hés a non-trivial commutator with

A but commutes with all other operators, such that the full sethof operators forms a closed algebra.

We will interpret the operator K as corresponding to a notion of extrinsic curvature. The precise
form of the commutator is unspecified for now; later on, we, will constrain it by physical arguments
and find explicit realisations of such an operator in particular examples.

The six one-body operators we have defined provide the basis for the extraction of effective
cosmological dynamics. The operators are subject to.a single constraint (3.8). In general, it is easy
to find examples of systems of one-body. operators subject to more than one constraint?, but the
specific form of the equations of motion and the algebra defined above guarantee that (3.8) is the
only constraint that involves operators in the @lgebra alone. Indeed, consider an action on (3.5)
from the left resulting in an integrated. constraint which features an operator included in the above
algebra but different from N , A, and I, (e.g., K) This new constraint would inevitably involve also
new operators whose matrix elements depend both on the group and the scalar field variables, which
are however not included in the algebra of operators of interest. In this sense, we are considering a
minimal self-consistent 'set of operators and dynamical relations.

Notice again that/in this.approach there is no dependence on any time parameter, nor a viewpoint
that any of these’operators define by themselves a notion of relational observable. Any notion
of relational dynamidés will enly arise from comparing the dynamics of these operators to each
other. Importantly;zand in line with the philosophy of the effective approach, we make no explicit
assumption about the quantum state, only that it is sufficiently semiclassical (with respect to these

global'ebservables). We do however see our approximation (of not solving local field equations but

2 For instance, consider a hypothetical GFT model with quantum field equation (f(gr,x) + 1)¥(gr,x) = 0, and

consider the operators N, F', = [d*gdx ' (g1, x)f(gr,X)@(gr, x) and F_ = [d*gdx ' (g1, x)f (91, x)#(91, X)-

The equations of motion would then imply two separate constraints F+ +N=0and N+ F_ =0.
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only demanding that our one-body operators satisfy certain “averaged” relations) as an implicit

condition on the quantum state.

C. Fixing the free commutator by analogy with classical Friedmann cosmology.

The lowest-order truncation to the full quantum constraint would be to onlysrequire that the

expectation value of the constraint vanishes. This leads to the constraint

A~

C =m*(N) — (A) — \IL) ~ 0 (3.15)

that we already defined in (3.9). At the same level of truncation/the dynantics of our six quantum
one-body operators can be reduced to the dynamics of the expectation values of these operators.
The resulting dynamical system is then equivalent to a classical.constrained system: the expectation
values represent phase space variables subject to a single Hamiltonian constraint. The constraint
generates gauge transformations, which we will asswme ecan be interpreted as reparametrisation in
time or as the time evolution flow generated/by a Hamiltonian built from this constraint.

We can then demand as a minimal requirement that this system corresponds to the dynamics
of a homogeneous isotropic Friedmann-Lemaitre—Robertson-Walker (FLRW) universe in general
relativity or a modified version of it whichyincludes' higher-curvature corrections. We will use this
minimal requirement to fix the so far unspecified commutator between A and K.

The flow generated by (3.15) is
(N) (O () (1) = (T1)' (1) = (A)'(8) = 0 (3.16)

so that we immediately have four constants of motion, and

(R = —2000) (1), (KY'(6) = {(A), ()} (8). (3.17)

As we have stated when introducing it, the variable X represents a matter scalar field whose value is
summed over allsquantain a GF'T state. Normally we would have to worry about the fact that this
is an extensive variable and/perhaps divide by the average particle number to obtain an intrinsic
notion of fatter scalar field. In our framework here, the variable (N) is always a constant of motion,
since the ‘operator N commutes with all other one-body operators we consider, hence we do (for
now) not have to worry about the distinction between intensive and extensive quantities.

An‘immiediate consequence from (3.16) and (3.17) is then that the evolution of (X) is monotonic

if werassume that the expectation value <f[1> does not vanish, indeed we have

(X)(t) = (X)(0) — 2A(TL)(0) . (3.18)
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<X ) can then be seen as a good clock, very similar to the way massless scalar fields often appear as
clocks in quantum gravity and quantum cosmology.
Let us now compare this system explicitly with the dynamics of a flat FLRW. universe. filled jwith

a massless scalar field in general relativity. For this system, the Hamiltonian is (seepe.g., [47})

omGp: P
’HGRZN<—7Tp“+p¢>

5 4 T 243 (3.19)

where a is the scale factor, p, is its canonical momentum and p,, is the conjugate momentum of the
scalar field ¢. A convenient lapse choice, N = a3, transforms this tothe Hamiltonian

2

Har|y_y = —67GV?py, + 5

(3.20)

where we switch to a volume variable V = a3 with conjugate momentum py. The equation of
motion for the scalar field is now ¢ = p, and p,, is a constant of motion, a similar form to the first
equation in (3.17). This similarity would motivate further thésidentification of (X) as corresponding

to a matter scalar field. How about the equations for the spacetime geometry? We have
V= v HGR|N:V} = —127G(Vpy)V (3.21)

so that, taking into account that Vpy dssclearly aconstant of motion, on-shell we have V = ¢V for

some constant of motion ¢, leading to expenential solutions. Very similarly we have

pv={pv, Har| Ly} = 127G (Vpy)py (3.22)

and again exponential solutions (with inverse sign in the exponent, again ensuring that Vpy is a
constant of motion). Notice that fromthe vanishing of (3.20) we have Vpy = £p, /v 121G where
the sign is determined by initial conditions.

The explicit solutions for the scalar field ¢ and extrinsic curvature py are then given by

@(t) = pyt + ¢(0), (3.23a)

pv(t) = py(0) exp(£V 127G pyt), (3.23b)

where p, and the sign’ & are’ constants of motion. This explicit form shows in particular that ¢ and
py are globally monotonic functions, and so either of them could be used as a clock for the other

degrees,of freedom. If we are only interested in comparing the variables ¢ and py to each other, we

can|give the relation between the two as

1 . 1 pv
(popy o) = % mtog (20 ) +-6(0), (3:240)
(pv 0 9™1) () = py(0) exp (£V127G(p — 2(0)) - (3.24b)
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Notice that py cannot change sign, so the logarithm in the first relation is always well-defined.
We now want to reproduce these classical cosmological solutions, expressed in relational language.

Comparing (3.22) with the second equation in (3.17), if we assume that the quantity (K) is

analogous to py in the classical cosmological model, and hence represents extrinsic curvature,

dynamics analogous to those of general relativity will be obtained from assuming that

{<A>, <K>} x (K) . (3.25)

In the example of general relativity, this proportionality is only given on-shell (identifying the phase
space variable Vpy with a conserved quantity) so a priori it would make sense to assume that also
(3.25) only holds on-shell. However, the basic premise of our effectivérapproach is to assume that
the commutator of two elementary variables is a linear combination.ef elementary variables, as in
(2.1). The proportionality factor in (3.25) then needs to be just a nwmerical constant, which we will

denote by «; we then add the commutator

MK = ihaK (3.26)

to our algebra of basic operators. This commutator would also suggest that (A) is analogous to
Vpy in the classical theory, consistent with theffact that (A) is constant (cf. (3.16)).
For completeness, we also discuss the mostigeneral case in which the commutator takes the form
(A K] =ih>  aqa (3.27)
acV

where V is a set of labels (‘variables?), V = {N,II;, Iy, X, A, K}. Interestingly, even this most

general form can be solved exactly, with the solution to (3.17) in the case of ax # 0 given by

(R)(0) — (o SEFPMI)O)) (€~ 1)+ (R0 + Xonr) O (329)
aK oK aK
and in the case ag =0 by the expression
(K)(t) = (K)(0) + ot — axA(I11)(0)t?, (3:29)
where in [both cases we defined
z = an(N)(0) + arm, (I11)(0) + am, (T2)(0) + ax (X)(0) + ax(A)(0). (3.30)

This result would suggest that a more general form of the commutator between A and K could lead
to a modified effective cosmology, different from the classical case. In principle, this is what we

would expect: the effective cosmology of a quantum gravity theory such as GFT does not need to
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exactly reproduce classical Friedmann cosmology, and high-energy corrections such as those leading
to a bounce [24, 29, 48| are expected and desirable. In the closely related setting of loep quantum
cosmology, the expression for the extrinsic curvature also receives such corrections compared to the

classical case, and is proportional to arctan(exp(+£v127G¢)) rather than the clagsical exponential

(3.24b) [49, 50|, and these corrections are responsible for the resolution of the cosmological singularity.

However, if we at least require the resulting effective dynamics to reducesto classical cosmology
when curvature is low, so that there is a regime for ¢ in which (K)(¢) asymptotically approaches

e®k! < 1, we do obtain quite stringent constraints from (3.28): we mfst have
r=ax =0. (3.31)

The first condition x = 0 can be satisfied by fine-tuning initial conditions or, if one requires it to

hold for generic initial states, by setting
anN = 011, = O[]y = AT 0 (332)

reducing us to the case (3.26), which we will therefore assume in the following. It would be
interesting to study in future work whether the more general solution (3.28) can be given a physical
interpretation perhaps in terms of a modified theory of gravity.

We conclude this section with a few remarksyabout the operator K. Firstly, the above discussion
tentatively puts forward an identification of K with the extrinsic curvature. However, it should also
be possible to motivate the operator represénting extrinsic curvature by considering the microscopic
degrees of freedom. Note thatssuch amotivation from microscopic degrees of freedom has been
employed previously in GFT where/the definition of the volume operator has been imported from
loop quantum gravity (LQG) [24, 48|. In our framework this would mean that we are able to specify

the integral kernel in‘the definition

K= /d4gd4g'dxd><’ @' (a1, x)K (g1, 97 X XV @(g7, X') - (3.33)

Since such one-body eperators describe local quantities from the perspective of an LQG spin network,
the identification of curvature degrees of freedom is not straightforward (see, e.g., the discussion in
[22]) .« starting point could be the twisted geometries parametrisation of the LQG phase space,

which identifies a discrete analogue of extrinsic curvature for each spin network link [51].

Secondly, it is not possible to find operators representing the algebra (3.26) on compact spaces.

To see that this is true, note that on a compact space the eigenbasis of the Laplacian will be

countable. Assume that we have Hermitian matrices K;; and A;; = A;d;; representing the algebra
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on this countable eigenbasis of the Laplacian. Then the commutator gives
(Az — AJ)KZ] =ih OéKij (334)

which implies that K;; = 0. In our GFT setting, this argument would imply that a/representation of
(3.26) only exists if the Lie group G chosen to define the GFT model is non-compact.

Let us stress, however, how crucial the specific form of the microscopic,dynamics is also for this
interpretation of K as an extrinsic curvature operator. Indeed, as an example consider, instead of

(3.5), the constraint equation

5 4
(m(91)2 + % D A+ A(91)7128)2() P(gr, x) )= 0, (3.35)
I=1

113

where both m(gr)? and A(g;) are non-trivial'® and non-singulax. functions of the group variables,

such that their ratio is a constant, m(gr)?/A(gr) = A. We could, then consider the one-body quantum

constraint
C =N R\, (3.36)
with
A= hz/d“g dx @' (gr, x)m(gr) > Ay, 891, X) - (3.37)

The dynamics generated by the expectation value of the above constraint would be the same as

before (putting m? = 1), thusdmplyifigithat an operator K such that

o
Nb

[fx, } — iha (3.38)

could be interpreted (classically as extrinsic curvature. This operator, however, would be substantially
different from K intréduced above: since /:\ would not be diagonal on the Laplacian eigenbasis, one
could not exclude a representation of f( on a compact Lie group G on the basis of the argument
given above for K.

This should make clear that the precise geometric interpretation of both fundamental and effective

observablesis a non-trivial matter and should be taken with some caution.

13 The dependence of m? and A on the group variables is generally expected for GFTs constructed by path-integral
identification with simplicial gravity models minimally coupled with a free massless scalar field [52]. This dependence

actually encodes the non-trivial coupling between matter and geometry degrees of freedom.
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IV. ONE-BODY RELATIONAL COSMOLOGY

We now apply the effective approach reviewed in Section II to the one-body group field theory

114

model introduced in Section III**. The quantum constraint is given in (3.8),

C=m?N — A — Iy, (4.1)

and the quantum algebra is generated by A = {a},cy, where V is the sét of labels introduced in
(3.27). In the following it sometimes proves useful to make an identificationnllp= N allowing for a
very compact notation. This further necessitates the introduction of thessymbol II_; which however
will always be multiplied by zero.

Following the arguments from classical cosmology, we now assume that the non-trivial commuta-

tion relations of the algebra are given by

[X,1I,] = ihN, (4.2a)
(X, 1) = iR2Il, , (4.2b)
A, K] =lihoK. (4.2¢)

We will assume that an expansion inorderssof,moments corresponds to an expansion in orders of
h, as anticipated, and truncate the quantum,phase space at second order moments. The resulting
quantum phase space is therefore 27-dimensional, consisting of 6 expectation values and 21 moments.
The Poisson structure on the quantum phase space is given by the Poisson bracket induced by the
commutator as in (2.3). We collect the explicit form of the resulting Poisson structure in Appendix A.

The 7 effective constraints, as definéd in (2.4), are given by

€. = m*(N) — (A) — \(ILy), (4.3a
Crp= m*A(N?) — A(NA) — AMA(NTIy), (4.3b
Crr,/= m2A(NII) — A(IT;A) — AA(I11),

(
(
O, T'm*A(NTLy) — A(TlA) — AA(IT)
(
(

Cx =m?A(NX) — A(XA) —ihbAI1;) — AMA(T1X), (4.3e
Cpr = m*A(NA) — A(A%) — AA(TI2A), (4.3f
Ck = m2A(NK) + 15 (K) — A(AK) — AA(I1K) . (4.3g)

1 We performed the calculation using Wolfram Mathematica. A Mathematica package and a program containing the

calculations of this section are available at https://gitlab.com/qggftc/effective-constraints.

Page 22 of 33



Page 23 of 33 AUTHOR SUBMITTED MANUSCRIPT - CQG-108940.R1

23
1
2
2 Although the algebra considered here does not have any canonically conjugate pair, we will
5 nevertheless closely mimic the treatment of a system with a canonical pair as discussed i Section IT.
6 N N
7 As a “clock” we choose the operator K and as the “conjugate” we choose A.. From the effective
2 constraints C' and C,, a € V, it is then possible to eliminate the expectation value (]\) andithe, 6
10 moments A(Aa), a € V. Likewise, we choose a gauge in which all but one ofithe moments of the
11 A
12 operator K vanish. This can be achieved by the gauge fixing conditions
13
14
15 Go=A(Ka)=0, acV\{A}. (4.4)
16
17
18 . . . .
19 To see that this does fix the gauge sufficiently, we compute the following Poisson brackets for any
;? a €V \ {A} (with the identification Il = N),
22
23
24 {Gqo,C} =0, (4.5a)
25 { ih -~
26 {Ga, Cm1, } = (1 — dar) (1K) (A(Hna) = 5ax2n<ﬂn_1>> (4.5b)
27
28 N ih -~
29 {Ga, Cx} ~ (1 — 5aK)a(K> A(Xa) + 5ann5n(Hn_1> , (4.5(3)
30 /
31 {Gn,.Cr} = a(K) (m2A(NIL,) — AMA(ILLIL,)) | (4.5d)
32 - .
33 (Gx,Ca) malK) (mzA(NX) ~AA(ILX) — 3ih)\<H1>) : (4.5¢)
34
35 {Gk,Cr} =~ 2iha(K)?, (4.5¢)
36
37 {Ga, Ok}~ 01 (4.5g)
38
39
2(1) From this we see that both C"and Ck remain unfixed by our choice of gauge. However, it turns
42 out that only C hasamoen-trivial flow on the gauge-fixed constraint hypersurface. Therefore, we
43
44 may study the flow generated by C on the gauge-fixed constraint hypersurface and interpret this
22 as the dynamies'of the system. After imposing the 7 effective constraints (cf. (4.3)) and the 5
47 gauge fixing conditions (cf/ (4.4)), the reduced quantum phase space has coordinates given by
48 - - . N . N
49 the 27 —(7 — 5 = 15 variables V = {(N), (II;), (Il2), (X), (K), A(N?), A(NTIL;), A(113), A(NTly),
o A(IL L), AU AN X), AL X), A(ILX), A(X2).
gg We now jstudy the flow generated by the constraint which has not been fixed by our choice of
54 gauge. That is, we are interested in solving the set of differential equations
55
56
57 , §
58 a'(t)={a,C}t), acV. (4.6)
59
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The equations with non-vanishing right-hand side are given by
(RY(t) = —20(1) (1), (4.7a)
(K)'(t) = a(K)(1), (4.7b)
A(NX) (t) = =2AA(NTI)(t), (4.7¢)
AL X) (1) = =2 A(TT3) (1), (4.7d)
AT X)'(t) = —22A (I I02)(¢) , (4.7¢)
AXH (1) = —4NA(TLX)(t) . 4.7f)

The variables which are non-constant under the gauge flow have(the following dependence on the

gauge flow parameter:

(X)(t) = (X)(0) — 2A\(TL1) (0)¢ (4.8a)
(K)(t) = (K)(0)e™, (4.8b)
A(NX)(t) = A(NX)(0) = 22AA (NI )(0)¢ (4.8¢)
AT X)(t) = AL X)(0) = 2XA (IT2)(0)¢ (4.8d)
AT, X)(t) = AIILX)(0) — 2AA(IT ) (0)¢ (4.8¢)
AX2)(t) = A(X?)(0)— 4NATL X)(0)t + 4X2A(IT2) (0)¢2. 4.8f)

All the remaining variables remain constant along the flow. It is interesting to note that both
(4.8a) and (4.8b) can be inverteds Hetiee both (X) and (K) could be viewed as a “clock” from a
relational point of view, in the senseithat their values can be used to parametrise all other dynamical
variables. Of course, there/is still @ difference between the two since we used a gauge fixing of
moments following the perspectivepresented in Section II in which <K) is seen as the clock, so that
in our gauge the variable X has non-trivial quantum fluctuations. If we want to interpret (4.8a)
and (4.8b) as representing effective cosmological dynamics constructed from our set of one-body
operators, which.would besanalogous to the classical Friedmann cosmology discussed in Section 111 C,
we could view!either (X ) as a function of <K> or vice versa; since the relation between the two is a

globally invertible function both functional relations are equivalent.

Concretely, we can express (X) as a function of (K),

X) o (K)"H((K :XO—wlo <<K>> 4.9
((X) o (K)7)((K)) = (X)(0) « ¢\ o) (4.9)
which can be compared with the classical solution we found in Section III C,
1 . 1 pbv
(pop )ow) = o(0) & tog (20 (4.10)
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The classical solution for a flat FLRW cosmology is hence reproduced by the solutions,(4.8a)
and (4.8b) of our effective one-body dynamics if we identify (X) with a constant multiplé'ef. and
<K> with a constant multiple of py. The ratio A/«, which is determined by_.the GET dynamics
and by the operators appearing in the algebra (4.2), corresponds to Newton’s constant in elassical
cosmology, with the relation between the two determined by the conserved quantity <ﬂ1> and the
identification between (X) and the classical ¢. (Recall from the discussiomsbelown(3.17) that we
need to define an intensive quantity from the extensive (X ) in order to justify the interpretation as
a physical scalar field.) If one identifies the quotient (X)/(II;) of two’eXtensive quantities with the
classical scalar field ¢ and the parameters A and/or « are chosen appropriately, arbitrary initial
conditions of our effective equations lead to a solution of classical FLRW cosmology. This is the
analogue of the recovery of (modified) Friedmann cosmologies in previous work on GFT cosmology
such as [24, 29, 48|, where a similar identification of parameters of.the fundamental theory with an
emergent Newton’s constant is made!®.

An interesting property of the system of equations (4.8a)=(4.8e) is that expectation values and
moments are entirely decoupled: the inclusion of @(h) moments does not alter at all the dynamics of
the original variables in V which correspond to O(h°). Tndeed, the solutions (4.8a)—(4.8b) are exactly
the ones already discussed in Section ITLC where we fixed the form of the commutator involving
K. This behaviour is due to the linearity of thesnitial constraint in all variables, and one might
see it as representing an unphysicalraspect of the truncation we have been using. Indeed, it would
seem to imply that semiclassicality properties of the fundamental state are mostly irrelevant to the
extraction of interesting cosmolegical dynamics. We should point out, however, that our results here
are fully compatible with previous derivations of effective cosmological Friedmann equations from
GFT dynamics as, e.g., given in [29]: also in this previous work, effective Friedmann equations can
be derived for general states and only depend on expectation values of a few elementary operators,
without any dependence on/ quantum fluctuations or higher moments in general.

The criterion of semiclassicality, as studied in terms of relative fluctuations in [28, 29|, should then
be seen as an additional requirement for a meaningful physical interpretation of the resulting effective
Friedmann equations (derived from the dynamics of expectation values of relevant operators), even

if theserequations themselves are unaffected by the magnitude of quantum fluctuations. A quantum

'5 That gravitational and, more generally, effective field theory couplings like Newton’s constant or the cosmological
constant are in fact a function of microscopic parameters of the underlying non-spatiotemporal quantum gravity

dynamics is something to be expected in any formalism in which spacetime itself is emergent.
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cosmology with large quantum fluctuations in macroscopic cosmological observables would not
describe the universe we observe, even if such observables happen to satisfy the correct (Friedmann-
like) dynamics in mean value. In this respect, it is important to emphasise that, if relative quantum
fluctuations are required to be small at small curvature (|(K)(¢)/(K)(0)| < 1), in/6ur context,they
turn out to be also small when the curvature is large (|(K)(¢)/(K)(0)| > 1). Both these limits are

characterised by |t| — oo, so that the asymptotic behaviour of the relative fluctuations

o2, = (4.11)

116 as we can see explicitly from (4.8a)—(4.8¢). The fact that quantum fluctuations can

is identica
be relatively small even when curvature is large is a feature shared with LQC models |32, 33|. A
crucial property of our approach is that the (averaged) partiele.number remains constant, as we have
emphasised several times above, in sharp contrast to prévious results on quantum fluctuations in
GFT cosmology [28, 29] where the (average) particle number had’a non-trivial relational evolution.'”
In these works, it was shown that the evolution of the'particle number crucially affects the evolution
of relative quantum fluctuations, suppressing,them at large volume (when N > 1) and possibly
enhancing them at small volume if N_< 1. This mechanism of suppression and enhancement of

fluctuations is of course absent here, whiech may be one of the reasons why quantum fluctuations

can remain small even in a high curvature regime, provided they are small at low curvature.

V. CONCLUSIONS AND DISCUSSION

In this paper we presenteda novel way to obtain an effective cosmological dynamics from GFT,
motivated by the interpretation of cosmology as quantum gravity hydrodynamics [19, 22|. Contrary
to what was done indprevious works, this approach does not depend explicitly on a specific choice

of states. In order te achieve this, we extended the effective approach developed in [15-17] to

16 Notice that relative quantum fluctuations are not necessarily small at all times, since they may diverge when the
denominator of (4.11) goes to zero. This does not signal that the system is affected by strong quantum fluctuations,
but ratherithat they should not be measured by relative quantities. A more sensible option in this case would be to

define a threshold below which fluctuations are considered small, see [53] for a more detailed discussion.

17 Notice again that these previous results refer to different notions of relational dynamics in GFT. The number
operator in [29] is the “time-dependent version” of (3.7a). On the other hand, the (relational) number operator in
[25] is the same as in (3.7a), although relational evolution is defined only for a specific choice of states (and with

respect to a different relational clock).
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describe the behaviour of a finite set of collective GFT observables, assumed to capture magrescopic
cosmological physics. That is, we extended this approach to a field-theoretic setting. The dynamies
of these observables are governed by a one-body constraint, obtained by integrating the microscopic
equation of motion of the model. Similarly to [24] and many subsequent works, thisimodel meludes
matter in the form of a minimally coupled massless scalar field, and is charagterised by negligible
interactions. This is reflected also at the level of our algebra of one-body operators ofiinterest, which
splits into a geometric two-dimensional subalgebra and a four-dimensionallone generated by “matter
observables” and the number operator.

From the algebra of operators and the one-body constraint we,obtained a quantum phase space
which can be coordinatised by a finite set of expectation values andwmoments. We considered
only moments up to second order in powers of i, obtaining an effectively 27-dimensional space,
described by 6 expectation values and 21 moments. At this order, the quantum constraint produces
7 effective constraints, which in turn generate 6 independent gauge flows in the truncated quantum
phase space. We fixed 5 of these 6 gauge flows by requiring'that the operator K that we identify
classically with the extrinsic curvature has vanishing moments. The quantum phase space variables
related to the other operator generating the geometriec subalgebra were then expressed in terms of
the remaining variables through the’effective constraints. In this way we obtained an effectively
reduced phase space parametrised by 15 variables:i/14 expectation values and moments related to the
four-dimensional “matter” subalgebra and one expectation value <K> We could use the remaining
gauge flow to express the evolution of the 14 non-geometric variables in terms of <K> Since K by
construction has vanishing quantum fluctuations (they are gauge-fixed to zero), this amounts to
an effective relational description of'the evolution of matter degrees of freedom with respect to the
extrinsic curvature clock. This is a refreshing change of perspective for cosmological applications of
relational dynamics ifi ‘quantum gravity, where it is usually matter degrees of freedom that are used
as physical clocks (and rods) [54]. In the framework we developed, choosing a geometric clock was
the most natural choice, since,an analogous elimination of matter variables resulting in a reduced
quantum phase'spaceof only geometric quantities (and possibly the expectation value of a matter
clock) could not'be achieved by the methods explained above.

Theway relational evolution is obtained in this framework emphasises the idea that in order to
define a notion of relational dynamics in an emergent spacetime context as the one we considered
here, some prior coarse-graining process is necessary |25]. Here, this coarse-graining is represented by
the assumption that the physics of the system is adequately captured by a finite set of macroscopic

observables and one collective quantum constraint. This is however still not enough to define a
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“good clock” and consequently a notion of relational dynamics analogous to the classical theory: it is
also necessary to be able to find a gauge (the “Zeitgeist” of [16, 17]) in which quantum fluctuations
of the clock can be set to zero.

At the level of expectation values, the resulting relational evolution is in agreement with,a
classical flat FLRW universe. Interestingly, this result does not depend on the magnitude of quantum
fluctuations who evolve independently and, if they are required to be relativelyssmall‘at:low curvature,
remain small at high curvature. We argue that this feature, shared also with LQC models [32, 33|,
may be due to the constancy of the number operator. In the framework presented in this paper, the
number operator is constant because the quantum constraint is a one-body joperator and, as such,
trivially commutes with the number operator. In most previous attempts to extract cosmological
physics from GFT the particle number is time-dependent, and thisitime dependence can crucially
enhance or suppress quantum fluctuations |28, 29|.

The methods employed in this work, and thus all the.aforementioned results, rely on two important
assumptions.

The first one is related to the choice of states. While we remark again that no specific state choice
is necessary within this framework, the states we considered are required to satisfy two important
conditions: (i) they should be such that the system is characterised by a few macroscopic observables
(hydrodynamic condition); and (ii) moments ofweperators computed in these states should naturally
produce a hierarchy characterised bydifferent powers of A (semiclassicality condition). Without the
first requirement one would have to take imfo account the fact that a field theory is characterised by
infinitely many operators ands“‘eenstraints’ (the quantum equations of motion), while without the
second one one would have to/consider the infinitely many moments coordinatising the quantum
phase space, even for finite-dimensional systems.

The second assumption. is related to the choice of the fundamental observables, which depends
on the features of the,physical system being considered. In our case, we introduced the “curvature
operator” K by requiring it.to satisfy certain commutation relations which classically allow for a
cosmological interpretation of the system. However, a microscopic description of such an operator is
missing and requires further studies. In fact, we showed that such an operator cannot be represented
on a gempactigroup, suggesting that, at least for the type of dynamics we defined here (which is
very.much simplified compared to the one corresponding to more realistic quantum gravity models),
GFT models with non-compact “gravitational gauge group” would be preferred.

Even when these assumptions are made, there are some general limitations to the framework used

here. Computations become more and more involved as either the number of fundamental elements
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of the quantum algebra increase or the commutation relations between the operators become, more
complicated (e.g., non-linear). These computational problems are the main reason why considering a
system of operators and dynamics for which the particle number can vary is complicateds Indeed, in
order to do so, one would have to consider an additional n-body constraint (n > 1)‘with non-trivial
commutation relations with the number operator. An example would be, of )course, a dynamical
constraint incorporating the contribution from GFT interactions. This would however force us to
include many other operators (with possibly more complicated commutation relations) in order to
obtain a closed algebra, which would significantly enlarge the quantuin phase space.

Despite these limitations, the method we employed allowed us to (1) obtain effective cosmological
dynamics from GFT, (ii) gain insights about the notion of relational dynamics in an emergent
quantum gravity scenario, and (iii) study the impact of quantumfluctuations, by making only
broad assumptions on the states of interest. The relative simplicity in which the above results
were obtained within a well-defined framework illustrates theimportance of effective methods for
extracting continuum physics from quantum gravity, and in particular suggests that the connection
between GFTs (in their hydrodynamic approximation) and cosmological physics may go beyond the

choice of specific (condensate) states.
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Appendix A: Quantum Poisson structure

In thisssectionwe collect the non-vanishing Poisson brackets of the quantum phase space
considered in Section IV. In the formulas below we identify N = Iy and introduce the “fake” variable
I1_,/=0. Unless specified otherwise, a € {N,II;, Iy, X, A, K}.

Using (2.6) one can verify the following commutation relations which we computed using Wolfram

Mathematica,

{(A), A(Ka)} = (1 + dux) A (Ka) , (A1)
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{{I1.), A(Xa
{A(AX), A(Ka
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—(1 4 dax)nA(Il,—10a),
(14 6ax)(K)A(Xa), a#T,,
(1+ b, )n(Mu-1)A(Aa), @ # K, T ,
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}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
} = (1 + ap)a(BYA(a), a# X,
}

A
{A(KIL,), A(Xa

); AT 0ax)n(ll-1) A(Ka),  a# A,
{A(KIL), A(AX)} = “n(ll,41)A(Ka) — o{K)A(IT,a),
{A(K? £ —(1+ 0ar)20(K)A(Ka),
=1+ 6.x)20(K)A(Aa) ,
= a(K)A(Ka), a#A,

). A(Ad))
{AW?), AlKa)}

JRWKa))
} = —a(K)A(Aa), a#K,
)
)
)

{A(AK);
{A(AK);
{AX?), A(La)Y = (14 barr, ) 20(11, 1) A(Xa),  a # Tz,
{AXCVA(ITLIL,)} = 2(n(T-1) AL, X) + m{[l, 1) A(I X))
(A (XTL,), A(Tpa)} = (1 + darn,, )m{Ty—1)A(Ta),  a # X, iy,
{A(XTL,), A(T,I0) Y = m(IL,—1)A(ILIL) + LT, ) A(I,11,,)

[A(XIL,), A(Xa

a)
)
)
)
)
)
n)
)
)
a)
n)
)
)
)

{A(AIL), A(KX)
)
)
)
)
)
)
)
)
)
)
)
)} = —(1+ Gox )0l DAILIL), 0 # Iy,
)

A(
A(

- =~

(A1), A(Xa

—(1+dax)(n <ﬂn71>A(Hma) + m<ﬁm,1>A(Hna)) :

30

>
w

>
B

-
SRS

~~ /N /N /N N~/
> >
oo t

o
O S e S St
co N O Ot =

>
—
Ne)

R
I
S SN OX)

>
Do
=

Page 30 of 33



Page 31 of 33

oNOYTULT D WN =

2]

13]

4]

[5]

[6]

17l

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

AUTHOR SUBMITTED MANUSCRIPT - CQG-108940.R1

31

K.V. Kuchat, Time and interpretations of quantum gravity, International Journabof Modern Physics D
20 (2011) 3.

C.J. Isham, Canonical quantum gravity and the problem of time, NATO Sci. Ser) C 409 (1992) 157
[gr-qc/9210011].

B. Dittrich, The Continuum Limit of Loop Quantum Gravity: A Framewornk for Solving the Theory, in
Loop Quantum Gravity: The First 30 Years, A. Ashtekar and J. Pullin,eds:, pp.453-179 (2017)
[1409.1450].

C. Rovelli, Quantum Gravity, Cambridge Monographs on Mathematical Physics, Cambridge University
Press (2004).

T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge Monographs on
Mathematical Physics, Cambridge University Press (2007).

R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, in Gravitation: an
introduction to current research, L. Witten, ed., Wiley, New. York (1962) [gr-qc/0405109).

C. Rovelli, What is observable in classical andrquantum gravity?, Class. Quant. Grav. 8 (1991) 297.
C. Rovelli, Partial observables, Phys. Rev. D 65 (2002) 124013 [gr-qc/0110035].

J. Tambornino, Relational Observablessin Gravity: a Review, SIGMA 8 (2012) 017 [1109.0740].

B. Dittrich, Partial and complete observables for Hamiltonian constrained systems, Gen. Rel. Grav. 39
(2007) 1891 [gr-qc/0411013].

B. Dittrich, Partial and complete observables for canonical general relativity, Class. Quant. Grav. 23
(2006) 6155 [gr-qc/0507106].

D. Oriti, The Bronstein hypercuberof quantum gravity, in Beyond Spacetime, N. Huggett, K. Matsubara
and C. Wiithrich, eds., pp. 25-52(2020) [1803.02577].

M. Bojowald, B. Sandhofer,bA. Skirzewski and A. Tsobanjan, Effective Constraints for Quantum
Systems, Rev. Math. Phys:21)(2009) 111 [0804.3365].

M. Bojowald and A. Skixzewski, Effective equations of motion for quantum systems, Rev. Math. Phys.
18 (2006) 713 |math-ph/0511043].

M. Bojowald and A. Tsebanjan, Effective constraints for relativistic quantum systems, Phys. Rev. D 80
(2009) 125008 [0906.1772].

M. Bojowald, P.A. Héhn and A. Tsobanjan, An effective approach to the problem of time, Class. Quant.
Grav. 28 (2011) 035006 [1009.5953].

M. Bojewald, P.A. Héhn and A. Tsobanjan, Effective approach to the problem of time: General features
and_ezamples, Phys. Rev. D 83 (2011) 125023 [1011.3040].

P.A. Hohn, E. Kubalova and A. Tsobanjan, Effective relational dynamics of a nonintegrable
cosmological model, Phys. Rev. D 86 (2012) 065014 [1111.5193|.

D. Oriti, The universe as a quantum gravity condensate, Comptes Rendus Physique 18 (2017) 235



oNOYTULT D WN =

[20]

[21]

[22]

23]

24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

138}

AUTHOR SUBMITTED MANUSCRIPT - CQG-108940.R1

32

[1612.09521].

S. Gielen and L. Sindoni, Quantum Cosmology from Group Field Theory Condensates: a Review,
SIGMA 12 (2016) 082 [1602.08104].

D. Oriti, Group field theory as the second quantization of loop quantum gravity, Classs Quant. Grav. 33
(2016) 085005 [1310.7786].

S. Gielen, D. Oriti and L. Sindoni, Homogeneous cosmologies as group field theoryscondensates, JHEP
06 (2014) 013 [1311.1238].

S. Gielen, Quantum cosmology of (loop) quantum gravity condensates: an example, Class. Quant. Grav.
31 (2014) 155009 [1404.2944].

D. Oriti, L. Sindoni and E. Wilson-Ewing, Emergent Friedmann dynamics with a quantum bounce from
quantum gravity condensates, Class. Quant. Grav. 33 (2016) 224001 [1602.05881].

L. Marchetti and D. Oriti, Effective relational cosmological dynamies from quantum gravity, JHEP 05
(2021) 025 [2008.02774].

S. Gielen and A. Polaczek, Hamiltonian group field theony with multiple scalar matter fields, Phys. Rev.

D 103 (2021) 086011 [2009.00615].

E. Wilson-Ewing, Relational Hamiltonian for. group field theory, Phys. Rev. D 99 (2019) 086017
[1810.01259].

L. Marchetti and D. Oriti, Quantum Fluctuations in the Effective Relational GFT Cosmology, Front.
Astron. Space Sci. 8 (2021) 683649/2010.09700].

S. Gielen and A. Polaczek, Generalised effective cosmology from group field theory, Class. Quant. Grav.
37 (2020) 165004 [1912.06143];

S. Gielen, Frozen formalism and canonical quantization in (group) field theory, 2105.01100.

A. Ashtekar and T.A. Schilling; \Geometrical Formulation of Quantum Mechanics, gr-qc/9706069.

A. Corichi and E. Montoyaj Coherent semiclassical states for loop quantum cosmology, Phys. Rev. D 84
(2011) 044021 [1105.5081].

C. Rovelli and E. Wilson-Ewing, Why are the effective equations of loop quantum cosmology so
accurate?, Phys. RevinD 90(2014) 023538 [1310.8654].

M. Assanioussi/and I. Kotecha, Thermal quantum gravity condensates in group field theory cosmology,
Phys. Rev. D102 (2020) 044024 [2003.01097].

P.A. Hohn, From Classical to Quantum: New Canonical Tools for the Dynamics of Gravity, Ph.D.
thesisUtrecht U., 2012.

A. Tsobanjan, Semiclassical Analysis of Constrained Quantum Systems, AIP Conf. Proc. 1196 (2009)
291[0911.0648.

[.M. Gelfand and M.A. Naimark, On the imbedding of normed rings into the ring of operators on a
Hilbert space, Matematicheskii Sbornik 54 (1943) 197.

LE" Segal, Irreducible representations of operator algebras, Bulletin of the American Mathematical

Society 53 (1947) 73.

Page 32 of 33



Page 33 of 33

oNOYTULT D WN =

[39]

[40]

[41]

42]

[43]

[44]

[45]

[46]

[47]
48]

[49]

[50]

[51]

[52]

[53]

[54]

AUTHOR SUBMITTED MANUSCRIPT - CQG-108940.R1

33

M. Bojowald and T. Strobl, Poisson geometry in constrained systems, Rev. Math. Phys. 15 (2003) 663
[hep-th/0112074].

T. Buchert, On Average Properties of Inhomogeneous Fluids in General Relativity: Perfect Fluid
Cosmologies, Gen. Rel. Grav. 33 (2001) 1381 |gr-qc/0102049).

T. Buchert et al., Is there proof that backreaction of inhomogeneities is irrelevant fin cosmology?, Class.
Quant. Grav. 32 (2015) 215021 [1505.07800].

S. Gielen, Emergence of a low spin phase in group field theory condensates,/Class. Quant. Grav. 33
(2016) 224002 [1604.06023].

M. de Cesare, D. Oriti, A.G.A. Pithis and M. Sakellariadou, Dynami¢s of anisotropies close to a
cosmological bounce in quantum gravity, Class. Quant. Grav. 35 (2018) 015014 [1709.00994].

J. Ben Geloun and V. Bonzom, Radiative Corrections in the Boulatov=Qoguri Tensor Model: The
2-Point Function, Int. J. Theor. Phys. 50 (2011) 2819 [1101.4294}

S. Carrozza, D. Oriti and V. Rivasseau, Renormalization of a SU(2) Tensorial Group Field Theory in
Three Dimensions, Commun. Math. Phys. 330 (2014) 581 1303.6772].

M.P. Reisenberger and C. Rovelli, Spacetime as a Feygnman diagram: the connection formulation, Class.
Quant. Grav. 18 (2001) 121 [gr-qc/0002095].

M. Bojowald, Canonical Gravity and Applicationsy Cambridge University Press (2010).

D. Oriti, L. Sindoni and E. Wilson-Ewing, Bouncing cosmologies from quantum gravity condensates,
Class. Quant. Grav. 34 (2017) 04LT01 [1602.08271].

A. Ashtekar and P. Singh, Loop quantum cosmology: a status report, Class. Quant. Grav. 28 (2011)
213001 [1108.0893].

G. Calcagni, S. Gielen and D. Oriti, Group field cosmology: a cosmological field theory of quantum
geometry, Class. Quant. Grav. 29 (2012) 105005 [1201.4151].

L. Freidel and S. Speziale, [Fwisted geometries: A geometric parametrization of SU(2) phase space, Phys.
Rev. D 82 (2010) 084040 [1001 .2748].

Y. Li, D. Oriti and M. Zhang, Group field theory for quantum gravity minimally coupled to a scalar
field, Class. QuangGrav. 34°(2017) 195001 [1701.08719].

A. Ashtekar, L./Bombelliiand A. Corichi, Semiclassical states for constrained systems, Phys. Rev. D T2
(2005) 0250084|gr-qc/0504052).

K. Giesel and'T. Thiemann, Scalar material reference systems and loop quantum gravity, Class. Quant.

Grav. 32y(2015)135015 [1206.3807].



