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The neural crest (NC) is a multipotent cell population which can give rise to a vast array

of derivatives including neurons and glia of the peripheral nervous system, cartilage,

cardiac smooth muscle, melanocytes and sympathoadrenal cells. An attractive strategy

to model human NC development and associated birth defects as well as produce clinic-

ally relevant cell populations for regenerative medicine applications involves the in vitro

generation of NC from human pluripotent stem cells (hPSCs). However, in vivo, the

potential of NC cells to generate distinct cell types is determined by their position along

the anteroposterior (A–P) axis and, therefore the axial identity of hPSC-derived NC cells

is an important aspect to consider. Recent advances in understanding the developmental

origins of NC and the signalling pathways involved in its specification have aided the in

vitro generation of human NC cells which are representative of various A–P positions.

Here, we explore recent advances in methodologies of in vitro NC specification and axis

patterning using hPSCs.

Introduction
Human pluripotent stem cells (hPSCs) have become a powerful resource to study embryonic develop-
ment, circumventing both the technical and ethical obstacles associated with the use of human
embryos. By harnessing the correct developmental signalling pathways during hPSC differentiation, it
has become increasingly feasible to generate a vast array of human progenitor cell types with distinct
identities and differentiation potential. Combined with the use of patient-derived induced pluripotent
stem cells (iPSCs) or CRISPR/Cas9 genome editing, it is possible to use these hPSC derived progeni-
tors in disease modelling or for therapeutic applications such as cell replacement/regenerative medi-
cine therapies. The position of the various cell types that make up the emerging nervous system along
the embryonic anteroposterior (A–P) axis is a critical determinant of their functionality, developmen-
tal potential and disease vulnerability and an increasing body of evidence has pointed out that this is
also the case for their hPSC-derived counterparts. Thus, shaping the desired A–P axial identity
in vitro is a crucial aspect in the design of hPSC neural differentiation protocols. The A–P regionalisa-
tion of hPSC-derived central nervous system (CNS)-associated cell types has already been discussed in
detail in some excellent recent reviews elsewhere [1,2]. Here, we focus on recent findings on the key
cellular and signalling parameters directing axial identity acquisition during the transition of hPSCs
toward NC cells, the precursors of the peripheral nervous system.

Formation and regionalisation of the nervous system

in vivo
During mammalian embryonic development, the earliest cell lineage progenitors arise in the pluripo-
tent post-implantation epiblast with the onset of gastrulation, which is marked by the emergence of a
posterior structure known as the primitive streak (PS) under the influence of BMP, Wnt and Nodal
signalling, followed by extensive morphogenetic movements leading to the continuous ingression of
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epiblast cells through the extending PS [3,4]. In turn, this leads to the rearrangement of the single epithelium
epiblast into the three germ layers, which act as the building blocks of all embryonic tissues: ectoderm, meso-
derm and endoderm. The central nervous system is derived from the ectoderm (neural plate) under the influ-
ence of an ‘organiser’ tissue possessing neural inductive properties, manifested though BMP, Wnt and Nodal
signalling inhibition [5,6]. In amniote embryos, the principal neural-inductive organisers include the node
(Hensen’s node in the chick embryo), a region at the anterior tip of the PS, and axial mesoderm cells (its differ-
entiated descendants); these have been shown in grafting experiments to induce a secondary body axis, includ-
ing a nervous system, in pluripotent epiblast cells [7–11]. It is widely thought, based on early experiments in
amphibians [12,13], that neural induction by an organiser, via BMP/Wnt/Nodal inhibition, leads by default to
the generation of neural cells with anterior features (forebrain) (‘activation’). These anterior neural cells then
become progressively ‘posteriorised’ under the influence of signals such as retinoic acid (RA) and WNT/FGF
agonists to produce more posterior structures such as the hindbrain and the spinal cord (‘transformation’).
Fate-mapping/clonal analysis experiments in the mouse embryo have revealed that the ectodermal precursors

of brain components and spinal cord are found in distinct, defined locations in the late-gastrula mouse epiblast.
These reflect the A–P regionalisation of their descendants i.e. the forebrain is derived exclusively from cells in
the anterior epiblast whereas the spinal cord originates from a more distal site around the node [14–16]. By the
end of gastrulation, all head neural structures in mammalian embryos have been laid whereas the production of
the spinal cord continues throughout embryonic axis elongation via the addition of tissue in a head-to-tail dir-
ection. This process of post-gastrulation spinal cord construction appears to be distinct from the generation of
the anterior (brain) parts of the central nervous system, consistent with a mode of growth driven by a transient
pool of axial progenitors exhibiting stem cell-like properties [17–19]. These are bipotent and are marked by the
ability to generate both spinal cord and presomitic mesoderm cells and are thus referred as neuromesodermal
progenitors (NMPs). NMPs are located in a ‘posterior growth zone’ around the PS/node, including the
node-streak border (NSB) and the caudal lateral epiblast (CLE) during early somite stages, and later in the
PS-derived tailbud in a region known as the chordoneural hinge (CNH) (reviewed in [20–22]). Typically,
NMPs are characterised by the co-expression of the nascent mesoderm marker Brachyury (Bra/T or TBXT in
humans) and the neural marker SOX2, together with other posterior markers such as CDX2 and NKX1–2.
NMP specification, maintenance and differentiation are orchestrated primarily via the interplay between the
Wnt, FGF and retinoic acid (RA) signalling pathways [20–22]. The final A–P coordinates of the cellular parts
of the fully formed nervous system are defined and determined by the combinatorial expression of Hox genes,
which are arranged as paralogous groups (PG) (1–13) in four chromosomal clusters (A–D) [23] (Figure 1).

The development of NC and its derivatives in vivo
The origin of NC is tightly linked with that of the central nervous system, specified at the neural plate border
between the neural plate (future CNS) and the non-neural ectoderm (future epidermis). Initially, NC is induced
by a combination of signals, primarily linked to the BMP, FGF and Wnt pathways [24,25] and these have been
reviewed in depth elsewhere [26–31]. Combined signalling from these pathways induces the expression of key NC
specifier transcription factors such as MSX1/2, PAX3/7 and ZIC genes which overlap at the future neural plate
border [32–34]. These transcription factors, induce, in turn, definitive NC markers including SOX9/10, SNAI2
and FOXD3 forming a complex gene regulatory network which specifies and maintains NC cells [30,35,36].
The NC populates the neural tube along the entire A–P axis and can be subdivided into four main subre-

gions along this axis: cranial, vagal, trunk and sacral. Their position along this axis determines their gene
expression, migratory paths and subsequently their differentiation potential and contribution to the embryo.
The cranial NC gives rise to the mesectoderm (e.g. cartilage and bone) in the head, melanocytes, sensory
neurons and glia [37,38]. They are further divided into an anterior Hox negative and a more posterior Hox PG
(1–3)-positive domain [39] (Figure 1). Parallel to the first seven somites of the neural tube, vagal NC express
Hox PG (3–7) members and contribute to the enteric nervous system (ENS) and various heart structures [40–45].
Located between somites 8–24 (in mouse), the trunk NC contributes to the sympathetic nervous system, neu-
roendocrine cells, and melanocytes [46]. Trunk NC cells are characterised by the expression of more posterior
Hox genes (Hox PG (6–9)) [43,47–49] (Figure 1). The region from somite 24 (in mouse) and below coincides
with lumbosacral Hox PG 10–13 expression (Figure 1) and the presence of the sacral NC [50,51]. In amniotes,
the sacral NC contributes to the most distal part of the enteric nervous system, unlike in zebrafish where the
ENS is derived only from the vagal NC [52–56]. In addition to ENS, sacral NC contributes to the pelvic
ganglia and therefore provides autonomic innovation of the lower urogenital tract [57].

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).500

Biochemical Society Transactions (2022) 50 499–511

https://doi.org/10.1042/BST20211152

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

o
rtla

n
d
p
re

s
s
.c

o
m

/b
io

c
h
e
m

s
o
c
tra

n
s
/a

rtic
le

-p
d
f/5

0
/1

/4
9
9
/9

3
0
2
0
3
/b

s
t-2

0
2
1
-1

1
5
2
.p

d
f b

y
 U

n
iv

e
rs

ity
 o

f S
h
e

ffie
ld

 u
s
e
r o

n
 0

3
 M

a
rc

h
 2

0
2

2



Fate mapping and lineage tracing experiments have indicated a close link between NMPs and posterior NC
precursors [58–62]. For example, homotopic grafting experiments of SOX2+/T+ cells taken from the E8.5
mouse CLE were found to result in NC contribution [59]. Similarly, lineage tracing of cells expressing NMP
markers such as Nkx1–2, Tbx6/Sox2, Bra/T and FoxB1 revealed that these contribute to neural, mesodermal
and NC lineages [58,61,63–68]. More recent work, using single-cell transcriptomics and epigenomic profiling
in zebrafish, has further demonstrated that posterior NC is derived from an NMP-derived pre-neural inter-
mediate [69]. Taken together these data strongly suggest that, at least a fraction of trunk and sacral NC are dir-
ectly derived from axial progenitors, which are competent to generate presomitic mesoderm.

Development in vitro: generating NC cells of distinct axial

identities from hPSCs
Cranial NC
Early in vitro differentiation experiments focused on the induction of NC cells from a hPSC-derived neuroecto-
dermal progenitor intermediate [70–72]. These initial protocols relied on recapitulating the signalling events

Figure 1. HOX gene expression in neural crest along the anterior–posterior axis.

The A–P axis is defined by the combination of overlapping HOX(A–D) expression. Neural crest is divided into four main

categories along the A–P axis based on HOX gene expression: cranial, vagal, trunk and sacral. Cranial neural crest (green) is

divided into the anterior most HOX negative neural crest and the posterior cranial HOX positive neural crest, expressing HOX

PG (1–3). Vagal neural crest (blue) express HOX PG (3–7) genes and are located parallel to the cervical region of the spinal

cord. Trunk neural crest (purple) express HOX(6–9) genes are derived adjacent to the thoracic/lumbar region of the spinal cord.

Sacral neural crest (orange), derived from the most posterior part of the A–P axis, express HOX (10–13 genes). The potential of

NC cells to generate distinct cell types is determined by their position along the anteroposterior (A–P) axis and the major

derivatives of each subpopulation is shown in the corresponding section.
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which accompany neural induction in vivo, by blocking BMP and TGFB/Activin/Nodal signalling using corre-
sponding small molecule inhibitors (termed dual SMAD inhibition) [70,73]. However, these protocols typically
yielded a variable and low percentage of NC progenitors and as NC specification in vivo primarily occurs
under the influence of intermediate BMP and Wnt signalling, subsequent studies found that a short pulse of
dual SMAD-inhibition followed by the addition of BMP and Wnt signalling yielded a higher proportion of NC
progenitors [74,75]. Further refinement and characterisation of these strategies revealed that hPSC-derived NC
appears to emerge from a pre-neural border intermediate which relies on intermediate BMP and Wnt activity
[76–78]. PAX6 expression (indicating neural progenitor specification) in these protocols occurred at the
expense of the NC specifier SOX10 in line with in vivo findings indicating these cells may diverge at an earlier
timepoint (reviewed further in [31]). Varying endogenous BMP signalling levels within the cells and/or BMP
ligands in the media were found to affect overall BMP activity and lead to large variations in the efficiency in
NC specification thus complicating the view of BMP requirement in vitro[79]. Furthermore, high BMP signal-
ling can lead to specification of the cranial placode or non-neural ectoderm whereas low BMP can result in
neuroectoderm specification [78]. As a result, more recent improved protocols which modulate BMP levels
through top-down inhibition demonstrated that a precise level of intermediate BMP activity is required to
specify NC efficiently and reproducibly from hPSCs in vitro [79,80]. A common feature of these approaches is
that the NC cells they give rise to exhibit minimal HOX gene expression indicating a cranial axial identity. This
is also supported by the demonstration that they can be further directed to differentiate toward peripheral
neurons including (nociceptors, mechanoreceptors, and proprioceptors) and glia, melanocytes and mesenchy-
mal lineages (smooth muscle, osteogenic and chondrogenic cells) [39,81].

Vagal NC
Early efforts in the posterior patterning of human NC cells in vitro have been heavily influenced by
Nieuwkoop’s ‘activation-transformation’ model focusing on the production of an anterior neuroectodermal pre-
cursor followed by addition of NC promoting signals in combination with posteriorising agents such as RA.
Such approaches have been shown to yield predominantly NC cells marked by HOX PG (1–7) members denot-
ing the acquisition of a posterior cranial/vagal axial identity [74,82–85]. Using RA to posteriorise HOX negative
cells requires optimisation as both the timing of RA addition and RA concentration appear to impact NC spe-
cification in vitro [86]. As such, although increasing concentrations of RA results in increased expression of
posterior HOX genes, this occurs at the expense of NC markers such as SOX10 [83,86]. Similar to their in vivo

counterparts, vagal NC cells generated through these protocols have been shown to further differentiate, via
culture in neurotrophic media, toward various components of the ENS including distinct enteric neuronal sub-
types marked by expression of 5HT, GABA and NOS [82,83,85,86]. Interestingly, cranial NC when treated in
the same conditions, differentiated into TH positive neurons which are positive for TRKB, indicating that they
preferentially give rise to sympathetic neurons [82]. Similarly, when cranial and vagal NC cells were grafted
into the muscle wall of the mouse cecum at 3-6 weeks, vagal NC migrated and repopulated the host colon to a
greater extent than cranial NC [82]. This finding highlights the importance of generating cell progenitors of the
correct regional identity for potential use in clinical applications from hPSCs and demonstrates that early axial
specification impacts cell functionality in vivo. Crucially, transplantation experiments revealed that
hPSC-derived vagal NC/ENS progenitors can colonise and differentiate efficiently within the gut of host mice
and even rescue the lethal aganglionic phenotype exhibited by Ednrb mutant mice, a model of Hirschsprung
disease thus serving as a promising population for the development of cell therapy approaches against condi-
tions affecting ENS specification [82,86].
Recent advances in organoid-based differentiation approaches have opened new avenues toward the estab-

lishment of more sophisticated in vitro models for dissecting NC function and related diseased states. To effect-
ively study the complex role of ENS within the gastrointestinal (GI) tract, several studies have combined
hPSC-derived vagal NC cells with human intestinal organoids (HIO), thereby generating an hPSC-derived
assembloid model of intestinal tissue with functional ENS [82,84,87]. When combined, vagal NC progenitors
generated glia and neurons of the ENS which integrated into the smooth muscle layer of the HIO and were
found to promote cell proliferation in intestinal crypts and gene expression indicative of intestinal cell develop-
ment. More recent work has described the generation of assembloid cultures containing colonic intestinal
tissue with ENS and blood vessels; a model perhaps more suited to diseases which impact the distal part of the
GI tract, including Crohn’s and Hirschsprung’s disease [88].
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Trunk NC
Although RA addition to cranial NC cells results in posteriorisation to a vagal axial identity, it does not lead to
the induction of HOX genes posterior to HOX PG 7 [82,83,86] and early attempts to produce trunk NC deriva-
tives from hPSCs have relied on the expression of PHOX2B or ASCL1, which also mark vagal NC derivatives
in addition to trunk NC-derived sympathoadrenal progenitors [83,89]. A number of recent studies have
demonstrated the efficient generation of NMP-like cells from both mouse and human PSCs following
stimulation with Wnt (using the GSK-3 inhibitor CHIR99021 (CHIR) or Wnt3a) and FGF2/8 for 2–4 days
[67,85,90–95]. Since then, extensive studies have optimised their generation and utilised these progenitors
in vitro (reviewed in [20]). PSC-derived NMP-like cells have been shown to give rise to both neural spinal
cord and paraxial mesoderm cells [1,93,96–100]. Interestingly, some studies have demonstrated that trunk
NC can be generated via an NMP intermediate reflecting the developmental origin of these cells in vivo

[85,91,101–105]. The earliest example of trunkNC induction and differentiation in vitro found that treating
NMP-like cells with BMP resulted in up-regulation of NC markers and generated NC-like cells capable of gen-
erating peripheral nervous system (e.g. dorsal root ganglia and sympathetic ganglia) and Schwann cells and
when transplanted to the mid/hindgut in quail migrated into the gut wall [102]. Subsequent studies, using a
similar NMP cell induction method found that NC cells expressed trunk HOX genes and could be differen-
tiated to sympathoadrenal progenitors and chromaffin cells [85,103,104,106]. Expanding these findings, Frith
and colleagues demonstrated that a fraction of TBXT+ hPSC-derived NMPs expressed neural plate border
genes and early neural crest markers (e.g. PAX3/7, MSX1/2 and ZIC1/3) [85]. Intermediate BMP and Wnt sig-
nalling then facilitated the production of high yields of SOX10+ NC-like cells from TBXT+ NMPs, which
express HOX PG (6–9), the posterior spinal cord/NC marker CDX2 and can be differentiated to sympathoadre-
nal progenitors/sympathetic neurons [85,103]. Transplantations into the chick dorsal neural tube also showed
the potential of these cells to integrate and migrate to the dorsal root ganglia recapitulating similar behaviour
to their in vivo counterparts [85]. Interestingly, NMP-derived trunk NC cells have been reported to remain
capable of generating adipocytes, chondrocytes and osteocytes [101,102]. This indicates either the co-emergence
of minor cranial NC cell subpopulations or suggests a greater developmental potential of hPSC-derived trunk
NC in line with data showing that in vitro cultured embryonic avian trunk NC exhibits the ability to generate
some ectomesenchymal derivatives [107,108].
To achieve a homogeneous TBXT/SOX2-expressing NMP population and subsequent trunk NC formation,

the intensity of Wnt stimulation requires titration to an intermediate to high level (CHIR; 3–12 mM) level
[85,91,101,105]. The level required for NMP specification is higher than the low-intermediate level (<3 mM)
activation which is required to generate cranial NC-like cells [101,105]. Increasing levels of Wnt stimulation
also induce a higher expression of posterior HOX genes (e.g. HOXC9), most likely as a result of CDX
up-regulation which drives posterior HOX gene expression and mediates NC induction [101,109–111].
Similarly to the fine tuning required to achieve correct BMP signalling, the specific level of CHIR required is
dependent on each cell line, confluency of starting cell population and CHIR batch to batch variation, therefore,
the unique balance of Wnt signalling requires optimisation in each differentiation protocol. Furthermore, the
length as well as magnitude of Wnt signalling activation is also important in trunk NC specification as pro-
longed activation of Wnt signalling may drive mesoderm specification from NMPs [90], while combined Wnt/
FGF signalling results in neural commitment [91,98,100].
FGF signalling is known to play a role in NMP specification and shaping axial identity, although some

in vitro protocols omit FGF ligands indicating endogenous FGF signalling may be sufficient to induce an NMP
identity [99,102,105,106]. Protocols which rely on CHIR alone or CHIR/FGF induced NMPs produce NC at a
similar efficiency (Table 1). In axial progenitors, FGF signalling is required to pace the ‘HOX clock’ and med-
iates temporal HOX gene activation [92]. Similarly, inhibition of FGF during NC induction impairs HOX and
CDX2 expression, although it does not impact SOX10 induction [101,105]. Conversely, high levels of FGF sig-
nalling may drive more sacral HOX expression (HOX PG (10–13)) in NC cultures at the expense of SOX10
expression [105]. Together, these data suggest that a certain level of FGF signalling activity is required to
induce a trunk HOX identity and posterior markers such as CDX2 [101,105]. Transcriptomic analysis of NMPs
and NMP-derived NC cells indicate that collinear HOX gene expression progresses over time in culture [85,91].
However, further work is required to define the signalling determinants of posterior axial identity/collinear
HOX gene activation during NC specification from NMPs and more specifically whether this occurs in NMP/
pre-neural progenitors, committed NC cells, or both.
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A promising avenue in 3-dimensional (3D) cell culture models containing trunk NC derivatives, is the recent
development of trunk neuromuscular organoids (NMOs) [112,113]. Using hPSC-derived NMPs aggregated to
form 3D spheres, these bipotent progenitors are capable of generating mesodermal and ectodermal derivatives
which self-organise into 3D organoids containing neuromuscular junctions (NMJ). As NMPs also contribute to
trunk NC lineages, NMOs were found to contain Schwann cells which are essential for maturation and support

Table 1 Published studies reporting the generation and axial characterisation, determined by HOX gene expression, of in vitro derived

neural crest

Study

Axial identity

based on HOX

gene expression Basal media Differentiation protocol

SOX10

expression (%)

Differentiation

potential (in vitro)

[74] Cranial KSR/N2 (DMEM:F12) LDN (D0–3); SB43 (D0–4); 3 mM

CHIR (D2–11)

53% Melanocytes

[82] Cranial KSR/N2 (DMEM:F12) SB43, LDN (D0–11); 3 mM CHIR

(D2–11)

65% Enteric neurons/glia

[101,126] Cranial B27 (DMEM:F12) +

0.5% BSA

2.5–3 mM CHIR, ROCKi (D0–2);

basal media (D0–5)

60% Osteocytes, chondrocytes, smooth

muscle, adipocytes, peripheral

neurons, glia and melanocytes

[76] Cranial B27 (DMEM:F12) +

0.5% BSA

3 mM CHIR (D0–5); ROCKi (D0–2) 63% Chondrocytes, osteoblasts,

peripheral neurons, glia and

melanoblasts

[86] Vagal N2 (DMEM:F12) SB43, DMH1, BMP4, 1 μM CHIR,

(D0-6); ROCKi (D0-2); RA (D4-6)

40% Enteric neurons/glia

[82] Vagal KSR/N2 (DMEM:F12) SB43, LDN (D0-11); 3 μM CHIR

(D2-11); RA (D6-11)

60% Enteric neurons/glia

[74] Vagal KSR/N2 (DMEM:F12) LDN (D0–3); SB43 (D0–4); 3 mM

CHIR (D2–11); FGF or RA (various

time points)

10–60% Melanocytes

[83] Vagal KSR/N2 (DMEM:F12) SB43 (D0–11); 3 mM CHIR (D0–

11)

n.d. (20%

SOX10E1+ or 20%

PHOX2B+)

Sympathoadrenal cells and

melanoblasts

[84] Vagal N2B27 (Neurobasal)/

DMEM:F12 + insulin

FGF2, EGF (D0–6); RA (D4–6) n.d. (99.5%

p75NTR+/HNK-1+)

Enteric neurons/glia

[105] Trunk N2 (DMEM:F12) 3 mM CHIR, ROCKi (D0–2); BMP4

and DMH1 (D2–5)

80–90% Melanocytes, peripheral neurons,

sympathoadrenal, glia, osteocytes

and smooth muscle

[101] Trunk B27 (DMEM:F12) +

0.5% BSA

7–12 mM CHIR, ROCKi (D0–2);

basal media (D0–5)

75% Osteoblasts, smooth muscle,

peripheral neurons, glia,

melanocytes and sympathoadrenal

cells

[85] Trunk N2B27 (DMEM:F12,

D0–3); N2 (DMEM:

F12, D3–9)

FGF2 and 3–4 mM CHIR (D0–D3);

SB42, DMH1, BMP4, 1 mM CHIR

(D3–9)

60% Sympathoadrenal progenitors/

sympathetic neurons

[104] Trunk N2B27 (D1–5); 1NB

(D5–D11)

3 mM CHIR, SB43 (D0–5); BMP2,

FGF2 (D5–D11)

n.d. (98%

p75NTR+/HNK-1+)
Sympathoadrenal cells/

adrenomedullary chromaffin cells

[106] Trunk E6 2 mM CHIR, SB (D0–3); FGF2,

BMP, RA (D3–10)

40–50% Sympathetic neurons/glia

[91] Trunk and Sacral N2B27 -vitamin A

(DMEM:F12)

FGF2, 3–5 mM CHIR, AGN,

ROCKi (D0-36h); FGF2, 3–5 mM

CHIR, AGN, ROCKi (36h — P10)

40% Smooth muscle

The concentration of CHIR used in each experiment has been noted due to the role of Wnt signalling in mediated the cranial-trunk switch [101,105,127]. Only studies which

have determined axial identity through HOX gene analysis have been included in this table [74,76,82–86,91,101,104–106,126].
1NB, neurobasal [102]; CHIR, CHIR99021; D, day; P, passage; SB43, SB431542; ROCKi, ROCK inhibition; LDN, LDN193189; AGN, AGN193109; RA, retinoic acid.
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of the neuromuscular junction in vivo and have been implicated in diseases such as amyotrophic lateral scler-
osis [112,114]. Thus, this approach enables the analysis of the complex interaction of cells at the NMJ and the
role of distinct cell types in disease onset and progression e.g. through the use of patient-derived induced pluri-
potent stem cell lines. More complex 3D models (known as gastruloids) reflecting early mammalian develop-
ment have also been developed and these involve the induction of multiple interacting cell lineages [115–118].
These models have been shown to undergo transitions which recapitulate axis elongation and symmetry break-
ing events, somitogenesis, rudimentary neural tube formation and cardiogenesis [115–117,119,120]. Moreover,
they have recently been shown to contain NC progenitors which differentiate to the peripheral nervous system
and integrate with a primitive gut tube structure making them a useful model to study early human NC devel-
opment [121].

Sacral NC
To date sacral neural crest has received little attention in in vitro studies and has limited characterisation in

vivo. Recent work in vivo, revealed that the trunk to tail transition in mouse embryos, is driven by a gene regu-
latory network centred around GDF11, LIN28A and HOX13 genes [122–124]. GDF11, a member of the TGFβ
signalling pathway, regulates HOX gene expression at the sacral-most level of the axis. In a negative feedback
loop, acting to terminate axis elongation, up-regulation of HOX13 genes inhibits LIN28A expression which
results in cell cycle exit. In line with this, in vitro studies have demonstrated that GDF11 drives sacral HOX
expression in derivatives of NMP-like cells in vitro [91–93]. Similarly, a rise in endogenous GDF11 signalling
in mixed pre-neural progenitors/neural crest cultures was shown to induce sacral HOX expression thus facilitat-
ing the generation of neural crest with a sacral identity [91]. Further work to characterise these cells and their
differentiation potential may yield an exciting sacral NC model with potential for therapeutic application and
disease modelling for both the ENS and lower urogenital tract.

Figure 2. Anterior–posterior patterning in in vitro derived neural crest.

Schematic diagram summarising the generation of the four subcategories of NC from human pluripotent stem cells (hPSCs).

The major signalling pathways known to regulate differentiation are displayed for each subcategory. Cranial and vagal NC

differentiation methods use the same initial signalling pathways but vagal NC are posteriorised using the addition of retinoic

acid (RA) signalling. Trunk and sacral NC are derived via a common neuromesodermal progenitor (NMP) population. When

sacral NC obtain a sacral identity remains unclear, but two potential routes and signalling pathways are displayed in grey. In the

first route, trunk NC are posteriorized by GDF signalling, whereas in the second NMPs or pre-neural progenitors (PNP) are

posteriorized by GDF prior to NC specification.
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Conclusions
Over the last decade much progress has been made in developing human in vitro models of neural crest forma-
tion, aiding our understanding of the precise signalling pathways required to specify NC cells corresponding to
all axial identities and consequently human neural crest biology (Table 1 and Figure 2). The success and
advances in generating specific neural crest derivatives has also opened new opportunities to generate complex
multilineage 3D models which mimic early development and exhibit complex multi-tissue interactions.
Specifically, cranial NC cultures have demonstrated a potential application in tendon healing whereas vagal NC
hold promise for treatment of ENS defects such as in Hirschsprung’s disease [82,86,125]. However, further
work is required to produce purified NC populations of defined regional identities, to understand the hetero-
geneity and potential of distinct NC populations and rigorously test their differentiation potential in vitro and
in vivo. The increasing availability of single-cell transcriptomic datasets and 3D and 2D culture systems com-
bined with improved fully defined differentiation protocols will significantly aid this goal.

Perspectives
• NC can contribute to up to 47 cell types in humans [128]. NC differentiation potential is

shaped by its A–P position, therefore defining and modulating A–P axial identity in vitro is a

crucial aspect in the design of hPSC neural differentiation protocols.

• Cranial NC are specified from hPSCs through a pre-neural/neural plate border intermediate

and under the influence of intermediate BMP activity and low Wnt signalling. RA signalling

posteriorises cranial neural crest to a vagal identity but does not efficiently induce trunk NC.

Instead, trunk NC specification relies on the generation of an NMP intermediate and subse-

quent intermediate BMP signalling. Generating sacral neural crest requires further work

although GDF11 signalling may be critical in inducing a lumbosacral axial identity in hPSC

neural derivatives.

• The therapeutic potential of each of these subgroups remains an exciting avenue to explore

and calls for in depth understanding of heterogeneity of progenitor pool and their in vivo

functionality.
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