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We propose a new method for obtaining an effective Friedmann–Lemaître–Robertson–

Walker (FLRW) cosmology from the quantum gravity dynamics of group field theory (GFT),

based on the idea that an FLRW universe is characterised by a few macroscopic observables.

Rather than relying on assuming a particular type of quantum state and computing expectation

values in such a state, here we directly start from relations between macroscopic observables

(defined as one-body operators) and formulate dynamics only for those observables. We

apply the effective approach to constrained quantum systems (as developed by Bojowald

and collaborators) to GFT, providing a systematic expansion in powers of ~. We obtain a

kinematical phase space of expectation values and moments, which does not require an a

priori choice of clock variable. We identify a gauge fixing of the system which corresponds to

choosing one of the cosmological variables (with the role of extrinsic curvature) as a clock

and which allows us to rewrite the effective dynamics in relational form. We show necessary

and sufficient conditions for the resulting dynamics of expectation values to be compatible

with those of classical FLRW cosmology and discuss the impact of quantum fluctuations.
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2

I. INTRODUCTION

Many modern approaches to quantum gravity suggest that the classical continuum notions of

space and time are emergent concepts, to be obtained from an underlying fundamental description

in terms of different quantum degrees of freedom. Extracting continuum physics from such theories

is generally a very complicated task, because of both conceptual and technical problems. Some of

the most important outstanding issues, in relation to this task, are the problem of time, the problem

of Hilbert space and the problem of the classical limit [1, 2]. There are of course many other issues,

such as the implementation of diffeomorphism invariance in a discrete formalism [3] or the reliance

on preferred foliations, but in the following we will focus only on these three. They are present in

one form or another in any formulation of quantum gravity, but they are particularly visible in a

canonical formalism.

The problem of time refers to the fact that, due to the diffeomorphism invariance of general

relativity, there are no external structures with respect to which one can define (time) evolution. As

a result, the Hamiltonian of general relativity (or, more in general, of any background independent

theory) is forced to vanish in absence of boundaries [4–6]. At the quantum level, the vanishing of

the Hamiltonian results in “frozen” dynamics, where states do not evolve in “time”. Change and

evolution can however still be defined in terms of internal physical quantities. This is the relational

strategy, which is based on the use of evolving constants of motion [7, 8] (see [9] for a review), i.e.,

Dirac observables encoding correlations between the physical variable chosen as a clock and the

remaining ones. Though these observables can be formally defined in the classical theory [10, 11],

their explicit construction, especially at the quantum level, is extremely complicated. One main

reason is that one has in general very little control over the physical Hilbert space on which they

should be represented. The construction of a Hilbert space by endowing the space of solutions to

the quantum constraint with an appropriate inner product is a poorly understood issue; this is

the Hilbert space problem mentioned above. Lastly, the problem of the classical limit refers to the

extraction of (semi)classical physics from full quantum gravity, which has been often addressed

through an explicit construction of specific classes of states. Semiclassicality is however not a sharp

notion, and it is therefore important to clarify which results are general to semiclassical states and

which ones are instead only valid for the states considered. Moreover, in approaches (like GFT

or spin foam models or lattice quantum gravity) in which the basic structures of the theory are

discrete, the semiclassical approximation leading to general relativity is necessarily accompanied by

some form of continuum approximation, implemented via coarse graining or renormalisation group
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techniques. The two kinds of approximations are conceptually and technically distinct [12], albeit

intertwined.

Effective techniques, describing quantum systems in terms of (a finite set of) expectation values

and moments of observables associated to a given state, may play a crucial role in order to practically

bypass the above difficulties, while still allowing to extract physical semiclassical predictions from the

theory. These techniques have been employed already in the context of simple quantum systems for

instance in [13–18]. In principle, in order to apply the framework developed in [13, 15] to quantum

gravity, it should be generalised to a field theoretic context, which will in general pose formidable

technical challenges. However, in quantum gravity one is often not interested in all degrees of freedom

in the theory, but rather in situations where only some degrees of freedom are relevant. In particular,

the relevant physical scales where quantum gravity effects might be seen are far away from the

microscopic Planck scale, and will thus involve a form of collective or coarse-grained characterisation

of the fundamental quantum gravity theory. One may then develop an effective framework only for

those observables which are most relevant at this coarse-grained (“hydrodynamic”) level: this extends

the effective framework in a more minimal way, essentially replacing the algebra of observables

of the quantum particle with a similarly finitely generated algebra of collective and macroscopic

observables. Expectation values and moments of these observables are then the quantities in terms

of which the effective hydrodynamic description is defined. This focus on such a coarse-grained

regime can also be seen as a way to implement a continuum approximation, as part of the extraction

of semiclassical physics via the chosen effective framework.

In quantum gravity, a system which can be characterised by a few collective observables is the

homogeneous and isotropic FLRW universe [19]. The hydrodynamic description of the fundamental

quantum gravity dynamics to capture homogeneous and isotropic cosmology has been employed

especially in the context of group field theories (GFTs) [20]. GFTs can be seen as quantum field

theories whose fundamental quanta are three-dimensional discrete chunks of space, i.e., quantum

tetrahedra, whose geometric properties are encoded in group variables (these variables are equivalent

to the data on open spin networks in loop quantum gravity [21]). Continuum spacetime notions are

expected to emerge from these theories only after an appropriate coarse-graining is performed. Their

Fock space structure is perfectly suited for the construction of non-perturbative collective states,

such as coherent states, which have an interpretation in terms of continuous and homogeneous

three-geometries [22, 23]. Using these states and mean field methods one can obtain (in the weak

interaction limit) an effectively hydrodynamic description characterised by Friedmann dynamics

with a quantum bounce for the averaged volume of the universe [24–27]. These results have sparked
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4

further works addressing for instance the role of quantum fluctuations, especially for late times and

around the bounce [28, 29] and the definition of relational evolution in such emergent quantum

gravity theories [25, 30].

In this paper, we aim to provide a new perspective on the derivation of cosmological dynamics

from GFT by extending the effective techniques developed in [13–15] to the GFT setting. As in [24]

and many subsequent papers, we consider a GFT model minimally coupled with a massless scalar

field, and assume that the self-interactions of the GFT field are negligible in the regime of interest.

As mentioned above, the effective techniques were developed for a quantum algebra generated by

a finite set of operators. We propose to use a suitable finite set of one-body GFT operators1. In

particular, the quantum constraint of [13] is given by the integrated (free) equation of motion in our

set-up. Truncating the system in this manner is motivated by the interest in only some collective

(hydrodynamic) variables, and is the most crucial approximation that we perform; we see it as a

requirement to be imposed on the kind of states employed in the effective description. One important

consequence of this assumption is that the number operator of GFT quanta2 trivially commutes

with the constraint, so that its expectation value and all its moments will be constant. The quantum

algebra thus obtained allows to construct a quantum phase space coordinatised by expectation

values and moments of the relevant operators, according to standard techniques [13, 15, 31]. By

imposing that the states of interest are also semiclassical, one can truncate the hierarchy of moments

to a desired order in ~. The quantum constraint then produces a finite set of effective constraints,

generating gauge flows on the variables of the truncated quantum phase space. Similarly to [15–17],

all but one of these gauge flows are fixed so that one of the geometric operators in the algebra (here

chosen to classically match the extrinsic curvature) is effectively classical, and can be used as a

proper clock. Through this procedure, one ends up with a relational description of a reduced system

of variables which effectively represents the physical Hilbert space.

We show how to recover the Friedmann dynamics of a flat FLRW universe at the level of

expectation values. Moreover, assuming that quantum fluctuations are small at small curvature,

they remain under control also large curvature, a feature shared with loop quantum cosmology

(LQC) models [32, 33]. We compare these results on fluctuations with previous works [28, 29] which

1 By “one-body operator” we mean an operator which can be written as an integral over a single combination of

creation and annihilation operators.

2 Note that this is the fundamental number operator and not the effective relational number operator, a function of a

relational clock value, typically used in GFT cosmology [24].
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5

stressed the importance of a changing particle number in order to suppress or enhance quantum

fluctuations. This is in contrast with our approach here in which the particle number is constant

(keeping in mind that the notions of dynamics and time dependence differ in these different papers –

see next paragraph). Our results also provide additional insights into the role of relational dynamics

in emergent quantum gravity theories, emphasising the importance of coarse-graining (in our case

given by explicit truncation) before defining a notion of relationality, as suggested in [25].

Our method for implementing relational dynamics in GFT differs from what was done in previous

papers such as [24, 25, 27]. More precisely, while the approach proposed in this paper shares

with [25] the fact that relational evolution is defined only in an effective sense, in contrast to

[25] it does not require a specific form of states. In [24], instead, a relational notion of dynamics

was implemented by defining “relational operators” (which however need smearing in order to be

well-defined [25, 34]), while [27] employed a deparametrised framework from the start (the two

last approaches are connected in [30]). In our approach, we do not attempt to define microscopic

relational observables, nor we try to construct a reduced physical Hilbert space; these difficulties are

in fact bypassed by the effective approach and the notion of relationality is defined in the usual

sense of constrained dynamics on a phase space. A complete understanding of how these approaches

to relational dynamics are related to each other is still missing, and certainly deserves more study.

Finally, let us stress again that in order to obtain our results one does not need to specify a state

– only general semiclassicality and “hydrodynamic” conditions are assumed – thus suggesting that

the connection between GFTs and cosmological solutions may go beyond the choice of coherent

states (as in the simpler setting of [29]).

II. REVIEW OF THE EFFECTIVE APPROACH

In this section we review the effective approach to constrained systems [14, 15] and to relational

dynamics [16] (see also [17, 18]). While there are many fascinating aspects of this approach that

deserve to be discussed at length, we touch only the points necessary for the understanding of the

procedure developed in this paper, referring to [14–18] for more details.

A. Effective constraints

The effective approach to quantum constrained systems is formulated in the quantum phase

space, which can be constructed from first principles as follows [35, 36].
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6

The starting point is a set of elements Âi with i = 1, . . . , n generating an associative unital

algebra A (which contains all finite polynomials in the Âi) and satisfying the commutation relations

[Âi, Âj ] = i~f k
ij Âk (2.1)

for some real constants f k
ij . One usually assumes that this is an involutive algebra, i.e., there is a ∗

operation corresponding to the adjoint (where the generators are often thought of as self-adjoint).

Monomials of the form Âm1

1 Âm2

2 . . . Âmn

n with mi ≥ 0 form a linear countable basis for A. Now

a quantum state ψ can be seen as a linear functional on A, i.e., a map ψ : A → C, with the

conventional notation 〈Âi〉ψ = ψ(Âi) (and with 〈1̂〉ψ = 1). From an algebraic viewpoint this is the

definition of the notion of state. One connection between this algebraic framework and the canonical

description in terms of operators acting on Hilbert spaces is provided by the Gelfand, Naimark and

Segal (GNS) theorem [37, 38] according to which, given any algebraic state α, it is always possible

to construct an Hilbert space Hα on which the algebra of observables act as an algebra of linear

bounded operators πα(Âi), such that πα is a ∗-representation of A. This Hilbert space Hα contains

a cyclic vector |α〉 ∈ Hα such that α(Âi) = 〈α|πα(Âi)|α〉. More generally, one may start from a

Hilbert space H on which the elements in A act as operators; then one can again think of each

ψ ∈ H as a linear functional by defining ψ(Âi) = 〈ψ|Âi|ψ〉. In either viewpoint, the statement

relevant in the effective approach is that one is interested in elements of Ā, the dual vector space

to A. A subtle point here is that the existence of a Hilbert space representation would imply that

〈Â∗
i Âi〉ψ ≥ 0 but it is mentioned in [35, 36] that this condition need not hold in the more general

algebraic framework.

Because of linearity, any ψ ∈ Ā is determined by the values it assigns to a linear basis of A. So,

one could coordinatise Ā through the expectation values 〈Âi〉 with i = 1, . . . , n and moments

∆(Am1

1 . . . Amn

n ) =
〈(
Â1 − 〈Â1〉

)m1

. . .
(
Ân − 〈Ân〉

)mn
〉

Weyl
, (2.2)

where the subscript indicates a total symmetrisation of the product of operators inside the expectation

value above, and where
∑n

i=1mi ≥ 2. This choice of coordinatisation proves especially useful in

effective approaches, where the states chosen are such that there is a clear hierarchy of moments, as

we will discuss below.

The Poisson structure turning the state space Ā coordinatised by expectation values and moments

into the quantum phase space is directly inherited from the commutation relations of the elements
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7

in A: one defines3

{
〈Â〉 , 〈B̂〉

}
= (i~)−1

〈
[Â, B̂]

〉
(2.3)

for any Â, B̂ ∈ A (it is enough to demand this for monomials in the generators Âi). For constrained

systems, the quantum phase space corresponds to a kinematical Hilbert space, since no constraint

has been imposed yet. In this sense, variables in A are kinematical quantum variables.

In the algebraic framework, we can now define a quantum constraint Ĉ as an algebra element

satisfying4 〈ÂĈ〉 = 0 for any Â ∈ A [15]. In other words, the constraint can be characterised by

requiring that its expectation value and all of its fluctuations are zero:

C(〈Âi〉 ,∆(. . . )) = 〈Ĉ〉 = 0 , (2.4a)

Cpol(〈Âi〉 ,∆(. . . )) =
〈(

p̂ol − 〈p̂ol〉
)
Ĉ
〉
= 0 , (2.4b)

with p̂ol being a polynomial in the algebra elements. The notation here emphasises that the

constraint functions should be expressed in terms of expectation values and moments5. Notice that,

contrary to what is done for moments, the quantum constraints are not defined by a symmetric

ordering. In turn, this implies that the quantum constraint functions can take complex values. This

was however shown not to be an issue for deparametrisable systems, basically because the moments

appearing in the constraints are kinematical moments and do not need to be restricted to real values.

On the other hand, physical expectation values and moments must be real6 [15, 17].

The reason for this ordering choice is that a symmetric ordering would not in general lead to a

first class system of constraints [15]. On the other hand, with the definition above it is easy to show

that for any Cpol and Cpol′ defined as in (2.4b) we have

{
Cpol, Cpol′

}
= (i~)−1

〈[
p̂ol Ĉ, p̂ol

′
Ĉ
]〉

≈ 0

where ≈ is Dirac’s “weak equality” (equality up to functions that are multiplied by constraints), and

so the system closes. As a consequence, these quantum constraint functions induce quantum gauge

3 This form of Poisson brackets can also be motivated by the geometrical formulation of quantum mechanics [31].

4 This can be seen as the algebraic counterpart of the Dirac condition Ĉ|ψ〉 = 0 for any state |ψ〉 in a Hilbert space,

the connection between algebraic and Dirac formulation being provided by the GNS construction discussed above.

5 For non-polynomial constraints, this can be achieved via a Taylor expansion.

6 Notice that in the usual Hilbert space approach, Ĉ|ψ〉 = 0 likewise only implies that ÂĈ|ψ〉 = 0 for any Â but not

necessarily
(

ÂĈ + ĈÂ
)

|ψ〉 = 0, which could lead to an analogous discussion.
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8

transformations on their solution space through their Hamiltonian flows. The presence of gauge

flows even after solving the quantum constraint functions in the quantum phase space approach can

be understood again as an effect of working with kinematical variables, which are indeed affected by

gauge even at the classical level. Moments and expectation values of Dirac observables, instead, are

gauge invariant also from this effective quantum phase space perspective. Indeed, if Ô is a Dirac

observable, the flow of its expectation value,

〈Ô〉′ (τ) =
{
〈Ô〉 ,

〈(
p̂ol − 〈p̂ol〉

)
Ĉ
〉}

= (i~)−1
[〈(

p̂ol − 〈p̂ol〉
)
[Ô, Ĉ]

〉
+
〈
[Ô, p̂ol]

(
Ĉ − 〈Ĉ〉

)〉] (2.5)

where τ is parametrising the flow, vanishes weakly. The same of course is true for moments of

Dirac observables. In this approach, the difficulty in solving the quantum constraint and explicitly

constructing a physical Hilbert space has been traded for an infinite set of variables and constraint

functions. These are in general intractable, unless one can identify some approximation that allows

to reduce them to a finite set, neglecting subdominant contributions, and thus characterising the

approach as an effective one. An example of such approximations is the semiclassical one, where

it is assumed that moments of higher order are also higher order in ~. More precisely, for the

semiclassical expansion one assumes that ∆(Am1

1 . . . Amn

n ) ∼ ~
(m1+...+mn)/2. At a given order in ~,

only a finite number of constraints and moments are relevant. By construction this hierarchy is also

preserved by the Poisson structure. Indeed, one can show from (2.3) that the Poisson bracket of a

moment of order ~
m/2 and a moment of order ~

n/2 is of order ~
(m+n−2)/2.

In the following, we will assume that a truncation at order ~ captures the dynamics of suitable

semiclassical states to a good approximation. This means that we will neglect all terms explicitly

proportional to ~
3/2 or higher and all third or higher order moments. For an algebra generated by

n elements Âi, we then have n + 1 constraints C = 〈Ĉ〉 = 0 and CAi
= 〈(Âi − 〈Âi〉)Ĉ〉 = 0 and

n+ n(n+ 1)/2 = n(n+ 3)/2 expectation values and moments.

The extension of the Poisson bracket (2.3) for an algebra with commutation relations (2.1) is, at

the given truncation to order ~, given by the relations

{〈Âi〉,∆(AjAk)} = f l
ij ∆(AlAk) + (j ↔ k) , (2.6a)

{∆(AiAj),∆(AkAl)} =
(
f m
ik 〈Âm〉∆(AjAl) + (i↔ j)

)
+ (k ↔ l) . (2.6b)
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B. Effective relational dynamics

Within the effective framework described above, the way physical variables are selected is through

an effective local deparametrisation of the system [15, 17]. This is obtained via a partial gauge

fixing of the aforementioned gauge freedom (Zeitgeist), leading to a projection into a classical “time”,

and consequently to the definition of transient relational observables called fashionables. In [15, 17]

most of the features of this effective approach to relational dynamics are explained through different

(classical deparametrisable and non-deparametrisable) examples. Here we will try to provide a

general summary of such features, most of which will also be true for the system we aim to study in

the rest of this paper. An important feature of the effective approach explained above is that the

quantum phase space generically has a degenerate Poisson structure, i.e., is not symplectic. Indeed,

moments of any arbitrary order are characterised, in general, by a degenerate Poisson tensor7. A

crucial consequence of this degeneracy of the Poisson structure is that even though the constraints

Cpol, C are independent, the gauge flows generated by them are generally not. The Poisson geometry

of constrained systems is discussed in [39].

In the examples studied in [17], at order ~ there are n+ 1 constraints, but only n gauge flows

generated by them are independent. This means that of the n(n+ 3)/2 variables relevant at that

order, 2n variables can be eliminated using the constraints (n+ 1 conditions) and n− 1 by fixing

all the gauge flows but one. This leaves n(n+ 3)/2− 2n = n(n− 1)/2 remaining variables. The

importance of this counting can be understood when one is interested, as we have mentioned above,

in an effective deparametrisation of the system. Classically, such a deparametrisation would result in

the complete elimination of a (possibly canonical) pair of variables. At the effective level, eliminating

all variables related to a pair of operators having closed non-trivial commutation relations among

themselves leads to a total of (n−2)(n+1)/2 = n(n−1)/2−1 variables. So, by appropriately fixing

n−1 gauge flows and using the n+1 constraints (see below), one could obtain a set of (n−2)(n+1)/2

physical variables and one classical “clock variable”, all of them subject to the remaining, unfixed

gauge flow. In turn, this allows constructing local relational observables (fashionables) describing

the evolution of the physical variables with respect to the clock.

Let us discuss in more detail how this procedure can be realised concretely. The theory is entirely

clock neutral, since all physical variables are treated on equal footing. The partial gauge fixing

mentioned above, or Zeitgeist, has exactly the purpose of choosing a specific clock, projecting the

7 As an example, consider a canonical pair q̂, p̂. At order ~, we have 3 moments, so the space is odd-dimensional and

the Poisson structure of second order moments must be degenerate.
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10

quantum clock we are interested in onto a classical parameter. Of course, such a clock, say T̂ , needs

to have non-trivial commutation relations with Ĉ, i.e., the clock may not be a Dirac observable

since otherwise it is constant (cf. (2.5)).

We will assume this, and we will again further restrict to an order ~ truncation. If the clock also

forms a closed subalgebra with another operator, say P̂ (which is the situation studied in [15, 17]

and considered below), the n− 1 conditions

φα = ∆(TAα) = 0 , α ∈ A \ {P̂} , (2.7)

fix n − 1 gauge flows at order ~, and make the clock classical on the space of physical variables.

Then, if the expectation value and the n moments of the variable P̂ can be eliminated using the n+1

effective constraints8, one indeed arrives at a physical description involving the (n− 2)(n+ 1)/2

expectation values and order ~ moments of the remaining n− 2 variables, and 〈T̂ 〉.

Once the gauge fixing conditions (2.7) are imposed, one is left with a mixture of first and second

class constraints. However, since

{φα, φβ} =
1

i~

〈[
(T̂ − 〈T̂ 〉)(Âα − 〈Âα〉), (T̂ − 〈T̂ 〉)(Âβ − 〈Âβ〉)

]〉

=
1

i~

〈
(T̂ − 〈T̂ 〉)2

[
Âα − 〈Âα〉 , Âβ − 〈Âβ〉

]〉
= f γ

αβ

〈
(T̂ − 〈T̂ 〉)2Âγ

〉

≃ f γ
αβ 〈Âγ〉∆(T 2) ≈ 0 ,

where in the third line we have neglected higher order terms, we notice that the matrix of Poisson

brackets ∆ij = {χi, χj}, where χi include first order constraints and the gauge fixing conditions

(2.7), is actually off-block diagonal, with non-zero values only involving physical constraints and

gauge fixing conditions. This, together with the fact that the n(n− 1)/2 remaining variables have

weakly vanishing Poisson brackets with the gauge fixing constraints (which can be proven in an

analogous way), shows that the Dirac brackets

{f, g}Dirac = {f, g} − {f, χi}∆ij{χj , g} , ∆ij = (∆−1)ij (2.8)

for the n(n− 1)/2 remaining variables are identical to the Poisson brackets introduced above. Notice

that the remaining moments must, at this point, be real, contrary to what may happen for moments

of P̂ (see for instance [15, 17]) or for the expectation value of T̂ itself (see [17]).

8 This for instance happens if the quantum constraint is linear in the variable P̂ , which will be a case of interest in

the following.
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11

Once a Zeitgeist has been chosen, for instance T = 〈T̂ 〉 as specified above, one looks for the

remaining gauge flow that preserves the gauge fixing conditions and, through that, one constructs

relational quantities of the form 〈Âα〉 ◦ T−1 and ∆(AαAβ) ◦ T−1. These observables are transient in

nature, since they can only be meaningful as long as the clock does not reach any turning point

and maintains a monotonic evolution. When this is the case, one is forced to move from one

Zeitgeist to another one; correspondingly, these observables may “fall out of fashion”. As such, these

“fashionables” can only be state dependent. We refer again to [16, 17] for more details on this topic,

and [18] for an explicit example of a model that does not have a globally defined clock. In the case

we will be interested in, we will choose a clock variable with globally monotonic evolution, so that

the Zeitgeist is valid globally.

C. Extending the effective approach to field theory

The effective approach to constrained systems is usually applied to quantum-mechanical systems

of a finite number of degrees of freedom, often with a single constraint Ĉ. The generators Âi of A
then usually represent the quantum analogue of phase space coordinates for a classical system one

proposes to quantise (e.g., positions and momenta of a system of particles). We saw above that the

quantum phase space Ā can be identified with an (algebraically constructed) set of quantum states

on the algebra A, or with a Hilbert space that the elements of A could be seen as acting on.

In this paper, we want to extend the application of this approach to a field theory setting. A

quantum field theory can be seen as the quantisation of a system with already classically infinitely

many degrees of freedom, and would therefore be associated with a very large observable algebra

AQFT (as is the starting point, e.g., in algebraic quantum field theory). We will however restrict to

a much smaller algebra representing only a few coarse-grained observables we are interested in. That

is, our algebra A will only be a very small subalgebra of the full AQFT. It then follows that the

quantum phase space Ā of interest to us is much smaller than the field theory quantum phase space

ĀQFT. The smaller Ā can then perhaps still be identified with some Hilbert space, but this will not

be the Hilbert space of the field theory HQFT, which is much larger. Indeed there are in general

different elements of HQFT that would be identified with the same element of Ā in the effective

approach; these are states that agree on expectation values and moments of macroscopic observables

even though their microscopic definition may be different9.

9 This is consistent with a coarse-graining interpretation of the reduction to an observable sub-algebra.
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Since the effective approach as reviewed here starts from the algebra A and a set of constraints

only involving elements in A, the question of how the quantum phase space Ā might sit inside a

much larger Hilbert space is not of direct relevance for its application. In this sense, we will not

need to give an explicit construction of Ā as a subspace of HQFT which in our case will be the GFT

Fock space. Our interpretation is that Ā is a quantum phase space resulting from a coarse graining

of the field theory, which leads to an effective description characterised by a few operators (among

the infinitely many that can be constructed out of the field operators) whose expectation values and

moments coordinatise an effective quantum phase space.

III. TRUNCATING THE DYNAMICS TO ONE-BODY OPERATORS

In this paper we apply the effective approach outlined in the previous section to the dynamics of

group field theory, in order to obtain a systematic semiclassical expansion that does not require

specifying either a particular state or a particular relational clock. Instead, we will only assume

that the state is sufficiently semiclassical for an ~ expansion to make sense, and we will construct a

clock using the strategy of deparametrisation and gauge fixing by a Zeitgeist explained above.

As we already outlined at the end of the previous section, out of the infinitely many independent

observables that can be constructed out of the GFT field operators we will only study a few “global”

one-body operators, and truncate the dynamics to a system of equations that only makes reference

to those operators. Clearly the choice of operators in our algebra is to some extent determined by the

dynamics of the theory. We implicitly assume that those few global quantities are sufficient to capture

the most relevant dynamical information of the field theory. Such an assumption is conceptually

similar to assuming a homogeneous cosmology in general relativity, which amounts to the assumption

that a few global quantities (the volume of space, a homogeneous energy density, etc.) capture the

dynamics of the Universe. Here we see this truncation as representing a coarse-grained description of

the field theory in which one is only interested in some macroscopic variables, which is justified for

states for which the coarse-grained description is “reasonably close” to the full microscopic dynamics

of the field theory. This viewpoint is then the quantum analogue of the classical perspective that

a homogeneous, isotropic universe in classical cosmology is not a very symmetric solution to the

Einstein equations but should rather be seen as obtained from averaging over inhomogeneities on

small scales [40, 41]. In the setting of quantum field theory, understanding the conditions for this

truncation to be valid is a more challenging problem.
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A. Effective GFT quantum constraint

We now introduce the details of our effective approach to GFT dynamics. First, we introduce

the type of field theories we are studying. We consider GFT models with domain G4 × R, where G

is a Lie group representing gravitational degrees of freedom and R represents a scalar matter field.

Writing the field as ϕ(gI , χ) the dynamics are then schematically defined by an action

S[ϕ, ϕ̄] =

∫
d4g dχ ϕ̄(gI , χ)Dϕ(gI , χ) + I[ϕ, ϕ̄] (3.1)

where D is a differential operator on G4 × R and I[ϕ, ϕ̄] is the “interaction” part of the action

which includes terms of higher than second order in the fields. We will focus on the free part and

mostly neglect the contribution from interaction terms in the following. Such an action gives rise to

equations of motion

Dϕ(gI , χ) +
δI[ϕ, ϕ̄]

δϕ̄(gI , χ)
= 0 (3.2)

and the complex conjugate equation for ϕ̄, but rather than solving this local equation (either at the

full quantum level or in a mean-field approximation) we can multiply from the left with a conjugate

field and integrate to obtain

∫
d4g dχ ϕ̄(gI , χ)Dϕ(gI , χ) + higher order = 0 , (3.3)

i.e., the quadratic part of the GFT action has to vanish if we again neglect the effect of higher order

contributions. (3.3), with the higher order parts assumed to be negligible, is our starting point.

We can now specify the form of D further in order to make the form of the resulting dynamics

more explicit. A minimal non-trivial D would include a “mass term” and second derivatives with

respect to the group arguments, i.e.,

D = m2 +
~
2

4

4∑

I=1

∆gI + λ~2 ∂2χ (3.4)

where ∆gI is a Laplace–Beltrami operator on G, acting on the argument I (the reason for the factor

1
4 will be clear shortly). (3.4) is a standard form for the kinetic term of a GFT model, which has

been studied in previous papers on GFT cosmology such as, e.g., [22, 42, 43]. It can be motivated

by results from GFT renormalisation which show that Laplace–Beltrami operators with respect to

group arguments are generated by radiative corrections [44, 45], even if one started with a pure mass

term as is often done in the spin foam literature [46]. It could also be motivated by an effective field

theory expansion in derivatives, with the further assumption that the theory should be invariant
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with respect to arbitrary translations in G4 × R so that explicit dependence on gI or χ is excluded.

We will consider (3.4) for now but discuss possible extensions below. Notice the appearance of

factors of ~ associated to each derivative, which are standard in quantum mechanics but often

dropped in quantum field theory by setting ~ = 1. In our setting we will perform a semiclassical

expansion in powers of ~ so it is important to keep these powers manifest.

The discussion so far was classical. In the quantum theory, we would expect any physical state

|ψ〉 to satisfy

(
m2 +

~
2

4

4∑

I=1

∆gI + λ~2 ∂2χ

)
ϕ̂(gI , χ)|ψ〉 = 0 (3.5)

but we will now replace this local condition by a much weaker, integrated version

Ĉ|ψ〉 =
∫

d4g dχ ϕ̂†(gI , χ)

(
m2 +

~
2

4

4∑

I=1

∆gI + λ~2 ∂2χ

)
ϕ̂(gI , χ)|ψ〉 = 0 (3.6)

which we can see as a constraint equation Ĉ |ψ〉 = 0 for a certain one-body operator Ĉ.

It is clear that (3.6) is only one out of an in principle infinitely long list of similar conditions10,

obtained by integrating the local equation of motion with different operators from the left11. Having

made this truncation, the next step is an expansion in powers of ~ in which the still fully-quantum

mechanical condition (3.6) is replaced by a series of statements about expectation values. This

expansion is the essence of the effective approach which we are importing into the GFT setting.

B. Defining the observable algebra A

In the discussion of Section II we presented the construction of a quantum phase space as starting

from an observable algebra A generated by a finite number of elements; quantum constraints were

constructed from the elements of A. In the field theory setting of GFT, it is advantageous to proceed

in the opposite direction: having defined a constraint (3.6) we now introduce a number of one-body

operators whose dynamics are controlled by (3.6). This set should be large enough to capture at

least some physically interesting and non-trivially evolving quantities, but still small enough to keep

calculations under control. We will find that this balance between making non-trivial statements

about effective dynamics and keeping the complexity of the approach under control will already

10 It can be seen as the counterpart of the infinite set of Schwinger–Dyson equations.

11 Here, due to the linearity of (3.5), the constraints obtained by this procedure only relate operators constructed out

of the same number of field operators: each integrated constraint only involves n-body operators with the same n.
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impose quite stringent limitations on how many quantities we can and should include. The basic

operators we define are then the Âi appearing in (2.1), i.e., the generators of A.

The form of (3.6) suggests the definitions

N̂ =

∫
d4g dχ ϕ̂†(gI , χ)ϕ̂(gI , χ) , (3.7a)

Λ̂I = −~
2

∫
d4g dχ ϕ̂†(gI , χ)∆gI ϕ̂(gI , χ) , (3.7b)

Π̂2 = −~
2

∫
d4g dχ ϕ̂†(gI , χ)∂

2
χϕ̂(gI , χ) . (3.7c)

N̂ corresponds to the GFT number operator. As a further simplification we will assume that the

state |ψ〉 we are working with satisfies Λ̂I |ψ〉 = Λ̂J |ψ〉 for any I and J (which one might interpret as

a notion of isotropy). We will then simply write Λ̂ instead of Λ̂I , given that all equations involving

any of the operators Λ̂I will be independent of the label I, and the sum over I will cancel the factor

1
4 in (3.9). With these considerations the quantum constraint operator defined in (3.6) is given by

Ĉ = m2N̂ − Λ̂− λΠ̂2 . (3.8)

We will later replace the operator equation Ĉ|ψ〉 = 0 by a series of constraints for expectation

values and higher moments, based on the effective approach introduced in Section II. This set of

equations corresponds to a semiclassical expansion in powers of ~. At lowest order ~
0, we have the

non-trivial requirement that the sum of expectation values

C = 〈Ĉ〉 = m2〈N̂〉 − 〈Λ̂〉 − λ〈Π̂2〉 (3.9)

should vanish.

The one-body operators we have defined so far all commute with each other, and thus are not

governed by any non-trivial dynamics. We therefore also introduce a one-body operator

X̂ =

∫
d4g dχχ ϕ̂†(gI , χ)ϕ̂(gI , χ) (3.10)

which we will interpret as corresponding to the value of a matter scalar field (summed over all

quanta in a state, since this is an extensive quantity). If we assume the commonly used canonical

commutation relations

[ϕ̂(gI , χ), ϕ̂
†(g′I , χ

′)] = δ(χ− χ′)

∫
dh

4∏

I=1

δ(gIh(g
′
I)

−1) (3.11)

for the field operators, where the slightly unusual integration over h ensures that this commutator is

compatible with the gauge invariance property [22]

ϕ̂(gI , χ) = ϕ̂(gIh, χ) ∀ h ∈ SU(2) , (3.12)
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we find

[X̂, Π̂2] = 2i~

(
−i~

∫
d4g dχ ϕ̂†(gI , χ)∂χϕ̂(gI , χ)

)
= 2i~ Π̂1 (3.13)

so that Π̂1 defined by this equation also needs to be added to our algebra of one-body operators.

We then also find

[X̂, Π̂1] = i~ N̂ (3.14)

while all other commutators among quantities we have considered so far (including all commutators

of N̂ or Λ̂) are zero. We also add a one-body operator K̂ which has a non-trivial commutator with

Λ̂ but commutes with all other operators, such that the full set of operators forms a closed algebra.

We will interpret the operator K̂ as corresponding to a notion of extrinsic curvature. The precise

form of the commutator is unspecified for now; later on, we will constrain it by physical arguments

and find explicit realisations of such an operator in particular examples.

The six one-body operators we have defined provide the basis for the extraction of effective

cosmological dynamics. The operators are subject to a single constraint (3.8). In general, it is easy

to find examples of systems of one-body operators subject to more than one constraint12, but the

specific form of the equations of motion and the algebra defined above guarantee that (3.8) is the

only constraint that involves operators in the algebra alone. Indeed, consider an action on (3.5)

from the left resulting in an integrated constraint which features an operator included in the above

algebra but different from N̂ , Λ̂, and Π̂2 (e.g., K̂). This new constraint would inevitably involve also

new operators whose matrix elements depend both on the group and the scalar field variables, which

are however not included in the algebra of operators of interest. In this sense, we are considering a

minimal self-consistent set of operators and dynamical relations.

Notice again that in this approach there is no dependence on any time parameter, nor a viewpoint

that any of these operators define by themselves a notion of relational observable. Any notion

of relational dynamics will only arise from comparing the dynamics of these operators to each

other. Importantly, and in line with the philosophy of the effective approach, we make no explicit

assumption about the quantum state, only that it is sufficiently semiclassical (with respect to these

global observables). We do however see our approximation (of not solving local field equations but

12 For instance, consider a hypothetical GFT model with quantum field equation (f(gI , χ) + 1)ϕ̂(gI , χ) = 0, and

consider the operators N̂ , F̂+ =
∫

d4g dχ ϕ̂†(gI , χ)f(gI , χ)ϕ̂(gI , χ) and F̂− =
∫

d4g dχ ϕ̂†(gI , χ)f
−1(gI , χ)ϕ̂(gI , χ).

The equations of motion would then imply two separate constraints F̂+ + N̂ = 0 and N̂ + F̂− = 0.
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only demanding that our one-body operators satisfy certain “averaged” relations) as an implicit

condition on the quantum state.

C. Fixing the free commutator by analogy with classical Friedmann cosmology

The lowest-order truncation to the full quantum constraint would be to only require that the

expectation value of the constraint vanishes. This leads to the constraint

C = m2〈N̂〉 − 〈Λ̂〉 − λ〈Π̂2〉 ≈ 0 (3.15)

that we already defined in (3.9). At the same level of truncation, the dynamics of our six quantum

one-body operators can be reduced to the dynamics of the expectation values of these operators.

The resulting dynamical system is then equivalent to a classical constrained system: the expectation

values represent phase space variables subject to a single Hamiltonian constraint. The constraint

generates gauge transformations, which we will assume can be interpreted as reparametrisation in

time or as the time evolution flow generated by a Hamiltonian built from this constraint.

We can then demand as a minimal requirement that this system corresponds to the dynamics

of a homogeneous isotropic Friedmann–Lemaître–Robertson–Walker (FLRW) universe in general

relativity or a modified version of it which includes higher-curvature corrections. We will use this

minimal requirement to fix the so far unspecified commutator between Λ̂ and K̂.

The flow generated by (3.15) is

〈N̂〉′(t) = 〈Π̂1〉′(t) = 〈Π̂2〉′(t) = 〈Λ̂〉′(t) = 0 (3.16)

so that we immediately have four constants of motion, and

〈X̂〉′(t) = −2λ〈Π̂1〉(t) , 〈K̂〉′(t) =
{
〈Λ̂〉, 〈K̂〉

}
(t) . (3.17)

As we have stated when introducing it, the variable X̂ represents a matter scalar field whose value is

summed over all quanta in a GFT state. Normally we would have to worry about the fact that this

is an extensive variable and perhaps divide by the average particle number to obtain an intrinsic

notion of matter scalar field. In our framework here, the variable 〈N̂〉 is always a constant of motion,

since the operator N̂ commutes with all other one-body operators we consider, hence we do (for

now) not have to worry about the distinction between intensive and extensive quantities.

An immediate consequence from (3.16) and (3.17) is then that the evolution of 〈X̂〉 is monotonic

if we assume that the expectation value 〈Π̂1〉 does not vanish, indeed we have

〈X̂〉(t) = 〈X̂〉(0)− 2λ〈Π̂1〉(0) t . (3.18)
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〈X̂〉 can then be seen as a good clock, very similar to the way massless scalar fields often appear as

clocks in quantum gravity and quantum cosmology.

Let us now compare this system explicitly with the dynamics of a flat FLRW universe filled with

a massless scalar field in general relativity. For this system, the Hamiltonian is (see, e.g., [47])

HGR = N

(
−2πG

3

p2a
a

+
p2ϕ
2a3

)
(3.19)

where a is the scale factor, pa is its canonical momentum and pϕ is the conjugate momentum of the

scalar field ϕ. A convenient lapse choice, N = a3, transforms this to the Hamiltonian

HGR

∣∣
N=V

= −6πGV 2p2V +
p2ϕ
2

(3.20)

where we switch to a volume variable V = a3 with conjugate momentum pV . The equation of

motion for the scalar field is now ϕ̇ = pϕ and pϕ is a constant of motion, a similar form to the first

equation in (3.17). This similarity would motivate further the identification of 〈X̂〉 as corresponding

to a matter scalar field. How about the equations for the spacetime geometry? We have

V̇ =
{
V,HGR

∣∣
N=V

}
= −12πG(V pV )V (3.21)

so that, taking into account that V pV is clearly a constant of motion, on-shell we have V̇ = cV for

some constant of motion c, leading to exponential solutions. Very similarly we have

ṗV =
{
pV ,HGR

∣∣
N=V

}
= 12πG(V pV )pV (3.22)

and again exponential solutions (with inverse sign in the exponent, again ensuring that V pV is a

constant of motion). Notice that from the vanishing of (3.20) we have V pV = ±pϕ/
√
12πG where

the sign is determined by initial conditions.

The explicit solutions for the scalar field ϕ and extrinsic curvature pV are then given by

ϕ(t) = pϕt+ ϕ(0) , (3.23a)

pV (t) = pV (0) exp(±
√
12πGpϕt) , (3.23b)

where pϕ and the sign ± are constants of motion. This explicit form shows in particular that ϕ and

pV are globally monotonic functions, and so either of them could be used as a clock for the other

degrees of freedom. If we are only interested in comparing the variables ϕ and pV to each other, we

can give the relation between the two as

(ϕ ◦ p−1
V )(pV ) = ± 1√

12πG
log

(
pV
pV (0)

)
+ ϕ(0) , (3.24a)

(pV ◦ ϕ−1)(ϕ) = pV (0) exp
(
±
√
12πG(ϕ− ϕ(0))

)
. (3.24b)
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Notice that pV cannot change sign, so the logarithm in the first relation is always well-defined.

We now want to reproduce these classical cosmological solutions, expressed in relational language.

Comparing (3.22) with the second equation in (3.17), if we assume that the quantity 〈K̂〉 is

analogous to pV in the classical cosmological model, and hence represents extrinsic curvature,

dynamics analogous to those of general relativity will be obtained from assuming that

{
〈Λ̂〉, 〈K̂〉

}
∝ 〈K̂〉 . (3.25)

In the example of general relativity, this proportionality is only given on-shell (identifying the phase

space variable V pV with a conserved quantity) so a priori it would make sense to assume that also

(3.25) only holds on-shell. However, the basic premise of our effective approach is to assume that

the commutator of two elementary variables is a linear combination of elementary variables, as in

(2.1). The proportionality factor in (3.25) then needs to be just a numerical constant, which we will

denote by α; we then add the commutator

[Λ̂, K̂] = i~αK̂ (3.26)

to our algebra of basic operators. This commutator would also suggest that 〈Λ̂〉 is analogous to

V pV in the classical theory, consistent with the fact that 〈Λ̂〉 is constant (cf. (3.16)).

For completeness, we also discuss the most general case in which the commutator takes the form

[Λ̂, K̂] = i~
∑

a∈V

αaâ (3.27)

where V is a set of labels (“variables”), V = {N,Π1,Π2, X,Λ,K}. Interestingly, even this most

general form can be solved exactly, with the solution to (3.17) in the case of αK 6= 0 given by

〈K̂〉(t) =
(
x

αK
− αX
α2
K

2λ〈Π̂1〉(0)
)
(eαKt − 1) + 〈K̂〉(0)eαKt +

αX
αK

2λ〈Π̂1〉(0)t (3.28)

and in the case αK = 0 by the expression

〈K̂〉(t) = 〈K̂〉(0) + xt− αXλ〈Π̂1〉(0)t2 , (3.29)

where in both cases we defined

x = αN 〈N̂〉(0) + αΠ1
〈Π̂1〉(0) + αΠ2

〈Π̂2〉(0) + αX〈X̂〉(0) + αΛ〈Λ̂〉(0) . (3.30)

This result would suggest that a more general form of the commutator between Λ̂ and K̂ could lead

to a modified effective cosmology, different from the classical case. In principle, this is what we

would expect: the effective cosmology of a quantum gravity theory such as GFT does not need to
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exactly reproduce classical Friedmann cosmology, and high-energy corrections such as those leading

to a bounce [24, 29, 48] are expected and desirable. In the closely related setting of loop quantum

cosmology, the expression for the extrinsic curvature also receives such corrections compared to the

classical case, and is proportional to arctan(exp(±
√
12πGφ)) rather than the classical exponential

(3.24b) [49, 50], and these corrections are responsible for the resolution of the cosmological singularity.

However, if we at least require the resulting effective dynamics to reduce to classical cosmology

when curvature is low, so that there is a regime for t in which 〈K̂〉(t) asymptotically approaches

eαKt ≪ 1, we do obtain quite stringent constraints from (3.28): we must have

x = αX = 0 . (3.31)

The first condition x = 0 can be satisfied by fine-tuning initial conditions or, if one requires it to

hold for generic initial states, by setting

αN = αΠ1
= αΠ2

= αΛ = 0 (3.32)

reducing us to the case (3.26), which we will therefore assume in the following. It would be

interesting to study in future work whether the more general solution (3.28) can be given a physical

interpretation perhaps in terms of a modified theory of gravity.

We conclude this section with a few remarks about the operator K̂. Firstly, the above discussion

tentatively puts forward an identification of K̂ with the extrinsic curvature. However, it should also

be possible to motivate the operator representing extrinsic curvature by considering the microscopic

degrees of freedom. Note that such a motivation from microscopic degrees of freedom has been

employed previously in GFT where the definition of the volume operator has been imported from

loop quantum gravity (LQG) [24, 48]. In our framework this would mean that we are able to specify

the integral kernel in the definition

K̂ =

∫
d4g d4g′ dχ dχ′ ϕ̂†(gI , χ)K(gI , g

′
I , χ, χ

′)ϕ̂(g′I , χ
′) . (3.33)

Since such one-body operators describe local quantities from the perspective of an LQG spin network,

the identification of curvature degrees of freedom is not straightforward (see, e.g., the discussion in

[22]). A starting point could be the twisted geometries parametrisation of the LQG phase space,

which identifies a discrete analogue of extrinsic curvature for each spin network link [51].

Secondly, it is not possible to find operators representing the algebra (3.26) on compact spaces.

To see that this is true, note that on a compact space the eigenbasis of the Laplacian will be

countable. Assume that we have Hermitian matrices Kij and Λij = Λiδij representing the algebra
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on this countable eigenbasis of the Laplacian. Then the commutator gives

(Λi − Λj)Kij = i~αKij (3.34)

which implies that Kij = 0. In our GFT setting, this argument would imply that a representation of

(3.26) only exists if the Lie group G chosen to define the GFT model is non-compact.

Let us stress, however, how crucial the specific form of the microscopic dynamics is also for this

interpretation of K̂ as an extrinsic curvature operator. Indeed, as an example consider, instead of

(3.5), the constraint equation

(
m(gI)

2 +
~
2

4

4∑

I=1

∆gI + λ(gI)~
2∂2χ

)
ϕ̂(gI , χ) |ψ〉 = 0 , (3.35)

where both m(gI)
2 and λ(gI) are non-trivial13 and non-singular functions of the group variables,

such that their ratio is a constant, m(gI)
2/λ(gI) = λ̃. We could then consider the one-body quantum

constraint

ˆ̃C = N̂ − ˆ̃Λ− λ̃Π̂2 (3.36)

with

ˆ̃Λ = −~
2

∫
d4g dχ ϕ̂†(gI , χ)m(gI)

−2∆gI ϕ̂(gI , χ) . (3.37)

The dynamics generated by the expectation value of the above constraint would be the same as

before (putting m2 = 1), thus implying that an operator ˆ̃K such that

[
ˆ̃Λ, ˆ̃K

]
= i~α ˆ̃K (3.38)

could be interpreted classically as extrinsic curvature. This operator, however, would be substantially

different from K̂ introduced above: since ˆ̃Λ would not be diagonal on the Laplacian eigenbasis, one

could not exclude a representation of ˆ̃K on a compact Lie group G on the basis of the argument

given above for K̂.

This should make clear that the precise geometric interpretation of both fundamental and effective

observables is a non-trivial matter and should be taken with some caution.

13 The dependence of m2 and λ on the group variables is generally expected for GFTs constructed by path-integral

identification with simplicial gravity models minimally coupled with a free massless scalar field [52]. This dependence

actually encodes the non-trivial coupling between matter and geometry degrees of freedom.
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IV. ONE-BODY RELATIONAL COSMOLOGY

We now apply the effective approach reviewed in Section II to the one-body group field theory

model introduced in Section III14. The quantum constraint is given in (3.8),

Ĉ = m2N̂ − Λ̂− λΠ̂2 , (4.1)

and the quantum algebra is generated by A = {â}a∈V , where V is the set of labels introduced in

(3.27). In the following it sometimes proves useful to make an identification Π0 = N allowing for a

very compact notation. This further necessitates the introduction of the symbol Π−1 which however

will always be multiplied by zero.

Following the arguments from classical cosmology, we now assume that the non-trivial commuta-

tion relations of the algebra are given by

[X̂, Π̂1] = i~N̂ , (4.2a)

[X̂, Π̂2] = i~ 2Π̂1 , (4.2b)

[Λ̂, K̂] = i~αK̂ . (4.2c)

We will assume that an expansion in orders of moments corresponds to an expansion in orders of

~, as anticipated, and truncate the quantum phase space at second order moments. The resulting

quantum phase space is therefore 27-dimensional, consisting of 6 expectation values and 21 moments.

The Poisson structure on the quantum phase space is given by the Poisson bracket induced by the

commutator as in (2.3). We collect the explicit form of the resulting Poisson structure in Appendix A.

The 7 effective constraints, as defined in (2.4), are given by

C = m2〈N̂〉 − 〈Λ̂〉 − λ〈Π̂2〉 , (4.3a)

CN = m2∆(N2)−∆(NΛ)− λ∆(NΠ2) , (4.3b)

CΠ1
= m2∆(NΠ1)−∆(Π1Λ)− λ∆(Π1Π2) , (4.3c)

CΠ2
= m2∆(NΠ2)−∆(Π2Λ)− λ∆(Π2

2) , (4.3d)

CX = m2∆(NX)−∆(XΛ)− i~λ〈Π̂1〉 − λ∆(Π2X) , (4.3e)

CΛ = m2∆(NΛ)−∆(Λ2)− λ∆(Π2Λ) , (4.3f)

CK = m2∆(NK) +
i~

2
α〈K̂〉 −∆(ΛK)− λ∆(Π2K) . (4.3g)

14 We performed the calculation using Wolfram Mathematica. A Mathematica package and a program containing the

calculations of this section are available at https://gitlab.com/qggftc/effective-constraints.
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Although the algebra considered here does not have any canonically conjugate pair, we will

nevertheless closely mimic the treatment of a system with a canonical pair as discussed in Section II.

As a “clock” we choose the operator K̂ and as the “conjugate” we choose Λ̂. From the effective

constraints C and Ca, a ∈ V, it is then possible to eliminate the expectation value 〈Λ̂〉 and the 6

moments ∆(Λa), a ∈ V. Likewise, we choose a gauge in which all but one of the moments of the

operator K̂ vanish. This can be achieved by the gauge fixing conditions

Ga = ∆(Ka) = 0 , a ∈ V \ {Λ} . (4.4)

To see that this does fix the gauge sufficiently, we compute the following Poisson brackets for any

a ∈ V \ {Λ} (with the identification Π0 = N),

{Ga, C} ≈ 0 , (4.5a)

{Ga, CΠn
} ≈ (1− δaK)α〈K̂〉

(
∆(Πna)− δaX

i~

2
n〈Π̂n−1〉

)
(4.5b)

{Ga, CX} ≈ (1− δaK)α〈K̂〉
(
∆(Xa) + δaΠn

i~

2
n〈Π̂n−1〉

)
, (4.5c)

{GΠn
, CΛ} ≈ α〈K̂〉

(
m2∆(NΠn)− λ∆(Π2Πn)

)
, (4.5d)

{GX , CΛ} ≈ α〈K̂〉
(
m2∆(NX)− λ∆(Π2X)− 3i~λ〈Π̂1〉

)
, (4.5e)

{GK, CΛ} ≈ 2i~α2〈K̂〉2 , (4.5f)

{Ga, CK} ≈ 0 . (4.5g)

From this we see that both C and CK remain unfixed by our choice of gauge. However, it turns

out that only C has a non-trivial flow on the gauge-fixed constraint hypersurface. Therefore, we

may study the flow generated by C on the gauge-fixed constraint hypersurface and interpret this

as the dynamics of the system. After imposing the 7 effective constraints (cf. (4.3)) and the 5

gauge fixing conditions (cf. (4.4)), the reduced quantum phase space has coordinates given by

the 27 − 7 − 5 = 15 variables Ṽ = {〈N̂〉, 〈Π̂1〉, 〈Π̂2〉, 〈X̂〉, 〈K̂〉,∆(N2),∆(NΠ1),∆(Π2
1),∆(NΠ2),

∆(Π1Π2),∆(Π2
2),∆(NX),∆(Π1X),∆(Π2X),∆(X2)}.

We now study the flow generated by the constraint which has not been fixed by our choice of

gauge. That is, we are interested in solving the set of differential equations

a′(t) = {a, C}(t) , a ∈ Ṽ . (4.6)
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The equations with non-vanishing right-hand side are given by

〈X̂〉′(t) = −2λ〈Π̂1〉(t) , (4.7a)

〈K̂〉′(t) = α〈K̂〉(t) , (4.7b)

∆(NX)′(t) = −2λ∆(NΠ1)(t) , (4.7c)

∆(Π1X)′(t) = −2λ∆(Π2
1)(t) , (4.7d)

∆(Π2X)′(t) = −2λ∆(Π1Π2)(t) , (4.7e)

∆(X2)′(t) = −4λ∆(Π1X)(t) . (4.7f)

The variables which are non-constant under the gauge flow have the following dependence on the

gauge flow parameter:

〈X̂〉(t) = 〈X̂〉(0)− 2λ〈Π̂1〉(0)t , (4.8a)

〈K̂〉(t) = 〈K̂〉(0)eαt , (4.8b)

∆(NX)(t) = ∆(NX)(0)− 2λ∆(NΠ1)(0)t , (4.8c)

∆(Π1X)(t) = ∆(Π1X)(0)− 2λ∆(Π2
1)(0)t , (4.8d)

∆(Π2X)(t) = ∆(Π2X)(0)− 2λ∆(Π1Π2)(0)t , (4.8e)

∆(X2)(t) = ∆(X2)(0)− 4λ∆(Π1X)(0)t+ 4λ2∆(Π2
1)(0)t

2 . (4.8f)

All the remaining variables remain constant along the flow. It is interesting to note that both

(4.8a) and (4.8b) can be inverted. Hence both 〈X̂〉 and 〈K̂〉 could be viewed as a “clock” from a

relational point of view, in the sense that their values can be used to parametrise all other dynamical

variables. Of course, there is still a difference between the two since we used a gauge fixing of

moments following the perspective presented in Section II in which 〈K̂〉 is seen as the clock, so that

in our gauge the variable X has non-trivial quantum fluctuations. If we want to interpret (4.8a)

and (4.8b) as representing effective cosmological dynamics constructed from our set of one-body

operators, which would be analogous to the classical Friedmann cosmology discussed in Section III C,

we could view either 〈X̂〉 as a function of 〈K̂〉 or vice versa; since the relation between the two is a

globally invertible function both functional relations are equivalent.

Concretely, we can express 〈X̂〉 as a function of 〈K̂〉,

(〈X̂〉 ◦ 〈K̂〉−1)(〈K̂〉) = 〈X̂〉(0)− 2λ〈Π̂1〉
α

log

(
〈K̂〉

〈K̂〉(0)

)
(4.9)

which can be compared with the classical solution we found in Section III C,

(ϕ ◦ p−1
V )(pV ) = ϕ(0)± 1√

12πG
log

(
pV
pV (0)

)
. (4.10)
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The classical solution for a flat FLRW cosmology is hence reproduced by the solutions (4.8a)

and (4.8b) of our effective one-body dynamics if we identify 〈X̂〉 with a constant multiple of ϕ and

〈K̂〉 with a constant multiple of pV . The ratio λ/α, which is determined by the GFT dynamics

and by the operators appearing in the algebra (4.2), corresponds to Newton’s constant in classical

cosmology, with the relation between the two determined by the conserved quantity 〈Π̂1〉 and the

identification between 〈X̂〉 and the classical ϕ. (Recall from the discussion below (3.17) that we

need to define an intensive quantity from the extensive 〈X̂〉 in order to justify the interpretation as

a physical scalar field.) If one identifies the quotient 〈X̂〉/〈Π̂1〉 of two extensive quantities with the

classical scalar field ϕ and the parameters λ and/or α are chosen appropriately, arbitrary initial

conditions of our effective equations lead to a solution of classical FLRW cosmology. This is the

analogue of the recovery of (modified) Friedmann cosmologies in previous work on GFT cosmology

such as [24, 29, 48], where a similar identification of parameters of the fundamental theory with an

emergent Newton’s constant is made15.

An interesting property of the system of equations (4.8a)–(4.8e) is that expectation values and

moments are entirely decoupled: the inclusion of O(~) moments does not alter at all the dynamics of

the original variables in V which correspond to O(~0). Indeed, the solutions (4.8a)–(4.8b) are exactly

the ones already discussed in Section IIIC where we fixed the form of the commutator involving

K̂. This behaviour is due to the linearity of the initial constraint in all variables, and one might

see it as representing an unphysical aspect of the truncation we have been using. Indeed, it would

seem to imply that semiclassicality properties of the fundamental state are mostly irrelevant to the

extraction of interesting cosmological dynamics. We should point out, however, that our results here

are fully compatible with previous derivations of effective cosmological Friedmann equations from

GFT dynamics as, e.g., given in [29]: also in this previous work, effective Friedmann equations can

be derived for general states and only depend on expectation values of a few elementary operators,

without any dependence on quantum fluctuations or higher moments in general.

The criterion of semiclassicality, as studied in terms of relative fluctuations in [28, 29], should then

be seen as an additional requirement for a meaningful physical interpretation of the resulting effective

Friedmann equations (derived from the dynamics of expectation values of relevant operators), even

if these equations themselves are unaffected by the magnitude of quantum fluctuations. A quantum

15 That gravitational and, more generally, effective field theory couplings like Newton’s constant or the cosmological

constant are in fact a function of microscopic parameters of the underlying non-spatiotemporal quantum gravity

dynamics is something to be expected in any formalism in which spacetime itself is emergent.
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cosmology with large quantum fluctuations in macroscopic cosmological observables would not

describe the universe we observe, even if such observables happen to satisfy the correct (Friedmann-

like) dynamics in mean value. In this respect, it is important to emphasise that if relative quantum

fluctuations are required to be small at small curvature (|〈K̂〉(t)/〈K̂〉(0)| ≪ 1), in our context they

turn out to be also small when the curvature is large (|〈K̂〉(t)/〈K̂〉(0)| ≫ 1). Both these limits are

characterised by |t| → ∞, so that the asymptotic behaviour of the relative fluctuations

σ2aa′ =
∆(aa′)

〈â〉〈â′〉 (4.11)

is identical16, as we can see explicitly from (4.8a)–(4.8e). The fact that quantum fluctuations can

be relatively small even when curvature is large is a feature shared with LQC models [32, 33]. A

crucial property of our approach is that the (averaged) particle number remains constant, as we have

emphasised several times above, in sharp contrast to previous results on quantum fluctuations in

GFT cosmology [28, 29] where the (average) particle number had a non-trivial relational evolution.17

In these works, it was shown that the evolution of the particle number crucially affects the evolution

of relative quantum fluctuations, suppressing them at large volume (when N ≫ 1) and possibly

enhancing them at small volume if N . 1. This mechanism of suppression and enhancement of

fluctuations is of course absent here, which may be one of the reasons why quantum fluctuations

can remain small even in a high curvature regime, provided they are small at low curvature.

V. CONCLUSIONS AND DISCUSSION

In this paper we presented a novel way to obtain an effective cosmological dynamics from GFT,

motivated by the interpretation of cosmology as quantum gravity hydrodynamics [19, 22]. Contrary

to what was done in previous works, this approach does not depend explicitly on a specific choice

of states. In order to achieve this, we extended the effective approach developed in [15–17] to

16 Notice that relative quantum fluctuations are not necessarily small at all times, since they may diverge when the

denominator of (4.11) goes to zero. This does not signal that the system is affected by strong quantum fluctuations,

but rather that they should not be measured by relative quantities. A more sensible option in this case would be to

define a threshold below which fluctuations are considered small, see [53] for a more detailed discussion.

17 Notice again that these previous results refer to different notions of relational dynamics in GFT. The number

operator in [29] is the “time-dependent version” of (3.7a). On the other hand, the (relational) number operator in

[25] is the same as in (3.7a), although relational evolution is defined only for a specific choice of states (and with

respect to a different relational clock).
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describe the behaviour of a finite set of collective GFT observables, assumed to capture macroscopic

cosmological physics. That is, we extended this approach to a field-theoretic setting. The dynamics

of these observables are governed by a one-body constraint, obtained by integrating the microscopic

equation of motion of the model. Similarly to [24] and many subsequent works, this model includes

matter in the form of a minimally coupled massless scalar field, and is characterised by negligible

interactions. This is reflected also at the level of our algebra of one-body operators of interest, which

splits into a geometric two-dimensional subalgebra and a four-dimensional one generated by “matter

observables” and the number operator.

From the algebra of operators and the one-body constraint we obtained a quantum phase space

which can be coordinatised by a finite set of expectation values and moments. We considered

only moments up to second order in powers of ~, obtaining an effectively 27-dimensional space,

described by 6 expectation values and 21 moments. At this order, the quantum constraint produces

7 effective constraints, which in turn generate 6 independent gauge flows in the truncated quantum

phase space. We fixed 5 of these 6 gauge flows by requiring that the operator K̂ that we identify

classically with the extrinsic curvature has vanishing moments. The quantum phase space variables

related to the other operator generating the geometric subalgebra were then expressed in terms of

the remaining variables through the effective constraints. In this way we obtained an effectively

reduced phase space parametrised by 15 variables: 14 expectation values and moments related to the

four-dimensional “matter” subalgebra and one expectation value 〈K̂〉. We could use the remaining

gauge flow to express the evolution of the 14 non-geometric variables in terms of 〈K̂〉. Since K̂ by

construction has vanishing quantum fluctuations (they are gauge-fixed to zero), this amounts to

an effective relational description of the evolution of matter degrees of freedom with respect to the

extrinsic curvature clock. This is a refreshing change of perspective for cosmological applications of

relational dynamics in quantum gravity, where it is usually matter degrees of freedom that are used

as physical clocks (and rods) [54]. In the framework we developed, choosing a geometric clock was

the most natural choice, since an analogous elimination of matter variables resulting in a reduced

quantum phase space of only geometric quantities (and possibly the expectation value of a matter

clock) could not be achieved by the methods explained above.

The way relational evolution is obtained in this framework emphasises the idea that in order to

define a notion of relational dynamics in an emergent spacetime context as the one we considered

here, some prior coarse-graining process is necessary [25]. Here, this coarse-graining is represented by

the assumption that the physics of the system is adequately captured by a finite set of macroscopic

observables and one collective quantum constraint. This is however still not enough to define a
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“good clock” and consequently a notion of relational dynamics analogous to the classical theory: it is

also necessary to be able to find a gauge (the “Zeitgeist” of [16, 17]) in which quantum fluctuations

of the clock can be set to zero.

At the level of expectation values, the resulting relational evolution is in agreement with a

classical flat FLRW universe. Interestingly, this result does not depend on the magnitude of quantum

fluctuations who evolve independently and, if they are required to be relatively small at low curvature,

remain small at high curvature. We argue that this feature, shared also with LQC models [32, 33],

may be due to the constancy of the number operator. In the framework presented in this paper, the

number operator is constant because the quantum constraint is a one-body operator and, as such,

trivially commutes with the number operator. In most previous attempts to extract cosmological

physics from GFT the particle number is time-dependent, and this time dependence can crucially

enhance or suppress quantum fluctuations [28, 29].

The methods employed in this work, and thus all the aforementioned results, rely on two important

assumptions.

The first one is related to the choice of states. While we remark again that no specific state choice

is necessary within this framework, the states we considered are required to satisfy two important

conditions: (i) they should be such that the system is characterised by a few macroscopic observables

(hydrodynamic condition); and (ii) moments of operators computed in these states should naturally

produce a hierarchy characterised by different powers of ~ (semiclassicality condition). Without the

first requirement one would have to take into account the fact that a field theory is characterised by

infinitely many operators and “constraints” (the quantum equations of motion), while without the

second one one would have to consider the infinitely many moments coordinatising the quantum

phase space, even for finite-dimensional systems.

The second assumption is related to the choice of the fundamental observables, which depends

on the features of the physical system being considered. In our case, we introduced the “curvature

operator” K̂ by requiring it to satisfy certain commutation relations which classically allow for a

cosmological interpretation of the system. However, a microscopic description of such an operator is

missing and requires further studies. In fact, we showed that such an operator cannot be represented

on a compact group, suggesting that, at least for the type of dynamics we defined here (which is

very much simplified compared to the one corresponding to more realistic quantum gravity models),

GFT models with non-compact “gravitational gauge group” would be preferred.

Even when these assumptions are made, there are some general limitations to the framework used

here. Computations become more and more involved as either the number of fundamental elements
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of the quantum algebra increase or the commutation relations between the operators become more

complicated (e.g., non-linear). These computational problems are the main reason why considering a

system of operators and dynamics for which the particle number can vary is complicated. Indeed, in

order to do so, one would have to consider an additional n-body constraint (n > 1) with non-trivial

commutation relations with the number operator. An example would be, of course, a dynamical

constraint incorporating the contribution from GFT interactions. This would however force us to

include many other operators (with possibly more complicated commutation relations) in order to

obtain a closed algebra, which would significantly enlarge the quantum phase space.

Despite these limitations, the method we employed allowed us to (i) obtain effective cosmological

dynamics from GFT, (ii) gain insights about the notion of relational dynamics in an emergent

quantum gravity scenario, and (iii) study the impact of quantum fluctuations, by making only

broad assumptions on the states of interest. The relative simplicity in which the above results

were obtained within a well-defined framework illustrates the importance of effective methods for

extracting continuum physics from quantum gravity, and in particular suggests that the connection

between GFTs (in their hydrodynamic approximation) and cosmological physics may go beyond the

choice of specific (condensate) states.
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Appendix A: Quantum Poisson structure

In this section we collect the non-vanishing Poisson brackets of the quantum phase space

considered in Section IV. In the formulas below we identify N = Π0 and introduce the “fake” variable

Π−1 = 0. Unless specified otherwise, a ∈ {N,Π1,Π2, X,Λ,K}.
Using (2.6) one can verify the following commutation relations which we computed using Wolfram

Mathematica,

{〈Λ̂〉,∆(Ka)} = (1 + δaK)α∆(Ka) , (A1)
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{〈K̂〉,∆(Λa)} = −(1 + δaΛ)α∆(Ka) , (A2)

{〈X̂〉,∆(Πna)} = (1 + δaΠn
)n∆(Πn−1a) , a 6= Πm 6=n , (A3)

{〈X̂〉,∆(ΠnΠm)} = n∆(Πn−1Πm) +m∆(ΠnΠm−1) , (A4)

{〈Π̂n〉,∆(Xa)} = −(1 + δaX)n∆(Πn−1a) , (A5)

{∆(ΛX),∆(Ka)} = (1 + δaK)α〈K̂〉∆(Xa) , a 6= Πn , (A6)

{∆(ΛX),∆(Πna)} = (1 + δaΠn
)n〈Π̂n−1〉∆(Λa) , a 6= K,Πm 6=n , (A7)

{∆(ΛX),∆(KΠn)} = n〈Π̂n−1〉∆(ΛK) + α〈K̂〉∆(XΠn) , (A8)

{∆(ΛX),∆(ΠnΠm)} = n〈Π̂n−1〉∆(ΛΠm) +m〈Π̂m−1〉∆(ΛΠn) , (A9)

{∆(KX),∆(Λa)} = −(1 + δaΛ)α〈K̂〉∆(Xa) , a 6= Πn , (A10)

{∆(KX),∆(Πna)} = (1 + δaΠn
)n〈Π̂n−1〉∆(Ka) , a 6= Λ,Πm 6=n , (A11)

{∆(KX),∆(ΛΠn)} = n〈Π̂n−1〉∆(KΛ)− α〈K̂〉∆(XΠn) , (A12)

{∆(KX),∆(ΠnΠm)} = n〈Π̂n−1〉∆(KΠm) +m〈Π̂m−1〉∆(KΠn) , (A13)

{∆(ΛΠn),∆(Ka)} = (1 + δaK)α〈K̂〉∆(Πna) , a 6= X , (A14)

{∆(ΛΠn),∆(Xa)} = −(1 + δaX)n〈Π̂n−1〉∆(Λa) , a 6= K , (A15)

{∆(ΛΠn),∆(KX)} = −n〈Π̂n−1〉∆(Λa) + α〈K̂〉∆(Πna) , (A16)

{∆(KΠn),∆(Λa)} = −(1 + δaΛ)α〈K̂〉∆(Πna) , a 6= X , (A17)

{∆(KΠn),∆(Xa)} = −(1 + δaX)n〈Π̂n−1〉∆(Ka) , a 6= Λ , (A18)

{∆(KΠn),∆(ΛX)} = −n〈Π̂n−1〉∆(Ka)− α〈K̂〉∆(Πna) , (A19)

{∆(K2),∆(Λa)} = −(1 + δaΛ)2α〈K̂〉∆(Ka) , (A20)

{∆(Λ2),∆(Ka)} = (1 + δaK)2α〈K̂〉∆(Λa) , (A21)

{∆(ΛK),∆(Ka)} = α〈K̂〉∆(Ka) , a 6= Λ , (A22)

{∆(ΛK),∆(Λa)} = −α〈K̂〉∆(Λa) , a 6= K , (A23)

{∆(X2),∆(Πna)} = (1 + δaΠn
)2n〈Π̂n−1〉∆(Xa) , a 6= Πm 6=n , (A24)

{∆(X2),∆(ΠnΠm)} = 2(n〈Π̂n−1〉∆(ΠmX) +m〈Π̂m−1〉∆(ΠnX)) , (A25)

{∆(XΠn),∆(Πma)} = (1 + δaΠm
)m〈Π̂m−1〉∆(Πna) , a 6= X,Πl 6=m , (A26)

{∆(XΠn),∆(ΠmΠl)} = m〈Π̂m−1〉∆(ΠnΠl) + l〈Π̂l−1〉∆(ΠnΠm) , (A27)

{∆(XΠn),∆(Xa)} = −(1 + δaX)n〈Π̂n−1〉∆(ΠnΠl) , a 6= Πm , (A28)

{∆(ΠnΠm),∆(Xa)} = −(1 + δaX)(n〈Π̂n−1〉∆(Πma) +m〈Π̂m−1〉∆(Πna)) . (A29)
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