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Abstract: A pipe is a ubiquitous product in the industries that is used to convey liquids, gases, or
solids suspended in a liquid, e.g., a slurry, from one location to another. Both internal and external
cracking can result in structural failure of the industrial piping system and possibly decrease the
service life of the equipment. The chaos and complexity associated with the uncertain behaviour
inherent in pipeline systems lead to difficulty in detection and localisation of leaks in real time. The
timely detection of leakage is important in order to reduce the loss rate and serious environmental
consequences. The objective of this paper is to propose a new leak detection method based on an
autoregressive with exogenous input (ARX) Laguerre fuzzy proportional-integral-derivative (PID)
observation system. The objective of this paper is to propose a new leak detection method based
on an autoregressive with exogenous input (ARX) Laguerre fuzzy proportional-integral-derivative
(PID) observation system. In this work, the ARX–Laguerre model has been used to generate better
performance in the presence of uncertainty. According to the results, the proposed technique can
detect leaks accurately and effectively.

Keywords: autoregressive with exogenous input Laguerre (ARX–Laguerre); fuzzy; pipeline; PID;
controller; PID observer

1. Introduction

Pipelines are the safest way for transporting crude oil, petroleum products, and
natural gas over long distances. Pipelines deliver clear benefits in supporting economic
growth as they provide a cheaper means to transport. However, oil and gas pipelines
may be significantly damaged due to internal and external defects (e.g., corrosion, dents,
gouges, weld defects). Construction and operational defects of pipes can pose major risks
to supplies. Pipeline safety is possible using inspection and monitoring techniques which
can be either internal or external in nature.

Over the last few years, a number of technologies have been reported to monitor
pipelines such as acoustic emission [1–3], fibre optic sensor [4,5], digital signal processing,
and mass–volume balance [6]. In [7], a real-time transient modelling method has been
utilised for leakage detection and localization in the pipeline systems. In [8], an extended
version of a real-time transient modelling method to estimate two leaks simultaneously
in a piping system is proposed. The acoustic pulse reflectometry method has been used
successfully to identify damage in pipelines utilising the time domain [9].

In [10], the cepstrum analysis technique is utilised to identify leaks in pipes. In [11], a
new method based on auxiliary mass spatial probing by the stationary wavelet transform
is suggested to detect damage in beams. Artificial intelligence with fuzzy logic has become
the most effective approach, which attracts many investigators to deeply research it [12–16].
It has been successfully used for leak detection. In [17], a low-cost wireless sensor system
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is introduced to detect of leaks in metallic piping systems. In [18,19], a neural network
technique was utilized to detect the leak in a pipeline and has provided promising results.
In [20], an artificial neural network was utilized to detect the leak in a pipeline such that
the sound noise data were gathered through several microphones placed within a specific
distance from the damaged part. The fast Fourier transform algorithm has been performed
on data and supplied to a feed-forward network for making a final decision. In [11,21], a
neural network technique was used for pattern recognition in oil pipe networks.

Various researchers have used observational approaches for fault diagnosis in pipes
that are based on different algorithms [22–24]. The authors in [25] focused on leakage
reconstruction in pipe systems utilising sliding mode observer. The authors in [26–28]
focused on leakage reconstruction in pipe systems utilising a PID (proportional-integral-
derivative) model and observer. In [29], a fuzzy PI observer was used to detect leaks in
pipeline. In [30], a leak inspection device consisting of an adaptive Luenberger-type observer
based upon a set of two-coupled partial differential equations governing the flow dynamics
is proposed. To improve the input and output performance of ARX, in [26,31], the Laguerre
method is applied to ARX to filter the input and output. In [27,29], a fuzzy PID observation
method using the ARX–Laguerre technique is used for diagnosing fault in pipe.

The object of this paper is to develop a new technique based on autoregressive with
exogenous input Laguerre (ARX–Laguerre) fuzzy PID to detect leaks in a pipe. For this aim,
in the first step, the ARX–Laguerre technique is used for pipeline modelling. In the second
step, the PID observer based on the ARX–Laguerre model is designed to detect leakage
in the presence of uncertainties. The numerical results demonstrate that the proposed
technique detects and estimates leaks accurately. The remainder part of this paper is
organized as follows: in Section 2, the pipeline model equations are described using the
momentum and continuity equations. The pipeline model equations based on the ARX–
Laguerre technique are given in the Section 3. The proposed new technique based on
ARX–Laguerre fuzzy PID observer to detect and locate leaks in a pipe is given in Section 4.
The algorithm and simulation results analysis is given in Section 5. Moreover, in this
section, the proposed method is compared with some other existing methods to illustrate
its value. Finally, conclusions are given.

2. Pipeline Modelling

Here, we do not consider convective speed changes and compressibility effects in
process lines. The mass flow rate (m), the length of the pipe (Γ), the flow in a pipe
system (Φ), the inlet pressure (℘i), and outlet pressure (℘o) at pipeline are assumed to
be computable. Furthermore, the area of cross section (a) is fixed along the pipe. The
suggested pipeline architecture is illustrated in Figure 1.

Electronics 2022, 11, x FOR PEER REVIEW 2 of 14 
 

 

it [12–16]. It has been successfully used for leak detection. In [17], a low-cost wireless sen-
sor system is introduced to detect of leaks in metallic piping systems. In [18,19], a neural 
network technique was utilized to detect the leak in a pipeline and has provided promis-
ing results. In [20], an artificial neural network was utilized to detect the leak in a pipeline 
such that the sound noise data were gathered through several microphones placed within 
a specific distance from the damaged part. The fast Fourier transform algorithm has been 
performed on data and supplied to a feed-forward network for making a final decision. 
In [11,21], a neural network technique was used for pattern recognition in oil pipe net-
works. 

Various researchers have used observational approaches for fault diagnosis in pipes 
that are based on different algorithms [22–24]. The authors in [25] focused on leakage re-
construction in pipe systems utilising sliding mode observer. The authors in [26–28] fo-
cused on leakage reconstruction in pipe systems utilising a PID (proportional-integral-
derivative) model and observer. In [29], a fuzzy PI observer was used to detect leaks in 
pipeline. In [30], a leak inspection device consisting of an adaptive Luenberger-type ob-
server based upon a set of two-coupled partial differential equations governing the flow 
dynamics is proposed. To improve the input and output performance of ARX, in [26,31], 
the Laguerre method is applied to ARX to filter the input and output. In [27,29], a fuzzy 
PID observation method using the ARX–Laguerre technique is used for diagnosing fault 
in pipe. 

The object of this paper is to develop a new technique based on autoregressive with 
exogenous input Laguerre (ARX–Laguerre) fuzzy PID to detect leaks in a pipe. For this 
aim, in the first step, the ARX–Laguerre technique is used for pipeline modelling. In the 
second step, the PID observer based on the ARX–Laguerre model is designed to detect 
leakage in the presence of uncertainties. The numerical results demonstrate that the pro-
posed technique detects and estimates leaks accurately. The remainder part of this paper 
is organized as follows: in Section 2, the pipeline model equations are described using the 
momentum and continuity equations. The pipeline model equations based on the ARX–
Laguerre technique are given in the Section 3. The proposed new technique based on 
ARX–Laguerre fuzzy PID observer to detect and locate leaks in a pipe is given in Section 
4. The algorithm and simulation results analysis is given in Section 5. Moreover, in this 
section, the proposed method is compared with some other existing methods to illustrate 
its value. Finally, conclusions are given. 

2. Pipeline Modelling 
Here, we do not consider convective speed changes and compressibility effects in 

process lines. The mass flow rate (𝑚), the length of the pipe (Γ), the flow in a pipe system (Φ), the inlet pressure (℘), and outlet pressure (℘) at pipeline are assumed to be com-
putable. Furthermore, the area of cross section (a) is fixed along the pipe. The suggested 
pipeline architecture is illustrated in Figure 1. 

 
Figure 1. The suggested pipeline architecture. 

Figure 1. The suggested pipeline architecture.

The differential equation describing the dynamic behaviour of a fluid in a duct is
based on the mass, momentum, and the conservation of energy [32]. Newton’s second law
of motion, when implemented to a control volume, generated the following momentum
equation [32,33]:

∂υ

∂t
+

1
ρ

∂℘

∂x
+
=
2ðυ2 = 0 (1)
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If we substitute υ = Φ
a as well as ℘ = ρgH in (1) the resulting momentum equation

will be:
∂Φ
a∂t

+ g
∂

∂x
H+

=Φ2

2ða2 = 0 (2)

Thus,
∂Φ
∂t

+ ag
∂

∂x
H+

=Φ2

2ða
= 0 (3)

in which H represents the pressure head, Φ the rate of flow in a pipe, x the length of pipe, t
time steps, g the gravity, a the pipe cross-sectional area, ð the inside diameter of the pipe,
and = the pipe friction factor.

Coefficient of friction is typically assumed to be constant. In general, it was found to
be a function of the Reynolds number (Re) and the pipe material roughness coefficient (e).
The Swamee–Jain equation can be used to describe the friction factor for a pipe of circular
section (ð) as follows [34,35]:

= =

(
0.5

ln[0.27
( e
ð
)
+ 5.74 1

Re0.9 ]

)2

(4)

where = is the pipe friction factor, ð is the inside diameter of the pipe and the pipe material
roughness coefficient (e)

Reynolds number equation is determined via the following equation [36]:

Re = 4
ρΦ

πðµ
=

ρνð
µ

(5)

in which ρ represents the fluid density, and µ the viscosity of the flowing fluid. For
10−8 < e

ð < 0.01 as well as 5000 < Re < 108 are provably correct.

∂℘

∂t
+ ρa2 ∂ν

∂x
= 0 (6)

After applying the overall mass balance as well as the Reynolds transport theorem to
the control volume the continuity equation will be obtained:

∂℘

∂t
+ ρa2 ∂v

∂x
= 0 (7)

The following equation can be acquired if we substitute the pressure head (H) as well
as the flow rate (Φ) in Equation (7):

∂H

∂t
+

a2

ga
∂Φ
∂x

= 0 (8)

in which a represents the speed of the wave inside a fluid filled elastic duct. The wave
velocity depends on the elastic properties of the fluid and pipe. The pressure head (H) and
flow rate (Φ) change as functions of position and time, H(x, t) and Φ(x, t), respectively, so
that x ∈ [0, Γ], where Γ represents the length of the duct.

Now we can create a model of the pipe applying Equations (3) and (8). These equations
need to be solved; however, coming to analytical solutions is not easy. Because of this,
different methods need to be used to solve these equations such as characteristics and
finite difference approaches [37]. Here, the finite difference approach is implemented
such that Equations (3) and (8) are discretized to obtain a system of ordinary differential
equations. The considered finite difference approach discretizes the whole pipe into N
smaller sections [37,38]. Finite difference technique with a fixed step size ∆s is, historically,
the most popular time-stepping approach. Here, we consider finite difference method
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because it is an easy-to-use approach and is specially designed and applied for nonlinear
observer models. In this study we define it as follows:

∂Φ(si−1,t)
∂s ≈ ∆Φ(si−1,t)

∆s ≈ Φi−Φi−1
∆s

∂H(si−1,t)
∂s ≈ ∆H(si−1,t)

∆s ≈ Hi−Hi−1
∆s

(9)

∀i = 1, · · · , n, in which n represents the number of points of the grid, and ∆s = si+1 − si
represents the size of the i-section between the two successive grid points. The computational
domain s ∈ [0, Γ] is divided up into three smaller domains, {sk}:= {0, sleak, Γ}, so that
sleak indicates the location of leak; see Figure 2. The leak flow rate can be measured by
Φleak = Cdaleak

√
2g
√

H(sleak, t), such that Cd represents efflux coefficient, and aleak the
cross-sectional area along the leak path. The leak flow rate can be calculated by Φleak =
Λ
√

H(sleak, t), in which Λ = Cdaleak
√

2g. The behaviour of a dynamic pipeline network
can be described by an ordinary differential equation system:

.
Φ 1 = ga

s (H1 −H2)− =Φ1
2

2ða.
Hleak =

c2

gas
(
Φ1 −Φ2 −Λ

√
Hleak

)
.

Φ 2 = ga
Γ−s (H2 −H3)−

=Φ2
2

2ða

(10)
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Suppose that both inlet and outlet pressures, H1 and H3, respectively, are known and
have been defined using external means such as a pump. The pressure H2 and the inlet
and outlet flow rate (Φ1 and Φ2, respectively) of the leakage point are considered to be
variables. From the continuity equation we can write:

Φ1 = Φleak + Φ2 (11)

3. Pipeline Modelling Based on the ARX–Laguerre Technique

For many years, pipelines played a huge role in oil and gas industries, as they signif-
icantly reduce transport costs. Leakage inspection in transmission pipelines is crucially
significant for safe operation. In general, there are various fault detection methods, each
with different potentials; however, the selection of proper leak detection technique is
difficult. This is particularly important when they deal with various types of uncertain
conditions. To deal with this problem, we introduce a fuzzy ARX–Laguerre PID observer in
Section 4. First, in this study, the ARX–Laguerre technique is used for pipeline modelling.
In the second step, the PID observer based on the ARX–Laguerre model is designed to
detect leakage in the presence of uncertainties. The proposed model-based ARX–Laguerre
orthonormal method is represented by developing its coefficients associated to the flow
input and flow output, Fourier coefficients, and Laguerre-based orthonormal function, as
follows [23,39]:

M0(s) =
ia

∑
0

λn.a

(
∞

∑
j=1

la ∗M0(s)

)
.xn.M0(s) +

ib

∑
0

λn.b

(
∞

∑
j=1

lb ∗Mi(s)

)
.xn.Mi (s) (12)
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in which M0(s), (λn.a and λn.b), (ia, ib) (la, lb),∗, Mi(s), xn.M0(s), and xn.Mi (s) represent
the pipe outflow, Fourier coefficients, the order of the system, Laguerre orthonormal
function, convolution product, pipe inflow, exhaust filter, and entrance filter, respectively.
By expanding the ARX model on Laguerre orthonormal bases, the following state-space
model can be obtained:{

M(s + 1) =
[
AM(s) + By(y(s) + αs(k)) + Bu

(
u(s) + ap(s)

)]
y(s) = (S)T M(s) + Bsαs(s),

(13)

in which M(s), y(s), u(s), αp(s), and αs(s) represent the state vector, calculated output,
control input, pump defect, and sensor defect, respectively. A, By, Bu, and Bs, as well as S,
represent matrices of coefficients.

4. ARX–Laguerre Fuzzy PID Observation Technique

In this section, the ARX–Laguerre fuzzy PID observation system is proposed to detect
and estimate a leak in pipelines.

4.1. Modelling of Dynamic System by ARX–Laguerre

Let us consider the linear ARX state space model with disturbances illustrated by the
following equation to formulate the dynamic fault detection problem:{

M(s + 1) =
[
A M(s) + Bu

(
u(s) + αp(s)

)]
y(s) = (S)T M(s) + Bsαs(s),

(14)

We define the ARX model on Laguerre base as follows [31,40]:

y(k) =
Na−1

∑
0

S(n,p)x(n,y)(s) +
Nb−1

∑
0

S(n,b)x(n,u)(s)

X(k) =
[

x(n,u)(s) x(n,y)(s)
]

x(n,y)(s) = La
n
(
k, ξp

)
∗ y(s)

x(n,u)(s) = Lb
n(k, ξb) ∗ u(s)

(15)

in which y(k), u(k),
(

K(n,p), K(n,s)

)
, (Na, Nb), x(n,y)(s), x(n,u)(s), and

(
La

n(s, ξa), Lb
n(s, ξb)

)
represent the pipe outflow, pipe inflow, Fourier coefficients, exhaust filter, entrance filter,
and Laguerre orthonormal function, respectively.

Using Equation (16) the following state-space model can be obtained in the presence
of failures of the pump and sensor as well as disturbances:{

Mp(s + 1) =
[
AMp(s) + By

(
yp(s) + αs(s)

)
+ Bu

(
u(s) + αp(s)

)]
y(s) = (S)T Mp(s) + Bsαs(s),

(16)

The fault of the pump is calculated using the following formula:

ey(s) = yp(s)− y(s)

eM(s) =

[
xp(n,u+αp)(s)− x(n,u)(s)

xp(n,ya)(s)− x(n,y)(s)

]
(17)

such that

xa(n,u+αp)(s) 6= M(n,u)(s)→ Mp(s) 6= M(s)→ yp(s) 6= y(s)→ ey(s) 6= 0 (18)



Electronics 2022, 11, 152 6 of 14

The fault of the sensor is calculated using the following formula:

ey(s) = yp(s)− y(s)

eM(s) =

[
Mp(n,u)(k)−M(n,u)(s)

Mp(n,yp+αs)(k)−M(n,y)(s)

]
(19)

such that

Mp(n,yp+αs)(s) 6= x(n,y)(s)→ Mp(s) 6= M(s)→ yp(s) 6= y(s)→ ey(S) 6= 0. (20)

4.2. Fault Diagnosis

In this study, the ARX–Laguerre fuzzy PID observation system is proposed to identify
pump and sensor defects in pipes. We define the proposed technique by the following
formulas in the presence of failures of the pump and sensor in the pipe:

M̂(s + 1) = AM̂(s) + By(ŷ(s) + α̂s(s)) + By
(
u(s) + α̂p(s)

)
+ Kpe(s)

es(s) = (qs(s)− q̂s(s))
ep(s) =

(
wp(s)− ŵp(s)

)
α̂p(s + 1) = α̂p(s) + Kipep(s) + Kdp

(
ep(s + 1) + ep(s) + ep(s− 1)

)
α̂s(s + 1) = α̂s(s) + Kises(s) + Kds(es(s + 1) + es(s) + es(s− 1))

ŷ(s + 1) = (S)T M̂(s + 1) + βsα̂s(s)

(21)

where M̂(s) represents the state vector, αp(s) pump defect, αs(s) sensor defect, and ŷ(s) the
output of the system, and A, By, Bu, and Bs, as well as S, represent matrices of coefficients.
In accordance with Equation (21), in this paper, we particularly study three main cases and
types of faults in pipe.

Case 1: In case αp 6= 0, αs = 0, and α̂p(s) 6= αp(s), we have:

(y(s + 1)− ŷ(s + 1) 6= 0)&
(

M(s + 1)− M̂(s + 1)
)
6= 0 =⇒[

MT
1 (s + 1) MT

2 (s + 1)
]T −

[
M̂T

1 (s + 1) M̂T
2,αp

(s + 1)
]T
6= 0 =⇒{

M(n,u)(s)− M̂(n,u+αp)(s) 6= 0
M(n,y)(s)− M̂(n,y)(s) 6= 0

(22)

In case αp 6= 0, αs = 0, and α̂p(s) = αp(s), we have:

(y(s + 1)− ŷ(s + 1) = 0)&
(

M(s + 1)− M̂(s + 1)
)
6= 0 =⇒[

MT
1 (s + 1) MT

2 (s + 1)
]T −

[
M̂T

1 (s + 1) M̂T
2,αp

(s + 1)
]T
6= 0 =⇒{

M(n,u)(s)− M̂(n,u+αp)(s) 6= 0
M(n,y)(s)− M̂(n,y)(s) = 0

(23)

In accordance with Equations (22) and (23), in case the error related to ARX–Laguerre
fuzzy PID technique is close to zero, the detection rate of defect is very high.

The following formula can be defined for fault in the pump:

α̂p = αq → qp − q̂p ∼= 0 & w− ŵ 6= 0→ r = w− ŵ (24)

Case 2: In case αs 6= 0, αp = 0, and α̂s(s) 6= αs(s), we have:

(y(s + 1)− ŷ(s + 1) 6= 0)&
(

M(s + 1)− M̂(s + 1)
)
6= 0 =⇒[

MT
1 (s + 1) MT

2 (s + 1)
]T −

[
M̂T

1 (s + 1) M̂T
2,αp

(s + 1)
]T
6= 0 =⇒{

M(n,u)(s)− M̂(n,u)(s) 6= 0
M(n,y)(s)− M̂(n,y+αs)(s) 6= 0

(25)
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In case αs 6= 0, αp = 0, and α̂s(s) = αs(s), we have:

(y(s + 1)− ŷ(s + 1) = 0)&
(

M(s + 1)− M̂(s + 1)
)
6= 0 =⇒[

MT
1 (s + 1) MT

2 (s + 1)
]T −

[
M̂T

1 (s + 1) M̂T
2,αp

(s + 1)
]T
6= 0 =⇒{

M(n,u)(s)− M̂(n,u)(s) = 0
x(n,y)(s)− x̂(n,y+αs)(s) 6= 0

(26)

In accordance with Equations (25) and (26), the ARX–Laguerre fuzzy PID has a signifi-
cant influence on the efficiency of sensor defect detection in a duct.

The following formula can be defined for fault in sensor:

α̂s = αs → w− ŵ ∼= 0 & qp − q̂p 6= 0→ r = qp − q̂p (27)

Case 3: In case αs 6= 0, αp = 0, α̂s(s) 6= αs(s), and α̂p(s) 6= αp(s) we have:

(y(s + 1)− ŷ(s + 1) 6= 0)&
(

M(s + 1)− M̂(s + 1)
)
6= 0 =⇒[

MT
1 (s + 1) MT

2 (s + 1)
]T −

[
M̂T

1,αs
(s + 1) M̂T

2 (s + 1)
]T
6= 0 =⇒{

M(n,u)(s)− M̂(n,u+αp)(s) 6= 0
M(n,y)(s)− M̂(n,y+αs)(s) 6= 0

(28)

In case αs 6= 0, αp = 0, and α̂s(s) = αs(s), we have:

(y(s + 1)− ŷ(s + 1) 6= 0)&
(

M(s + 1)− M̂(s + 1)
)
6= 0 =⇒[

MT
1 (s + 1) MT

2 (s + 1)
]T −

[
M̂T

1 (s + 1) M̂T
2,αp

(s + 1)
]T
6= 0 =⇒{

M(n,u)(s)− M̂(n,u+αp)(s) 6= 0
M(n,y)(s)− M̂(n,y+αs)(s) 6= 0

(29)

In accordance with Equation (29), in case the pipe includes sensor and pump failures,
the signals received from pump and joint variable can identify the defects. Signal sensor
and pump faults are:

α̂p = αp & α̂s = αs → r1 = w− ŵ� 0 & r2 = qp − q̂p � 0 (30)

To increase the signal estimation accuracy and to modify the performance of fault
estimation of the ARX–Laguerre PID technique, optimal fuzzy observer coefficients, Kpp ,
Kip , Kdp , Kps , Kis and Kds , are applied, which are defined as follows:

Kip =
Kpp
Tip

, Kdp = Kpp .Tdp

Kis =
Kps
Tis

, Kds = Kps .Tds

(31)

where Tip , Tis , Tdp , and Tds , represent the integral gain for pump failure, the integral gain
for sensor failure, the derivative gain for pump failure, and the derivative gain for sensor
failure, respectively. Following Equation (29), we have:

βp =
Tip
Tip

, Kip =
(Kpp)

2

βpKdp

βs =
Tis
Tis

, Kis =
(Kps)

2

βsKds

(32)
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Normalization of the above equation can be performed by the formula described
below:

K′pp =
Kpp−Kpp(min)

Kpp(max)−Kpp(min)
∈ [0, 1], K′pp =

Kdp−Kdp(min)
Kpp(max)−Kpp(min)

∈ [0, 1], 2 ≤ βp ≤ 5

K′ps =
Kps−Kps(min)

Kps(max)−Kps(min)
∈ [0, 1], K′ds

=
Kds−Kds(min)

Kds(max)−Kds(min)
∈ [0, 1], 2 ≤ βs ≤ 5

(33)

such that β = ∑i α(xi) · xi
∑i α(xi)

represents a membership function.

5. Simulation Results

In this section, we evaluate our proposed technique on a pipe model under the leak
condition in the presence of failures of the pump and sensor in the pipe. In order to check
the efficiency of the proposed ARX–Laguerre fuzzy PID observation technique for fault
detection in the pipe, we consider two cases, pipe with fault and under no-fault conditions.

Pipe under no-fault condition. In this case, the duct functions under optimal circum-
stances and performs well. The input–output signals of the pipe model in a healthy state
can be computed as follows:

r(w) = w− ŵ→ r(w) = w−
(
wObserver + αp

)
→ r(w) = w− (wObserver + 0) ∼= 0

r(φ) = φ− φ̂→ r(φ) = φ− (φObserver + αs)→ r(φ) = φ− (φObserver + 0) ∼= 0
(34)

The sensor signal for the pipe under no-fault condition and no noise impact is shown
in Figure 3. The pump signal for the pipe under no-fault condition and no noise impact is
shown in Figure 4.
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For a healthy system, the pump and sensor faults can be described as follows:

Faultpump = αp(t− t0) =

{
0, t < tp
αp, t > tp

Faultsensor = αs(t− t0) =

{
0, t < ts
αs, t > ts

(35)

The effectiveness of the proposed technique for fault estimation under no-fault condi-
tion is shown Figure 5. As can be observed from Figure 5, the proposed method is more
effective than the ARX–Laguerre PI observer [41] and the adaptive fuzzy observer [42].
The error between the predicted output and the expected output based on the proposed
technique under no-fault condition is shown in Figure 6. It can be seen that the proposed
method yields more accurate results compared with ARX–Laguerre PI observer [41] and
the adaptive fuzzy observer [42].
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Pipe under fault condition. In this case, the duct functions under faulty circumstances.
The duct has two kinds of defects simultaneously, the sensor defect and the pump defect.
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The input–output signals from sensor and pump in the pipe with a fault state can be
computed as follows:

r(w) = w− ŵ→ r(w) = w−
(
wObserver + αp

)
� 0

r(φ) = φ− φ̂→ r(φ) = φ− (φObserver + αs)� 0
(36)

where

w1αp(m) =

{
55, 10 ≤ t ≤ 25

0, otherwise

φ1αs(m) =

{
0.6, 10 ≤ t ≤ 25

0, otherwise

(37)

The pump signal for the pipe under fault condition and no noise impact is shown in
Figure 7. The sensor signal for the pipe under fault condition is shown in Figure 8.
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The effectiveness of the proposed technique for fault estimation under fault condition
is shown Figure 9. As can be observed from Figure 9, the proposed method is more effective
than the ARX–Laguerre PI observer [41] and the adaptive fuzzy observer [42]. The error
between the predicted output and the expected output based on the proposed technique
under fault condition is shown in Figure 10. It can be seen that the proposed method yields
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more accurate results compared with ARX–Laguerre PI observer [41] and the adaptive
fuzzy observer [42]. Furthermore, the delay for the proposed method to fault detection in
both Figures 9 and 10 is less than the other methods.
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The effectiveness of the proposed technique for fault estimation at leakage point is
shown in Figure 11. It can be seen from this figure that our proposed method detects fault
in less time in comparison with ARX–Laguerre PI observer [41] and the adaptive fuzzy
observer [42].
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6. Conclusions

The task of precise defect detection in the pipeline system is a formidable challenge
due to the uncertainties in leak signal. To better deal with uncertainties in the leak signal,
in this paper, an ARX–Laguerre PID-observer is introduced to perform fault diagnosis
in the pipeline system. First, in this study, the ARX–Laguerre technique was used for
pipeline modelling. In the second step, the PID observer based on the ARX–Laguerre
model was designed to detect leakage in the presence of uncertainties. The performance of
the proposed algorithm was tested in numerical simulations. According to the results, the
proposed technique can accurately locate the leakage point. Despite the high accuracy of
the proposed fault diagnosis method, it has a disadvantage of large extensive computation.
In the future, the proposed observation method will be used to enhance the performance of
fault diagnosis when the uncertainties are in the form of Z-numbers.
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