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Abstract

Aggregation of misfolded or damaged proteins is often attributed to numerous metabolic and neurodegener-

ative disorders. To reveal underlying mechanisms and cellular responses, it is crucial to investigate protein

aggregate dynamics in cells. Here, we used super-resolution single-molecule microscopy to obtain biophys-

ical characteristics of individual aggregates of a model misfolded protein ∆ssCPY* labelled with GFP. We

demonstrated that oxidative and hyperosmotic stress lead to increased aggregate stoichiometries but not

necessarily the total number of aggregates. Moreover, our data suggest the importance of the thioredoxin

peroxidase Tsa1 for the controlled sequestering and clearance of aggregates upon both conditions. Our work

provides novel insights into the understanding of the cellular response to stress via revealing the dynamical

properties of stress-induced protein aggregates.

Keywords: stress-induced protein aggregation, super-resolution single-molecule microscopy,

stoichiometry, diffusion, protein quality control

1 Introduction

To ensure the proper functioning, cells possess a complex protein quality control (PQC) network to maintain

protein homeostasis via regulating protein production, folding and degradation. However, various factors,

such as environmental stress (heat shock, oxidative stress or UV/IR radiation) and ageing, can cause dis-

balance in proteostasis followed by chronic expression of incorrectly folded proteins leading to aggregate

formation. These aggregates are often toxic and recognised as a hallmark of metabolic and neurodegener-

ative disorders, such as type II diabetes, cancer, and Parkinson’s, Alzheimer’s, Huntington’s diseases [1–

3].

In eukaryotic cells, as an initial response to harmful environment, misfolded proteins are recognised by small

heat-shock proteins (sHsps) and concentrated into aggregates to prevent further interactions [4]. In yeast,

upon H2O2-induced oxidative stress, besides sHsps, the Tsa1 thioredoxin peroxidase has been shown to be
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essential in the isolation of damaged proteins [5]. This PQC response results in appearance of multiple

inclusion bodies which further sequestered at specific sites including the juxtanuclear quality control site

(JUNQ), the intranuclear quality control site (INQ) and the peripheral vacuole-associated insoluble protein

deposit (IPOD) [6–8].

To study spatial distributions in relation to temporal control of aggregates, a number of model misfolding

proteins has been developed [9]. Fluorescently-tagged, such protein constructs are an indispensable tool

enabling direct tracking of aggregate formation and localisation by light microscopy. Standard epifluorescence

microscopy, however, represents the average behaviour of the protein pool which results in loss of information

concerning any molecular heterogeneity, and may ultimately lead to misinterpretations of the underlying

physiological relevance of subpopulations of molecules [10]. Localisation-based super-resolved microscopy

methods enable tracking individual molecules of the same type to reveal “hidden” subpopulations providing

novel insights into protein behaviour hence determining more precise biological functions [11].

In this study, we utilised a bespoke super-resolution fluorescence microscopy setup Slimfield with single-

molecule precision and millisecond time resolution [12] to follow stress-induced protein aggregates in living

Saccharomyces cerevisiae budding yeast cells. Slimfield microscopy utilises a delimited, high intensity excita-

tion field at the sample of a focused laser beam that is expanded to ∼10 microns width, and has been used in

multiple microbial studies to investigate DNA replication and remodelling [13–17], photosynthesis [18], gene

regulation [19], cell division [20, 21], as well as multicellular tissues involved in immunity [22, 23]. As a model

protein, we used a ∆ssCPY*-GFP construct, a cytoplasmic misfolded mutant version of the vacuolar enzyme

carboxypeptidase Y [24] that has been shown to localise in both, JUNQ and IPOD [6]. We investigate bio-

physical characteristics of ∆ssCPY*-GFP foci, such as molecular stoichiometry and mobility, to reveal new

aspects of aggregate formation and regulation in response to changes in the extracellular microenvironment.

Our study provides novel insights into understanding of cellular response to stress through characterisation

of stress-induced protein aggregates behaviour.

2 Materials and Methods

Yeast strains and media

Cells from frozen stocks were pregrown on a standard YPD medium (20 g/l Bacto Peptone, 10 g/l Yeast

Extract, 20 g/l agar) supplemented with 2% glucose (w/v) at 30°C overnight. The ∆ssCPY*-GFP plasmid

was introduced into the yeast cells by the standard lithium acetate protocol (14) followed by plating the

transformants onto the uracil-deficient Yeast Nitrogen Base (YNB) agar plates (1.7 g/l YNB w/o amino

acids and w/o NH4SO4, 5 g/l NH4SO4, 2% (w/v) glucose, 1x amino acid supplement -ura, 20 g/l agar). A

full list of strains used in this study is presented in Table 1.

Name Genotype Source

Wild type MAT a his3∆1 leu2∆0 met15∆0 ura3∆ pRS316-

Myc-tsa1DYF

Molin’s lab

tsa1∆ MAT a his3∆1 leu2∆0 met15∆0 ura3∆

tsa1D::kanMX4 pRS316-Myc-tsa1DYF

Molin’s lab

TSA1OX MAT alpha his3∆1::pRS403-myc-TSA1, leu2∆0

lys2∆0 ura3∆0

[5]

TSA1 backbone MAT alpha his3∆1::pRS403, leu2∆0 lys2∆0

ura3∆0

[5]

Table 1: List of yeast strains used in this study.
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For microscopy experiments, cells were pregrown overnight in YNB media at 30°C, 180 rpm, subcultured to

OD600 ∼0.2 and grown to mid-logarithmic phase. For oxidative and osmotic stress experiments, 0.4M (final

concentration) H2O2 and 1M NaCl, respectively, were added to the cultures 1h prior to imaging. Cells were

then immobilised by placing 5 µl of the cell culture onto a 1% agarose pad perfused with YNB supplemented

with 1mM H2O2 or 0.5M NaCl. The pad with cells was then sealed with a plasma-cleaned BK7 glass coverslip.

Single-molecule microscopy

Slimfield excitation was implemented via 50mW 488nm wavelength laser (Coherent Obis) de-expanded to

direct a beam onto the sample at 10mW excitation intensity to observe single GFP in living yeast cells.

Fluorescence emission was captured by 1.49 NA oil immersion objective lens (Nikon). Images were acquired

at 5ms exposure time at 200 fps by the EMCCD camera (iXon DV860-BI, Andor technology, UK) camera

using 80 nm/pixel magnification. Fluorescent spots, within the microscope depth of field were detected and

quantified using a single particle tracking algorithm (example in Fig S1) with ∼40nm spatial precision [17],

denoted as σ, adapted from similar studies reported previously [13]. The molecular stoichiometry of each

spot was estimated using a step-wise photobleaching method, by dividing the summed pixel intensity value

associated with the initial brightness of individual foci by the brightness of a single fluorescently-tagged

molecule. Specifically, the initial unbleached intensity, I0, was determined using a heuristic exponential

photobleach decay function [25]. The intensity corresponding to a single fluororophore, Isingle, was estimated

from the end photobleach traces corresponding to the brightness of the last remaining photoactive fluorophore.

We then determined the stoichiometry as I0/Isingle (described in detail in [19]). As detailed previously, the

analysis code integrates all detected fluorescence intensity of tracked foci within the microscope’s depth of

field and does not vary significantly with height from the coverslip surface over this depth range equivalent to

several hundred nanometres [17]. The apparent microscopic diffusion coefficient D was determined for each

track by calculating the initial gradient of the relation between the mean square displacement with respect

to tracking time interval using the first 10 frames while constraining the linear fit to pass through 4σ2 on

the vertical axis corresponding to a time interval value of zero. 4σ2 is the expected non-zero measured mean

square displacement at zero time interval in the 2D plane of the camera detector due to this level of sampling

uncertainty. The final data, underlying all figures, can be found in supplementary File S1.

Statistical analysis

To analyse if distributions are significantly different, statistical testing has been applied. In particular, by

applying one-sided tests, we examined if distributions shifted towards higher or lower values.

Note that the distributions of aggregate stoichiometry or diffusion coefficients are heavily skewed, thus nor-

mality cannot be assumed. Due to alterations in the tails of the distributions (Fig S2A-B), they neither

follow a log-normal distribution. When comparing the distributions, we therefore used the Mann-Whitney

U test, being a non-parametric test that does not require knowledge about the underlying distributions and

aims at testing if two data sets result from the same distribution. Only the number of aggregates per cell

can be considered normally distributed (Fig S2C). We therefore performed a Student’s t-test in this case.

For each hypothesis that we tested, we corrected the one-sided significance level α = 0.05 according to

Bonferroni [26] to reduce the probability of type I errors:

αc =
α

n
,

with n being the number of comparison between data sets made for a given hypothesis. There are typically

7 comparisons across conditions (n = 7), only when comparing subpopulation within a data set n = 10. We

consider a significant difference if the p-value p ≤ αc (marked with ***). To complement the increased type

II error caused by the correction, we also state significance without correction (p ≤ α, marked with **). The

resulting p-values of all comparisons are summarised in supplementary File S2.
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3 Results

Stress affects the distributions of aggregate stoichiometry and diffusion coefficient

To understand the effect of stress on protein aggregation, we analysed single-molecule fluorescence Slimfield

super-resolution microscopy images of yeast cells expressing the GFP-tagged protein construct ∆ssCPY*

known to be misfolded (Fig 1A). It allowed us to study the aggregation of this protein in three conditions:

(1) standard without any perturbations, (2) cells in oxidative stress exposed to 1mM hydrogen peroxide

(H2O2), and (3) cells in salt stress exposed to 0.5M sodium chloride (NaCl). We aquired 1000 frames at the

rate of 200 frames per second. By employing advanced image analysis and tracking algorithms [13, 17], we

obtained characteristics of individual aggregates (spots or foci), such as the foci apparent stoichiometry (S),

an estimated number of ∆ssCPY*-GFP molecules per aggregate by normalising the fluorescent signal of the

spot by the signal of one single ∆ssCPY*-GFP, and the diffusion coefficient (D), an estimated mean-squared

displacement of the spot over 4 frames. Each aggregate is further attributed to a cell, allowing us to compare

the number of aggregates and their characteristics across cells. We analysed 30-33 cells in each condition.

In all microenvironments, we found that S and D of ∆ssCPY*-GFP aggregates are distributed with a

heavy weight on small and slow aggregates, and only comparably few aggregates can diffuse faster or reach

larger stoichiometries than the main pool (Fig 1B-D). Furthermore, the two observables are correlated and

aggregates with high S more likely move with low D (Fig 1B).

Both oxidative and salt stress affect those distributions compared to standard conditions. More specifically,

the aggregate stoichiometries S generally increase and the diffusion coefficients D decrease when exposed to

stress (Fig 1C-D). Even though the trends are the same in both stress conditions, we found that NaCl has

a stronger effect on S, while H2O2 is more limiting on D. These shifts are also measurable when estimating

the average aggregate stoichiometry S and diffusion coefficient D per cell (Fig 1F).

To better understand the differences between the conditions, we divided the data sets into immobile (D <

0.3µm2(s)−1) and fast (D > 0.8µm2(s)−1) aggregates (Fig S3A). Even though molecules moving with D <

0.3µm2(s)−1 are slow-diffusing in general, they can be considered immobile for our purpose [19, 27]. Similarly,

we split the data into small (S < 10) and large (S ≥ 10) aggregates. In that way, it was possible to attribute

the increase in S in oxidative stress to only immobile aggregates, while salt stress showed a significant effect

on all aggregates regardless of their speed. Similarly, in salt stress only small aggregates differed in D, while

in oxidative stress all aggregates are significantly slowed down independent of their size.

We further observed that there are more cells with a large number of aggregates in NaCl, compared to

non-stressed conditions and H2O2 (Fig 1E).
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Figure 1: Effect of H2O2 and NaCl on aggregate stoichiometry and mobility. (A) Example microscopy
images. (B) 2-d probability densities of the aggregate stoichiometry S and the diffusion coefficient D. (C) 1-d
probability densities of the aggregate stoichiometry S, with the corresponding distribution (violin with integrated
boxplot) in the sub panel. The distributions shift towards larger aggregates compared to the control in standard
conditions (H2O2 p = 0.007, NaCl p < 0.0001). (D) 1-d probability density of the aggregate diffusion coefficient
D, with the corresponding distribution (violin with integrated boxplot) in the sub panel. The distributions shift
towards slower aggregates compared to the control in standard conditions (H2O2 p < 0.0001, NaCl p = 0.009). (E)
Distributions (violin plots) of the aggregate count per cell. Each point represents a cell, that has a mean aggregate
stoichiometry (point size) and a mean aggregate diffusion coefficient (point color). In NaCl, there are more aggregates
per cell (p < 0.0001). (F) Distributions (boxplots) of the aggregate stoichiometry Si and the aggregate diffusion
coefficient Di of aggregates in cell i. Each data point represents a cell. The size of the point reflects the corresponding
standard deviations. On average, cells have larger aggregates (H2O2 p = 0.019, NaCl p < 0.0001) with slower speed
(H2O2 p < 0.0001, NaCl p = 0.027).
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Tsa1 deletion leads to shifts in the stoichiometries that can be attributed to fast

aggregates

The thioredoxin peroxidase Tsa1 plays an important role for cells in dealing with damaged or misfolded

proteins, particularly in oxidative stress conditions. Tsa1 is a hydrogen peroxide scavenger, that recruits

heat shock proteins which together act as chaperones to aid the clearance of damaged proteins and protein

aggregates [5, 6]. So far, no connection between Tsa1 and salt stress has been reported [28].

To test the role of Tsa1 in the protein aggregation process, we performed the same experiments described

above with mutants lacking Tsa1 (tsa1∆) and compared the results to the corresponding wildtype (wt). While

the diffusion coefficients do not seem to be affected by the lack of Tsa1 in any microenvironment tested, the

stoichiometry of the aggregates generally increases in standard and H2O2 conditions, but decreases in NaCl

(Fig 2A-B, complemented by Fig S4). Also here, these trends could be confirmed when investigating the

mean S and D in individual cells (Fig 2D). However, the changes were not as prominent anymore.

As before, we divided each data set into subpopulations and repeated the analysis to see if the deletion of Tsa1

affects immobile and fast aggregates in different ways (Fig S3B). The distributions, in general, do not depend

on this separation into subpopulations, with two exceptions. When exposed to H2O2, we observed small

differences in the distributions of S between immobile and fast aggregates both in the wildtype and tsa1∆.

In the wildtype, fast aggregates typically correspond to low stoichiometries. The deletion of Tsa1 leads to a

significant shift towards larger S in the fast subpopulation, such that the difference between immobile and

fast aggregates in the tsa1∆ strain is opposite to the wildtype. Fast aggregates in tsa1∆ are consequently

typically larger than immobile ones. Even though, we could not find significant differences between the

subpopulations in any other condition, we were in all microenvironments able to attribute the increase in S

caused by Tsa1 deletion to fast aggregates.

Investigating the difference between small and large aggregates did not lead to strong effects between the

wildtype and tsa1∆ (Fig S3C). Interestingly, in oxidative stress there is a small decrease in D only for small

aggregates, which is not visible in the overall distributions. This can be a consequence of a shift of fast

aggregates towards larger stoichiometries.

In H2O2, aggregates do not only tend to be larger without Tsa1, we also found more cells with a significantly

increased number of aggregates compared to the wildtype (Fig 2C). In NaCl, in contrast, Tsa1 deletion leads

to fewer spots per cell (Fig 2C), which moreover were shown to be smaller.
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Figure 2: Comparison between wildtype (wt) and Tsa1 deletion (tsa1∆). (A) Distributions (violin with
integrated boxplot) of the aggregate stoichiometry S for the wildtype and the tsa1∆ strain. tsa1∆ leads to a shift
towards higher stoichiometry in standard conditions (p < 0.0001) and in H2O2 (p = 0.003), but towards lower
stoichiometry in NaCl (p < 0.0001). (B) Distributions (violin with integrated boxplot) of the diffusion coefficient D

for the wildtype and the tsa1∆ strain. The diffusion coefficients are not significantly affected by the deletion of Tsa1.
(C) Distributions (violin plots) of the aggregate counts per cell for the wildtype and the tsa1∆ strain. Each point
represents a cell, that has a mean aggregate stoichiometry (point size) and a mean aggregate diffusion coefficient
(point color). tsa1∆ leads to more aggregates per cell in H2O2 (p = 0.0007) and fewer in NaCl (p = 0.029). (D)
Distributions (boxplots) of the mean stoichiometry Si and the mean diffusion coefficient Di of aggregates in cell i.
Each data point represents a cell. The size of the point reflects the corresponding standard deviation. tsa1∆ slightly
increases S in standard conditions (p = 0.032) and H2O2 (p = 0.008). In NaCl there is only a tendency towards
smaller average stoichiometries (not significant, p = 0.052).

Tsa1 overexpression leads to fewer but larger and slower aggregates in oxidative

stress

To complement the Tsa1 deletion experiments, we also investigated the effect of Tsa1 overexpression (TSA1OX)

(Fig 3, complemented by Fig S5). Since we obtained more significant differences for tsa1∆ in oxidative stress,

we limited the analysis of TSA1OX to cells in standard conditions and under exposure to H2O2.

Similar to Tsa1 deletion, Tsa1 overexpression induces a shift in the distributions of S towards larger numbers

of ∆ssCPY*-GFP molecules per spot in both conditions (Fig 3A and Fig S3D). This is also reflected in the

average aggregate stoichiometry S in cells (Fig 3D).

TSA1OX further seems to have an effect on the distributions of the diffusion coefficients D (Fig 3B). We

observed a shift towards faster aggregates in standard conditions, but towards slower aggregates in H2O2.

We could attribute these changes in D to large aggregates with S ≥ 10 (Fig S3E).
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Figure 3: Comparison between the backbone and Tsa1 overexpression (T SA1OX). (A) Distributions
(violin with integrated boxplot) of the aggregate stoichiometry S for the backbone and the TSA1OX strain. TSA1OX

leads to a shift towards higher stoichiometry (no stress p < 0.0001, H2O2 p = 0.014). (B) Distributions (violin with
integrated boxplot) of the diffusion coefficient D for the backbone and the TSA1OX strain. TSA1OX leads to a small
shift towards faster aggregates in standard conditions (p = 0.046) and towards slower aggregates in H2O2 (p = 0.039).
(C) Distributions (violin plots) of the aggregate counts per cell for the wildtype and the TSA1OX strain. Each point
represents a cell, that has a mean aggregate stoichiometry (point size) and a mean aggregate diffusion coefficient (point
color). TSA1OX leads to more aggregates per cell in standard conditions (p = 0.003) but decreased the number of
aggregate per cell in H2O2 (p = 0.016). (D) Distributions (boxplots) of the mean stoichiometry S and the mean
diffusion coefficient D of aggregates in cell i. Each data point represents a cell. The size of the point reflects the
corresponding standard deviation. TSA1OX increases S (no stress p < 0.0001, H2O2 p = 0.003).

In addition, Tsa1 overexpression leads to a higher number of aggregates per cell in standard conditions,

but when exposed to H2O2, reduces the counts compared to the respective backbone, such that the latter

distribution is similar to non-stressed conditions again (Fig 3C). This is contrary to tsa1∆ where there were

many more cells with a higher amount of aggregates (Fig 2C).

Tsa1 is involved in limiting the maximal diffusion of aggregates

All effects measured earlier are based on changes in distributions, or means as summarising measures. Es-

pecially for TSA1OX (e.g. Fig 3A and D), we observed differences in the distributions of large aggregates,

which typically are much fewer and therefore have minor effects on the overall distributions. Still, they seem

to shape the 2-d distributions of the data (Fig 1B, S4A and S5A). More specific, we observed a correlation

between the number of proteins per spot and the largest measured diffusion coefficients. The larger the
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aggregate the more restricted its maximal observed mobility is. According to the Stokes-Einstein relation

in viscous fluids, the diffusion coefficient D of a particle is inversely proportional to its radius r. However,

it was previously shown that the dependence in vivo can be stronger than r−1 up to r−6 [29–31]. In order

to quantify the radius scaling dependence on D in our data, we converted the number of proteins S of each

aggregate to a minimal volume V [nm3] and thus minimal aggregate radius r [nm] under the assumption of

a perfect sphere, based on [32]:

V = 1.212 · 10−3 · M · S (1)

r =



3V

4π


1

3

, (2)

with the molecular mass of an individual ∆ssCPY*-GFP protein construct estimated to M = 84.66kDa [33].

Subsequently, we reduced each data set to its maximal diffusion coefficients (Fig 4A and Fig S6A). In our

case, dividing the data into 10 bins along r > 4.5nm and choosing the 5 data points with maximal D per bin

turned out to be a good representation. We then used the estimated radii of the reduced data sets together

with the respective diffusion coefficients to fit the function D(r) ∝ rc, c < 0, applying least-squared fitting.

Note that the transformation of the data to log-log scale simplifies the fitting to a line with slope c (Fig S6B).

Figure 4: Exponential fit to highest diffusion constants. (A) Example data set with a reduced data set marked
in green, consisting of the maximal measured diffusion coefficients per radius interval (conversion from S to minimal
radius r according to (1) and (2)). The reduced data set is used for fitting the function D(r). All fits are presented in
Fig S6. (B) Fitted exponents c for all data sets. TSA1OX has the largest effect on the highest diffusion coefficients.

In accordance with the literature, we obtained in all cases 1 < ♣c♣ < 6 indicating a stronger dependence of

the diffusion coefficient on the radius of the aggregate than the Stokes-Einstein relation suggests (Fig 4B).

TSA1OX exhibits the most striking differences. In standard condition without stress, Tsa1 overexpression

leads to the decrease of ♣c♣ by more than one half. This means a weaker dependence of D on r, allowing higher

diffusion coefficients especially for large aggregates. In contrast, the exponent ♣c♣ increases by approximately

70% for TSA1OX in oxidative stress compared to the backbone, indicating that aggregates with increasing

stoichiometry are more limited in their mobility.

While deletion of Tsa1 shows opposite trends compared to the overexpression both in standard condition and

under oxidative stress, the differences are too small to be considered significant.
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4 Discussion

In this work, we utilised single-molecule super-resolution fluorescence microscopy Slimfield to gain insights

into the stoichiometries (S) and diffusion coefficients (D) of individual protein aggregates, and their behaviour

in different conditions. We used the protein construct ∆ssCPY*-GFP as an example and tested the effects of

oxidative or salt stress conditions, known to trigger protein misfolding and irreversible protein damage [34,

35]. We investigated differences between data sets of up to 33 cells per condition and in most cases, our data

suggested that the analysis of the stoichiometries or the diffusion coefficients of all aggregates at once is a

good representation of the respective average properties in a cell.

By correlating the two characteristics, we saw an inhibiting effect of the stoichiometry on the diffusion

coefficient, which is physically reasonable given the increased mass of larger aggregates, that has to result

in lower velocities, assuming that the underlying kinetic energy of the aggregate is limited by a constant

temperature. Specifically, we could show that the highest measured diffusion coefficients of aggregates are

dependent on the size of the aggregate following an inverse power law (D ∝ rc, −6 < c < −1), which confirms

previously estimated relations [29–31].

The fitted exponents c were based on the ideal assumption that an aggregate arranges as a perfect sphere

with radius r. In reality, aggregates are likely to have a larger surface area due to imperfections in the

shape. Moreover, some misfolded proteins, such as alpha-synuclein and Tau associated with Parkinson’s and

Alzheimer’s diseases, respectively, can aggregate in a form of fibrils [36, 37]. Therefore, the radius r estimated

here is generally an underestimation of the real radius or cross section, or D is an overestimation.

Interestingly, most aggregates diffuse significantly slower than the relation defined by D(r) = D0rc in all

conditions. That most aggregates are not able to move that fast can be an effect of the high molecular density

within cells, i.e. macromolecular crowding, inhibiting the mobility of aggregates [38, 39]. The reduction in

D could also be a direct consequence of the spatial PQC system, that actively controls aggregation mobility

[6]. The latter is further supported by the fact that the fitted coefficients c are condition dependent.

Analysing the aggregates in cells that are adapted to oxidative or salt stress, we found that stress typically

leads to a higher number of slow or large aggregates compared to standard conditions. In addition, we could

show that how cells deal with stress-induced aggregates differs between oxidative and salt stress. In NaCl,

there is a stronger effect on the stoichiometries, while in H2O2 the decrease in the diffusion coefficient is

more dominant. Since aggregates increase in stoichiometry while the number of aggregates per cell does not

decline, we suggest that more misfolded proteins are being isolated thus subjected to the PQC. Moreover, in

salt stress the total aggregate count per cell even increases, indicating that the cells could not adapt equally

well as in oxidative stress.

Organising damaged or misfolded proteins in larger clusters can be a means to protect cells from further

damage, since individual misfolded proteins are deleterious to cells, not only because they lose their function

due to the loss of natural conformation, but also because the misfolding can result in a ”toxic gain-of-function”

[37]. Controlled aggregate formation can reduce the probability to cause further harm by decreasing the

surface of reactive domains of misfolded proteins, by facilitating the spatial sequestering to confined spots in

the cell and by reducing aggregate mobility [6, 36].

To better understand active mechanisms behind stress-induced aggregation, we studied ∆ssCPY*-GFP ag-

gregation of strains lacking or overexpressing Tsa1, one of the key players in the PQC network.

Tsa1 overexpression leads to a shift in the stochiometries towards larger aggregates, both in normal conditions

and in oxidative stress. However, the numbers of aggregates per cell distinguish the two conditions. In

standard conditions, we generally observed more foci per cell if Tsa1 is overexpressed. This not only shows

that Tsa1 is involved in the collection and sequestering of aggregates, but also indicates that an increased

amount of Tsa1 alone is not sufficient to remove aggregates from the system. Heat-shock proteins are

especially important in this context and if not present, damage clearance is hindered [4, 36]. In H2O2, the

overexpression results conversely to a decreased number of foci per cell. Thus, Tsa1, as a part of the full stress

response, seems to facilitate protein aggregation as a precursor of clearance, leading to a more controlled way
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of dealing with damage. Supporting this hypothesis, Tsa1 overexpression also correlates with small changes

in the diffusion coefficients of large aggregates. In particular, large aggregates are slower in H2O2 stress,

which was confirmed in a large absolute value of the fitted exponent (♣c♣ = 5.8). In this microenvironment,

due to the enhanced PQC, there are potentially more aggregates in inclusion bodies in spatially confined

spots, such as JUNQ, IPOD and INQ, which are therefore highly restricted in their mobility. Tsa1 has been

reported to be required for recognition of hydrogen peroxide-induced aggregates by sHsps [6]. Thus, our

data may suggest that upon Tsa1 overexpression, more misfolded proteins are directed to and isolated within

quality control sites. However, more microscopy data which would include fluorescently labelled INQ/JUNQ

and IPOD is required to evaluate this hypothesis.

When Tsa1 is lacking, aggregates are, similar to Tsa1 overexpression, generally increased in size in standard

and H2O2 condition, however the shift is less prominent. We could show that mainly fast aggregates are

increased in stoichiometry. This could hint towards a reduction of controlled aggregation, such that ∆ssCPY*-

GFP clusters can still form, but rather by chance than active control. If two protein clusters of the same type

collide it can be energy-efficient to aggregate together [40], and the probability for collisions is higher for fast

molecules. Particularly in oxidative stress, large aggregates can exhibit comparably high diffusion coefficients

and additionally there is a high number of aggregates in the majority of the analysed cells, emphasising

the disruption of the PQC system caused by tsa1∆ [5, 41], that is not able to sequester and clear damage

efficiently anymore.

Even though NaCl has not been connected to Tsa1 previously, we could show that if Tsa1 is lacking, there

are often fewer aggregates per cell, which are furthermore usually smaller in size compared to the wildtype.

Thus, our data suggest that the protein aggregation response to hyperosmotic stress is affected by Tsa1,

potentially by NaCl-induced oxidative stress that activates Tsa1 [42, 43]. Counter-intuitively, the effect of

tsa1∆ in salt stress appears to be beneficial for aggregate clearance. This underlines that cells likely deal

differently with aggregates resulting from NaCl stress than those induced by H2O2, but further experiments

are needed.

Slimfield microscopy that we used here is one of a multitude of super-resolution fluorescence imaging tech-

niques. The most precise information regarding molecular behaviour can be achieved by further advancing

and/or combining existing methods (reviewed in [44]). For example, MINFLUX is a variant of Stimulated

Emission Depletion (STED) microscopy which uses the principle of selective stoichastic fluorophore switching

(like PALM and STORM) and hence allows 1 nm precision of molecules 6 nm apart [45]. Moreover, a num-

ber of optical methods enabling 3D visualisation of individual molecules within living cells have also been

developed (reviewed in [46]). However, fluorescent imaging requires appropriate tagging of the molecules of

interest which may not only significantly affect their behaviour but also vary depending on a chosen fluo-

rophore [47–49]. To overcome these limitations, super-resolution label-free approaches are being developed

and successfully applied in studies of complex biological systems [50–53].

By acquiring detailed knowledge about biophysical properties of individual aggregates from single-molecule

super-resolution microscopy data, we could gain insights in protein aggregation as a cellular response to

exposure to oxidative and salt stress. While the analysis of this type of data alone reveals novel insights in

aggregation formation and regulation, it also opens up new possibilities to build or complement mathematical

models of protein aggregation with interesting applications in ageing and age-related diseases [54]. A major

driver of ageing is the asymmetric distribution of damaged components between progeny and progenitor cells

(retention) [55]. While mathematical models could show that the diffusion of aggregates of different size

can establish this damage asymmetry in the budding yeast S.cerevisiae [31, 56–58], it is also known that

more selective active processes are involved [59, 60]. By quantifying the properties of protein aggregates

in a crowded cellular environment using single-molecule microscopy and feeding them into mathematical

models, underlying mechanisms and the role of passive and active retention mechanisms in ageing can be

explained more accurately. Furthermore, individual aggregate diffusion coefficients and their distributions

from experiments can improve mathematical models of neurodegenerative diseases [61] by providing realis-

tic parameters. Hence, single-molecule microscopy is a promising tool to further elucidate ageing through
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mathematical modelling.
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File S1: Stoichiometries and diffusion coefficients of all measured aggregates.

File S2: Collection of all calculated p values.

Figure S1: Tracking of aggregates from microscopy images. (A) Example microscopy images for several

successive time points (5ms intervals). (B) Corresponding trajectories of aggregates found by the algorithm. The

image is the sum of the images where tracks were found.
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Figure S2: Normality check via QQ plots. (A) QQ plot under the assumption that the stoichiometries S are

log-normally distributed, i.e. the logarithms of S are normally distributed. There are abnormal tails in both extremes

in many of the conditions, and log-normality cannot be assumed. (B) QQ plot under the assumption that the diffusion

coefficients D are log-normally distributed, i.e. the logarithms of D are normally distributed. The distributions are

skewed with heavy tails towards low D, and log-normality cannot be assumed. (C) QQ plot under the assumption

that the aggregate counts per cell are normally distributed. The data can be considered normally distributed.
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Figure S3: Distinction between subpopulation. (A) Distributions (violin with integrated boxplot) of the

aggregate stoichiometry S for immobile (D < 0.3µm2(s)−1) and fast (D > 0.8µm2(s)−1) aggregates (upper panel),

as well as for small (S < 10) and large (S ≥ 10) aggregates (lower panel), in standard conditions and under stress.

Immobile and fast aggregates react different to stress in H2O2. Small and large aggregates react different to stress in

NaCl instead. (B-C) Same distributions of the subpopulations for the wildtype compared to Tsa1 deletion (tsa1∆),

which significantly affects fast aggregates (no stress p = 0.002, H2O2 p < 0.0001, NaCl p = 0.024), but not immobile

ones. In oxidative stress, it is even possible to distinguish the two subpopulations within a data set. Fast aggregates

are generally smaller than immobile aggregates in the wildtype (p = 0.012), but tsa1∆ in this condition leads to a

reversed trend and fast aggregates increase in stoichiometry compared to immobile aggregates (p = 0.012). (D-E) Same

distributions of the subpopulations for the overexpression backbone compared to Tsa1 overexpression (TSA1OX). In

this case, immobile and fast aggregates seem to be equally affected by TSA1OX . However, there is a difference

between D for large aggregates. In non-stressed conditions large aggregates can reach higher D (p = 0.036), while

they are more restricted in their mobility in H2O2 (p = 0.028). The latter leads to a more clear distinction between

distributions of small and large aggregates when Tsa1 is overexpressed (p = 0.006).
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Figure S4: Complementary plots for the comparison between wildtype and Tsa1 deletion (tsa1∆). 2-d

(A) and 1-d (B) probability densities of the aggregate stoichiometry S and the diffusion coefficient D.

Figure S5: Complementary plots for the comparison between backbone and Tsa1 overexpression

(TSA1OX). 2-d (A) and 1-d (B) probability densities of the aggregate stoichiometry S and the diffusion coeffi-

cient D.
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Figure S6: Data with exponential fits D(r). All data sets with a reduced data set marked in green, consisting

of the maximal measured diffusion coefficients per stoichiometry interval (10 intervals for S > 4 with the 5 largest

D per interval), with normal axis (A) and in log-log scale (B). The reduced data set is used for fitting the function

D(r) = D0 · exp(αr). The fit becomes a linear regression problem in the log-log scale. The stoichiometry of the

aggregate was converted to a minimal radius by (1) and (2) according to [32].
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