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Abstract

This paper presents a novel computationally efficient Closed Loop Dual-Mode Nonlin-

ear Model Predictive Control scheme that uses closed loop models for condensing-based

multiple-shooting frameworks which result in numerically robust optimisations. The pro-

posed approach uses Time-Varying gains obtained from solving the Time-Varying Discrete

Algebraic Ricatti Equation to embed feedback around the multiple-shooting trajectory, and

proves the equivalence of the solution with the standard approach, thus resulting in the

exact same stability, recursive feasibility and convergence properties. Moreover, the paper

proposes an efficient algorithm based on an extension of the well-known O(N 2
p ) con-

densing algorithm, which can be used within the so-called Real-Time Iteration Scheme to

achieve real-time performance. Simulations of a nonlinear ball-plate system, as well as of an

inverted pendulum, and its extension - the triple inverted pendulum, are presented along

the paper to demonstrate the advantages along with some disadvantages, focusing on the

numerical conditioning, the disturbance rejection properties, and the computational per-

formance.

1 INTRODUCTION

In recent years, Nonlinear Model Predictive Control (NMPC)

has gained a significant amount of attention as an advanced

optimal control strategy [1–3]. Its popularity lies mainly in its

ability of handling complex nonlinear dynamics and constraints.

A key challenge for its implementation is the development of

efficient solutions that allow fast/real-time performance [1–3].

One of the most successful approaches to tackle this is the

Real-Time Iteration (RTI) Scheme, originally proposed in [4],

which exploits the fact that NMPC is required to succes-

sively solve Optimal Control Problems (OCP) which are closely

linked to each other [3]. Moreover, the efficiency of the result-

ing approach depends largely on how the algorithms are pro-

grammed, as well as the platforms in which they are deployed,

for example, using Field-Programmable Gate-Arrays (FPGA)

[2]. To address this, several toolkits exist such as the ACADO

toolkit [1], VIATOC and CasADi [5], to name a few, offering

efficient autogeneration routines aimed at giving extremely fast

performance and releasing the burden of programming NMPC

routines manually. Furthermore, the underlying optimisations

can be solved using simultaneous or sequential approaches
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leading to sparse or condensed OCPs [6, 7]. Work by [7] con-

cluded that condensing based approaches, where states are

eliminated from the decision variables, are faster for small

to medium OCPs, whereas simultaneous/sparse approaches,

where the states are kept as decision variables, give better overall

performance for large-scale optimisations, and can deal success-

fully with unstable systems [6]. Finally, the optimisation can be

done using a variety of methods such as collocation points [1, 8]

and single/multiple shooting [2, 8].

On the other hand, the quality of the solutions is subject

to the numerical accuracy used, and more importantly, the

numerical conditioning of the formulated optimisation, partic-

ularly for condensing based approaches [9]. To address this

issue, closed-loop dual-mode prediction models have been used

extensively, although mostly for linear MPC, with fewer works

found for NMPC. It should be noted that dual-modes can be

applied based on open-loop or closed-loop paradigm as dis-

cussed in [10], where the former, switches between two con-

trollers depending on whether the state is inside the terminal

region [11–13], and the latter imposes a stabilizing gain across

all the prediction horizon and uses additional deviation variables

for constraint handling [9, 10, 14, 15]. Dual-mode for NMPC

IET Control Theory Appl. 2022;1–17. wileyonlinelibrary.com/iet-cth 1
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based on the open-loop paradigm was originally proposed in

[16] which guarantees stability for stable systems by using a sin-

gle stabilizing gain K based on the Linear Quadratic Regulator

(LQR) solution that stabilizes the state to the origin in the ter-

minal region. Other works such as [12, 17, 18] also use this idea.

Work by [19] used a PI controller instead for the terminal region.

Work by [11] proposed an adaptive quasi-infinite NMPC which

updated the LQR gain and terminal weights online based on

the current steady-state target/reference and the model param-

eters obtained by the adaptation. Alternatively, works such as [1,

20], initialize the nonlinear optimisation with the LQR trajec-

tory, and improve it from there. It is important to note that all

of these approaches are better suited for stable systems as it is

known that unstable systems are better handled by the closed-

loop paradigm [10, 14] or, as mentioned earlier, by simultaneous

approaches [6]. Dual-mode based on the closed-loop paradigm

was originally proposed for state-space linear MPC in [9]. Sim-

ilarly, work from [15] have used the closed-loop paradigm for

NMPC with a single locally stabilizing gain K across the entire

prediction to stabilize the system around a given steady state tar-

get/reference. Finally, work by [21, 22] used a time-varying con-

troller calculated offline, to stabilize the system around a pre-

defined periodic trajectory, which arguably could be refered to

as “linear” MPC, as discussed in [3].

A key issue that has not yet been addressed for condens-

ing based NMPC is: how can the system be stabilised around

any trajectory that emerges from the nonlinear optimisation?

Indeed, it is possible that the trajectory presents highly unsta-

ble dynamics before even getting close to the steady state tar-

get/reference (as it is the case of the triple pendulum), and non

of the currently available toolkits offers a generic methodol-

ogy or option for prestabilizing the system to allow condens-

ing approaches to be used for unstable systems. Moreover, the

importance of the numerical conditioning of the optimisation

for unstable systems, and consequently, how this affects or not

the solution, is commonly overlooked or simply ignored. Finally,

the ability to use the reduced numerical accuracy to obtain faster

solutions is not commonly exploited.

This paper aims to address the aforementioned issues and

proposes a generalisable method to tackle condensing based

multiple-shooting NMPC frameworks for unstable systems.

The proposed methodology uses the dual-mode approach

based on the closed loop paradigm to obtain closed loop predic-

tion models that improve the numerical properties and robust-

ness of the optimisation. The approach uses time-varying gains

Kk obtained from solving the Time-Varying Discrete Algebraic

Ricatti Equation (DARE) to stabilize the multiple-shooting tra-

jectory (as opposed to common approaches where a single lin-

ear terminal control law aims at stabilizing the state to the

origin), and prove its equivalence with the standard multiple-

shooting solution. Moreover, an extension of the well known

O(N 2
p ) algorithm is proposed which can be combined with the

RTI Scheme to achieve real-time performance.

The paper is organized as follows: Section 2 starts by defin-

ing the general models and OCPs of interest in the context of

NMPC with Sections 2.1 and 2.2 presenting a detailed derivation

of the proposed approach including the definition of the dual-

mode closed loop prediction models based on the multiple-

shooting approach, and discussing the general form of the

resulting optimal solution. Additionally, Section 2.3 presents a

key contribution of this paper: theorem 1, which establishes the

equivalence between the proposed approach and the standard

solution, resulting in the same stability and convergence prop-

erties, with several advantages and disadvantages discussed fur-

ther in Section 2.4. Furthermore, Section 3 introduces the pro-

posed extension of the O(N 2
p ) algorithm and discusses details

related to the RTI Scheme implementation in Section 3.1, with a

set of two final algorithms (preparation and feedback phases of

RTI) introduced in Section 3.2 summarizing the whole method-

ology. On the other hand, Section 4 presents a first example of

its application in a ball plate system which was observed to result

in chaotic behaviour in some instances when using the standard

methodology due to the numeric conditioning problem. After-

wards, Section 5 presents a second example of its application

in the classic inverted pendulum problem focusing on numeric

conditioning, disturbance rejection and computational perfor-

mance. Finally, Section 6 presents a simulation of a swing up and

stabilisation of the triple inverted pendulum system where the

standard condensing based NMPC failed to solve the optimi-

sation altogether independently of the selected prediction hori-

zon, and discusses the observed numerical conditioning and dis-

turbance rejection properties. The papers ends with Section 7

which summarizes the contribution of this paper and presents

future work.

2 NONLINEAR MODEL PREDICTIVE
CONTROL

This paper focuses on discrete-time models of the form:

xk+1|k = f (xk|k, uk|k ), (1)

where xk ∈ ℝ
nx , uk ∈ ℝ

nu are states and inputs column-

vectors, respectively. The notation “k + 1|k” reads, “predicted

value at time-step k + 1, calculated at time step k”, and will only

be used for clarity when needed.

Remark 1. If the system is in continuous-time, an approxi-

mated discrete model can typically be obtained by using integra-

tion methods such as Explicit Euler or Explicit Runge-Kutta as

in [3].

We now seek to optimise the predicted performance of sys-

tem (1) along a given prediction horizon Np by minimizing cost

function (2) defined as:

J = (Xr − X̂ )T Q(Xr − X̂ ) + (Ur − Û )T R(Ur − Û ), (2a)

s.t . xk = x0, (2b)

x̂k+i = f (x̂k+i−1, ûk+i−1 ) ∀i = [1, … ,Np], (2c)
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Umin ≤ Û ≤ Umax , (2d)

Xmin ≤ X̂ ≤ Xmax , (2e)

where Q > 0 ∈ ℝNpnx×Npnx and R > 0 ∈ ℝNpnu×Npnu are pos-

itive definite matrices for penalizing state and input errors,

respectively, with Q typically selected as a block diagonal

matrix (Q = blkdiag([qk+1, qk+2, … , qk+Np
])), qk+Np

sometimes

referred to as the terminal weight, and R typically selected as a

diagonal matrix with a constant value

(
R = ruI Npnu×Npnu

)
;Xr =

[
xT

rk+1
, xT

rk+2
, … , xT

rk+Np

]T
∈ ℝNpnx ,

X̂ =
[
x̂T

k+1
, x̂T

k+2
, … , x̂T

k+Np

]T
∈ ℝNpnx ,

Ur =
[
uT

rk
, uT

rk+1
, …… , urk+Np−1

]T
∈ ℝNpnu ,

Û =
[
ûT

k
, ûT

k+1
, … , ûT

k+Np−1

]T
∈ ℝNpnu

are future state references, states, input references and inputs

column-vectors, respectively; (2b) is the initial condition; (2c)

are the state dynamics; and (2d) and (2e) are the inputs and state

constraints, with Xmax∕Xmin ∈ ℝ
Npnx and Umax∕Umin ∈ ℝ

Npnu .

Remark 2. Terminal Conditions: If appropriate, zero-terminal

constraints for the state xmin ≤ x̂k+Np
≤ xmax can be imposed

for stability by selecting appropriate vectors for Xmin,Xmax [2].

Alternatively, one can impose a terminal weight in qk+Np
based

on infinite horizon costing methods which embeds the optimi-

sation in a dual-mode framework that guarantees stability under

certain circumstances, for example, when the predicted state at

the end of the trajectory (x̂k+Np
) enters a terminal or steady-

state region where the linearised models are valid.

To solve this optimisation we now look to apply Sequential

Quadratic Programming (SQP) methods where the cost is lin-

earized at a given trajectory, resulting in a linearized Convex

Quadratic Program (QP) which can be used to find an opti-

mal search direction, typically based in the Newton-method,

that eventually converges to the local-optimal. Notice the lin-

earisation of the trajectory is only defined after a given set

of input/state have been applied through dynamics (2c). A

popular choice to tackle this are shooting methods which

use an “initially guessed” nominal input trajectory Ū =
[ūT

k
, ūT

k+1
, … , ūT

k+Np−1
]T ∈ ℝNpnu and nominal state trajec-

tory X̄ = [x̄T
k+1

, x̄T
k+2

, … , x̄T
k+Np

]T ∈ ℝNpnx to linearize the

OCP along the trajectory.

The standard multiple-shooting NMPC approach, which is

well known in the NMPC community, and indeed readily avail-

able in state-of-the-art toolkits such as ACADO, typically lin-

earises the system along these nominal trajectories using first

order Taylor Series for the state and the inputs, and imposes

an additional continuity term (dk of equation (3b)) for the

propagation of the state. However, in this paper we look to

address the issue that arises when the system presents unsta-

ble dynamics, and therefore presents unstable predictions w.r.t.

to the decision variables in condensing-based methods.

2.1 Closed loop dual mode prediction
models

Dual-mode prediction models based on the closed loop

paradigm [10] offer a viable solution to cancel the unstable

dynamics of the system as originally developed for linear state-

space GPC in [9]. However, as opposed to the linear case where

a single linear stabilising gain K , typically obtained from LQR,

can be used to pre-stabilize the system to the origin, a non-

linear system may require time-varying, possibly nonlinear gains.

Moreover, given it may be difficult to find a generic stabiliz-

ing gain (linear or nonlinear) that satisfies constraints and sta-

bilizes any system to the origin, the proposed approach in this

paper aims at using time-varying gains that aim at stabilizing the

current/previous guess of the optimal constrained trajectory

(X̄ , Ū ) instead, thus giving a systematic way of “pre-stabilising”

the system.

To achieve this, the linearisation of the model is then given

by:

x̂k+1 − x̄k+1 = 𝛿x̂k+1 = Ak𝛿x̂k + Bk𝛿ûk + d̄k+1, (3a)

d̄k+1 = f (x̄k, ūk ) − x̄k+1, (3b)

ûk − ūk = 𝛿ûk = −Kk𝛿x̂k + 𝛿ĉk, (3c)

where:

Ak =
𝜕 f (x̂k, ûk )

𝜕x̂k

||||x̂k=x̄k ûk=ūk

Bk =
𝜕 f (x̂k, ûk )

𝜕ûk

||||x̂k=x̄k ûk=ūk

,

(4)

and Kk is a feedback gain obtained from solving the Time-

Varying Discrete Algebraic Ricatti Equations (DARE) (5) back-

wards in time along the nominal state/input trajectories, start-

ing from (x̄k+Np−1, ūk+Np−1, PNp
= qk+Np

) using qk+i and ru

weights defined previously as in [23], given by:

Pk = qk + AT
k

Pk+1Ak + (BT
k

Pk+1Ak )T K T
k
, (5a)

K T
k
= (ru + BT

k
Pk+1Bk )−1BT

k
Pk+1Ak. (5b)

Remark 3. Note that this feedback scheme emerges from

a secondary “inner” optimisation which has a different

cost/objective than the original cost (2), that is, the objective

of minimising deviations from the selected/nominal multiple

shooting trajectory itself. However, it will be proved in theo-

rem (1) that after combining both optimisation methods, the
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solution to the original problem is exactly same, thus providing

the user with a systematic way of embedding feedback whilst

preserving the desired properties.

By substituting 𝛿ûk = −Kk𝛿x̂k + 𝛿ĉk from (3c) in (3a), a

closed loop linearised model can be obtained as:

Φk = Ak − BkKk, (6a)

𝛿x̂k+1 = Φk𝛿x̂k + Bk𝛿ĉk + d̄k+1. (6b)

Remark 4. Given the solution with these feedback gains will

always be the same to the one obtained with the standard solu-

tion as proven in theorem 1, the user can select slightly differ-

ent weights qk+i and ru to be used by the “pre-stabilisation”

procedure. This gives freedom to the user to select any feed-

back gain Kk, for example, in case the system presents a rather

high level of unstable dynamics, or in case stronger feedback

is required or desired for QP initialisation purposes. Further-

more, note that because of this, there is actually no requirement,

nor a guarantee that the inner loop results in stable closed loop

matrices Φk. Instead the focus is on having a trajectory with

embedded feedback which will minimise any deviations from it,

whether due to disturbances (e.g., large 𝛿x0), large differences in

the continuity term (dk) or input-related actions which will ulti-

mately have the desired benefits of numeric conditioning and

robustness.

After propagating model (6b) Np steps forward starting from

an initial state mismatch 𝛿x0, all future inputs and state, Û and

X̂ , are condensely represented by:

X̂ = X̄ + 𝛿X̂ = X̄ +D + G𝛿x0 +H𝛿Ĉ , (7a)

Û = Ū + 𝛿Û = Ū + S +W 𝛿x0 + F 𝛿Ĉ , (7b)

where 𝛿x0 = x0 − x̄0 is an initial condition mismatch which
forms part of the RTI Scheme, 𝛿Ĉ ∈ ℝNp×nu are now the
inputs of the system, and:

D =

⎡
⎢⎢⎢⎢⎢⎣

d̃1

d̃2

⋮

d̃Np

⎤
⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎣

g1

g2

⋮

gNp

⎤
⎥⎥⎥⎥⎥⎦

H =

⎡
⎢⎢⎢⎢⎢⎣

h1,1 0 ⋯ 0

h2,1 h2,2 ⋱ ⋮

⋮ ⋱ ⋱ 0

hNp,1 hNp,2 … hNp,Np

⎤
⎥⎥⎥⎥⎥⎦

, (8a)

S =

⎡
⎢⎢⎢⎢⎢⎣

s1

s2

⋮

sNp

⎤
⎥⎥⎥⎥⎥⎦

W =

⎡
⎢⎢⎢⎢⎢⎣

w1

w2

⋮

wNp

⎤
⎥⎥⎥⎥⎥⎦

F =

⎡
⎢⎢⎢⎢⎢⎣

f1,1 0 ⋯ 0

f2,1 f2,2 ⋱ ⋮

⋮ ⋱ ⋱ 0

fNp,1 fNp,2 … fNp,Np

⎤
⎥⎥⎥⎥⎥⎦

, (8b)

where D ∈ ℝNpnx , G ∈ ℝNpnx×nx , H ∈ ℝNpnx×Npnu , S ∈ ℝNpnu ,

W ∈ ℝNpnu×nx , F ∈ ℝNpnu×Npnu , and with a slight abuse of notation

by dropping the k + i → i indexes, the inner matrices are defined

through the following recursions as:

d̃i =

⎧⎪⎨⎪⎩

d̄i

d̄i + Φi−1d̃i−1

i = 1

i > 1
, (9a)

gi =

⎧⎪⎨⎪⎩

Φi−1

Φi−1gi−1

i = 1

i > 1
, (9b)

hi, j =

⎧⎪⎨⎪⎩

B j−1

Φi−1hi−1, j

i = j

i > j
, (9c)

si =

⎧⎪⎨⎪⎩

𝕆nu

−Ki−1d̃i−1

i = 1

i > 1
, (9d)

wi =

⎧⎪⎨⎪⎩

−Ki−1

−Ki−1gi−1

i = 1

i > 1
, (9e)

fi, j =

⎧⎪⎨⎪⎩

I nu×nu

−Ki−1hi−1, j

i = j

i > j ,
(9f)

We now look to use the condensing approach where, by sub-

stituting the closed loop linearized prediction models (7) in (2)

and rearranging in terms of the decision variable 𝛿Ĉ results in

the standard QP format (10a).

J =
1

2
𝛿Ĉ T E𝛿Ĉ + 𝛿Ĉ T f s.t ., (10a)

E = H T QH + F T RF , (10b)

f = −
[
H T Q(Xr − X̄ −D − G𝛿x0 )

− F T R(Ū + S +W 𝛿x0 −Ur )
]
, (10c)

M𝛿Ĉ ≤ 𝛾, (10d)

M =

⎡
⎢⎢⎢⎢⎢⎣

F

−F

H

−H

⎤
⎥⎥⎥⎥⎥⎦

𝛾 =

⎡
⎢⎢⎢⎢⎢⎣

Umax − Ū − S −W 𝛿x0

−(Umin − Ū − S −W 𝛿x0 )

Xmax − X̄ −D − G𝛿x0

−(Xmin − X̄ −D − G𝛿x0 )

⎤
⎥⎥⎥⎥⎥⎦

, (10e)
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with E known as the Hessian, f typically referred as the lin-

ear term, and M and 𝛾 are the constraints matrix and vector,

respectively. In some cases, not all the states may be required to

be constrained which can be done by selecting/computing only

the appropriate rows of M and 𝛾.

2.2 The optimal solutions

By deriving (10a) w.r.t. the decision variable 𝛿Ĉ and equating to

zero (
𝜕J

𝜕𝛿Ĉ
= 0), the well known unconstrained solution can be

found to be:

𝛿Ĉ ∗
unc = −E−1 f . (11)

For constrained solutions, any QP solver such as QPOases or

Matlab function “quadprog” can be used to compute the opti-

mal solution after having defined (E , f ,M , 𝛾), which is known

to have a form of 𝛿Ĉ ∗
opt = 𝛿Ĉ ∗

unc + 𝛿Ĉ ∗
𝜆

, that is, the optimal

unconstrained solution plus a deviation due to constraints (𝜆
being the associated Lagrange Multipliers) [24].

After solving the optimisation, an expansion step is applied

by using the linearized models (7a) and (7b) to obtain both, the

nominal state trajectory X̄ [i+1] = X̂ [i] and the nominal input

trajectory Ū [i+1] = Û [i] to be used in the following iterations

over which the SQP will re-linearize and optimize the QP.

Only the first input is applied to the system and the process is

repeated which is the well known “receding horizon” strategy.

2.3 The equality of the solutions

In order to prove the nominal stability, recursive feasibility and

convergence properties of the proposed approach we could first

seek to understand how it relates to the standard methodology

which would allow us to derive certain conclusions about its

underlying properties. Based on this interest, we derived the-

orem 1 - a key contribution of this paper which states and

proves that the solution obtained with the proposed approach

will always be exactly the same as the one obtained with the

standard method.

Theorem 1. The Equality of the Solutions

The solution with the proposed dual mode closed loop prediction models

is exactly the same as the standard solution.

Proof. Let us begin first by proving the equality of the uncon-

strained solutions which will then allow us to prove the equality

of the total/constrained solutions.

The standard solution, that is, the one that uses the predic-

tions with Kk = 𝕆, results in F = I , S = W = 𝕆, and therefore

𝛿Ĉ = 𝛿Û which results in the following prediction matrices:

X̂ = X̄ +D1 + G1𝛿x0 +H1𝛿Û , (12a)

Û = Ū + 𝛿Û , (12b)

with an unconstrained solution of the form:

𝛿Û ∗
unc =

(
H T

1
QH1 + R

)−1(
H T

1
Q(Xr − X̄ −D1 − G1𝛿x0 )

− R(Ū −Ur )
)
= −E−1

1
f1. (13)

In contrast, our approach uses prediction models:

X̂ = X̄ +D2 + G2𝛿x0 +H2𝛿Ĉ , (14a)

Û = Ū + S +W 𝛿x0 + F 𝛿Ĉ , (14b)

and has an unconstrained solution of the form:

𝛿Û ∗
unc = S +W 𝛿x0 + F

(
H T

2
QH2 + F T RF

)−1[
H T

2
Q(Xr

− X̄ −D2 −G2𝛿x0 )−F T R(Ū + S +W 𝛿x0 −Ur )
]
.

(15)

Notice the D1∕D2 − G1∕G2 −H1∕H2 notation has been used

to distinguish the two state prediction models. However,

because both models produce exactly the same predictions for

a given 𝛿U , that is, X̂ = X̄ +D1 + G1𝛿x0 +H1𝛿Û = X̄ +
D2 + G2𝛿x0 +H2𝛿Ĉ and Û = Ū + 𝛿Û = Ū + S +W 𝛿x0 +
F 𝛿Ĉ , then the following hold:

D2 = D1 +H1S , (16a)

G2 = G1 +H1W 𝛿x0, (16b)

H2 = H1F . (16c)

Substituting equation (16c) in (15) and rearranging it in terms of

the Hessian E1 of the standard solution (13) gives:

𝛿Û ∗
unc = S +W 𝛿x0 + F

(
F T E1F

)−1

× F T
[
H T

1
Q(Xr − X̄ −D2 − G2𝛿x0 )

× −R(Ū + S +W 𝛿x0 −Ur )
]
. (17)

Given F is always invertible because of the identity matrix in

the diagonal, and E1 is always invertible because it is positive-

definite, the terms related to the inverse of the inner product are

given by:

F
(
F T E1F

)−1
F T = F (F−1E−1

1
F T −1

)F T

= E−1
1
. (18)
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Substituting equations (16b), (16a) and (18) in (17) gives:

𝛿Û = S +W 𝛿x0

+ E−1
1

[
H T

1
Q(Xr − X̄ −D1 −H1S − G1𝛿x0 −H1W 𝛿x0 )

)

−R(Ū + S +W 𝛿x0 −Ur )
]
. (19)

Rearranging terms:

𝛿Û ∗
unc = S +W 𝛿x0 − E−1

1
E1(S +W 𝛿x0 )

+E−1
1

[
H T

1
Q(Xr − X̄ −D1 − G1𝛿x0 ) − R(Ū −Ur )

]

= E−1
1

[
H T

1
Q(Xr − X̄ −D1 − G1𝛿x0 ) − R(Ū −Ur )

]

= −E−1
1

f1. (20)

Thus, the equality of the unconstrained solutions (15) and

(13) holds.

Having proved the equality of the unconstrained solutions,

the equality of constrained solutions reduces to proving the

optimal correction terms related to the Lagrange Multipliers

(𝛿Û ∗
𝜆
= F 𝛿Ĉ ∗

𝜆
) are exactly the same.

Let us begin by observing that the optimal correction term

for both solutions is known to be given by:

𝛿Û ∗
𝜆
= −E−1

1
M T

1
𝜆∗

1
Standard, (21a)

𝛿Û ∗
𝜆
= −FE−1

2
M T

2
𝜆∗

2
Closed Loop, (21b)

with the optimal vectors of Lagrange Multipliers (𝜆∗
1

and 𝜆∗
2

)

containing only positive or zero values that satisfy the Karush-

Kush-Tucker (KKT) conditions.

Noting that M2 = M1F , substituting it in equation (21b) and

expressing it in terms of the Hessian E1 of the standard solution

(13), we obtain:

𝛿Û ∗
𝜆
= −F (F T E1F )−1F T M T

1
𝜆∗

2

= −E−1
1

M T
1
𝜆∗

2
, (22)

This reduces to proving both optimal vectors of Lagrange

Multiplers will be the same, that is, 𝜆∗
1
= 𝜆∗

2
. To prove this,

we can then apply the active-set approach where for any given

active set, the optimal Lagrange Multipliers of each approach

would be given by:

𝜆∗act1
= −

(
Mact1

E−1
1

M T
act1

)−1(
𝛾act1

−Mact1
𝛿Û ∗

unc

)
(23a)

𝜆∗act2
= −

(
Mact2

E−1
2

M T
act2

)−1(
𝛾act2

−Mact2
𝛿Ĉ ∗

unc

)
(23b)

where Mact1
∕𝛾act1

and Mact2
∕𝛾act2

are the active-set constraints

matrix/vector of each approach as discussed in [24].

Let us assume that both solution have the same active

set, which is to be expected as the unconstrained solutions

are the same. Note that in this scenario, because M2 = M1F ,

then Mact2
= Mact1

F . Substituting this along with the hes-

sian equivalency E2 = F T E1F from (18) in (23b) results

in:

𝜆∗act2
= −

(
Mact1

E−1
1

M T
act1

)−1(
𝛾act2

−Mact2
𝛿Ĉ ∗

unc

)

= −
(
Mact1

F (F T E1F )−1F T M T
act1

)−1(
𝛾act2

−Mact2
𝛿Ĉ ∗

unc

)
.

(24)

Thus, by equating (23a and 24) the inverse related term cancels

which results in requiring to prove:

𝛾act1
−Mact1

𝛿Û ∗
unc = 𝛾act2

−Mact2
𝛿Ĉ ∗

unc . (25)

For the strict purpose of the proof, consider the active-set com-

posed by the entire set, something which can not be done in

practice given the requirement of linear independence of the

active sets for invertibility of the matrix (ME−1M T )−1, and the

restriction of the number of active-sets being less than the num-

ber of decision variables [24], but is equally valid for the proof

given for whatever active-set is chosen, the corresponding row

will satisfy the equality.

Given we have proved the unconstrained solutions to be the

same, that is, 𝛿Û ∗
unc = S +W 𝛿x0 + F 𝛿Ĉ ∗

unc , we can substitute

this in (25) along with the equivalence expressions of (16) result-

ing in:

𝛾1⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞

⎡⎢⎢⎢⎢⎢⎣

Umax − Ū

Ū −Umin

Xmax − X̄ −D1 − G1𝛿x0

X̄ +D1 + G1𝛿x0 − Xmin

⎤⎥⎥⎥⎥⎥⎦

−

M1⏞⏞⏞

⎡⎢⎢⎢⎢⎢⎣

I

−I

H1

−H1

⎤⎥⎥⎥⎥⎥⎦

𝛿Û ∗
unc⏞⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏞

(S +W 𝛿x0 + F 𝛿Ĉ ∗
unc )

=

⎡⎢⎢⎢⎢⎢⎣

Umax − Ū − S −W 𝛿x0

Ū + S +W 𝛿x0 −Umin

Xmax − X̄ −D2 − G2𝛿x0

X̄ +D2 + G2𝛿x0 − Xmin

⎤⎥⎥⎥⎥⎥⎦
⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝛾2

−

⎡⎢⎢⎢⎢⎢⎣

F

−F

H2

−H2

⎤⎥⎥⎥⎥⎥⎦
⏟⏟⏟

M2

𝛿Ĉ ∗
unc , (26)

which concludes the proof. □

Note the aforementioned proof also holds for single-

shooting scenarios where the system is linearized along the state

trajectory X̄ obtained with Ū , starting from the nominal initial

state x̄0 resulting in dk = 𝕆nx ∀k = [1,Np], and consequently in

S = D = 𝕆Npnx .
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2.4 Stability, recursive feasibility,
convergence and numerical robustness

Given the solution of the proposed the approach is exactly

the same as the standard one, the convergence, stability and

recursive feasibility properties would be exactly the same, thus

giving the user the freedom on imposing any desired stability

guarantees methods such as zero-terminal constraints. How-

ever, the benefit of the proposed approach is that the predic-

tion matrix H has better numeric conditioning properties given

the “pre-stabilisation” procedure embedded in the decision

variable 𝛿Ĉ which leads to a numerically robust Hessian

inversion required by the optimisation. This allows longer

prediction horizons for unstable systems without sacrificing

numerical robustness of the solution, as well as possibly the use

of less accurate inverse solutions and weaker numeric precision

representations such as floats for computing purposes. More-

over, although the numeric advantages are particularly present

when using condensing-based solutions, the methodology can

also be used for simultaneous approaches to improve the QP

initialisation properties.

Examples of the aforementioned benefits will be discussed

further in the benchmarks sections and were particularly

observed for the inverted pendulum system of Sections 5 and 6

with significant condition numbering differences of the Hessian

when the approach is not used, and in some cases, giving a sin-

gular Hessian or failing to solve the optimisation altogether (as

it is the case of the triple pendulum). The main disadvantage of

the proposed approach is that it requires slightly longer compu-

tation times, particularly due to the computations related to the

solution of Time-Varying DARE backwards in time to obtain

Kk; the computations Φk, S , W and F ; and the fully dense con-

straint matrix which prevents the use of the special case avail-

able in standard QPs where the constraints in the inputs are

imposed through an identity matrix I rather than dense matrix

F . This brings the question of whether it would be possibly to

develop QPs specially designed to handle the pre-stabilisation

input structure F in a better way.

3 AN EFFICIENT O(N2
p
) CONDENSING

ALGORITHM

One of the key operations required to implement the proposed

approach is the computation of the Hessian (E = H T QH +
F T RF ), which is arguably the most computationally expensive

operation apart from the solution of the resulting QP itself. In

the standard method, one can use the well known O(N 2
p ) con-

densing algorithm developed in [25] to tackle this, which is cur-

rently used in the state-of-the-art ACADO toolkit. However,

to implement this with the proposed approach some impor-

tant modifications are required which will be discussed in this

section where an extension to the standard O(N 2
p ) condensing

algorithm will be presented. On the other hand, although less

critical a similar O(Np) algorithm can also be used to calculate

the linear term ( f ) for which the algorithm is also provided.

Let us begin by expanding the first Np = 3 terms of the first

column of the Hessian considering dummy matrices W̃ and Ṽ

as:

⎡
⎢⎢⎢⎣

E1,1

E2,1

E3,1

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

BT
0

BT
0
ΦT

1
BT

0
ΦT

1
ΦT

2

0 BT
1

BT
1
ΦT

2

0 0 BT
2

⎤
⎥⎥⎥⎦

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
H T

⎡
⎢⎢⎢⎣

w̃1,1

w̃2,1

w̃3,1

⎤
⎥⎥⎥⎦

⏟⏟⏟
W̃

+

⎡
⎢⎢⎢⎣

I −BT
0

K T
1

−BT
0
ΦT

1
K T

2

0 I −BT
1

K T
2

0 0 I

⎤
⎥⎥⎥⎦

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
F T

⎡
⎢⎢⎢⎣

ṽ1,1

ṽ2,1

ṽ3,1

⎤
⎥⎥⎥⎦

⏟⏟⏟
Ṽ

, (27)

where the dummy matrices W̃ and Ṽ will eventually represent

columns of the operations W̃ = QH and Ṽ = RF , but are not

particularly required to find the underlying pattern of the oper-

ations.

From equation (27) we can easily obtain the last value given

by:

E3,1 = ṽ3,1 + BT
2

w̃
[1]

3,1, (28)

where the notation w̃
[0]

3,1∕w̃
[1]

3,1 represents the initial/final value

of the algorithm, respectively. Note that this particular vari-

able starts in the final value (w̃
[1]

3,1) as it does not require any

modification.

The following term can be expressed in terms of the previous

dummy variable (w̃
[1]

3,1) as:

E2,1 = ṽ2,1 + BT
1

(
w̃

[0]

2,1 + Φ
T
2

w̃
[1]

3,1 − K T
2

ṽ3,1

)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
w̃

[1]

2,1

. (29)

Similarly, the last term can be expressed in terms of the previous

dummy variable (w̃
[1]

2,1) as:

E1,1 = ṽ1,1 + BT
0

w̃
[1]

1,1
⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞(

w̃
[0]

1,1 + Φ
T
1

w̃
[1]

2,1 − K T
1

ṽ2,1

)
= ṽ1,1 + BT

0

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w̃
[0]

1,1 + Φ
T
1

(
w̃

[0]

2,1 + Φ
T
2

w̃
[1]

3,1 − K T
2

ṽ3,1

)
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

w̃
[1]

2,1

−K T
1

ṽ2,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(30)
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ALGORITHM 1 Closed Loop O(N 2
p ) Condensing Algorithm

ALGORITHM 2 Closed Loop O(Np) Condensing Algorithm

Thus a clear static pattern can be seen where the Hessian can

be calculated in terms of the modified dummy variable w̃
[1]

k, j

as: Ek, j = ṽk, j + BT
k−1

w̃
[1]

k, j , and the dummy variable is defined

as a recursive expression given by: w̃
[1]

k, j = w̃
[0]

k, j + Φ
T
k

w̃
[1]

k+1, j −

K T
k

ṽk+1, j .

This solution is also valid for the calculation of the linear term

( f ) as well as any column of the Hessian, however, as with the

standard O(N 2
p ) algorithm, only the diagonal terms are calcu-

lated and the rest are duplicated. Based on this and the under-

standing that the operations related to the dummy variables

are W̃ = QH , W̃ = QXe = Q(Xr − X̄ −D − G𝛿x0 ), Ṽ =
RF and Ṽ = RUe = R(Ur − Ū − S −W 𝛿x0 ) (depending on

whether it is used for Hessian or linear term), the final algo-

rithms are given in algorithms 1 and 2. Note that the expression

for Ue has been reversed from (10a) to match the linear term

f = −(H T QXe + F T RUe ).

The reader can verify that the final algorithms (1 and 2) do

indeed preserve the O(N 2
p )∕O(Np) performance of the stan-

dard algorithms. As an example, assuming the expressions for

ṽk = rk−1 fk,i and initial values of w̃
[0]

k,i = qk−1hk−1,i had been

pre-computed, the number of multiplications required for the

O(N 2
p ) algorithm are exactly 0.5Npnu[Np(2n2

x + 2nxnu + n2
u ) +

n2
u ]. Similar expressions can be found for the O(Np) algorithm,

as well as for the number of summations.

3.1 The real time iteration scheme

To achieve real-time performance of the optimisation, the Real-

Time Iteration Scheme originally developed in [4] was used. The

latter is briefly summarized in this section, and for more details,

the reader is refered to [3] which gives an excellent tutorial-like

paper of this method.

The scheme consists of 3 strategies for the multiple-shooting

approach:

1. Initial Value Embedding:

It uses a shifted version of the solution for the

nominal state and input trajectories obtained in the

previous time step to hot-start the trajectories over

which the SQP will linearise, typically duplicating the

last input ūk+Np−1|k = ûk+Np−2|k−1, and shifting the

state X̄k|k−1 = [x̂T
k+1|k−1

, … , x̂T
k+Np−1|k−1

, x̂T
k+Np|k]T , where

x̂k+Np|k = f (x̄k+Np−1|k−1, ūk+Np−2|k−1 ).

2. Single SQP Iteration:

It performs only a single SQP iteration given the hot-started

trajectories are expected to be close, provided no signifi-

cant disturbances have entered the system. Assuming the

latter and other conditions discussed in [3] are satisfied, the

scheme can guarantee local asymptotic closed-loop stability.

3. Computation Separation:

It separates the computations required for the optimisation

into preparation and feedback phases to avoid any computa-

tional delays.

(a) Preparation Phase: In between sampling times k − 1 →
k, it uses the predicted state for the next sampling

time x̄0 = x̂k|k−1 as an initial condition of (2) which

enables the computation of all the matrices required

by the optimisation (D,G ,H , S ,W ,F ,E ,M ), and par-

tially the calculation of ( f and 𝛾) given the dependancy

on 𝛿x0.

(b) Feedback Phase: As soon as the state becomes available

either by measurement or estimation, it calculates 𝛿x0 =
x0 − x̄0, completes f and 𝛾, and solves the QP.

3.2 The proposed RTI algorithms

To summarize the overall methodology, this section provides a

generic set of algorithms for the overall implementation of the

proposed approach within the RTI Scheme. The approach is

divided into the preparation and feedback phases of the RTI

Scheme, namely algorithms 3 and 4. Although it may seem

slightly different calculations are used, note that the terms D

and S are implicit in the update of X̄ and Ū in lines 31 and 29,
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ALGORITHM 3 Feedback Phase

ALGORITHM 4 Preparation Phase

respectively, of algorithm (4); and similarly, the terms related to

G𝛿x0 and W 𝛿x0 are included in lines 3 and 4, respectively, of

algorithm (3), all of which are used for the calculation of f and

𝛾. To prevent the recalculation of the propagation of state mis-

matches such as 𝛿x0 or dk, the user can opt to combine both in

the feedback phase. An example of this can be found in algo-

rithms 6.5 and 6.8 of [26].

4 EXAMPLE 1: THE NONLINEAR
BALL PLATE System

As a first motivational example, let us consider the ball plate

system from [27, 28] modified to a nonlinear version as given in

[29]. The system is then represented by the following nonlinear

state space:

⎡
⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎥⎥⎥⎦

⏟⏟⏟
ẋ

=

⎡
⎢⎢⎢⎢⎢⎣

x2

−700 sin(x3 )

x4

33.18x4 + 3.7921u

⎤
⎥⎥⎥⎥⎥⎦

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
f (x,u)

, (31)

where x1 = p, x2 = ṗ, x3 = 𝜃 and x4 = 𝜃̇.

To keep the response as close as possible to the real sys-

tem, the system was discretised using Explicit Euler with a sam-

pling time of Ts = 0.03(s) and Ns = 20 intermediate steps as

described in algorithm 4 of [3].

Consider now the optimisation of this system subject to the

same penalisation weights as in [27, 28], that is, a state-error

penalisation weight qk+i = diag([6, 0.1, 500, 100]) ∀i = [1,Np],

and an input-error penalisation weight of rk+i = diag([1]) ∀i =
[0,Np − 1]. Although one could optionally use the infinite hori-

zon terminal weight (qk+Np
= PN ) as in [27, 28] to embed

the secondary/terminal “dual-mode”, this is not required to

observe the benefits that result from the application of the pro-

posed approach. Moreover, the system was subject to the fol-

lowing input and position constraints:

−20 ≤ p ≤ 20 (cm), (32a)

−10 ≤ u ≤ 10 (V ). (32b)

The optimisation was initialised with the free-response of the

system, which can be obtained simply with an initial guess for

the nominal input trajectory of zeros (Ū = 𝕆), and the ini-

tial guess for the nominal state trajectory being the response

obtained with the nominal input guess. The reference of the

system was set at the origin and the resulting Optimal Control

Problems (OCPs) were solved using the “quadprog” function

from Matlab.

To compare the performance of the proposed approach with

the standard method, the system was simulated for T = 3 (s)
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TABLE 1 Comparison of numeric condition numbers of the nonlinear

ball plate system at the origin with prediction horizon Np = [15, 20, 30, 60]

Np Proposed closed loop Standard

15 3.021 2.47E + 12

20 3.025 7.30E + 16

30 3.277 2.77E + 25

60 3.295 2.38E + 50

starting from the initial condition x0 = [17, 0, 0.4, 0]T , and opti-

mised using multiple-shooting with various prediction hori-

zons Np = [15, 20, 30, 60] which overall allowed the demon-

stration of key benefits and problems relevant to the pro-

posed approach.

4.1 Numeric conditioning comparison

One of the most surprising parts of this system is the numeric

conditioning problem that it presents. To give an idea of the

severity of the ill-conditioning problem, the standard NMPC

presented a numeric condition number of 2.47E + 12 in the

Hessian when using a prediction horizon as low as Np = 15 and

linearising the system at the origin, which would represent the

steady state or “final” condition of the Hessian. Although this

particular case was still solvable using the standard approach, it

would present significant problems if reduced numeric precision

such as floats and/or longer horizons were to be used. Indeed

we will see that the optimisation resulted in numerical condi-

tioning problems with prediction horizons as low as Np = 20.

For reference, table 1 gathers the condition number obtained

for each prediction horizon at the origin of the system where

the standard optimisation can be seen to reach condition num-

bers up to 2.38E + 50 in what could be considered a relatively

small Optimal Control Problem.

Figure 1 shows the response of the system with both

approaches when using a prediction horizon of Np = 20 where

the performance obtained from the standard approach shows

a rather erratic response, particularly in the input of the sys-

tem, evidently related to the numeric conditioning problems as

shown in the upper graph where numeric condition numbers up

to 1.64e+18 were obtained. As expected, this problem was even

worse when using longer prediction horizons, in some cases pre-

venting a solution altogether. In contrast the proposed solution

maintained smooth performance with the condition number as

low as 3.2052.

Remark 5. It should be noted that the numerical conditioning

problem can also be changed by selecting a different number

of shooting points as well as the number of intermediate steps

of the discretization and linearisation process [3]. However, this

doesn’t tackle the source of the problem, nor does it provide

a general methodology to address it using an arbitrary/desired

number of elements to be selected by the user.

FIGURE 1 Nonlinear ball plate system simulation with initial condition

x0 = [17, 0, 0.4, 0]T and prediction horizon of Np = 20. CL and STD

represent the proposed closed loop and the standard approach, respectively

5 EXAMPLE 2: THE INVERTED
PENDULUM

To further evaluate the performance of proposed approach,

the classic inverted pendulum benchmark was used given its

challenging underactuated, unstable and non-minimum phase

constrained nonlinear dynamics in the upward equilibrium [23,

30, 31]. At this point it is worth mentioning that although the

numeric conditioning problem is naturally present in higher

order systems (e.g., 10-100 states), it can also be present in low-

order systems/optimisations as in the previous ball-plate system

example for which condensing approaches are naturally better

suited, and the inverted pendulum is one for which the numeric

conditioning problem is often ignored. Nonetheless, a higher

order system such as the triple inverted pendulum (8 states) will

be considered in Section 6.

In this paper, a simplified model of the inverted pendulum

available in [32] was used which is given by:

p̈ = fm ṗ+ ku, (33a)

𝜃̈ = a𝜃̇ + b sin(𝜃) + c cos(𝜃)( fm ṗ+ ku). (33b)

Considering the state xk = [v, 𝜔, p, 𝜃]T with v = ṗ and 𝜔 =

𝜃̇ and using a one-step explicit Euler integration method, the

simplified discrete-time model is given by:

xk+1 = xk + Ts f (xk, uk ), (34a)
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f (xk, uk ) =

⎡
⎢⎢⎢⎢⎢⎣

fmvk + kuk

[3pt ]a𝜔k + b sin(𝜃k ) + c cos(𝜃k )( fmvk + kuk )

[3pt ]vk

[3pt ]𝜔k

⎤
⎥⎥⎥⎥⎥⎦

,

(34b)

where Ts = 0.02 (s) is the sampling time; p is the position;

v is the velocity; 𝜃 is the pendulums’ angle; 𝜔 is the pendu-

lums’ angular velocity; and uk is the input of the system. Fur-

thermore, the coefficients were defined as fm = −4.67; k =
0.065; a = −0.129; b = 38.4; and c = 3.95. Finally, constraints

in the input and position were imposed as −170 < u < 170 and

−0.35 ≤ p ≤ 0.35, respectively.

5.1 Numerical performance evaluation

To evaluate the performance of the proposed approach,

the optimisation was done for different prediction hori-

zons Np = [75, 100, 125, 150] using weights qk+i =
diag([0.1, 0.1, 10, 10]) ∀i = [1,Np − 1], ru = 0.001 to penalize

the state and input errors. A terminal weight of qk+Np
= 10q1

was imposed in the last state of the horizon xk+Np
to

improve stability properties of the optimisation. All the

simulations started at the lower equilibrium in steady state

xr = x0 = [0, 0, 0, 𝜋]T and a reference change to the upward

equilibrium (xr = [0, 0, 0, 0]) was given by introducing it at the

end of the prediction horizon to achieve better performance of

the RTI Scheme as discussed in [3]. Finally, the optimisation

was initialised with the free-response in both nominal states

and inputs as in example 4.

Remark 6. Note the required input to stabilize the inverted pen-

dulum in the upper equilibrium is zero, thus an input reference

of Ur = 𝕆Npnu was imposed to give an unbiased optimisation

[10].

To analyse the numerical robustness of the optimisation,

the condition number (c.n) of the Hessian E was calculated

and compared between both, the standard and the proposed

approach using different numeric precision (floats and dou-

bles), and the maximum c.nmax of each solution was gathered in

table 2 for all prediction horizons.

To visualize these differences, an example performance of

the optimisation is given in Figure 2 for the solution with pre-

diction horizon Np = 75 where the c.n. is plotted for both

solutions along with the resulting trajectories. It can be seen

that the standard solution gives a condition number of up to

c.n. = 1.39e + 06, and presents a difference between both solu-

tions of nearly 6 orders of magnitude larger, which is fairly sig-

nificant considering the relatively short prediction horizon used.

Looking further at table 2, the condition number of the stan-

dard solution naturally increased as the prediction horizon

increased giving differences of up to 13 orders of magnitude

TABLE 2 Maximum condition numbers comparison for different

prediction horizons and numeric precision. STD and CL refer to the standard

and the proposed closed loop solutions, respectively

Precision Double Float

Np CL STD CL STD

75 3.58 1.39e+06 3.58 2.28e+06

100 3.58 4.52e+08 3.58 (Singular)

125 3.58 1.47e+11 3.58 (Singular)

150 3.58 5.02e+13 3.58 (Singular)

FIGURE 2 Example numerical conditioning using double precision with

initial condition x0 = [0, 0, 0, 𝜋]T , Np = 75. STD and CL refer to the standard

and proposed closed loop solution, respectively

for Np = 150, and the Hessian becoming singular for Np > 75

when using float precision. This ultimately prevents the stan-

dard methodologies from using floating precision which can

lead to faster computation times. In contrast, the proposed solu-

tion maintained steady at c.nmax ≈ 3.58 ∀Np independently of

the selected numeric precision. It should be mentioned that

common prediction horizons for the inverted pendulum are rel-

atively long (2 to 4 seconds [3, 31]), which is approximately the

time required to swing up and stabilize the system. However,

other systems such as the ball-plate system from the previous

example can present numeric conditioning problems with pre-

diction horizons as low as 1 s, for which the proposed approach

offers a viable solution.
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FIGURE 3 Disturbance response - prediction and simulated comparison

for Np = 150 when using Matlab “inv(A)” function. Disturbance of

xk = xk + [0, 0.5, 0, 0]T was injected at t = 7 (s). STD and CL refer to the

standard and the proposed closed loop solutions, respectively

5.2 Disturbance rejection comparison

Another interesting result was obtained when comparing the

responses against disturbance rejection which were observed

to present small differences despite the equality of the solu-

tions proven by theorem (1). This was particularly present when

using long horizons and, more importantly, when using the

“weak/slow” inverse function “inv(A)” of Matlab to obtain the

unconstrained solution, which is known to be less accurate than

solving a linear system using A∖b. To test this, a disturbance

of xk = xk + [0, 0.5, 0, 0]T was injected at t = 7 (s) (continua-

tion from Figure 2 - system in upper equilibrium) for which the

unconstrained solution satisfies the constraints. Figure 3 shows

an example of this where the predicted and simulated/closed-

loop responses are plotted after the disturbance is injected. Only

the initial predicted trajectories were plotted to avoid satura-

tion. As it can be seen, the predicted trajectories of the angle

using the standard solution (magenta dotted curve - visible in

the upper right corner of the upper graph) diverged significantly

from the closed loop/simulated response, which in essence

resulted in an ill-posed optimization [10] and caused the closed-

loop/simulated solution (red dashed curve) to differ as it can

be seen from all 3 responses (angles, position and inputs). In

contrast, the predictions of the angle using proposed closed

loop approach (cian dash-dotted curve - visible in the lower

left corner of the upper graph) are practically indistinguishable

from the closed-loop response (blue solid line curve). Interest-

ingly, the closed-loop responses were identical before the intro-

duction of the disturbance, which suggest that this problem

is clearly related to the numeric conditioning of the standard

matrix G whose norm grows as big as ||G || ≥ 2.49e + 08, thus

affecting the linear term f significantly when ||𝛿x0|| >> 0.

It is noted that this anomaly ONLY happened when using

the weak inverse function, and it was not present when using the

command A∖b to obtain the unconstrained solution for which

case it resulted in the exact same solutions as expected from

theorem (1). Nonetheless, it offered an important insight into

another potential advantage of the overall methodology.

5.3 Robust initialisation: The
“pre-stabilisation” target

On another hand, one of the benefits of the proposed approach

lies on the concept of the “pre-stabilisation” procedure which

can ultimately enhance the disturbance rejection capabilities,

particularly for initialising the underlying QP solvers. An impor-

tant characteristic of the proposed approach, which differs

from the standard pre-stabilisation approaches, is the “tar-

get” that is considered for pre-stabilisation. In standard pre-

stabilisation procedures, for example, the one presented in [10],

the unconstrained solution is embedded in the optimisation

such that when the decision variables are zero, that is, Ĉ = 𝕆,

the response gives the optimal unconstrained solution. Such a

type of pre-stabilisation might be more relevant if input param-

eterisation techniques such as Laguerre Polynomials were used

as decision variables specifically to handle constraints rather

than to seek optimality as discussed in [14, 33]. In contrast,

the proposed approach targets the optimal constrained solu-

tion obtained in the previous step such that if any small dis-

turbance comes into the system it will not only cancel it (which

is known to have benefits for achieving robust predictions), but

also bring the solution directly back to the optimal constrained

solution.

To illustrate the aforementioned situation, Figure 4 presents a

comparison of the “free-response” predictions (i.e., the predic-

tions when the decision variables are zero) of both approaches

(standard and closed loop) in the presence of an input distur-

bance during the swing up. In this figure, the green dot-dashed

line represents the previous nominal optimal solution, that is,

the target of the proposed “pre-stabilisation” approach, and the

blue and red-dashed lines are the “free-response” predictions

of the Closed Loop and Standard approaches, respectively. In

this simulation a small input disturbance was introduced during

the swing up phase of the optimisation as visible in the ellipse

of the lower graph of the figure. As it can be appreciated, the

standard approach leads to significant deviations, giving “free-

response” predictions of the angle of up to −758 as seen in the

inner graphs, whereas the proposed approach quickly cancels

out the disturbance and comes back to the optimal solution.

Although in this particular case the angles were not constrained,

it would be significantly more challenging to find feasible initial

points for the optimisation if the angles, or angular velocities

were constrained and the standard approach was used given the

substantial violations of the free-response. Thus, the proposed

approach could ultimately be applied to linear MPC as well as
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FIGURE 4 Example “free-response” predictions comparison with a

random input disturbance during swing up with Np = 150 . STD and CL refer

to the standard and closed loop solutions, respectively

simultaneous approaches to improve the initialisation proper-

ties of the QP.

5.4 Computation times

As discussed earlier, the proposed methodology has the dis-

advantage that further computations are required when com-

pared to the standard approach. In order to evaluate the com-

putational performance of the proposed approach in this sys-

tem, we developed a set of auto-generated C++ codes based

on the Eigen 3 library using the RTI algorithms 3 and 4 which

implemented the approach in the Inverted Pendulum system.

For comparison, the solution was tested against the standard

approach. Each of these algorithms was tested for different pre-

diction horizons Np = [100, 150, 200] and the solutions of the

resulting QPs were obtained using QP OASES [34, 35] which

were verified to match in all cases from Matlab simulations, to

developed C++ codes, as well as with the ACADO toolkit [1,

36]. It should be noted that the auto-generated C++ code for

the standard approach resulted in practically the same computa-

tion times as the ACADO toolkit. For further comparison pur-

poses, both closed loop and standard algorithms also computed

10 iterations of a reduced version of general Primal-Dual Inte-

rior Point Methods available in [37–39], including the efficient

solution of the system (35) given by:

[
E −M T

ΛM T C

][
p𝛿C

p𝜆

]
=

[
− f − E𝛿C̄ +M T 𝜆̄

𝜇 −C 𝜆̄

]
, (35)

with 𝛿C̄ , 𝜆̄ being the guesses of the optimisation.

TABLE 3 Average constrained computation times (in 𝜇s) for the inverted

pendulum using different methods (proposed closed loop, standard), with

different prediction horizons Np = [100, 150, 200]

Closed Loop Standard

Type Np 100 150 200 100 150 200

Forward 7 12 15 7 11 14

DARE 5 7 9 − − −

Matrices 48 111 248 35 76 177

QP OASES 1330 3080 7266 1111 2823 6678

Increase (²%) 19.8 9.1 8.8 − − −

10 Int.Point steps 2973 8486 17828 2774 8226 17188

Increase (²%) 7.1 3.2 3.7 − − −

This allowed a more “generic” measurement of the required

computation times in the context of Interior Point methods

where the computational cost per iteration can be compared.

Each of these cases was run for 1000 simulations of T =
10 (s) giving a total of 400,000 optimisations per case. The code

was compiled using -O3, -mavx and -mfma C-flags to spec-

ify the optimisation level, auto-vectorization (avx), and fused

multiply-add (fma) operations, respectively, and was tested in

a Laptop running Ubuntu 20.04 with an i7-8750 HQ @ 3.9

GHz Intel Processor, and 32 GB DDR4 RAM @ 2667 Hz.

The resulting average computation times of the constrained

iterations of each of these approaches is presented in Table 3

signaled by the pink cells, with the computational increase of

the proposed Closed Loop approach compared to the Stan-

dard approach signaled in the yellow cells. For reference, the

average computation times related to the “preparation” steps

of each algorithm (e.g., Forward/DARE/Matrices from lines 3-

34 of algorithm 4) are also presented in table 3 signaled by the

cyan cells.

As it can be seen, the proposed approach remains relatively

competitive w.r.t. to the standard approach with computational

increases ranging from +8.8∕ + 19.8% in all the QP OASES

cases, and the computational increase decreasing as the horizon

increases, that is, making the method more efficient for longer

horizons. As discussed earlier, this increase is inevitably related

to the extra preparation computations visible mainly in the

DARE/Matrices steps of the preparation phase, as well as the

requirement for extra “output” type of constraints which may

be handled inefficiently by the QP OASES solver. Nevertheless,

we believe this increase is reasonable given the generic ability of

the proposed approach to handle unstable non-linear systems.

Moreover, the total computational increase was much better

than the preparation related operations increase, for example,

the preparation steps of Np = 200 using both Standard/Closed

Loop approaches resulted in a (248 + 9 + 15)∕(14 + 177) =
+42% increase, whereas the total solution with QP OASES

resulted in an increase of only +8.8%. Lastly, the approach pre-

sented comparatively much better computational performance

in the context of Interior Points when considering the efficient

solution of (35). In this case, the proposed approach resulted
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in computational increases in the range of only +3.2∕7.1 which

again, we believe is justified considering the general advantages

that come with the proposed method.

Thus, this case study provides a comparative example of the

performance that can be obtained when implementing the pro-

posed approach. Based on this evidence, we believe the pro-

posed approach has enough benefits and enough reason for it

to be considered for an actual implementation on real systems.

Moreover, although the approach was not particularly required

for this system, it could serve as an alternative in the case were

reduced precision was required to be used given the standard

solution using floats was observed to result in singular Hes-

sian as seen in Table 2. This could again result in further com-

putational benefits when compared to the standard solution

which would require double precision for it to be able to be

implemented.

6 EXAMPLE 3: THE TRIPLE
INVERTED PENDULUM

To further illustrate the benefits of the proposed methodol-

ogy and provide a more complete example that further shows

its generalisation capabilities for higher order systems, this sec-

tion presents its application to a triple inverted pendulum which

is a considerably more complex nonlinear system than the single

inverted pendulum. Indeed, due to its highly unstable dynam-

ics, the standard condensing based multiple shooting NMPC

approach was unable to solve this problem altogether, inde-

pendently of the prediction horizon used. Thus, this provides

an example of a problem that previously was unable to be

solved using the standard approach which further emphasises

the importance of the contribution of this paper.

In this paper, the equations of motion for a point-mass triple

pendulum provided in [40] were used, combined with the cart

acceleration differential equation (33a) with the assumption that

the pendulums will have no effect on the cart. This assump-

tion is standard in many approaches present in the literature as

the pendulums’ effects can be canceled using subordinate/inner

acceleration/velocity controllers for the cart as described in [23,

30].

Thus, the equations are given by:

p̈ = fm ṗ+ ku, (36a)

M (𝜃)𝜃 = −N (𝜃)𝜃̇2 − R𝜃̇ − P (𝜃) − f (𝜃)( fm ṗ+ ku), (36b)

where M (𝜃), N (𝜃), R, P (𝜃) and f (𝜃) are defined as in [40],

and the specific parameters used for our simulation are given in

Table 4. Assuming the state xk = [v, 𝜔1, 𝜔2, 𝜔3, p, 𝜃1, 𝜃2, 𝜃3]T

with v = ṗ and 𝜔i = 𝜃̇i , the system was simulated and linearised

using Ns = 2 steps of the Explicit Euler method as described

in [3] with a sampling time of Ts = 0.02(s). The inner step was

required to improve the accuracy and stability of the integration

method as the system is known to present highly chaotic behav-

ior [40].

TABLE 4 Triple pendulum parameters

m1 0.3 L1 0.3 R1 0.1 g 9.81

m2 0.27 L2 0.27 R2 0.1 fm −4.67

m3 0.243 L3 0.243 R3 0.1 k 0.065

Remark 7. Given the complexity of the system, Matlab’s Sym-

bolic Toolbox was used to obtain the expressions of the lineari-

sation terms.

Regarding the optimisation setup, a prediction horizon

of Tp = 2 (s)(Np = 100) was selected, and the penaliza-

tion weights were selected as qk+i = diag([0.1, 0.2, 0.3, 0.4, 10,
20, 30, 40]) ∀i = [1,Np − 1] with the terminal weight selected

as qk+Np
= 100qk+1, and the input penalisation term as

ru = 0.001. As in the previous example, all the simulations

started from the lower equilibrium in steady state (xr =
x0 = [0, 0, 0, 0, 0, 0, 0, 0]T ), and a reference change of xr =
[0, 0, 0, 0, 0, −𝜋, 𝜋, −𝜋]T introduced at the end of the pre-

diction horizon. The optimisation was initialised with the

free-response in both nominal states and inputs as in exam-

ple 4. Moreover, to relax the optimisation (as it is indeed a

much more difficult problem), the position was constrained

to −0.5 ≤ p ≤ 0.5 whilst keeping the same input constraints

as for the single inverted pendulum of Section 5, that is,

(−170 ≤ u ≤ 170).

To further improve the performance of the underlying

SQP method, an additional exponentially decaying penalisa-

tion term defined as 𝛿(ru )k+i = 1000ru (')i ∀i = [1,Np] with

' = (0.01)

1

Np was imposed on the input deviation 𝛿Û which

modified the original cost function (10a) to:

J𝛿R = J +
(
𝛿Û

)T
𝛿R

(
𝛿Û

)
, (37)

where 𝛿R = diag([𝛿(ru )k+i ]) ∈ ℝ
Npnu×Npnu , which modified the

Hessian E and linear term f to:

E𝛿R = H T QH + F T (R + 𝛿R)F , (38a)

f𝛿R = −
[
H T Q(Xr − X̄ −D − G𝛿x0 )

− F T R(Ū −Ur ) − F T (R + 𝛿R)(S +W 𝛿x0 )
]
. (38b)

Although the performance can also be improved by using

proper step-size of the Newton-method, this additional term

was motivated by observing that the prediction errors due to

linearisation grow as they move forward through the horizon.

Therefore, by preventing large deviations at the beginning of the

horizon, the prediction errors in future time-steps are reduced

which consequently improves the contraction rate of the under-

lying Newton-method. On the other hand, it can be proved that

the solution with this added penalisation term only affects the
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FIGURE 5 Triple inverted pendulum swing up and stabilisation simulation with disturbance of xk = xk + [0, 0, 0, 0.1, 0, 0, 0, 0]T injected at t = 5 (s). The

maximum and steady state conditioning numbers are shown in the lower-right figure for reference

rate of convergence towards the solution, but does not change

the solution itself. Finally, it is trivial to show that theorem 1 still

holds with this modification.

Figure 5 shows a T = 10(s) simulation of a swing-up and

stabilization of the triple inverted pendulum problem with a

disturbance of xk = xk + [0, 0, 0, 0.1, 0, 0, 0, 0]T introduced at

t = 5 (s) for which the unconstrained solution satisfies. Of par-

ticular interest is the figure on the lower-right corner where

the steady state condition number (c.n.)ss ≈ 252 can be seen

which, for this system, is naturally much higher than that of

the single inverted pendulum presented in Figure 2. Indeed,

the latter undergoes critical points during the swing up reach-

ing a maximum of (c.n.)max ≈ 811, approximately 3.2 times

higher, which once again shows the complexity of the sys-

tem at hand. Nonetheless, the method preserves the expected

properties of low conditioning number which protect the solu-

tion from numerical instability, and the resulting controller is

observed to perform well against disturbances. Finally, it can

be seen the proposed approach follows the standard solution

(as expected from theorem 1) up until the point in which the

numeric conditioning of the standard approach “explodes” at

around T = 1.55 (s) as seen in the lower-mid graph, reach-

ing c.n. ≈ 1028 where a numeric solution was no longer able to

be obtained before the system even entered the upward/linear

zone.

Remark 8. It is worth noting that linearising the system at

the upward equilibrium without the proposed approach had a

condition number of the “would-be” optimisation of (c.n.) =
3.07 × 1023. Thus, considering the solution can undergo the

aforementioned critical points, it is not surprising the standard

method was unable to be applied.

7 CONCLUSION

This paper presents a novel Closed Loop Dual-Mode NMPC

scheme that uses closed loop prediction models to obtain

numerically robust solutions for condensing based multiple

shooting NMPC frameworks which are particularly well suited

for unstable systems. The method uses feedback gains obtained

from solving the Time-Varying DARE backwards in time along

the shooting trajectory. The proposed approach differs from

all previously proposed Dual-Mode NMPC schemes in the

sense that it aims at pre-stabilizing the optimal trajectory itself

using time-varying gains, rather than stabilizing the states to

the origin as with other methodologies, typically using a sin-

gle gain obtained from LQR. A proof of the equivalence of

the solution with the standard single/multiple-shooting solution

is given, which consequently results in the exact same stability,

recursive feasibility and convergence properties of the standard

approach. Although the methodology was derived particularly

for a multiple-shooting sequential (condensing-based) solution,

it can be applied for multiple-shooting scenarios using simul-

taneous approaches to enhance the robustness for QP initiali-

sation. Moreover, the paper provides an extension of the well

known O(N 2
p ) condensing algorithm which can be combined

with the RTI Scheme to achieve real-time performance, and

offers a set of two algorithms for its overall implementation.

Simulations of a nonlinear ball plate system, an inverted pen-

dulum, and its extension - the triple inverted pendulum, are

presented focusing on the numerical conditioning, disturbance

rejection, robust initialisation and computation time differences

compared with the standard solution, demonstrating the advan-

tages and weaknesses of the methodology. It is noted that the

triple inverted pendulum case was unable to be applied with
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the standard method, which provides further evidence of the

importance of this papers’ contribution.

Having observed the benefits of the proposed approach

which clearly result in significant improvements whilst offer-

ing a general procedure to tackle unstable systems for NMPC,

future work will aim to merge the proposed approach with the

ACADO toolkit which currently offers no option for closed

loop predictive models in their auto-generation routines, despite

the generic extension steps required. Moreover, to reduce the

computation time of the optimisation, efficient parameterised

solutions based on Laguerre polynomials [33] or Blocking

approaches [27] will be explored.

To the best of the authors’ knowledge, this is the first work

offering a generalisable closed-loop dual mode paradigm for

multiple shooting condensing-based NMPC scheme with an

efficient condensing algorithm for its implementation and prov-

ing the equality of the latter with the standard solution.
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