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a b s t r a c t 

Independent Component Analysis (ICA) is a fundamental method for Blind Source Separation (BSS). Classi- 

cal ICA takes data matrix input formed by vector data. This paper focuses on ICA for BSS with third-order 

data tensor input formed by matrix data, such as 2D images. Two approaches exist for this problem. The 

first approach reshapes each matrix into a vector to apply classical ICA, with structural information lost. 

The second approach unfolds a data tensor into a data matrix along different modes to perform classical 

ICA mode-wise, which partially preserves structures but has strong or ill BSS assumptions. This paper 

proposes a third approach via RAndom Matrix ICA (RAMICA) modeling. RAMICA works on data tensor 

directly, without vectorization or unfolding, and preserves row or column structures under more general 

BSS assumptions. We develop the RAMICA model, algorithm, and related theories via defining new statis- 

tics for random matrices and new procedures for whitening and independent component estimation. We 

study the identifiability, higher-order extension, and relationships with existing methods. Experiments on 

both synthetic and real data show superior BSS performance of RAMICA over competing methods and 

offer insights on the trade-offs between different factors. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Blind Source Separation (BSS) [1] assumes that observed data 

are generated from unknown latent sources , and aims to recover 

these sources from the observations only. Independent Component 

Analysis (ICA) [2,3] is a fundamental method for BSS. Classical ICA 

methods treat P sources as random variables, and assume they are 

mutually independent and linearly mixed to produce M observa- 

tions { x m } as: 
x m = a m 1 s 1 + · · · + a mP s P , (1) 

where random variables are underlined , x m is the m th observa- 

tion, s 1 , . . . , s P are the latent sources named as Independent Compo- 

nents (ICs), and a m 1 , . . . , a mP are mixing coefficients. Stacking ran- 

dom variables into vectors, the vector-matrix notation of (1) is: 

x = A s ∈ R 
M , (2) 

where x = [ x 1 , . . . , x M ] 
⊤ and s = [ s 1 , . . . , s P ] 

⊤ are observation (mix- 

ture) and source random vectors, and A = { a mp } ∈ R M×P is the un- 
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known deterministic matrix, namely mixing matrix . It is usually 

assumed that M = P so that A ∈ R P×P is square, which we fol- 

low hereafter. Considering T available samples of observations x 

(sources s ), align all samples in column to form the data matrix X 

( source matrix S ). We can then write the ICA model in X and S as: 

X = AS ∈ R 
P×T . (3) 

In other words, X contains T samples x (1) , . . . , x (T ) of random vec- 

tor x in column, and S contains T samples 1 of random vector s in 

column. ICA aims to estimate the source matrix S and the mixing 

matrix A simultaneously with data matrix X as the only input [4] . 

Real-world data are often matrices or even higher-order ten- 

sors, such as multichannel ElectroEncephaloGraphy (EEG) signals, 

images, videos, or social networks [8] . In such cases, all observed 

data of a particular problem form a data tensor X with their nat- 

ural multidimensional structures. All observed matrix data form a 

third-order data tensor, while all observed Nth-order tensor form 

an (N + 1) th-order data tensor. We can view such data tensor as 

1 In this paper, the term ‘sample’ refers to samples of random variables, and the 

number of observations ( P) is the number of data samples/examples in typical ma- 

chine learning terminology. 
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Fig. 1. Given a P × Q × T data tensor in (a), classical linear ICA vectorizes each image mixture into a long row vector and stacks them into a P × QT data matrix as in (b) for 

source recovery. Mode-wise ICA models, such as DTICA [5,6] and MMICA [7] , unfold the data tensor along an image (column or row) mode, to obtain a T × PQ (or Q × PT ) 

data matrix as in (d), on which to apply classical ICA (twice). The proposed RAMICA model deals with the data tensor directly without vectorization or unfolding as in (c). 

stacking all data along a particular dimension (the first ‘mode’ by 

default). This paper focuses on ICA for such data tensor input . For 

convenience of discussion, we consider stacking P 2D images of 

size Q × T into a third-order data tensor of size P × Q × T . Fig. 1 (a) 

shows the stacking of images into a data tensor. 

There are two existing ICA approaches for data tensor input. 

The first classical approach is a linear one, which vectorizes ( re- 

shapes ) images into vectors so that we can apply classical ICA 

methods such as FastICA [9] , JADE [10] , and Infomax [11] . Equiva- 

lently, we can view this vectorization process as unfolding the data 

tensor of size P × Q × T into a data matrix of size P × QT along 

the first mode, as shown in Fig. 1 (b). The sources can be recovered 

as vectors first and then folded (reshaped) back to images (matri- 

ces). However, the vectorization breaks the original structure and 

leads to high-dimensional vectors, imposing significant theoretical 

and computational challenges. There are some other ICA variations 

[12–14] where more complicated data inputs are considered (e.g., 

images with known forming factors), but images are still repre- 

sented as vectors and they degenerate to classical ICA under basic 

(simplified) settings [7] . 

The second approach is to do mode-wise (linear) ICA to partially 

preserve structural information and explore computational benefits 

(as shown in Fig. 1 (d)), where the data tensor is unfolded along 

each of the original image dimensions (image row or column) into 

data matrices of size Q × P T and T × P Q to apply classical ICA. This 

brings an additional issue of mixing modeling, with two ways sum- 

marized below. 

The first way of modeling in mode-wise ICA is a multilinear- 

mixing model as in Directional Tensor ICA (DTICA) [5,6] , where an 

image mixture is generated by one source matrix and two mode- 

wise mixing matrices (one for each mode). DTICA forms row and 

column directional images by shifting the rows/columns and then 

estimates two mixing matrices by mode-wise FastICA. Similarly, 

Virta et al. [15,16] generalize JADE and FOBI [17] to mode-wise ver- 

sions for data tensor input, using multiple mode-wise mixing matri- 

ces to mix one latent tensor . Such multilinear-mixing models have 

an inherent limitation. They cannot do BSS to recover multiple ma- 

trix/tensor sources since they model a single source/tensor matrix 

only, which is hard to interpret in a BSS context. 

The second way of modeling in mode-wise ICA is a multilinear- 

source model as in Multilinear Mode-wise ICA (MMICA) [7] , where 

an image mixture is generated by two mode-wise source matrices 

via a multilinear mixing matrix. This model resembles the mixing 

model (1) more closely. However, it assumes the sources are rank 

one and constructed by mode-wise source matrices. Thus, although 

MMICA can do BSS, it can only recover rank-one sources due to its 

strong assumptions. 

2 
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This paper proposes a new, third approach for ICA with data 

tensor input. Different from all existing works, we aim to recover 

general (not only rank-one) sources as the first approach can do 

while preserving multidimensional structure as the second ap- 

proach. We do so by working with the original data tensor di- 

rectly as shown in Fig. 1 (c), without vectorization or unfolding . We 

develop our new method by considering random matrix in model- 

ing so we name it RAndom Matrix ICA (RAMICA). In the RAMICA 

model, a random matrix consists of multiple random vectors. It as- 

sumes that observed image data are generated by mixing source 

images with row-wise or column-wise structures. We make three 

major contributions in developing this RAMICA model and deriving 

the RAMICA algorithm: 

1. With random matrix modeling, we propose RAMICA, a new 

ICA approach for data tensor input that deals with data ten- 

sor directly without vectorization or unfolding. Thus, RAMICA 

preserves multidimensional structure and can recover general 

source matrices in BSS. 

2. We define new statistics of random matrix including covariance 

matrix, white matrix, independence, and higher-order cumu- 

lants, as the basis to develop RAMICA for data tensor input. 

3. We formulate the RAMICA objective function by introducing a 

whitening step for a respective whitened random matrix and a 

new cumulant operator for random matrices. Then we derive a 

new RAMICA algorithm to recover source matrices with the Ja- 

cobi method. 

The rest of the paper is organized as follows. Section 2 of- 

fers a brief overview of notations and technical preliminaries. 

Section 3 formulates the RAMICA model and Section 4 derives 

the RAMICA algorithms. Section 5 presents futher discussions of 

the proposed approach. Section 6 reports our numerical studies on 

both synthetic and real data. Finally, Section 7 draws conclusions. 

2. Preliminaries 

2.1. Notation 

Table 1 lists the symbols used for easy reference. Deterministic 

variables are in normal fonts, and random variables are underlined. 

Scalars, vectors, matrices, and tensors are denoted by lowercase, 

lowercase boldface, uppercase boldface, and bold calligraphic let- 

ters, respectively. For example, x , x , X , and X are used to denote 

deterministic variables, and x , x , X , and X are used to denote ran- 

dom variables. 

2.2. Random vector and cumulants 

A random vector is a vector of random variables x = 

[ x 1 , . . . , x Q ] 
⊤ . Its expectation is a vector E( x ) = [ E( x 1 ) , . . . , E( x Q )] 

⊤ . 

Its covariance matrix is 

�( x ) = 

⎡ 

⎢ ⎣ 

σ 2 ( x 1 ) · · · cov ( x 1 , x Q ) 

. . . 
. . . 

cov ( x Q , x 1 ) · · · σ 2 ( x Q ) 

⎤ 

⎥ ⎦ , (4) 

where cov ( x i , x j ) is the covariance of x i and x j , and σ 2 ( x i ) is 

the variance of x i . If x 1 , . . . , x Q are mutually independent, x has 

independent components, and �( x ) becomes diagonal. E( x ) and 

�( x ) are the first and second order cumulants of x . Higher- 

order cumulants with order r ≥ 3 are denoted by [ Q r ( x )] i 1 ···i r or 

cum ( x i 1 , . . . , x i r ) , where i 1 , . . . , i r are the mode-wise indices. 

Cumulants of a random vector x have the following four prop- 

erties: 

• symmetry : [ Q r ( x )] i 1 ···i r = [ Q r ( x )] i σ (1) ···i σ (r) 
for any permutation 

σ (·) ; 
• linearity : cum ( x 1 , . . . , x i + y , . . . , x r ) = cum ( x 1 , . . . , x i , . . . , x r )+ 

cum ( x 1 , · · · , y , . . . , x r ) and 

cum ( x 1 , . . . , α x i , . . . , x r ) = α cum ( x 1 , . . . , x i , . . . , x r ) for any 

random variable y and deterministic α; 
• independence : if ∃ p, q ∈ { 1 , . . . , r} where x i p and x i q are inde- 

pendent, then [ Q r ( x )] i 1 ···i r = 0 ; 
• vanishing Gaussian : if x is Gaussian, [ Q r ( x )] i 1 ···i r = 0 for any or- 

der r ≥ 3 . 

2.3. ICA steps and tensor mode-1 product 

ICA has three standard steps, as explained in this subsection. 

1. Centering : remove the first-order statistics from the data by 

shifting the sample mean to the origin. 

2. Whitening : remove the second-order statistics from the data to 

obtain whitened variables. Here, the second-order statistics and 

the whitening process need to be redefined for the proposed 

model. 

3. IC Estimation : use higher-order statistics of the data to estimate 

ICs. It is the core step of ICA, and different methods do it dif- 

ferently. 

The mode-1 product of a third-order tensor A ∈ R I 1 ×I 2 ×I 3 by 

a matrix U ∈ R J n ×I n , denoted by A ×1 U , is a tensor with entries 

[18,19] : 

(A ×1 U ) j 1 i 2 i 3 = 

∑ 

i 1 

A i 1 i 2 i 3 · U j 1 i 1 . (5) 

3. A random matrix model for ICA 

3.1. RAMICA model and assumptions 

First, we view ICA from a random matrix perspective. A random 

matrix is a matrix of random variables X = [ x i j ] ∈ R P×Q and its ex- 

pectation matrix is E( X ) = [ E( x i j )] ∈ R P×Q . Traditionally, its covari- 

ance matrix is defined as 

�( X ) := �(v ec( X )) ∈ R 
(PQ ) ×(PQ ) , (6) 

where v ec(·) is the vectorization operator [20–22] , and its higher- 
order cumulants are defined via vectorizing the random matrix to 

the random vector. Thus, the independence of random matrix in- 

volves the independence of all elements. Equivalently, these defi- 

nitions treat random matrix as its vectorized version, without con- 

sidering any structural information. 

Here, we follow (1), (2) , and (3) in classical ICA. Instead of (1) , 

we have M mixtures x 1 , . . . , x M ∈ R Q of P random vector sources 

(ICs) as: 

x m = a m 1 s 1 + · · · + a mP s P , (7) 

where x m is the m th mixture random vector, s 1 , . . . , s P are the 

independent source random vectors, and a m 1 , . . . , a mP are mix- 

ing coefficients (see Fig. 1 (c)). Again, we assume M = P . Stack- 

ing P random vectors { x m } and { s p } into random matrices along 

the first mode, we obtain the observation (mixture) matrix X = [
x 1 , . . . , x P 

]⊤ ∈ R P×Q , and the source matrix S = 
[
s 1 , . . . , s P 

]⊤ ∈ 

R P×Q respectively. We have the full matrix notation version of 

(7) instead of (2) below: 

X = A S , (8) 

where A ∈ R P×P is the mixing matrix and assumed to be full-rank. 

With T samples of such random matrices , we form the data ten- 

sor X and source tensor S of size P × Q × T . Then we can write 

3 
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Table 1 

Symbols with descriptions and types, sorted alphabetically. 

Symbol Description Type 

A Mixing matrix deterministic matrix 

cum ( · · · ) Conventional rth order cumulant tensor of random vector x statistic operator 
˜ cum ( · · · ) New rth order cumulant tensor of random matrix X statistic operator 

F X (·) New cumulant operator statistic operator 

K r ( x p ) ˜ cum ( x p , . . . , x p ) , a special ̃  Q r ( X ) statistic operator 

M Number of observations deterministic scalar 

P Number of sources deterministic scalar 
˜ Q r ( X ) ˜ cum ( x i 1 , . . . , x i r ) statistic operator 

Q r ( x ) cum ( x i 1 , . . . , x i r ) statistic operator 

r Order of higher-order cumulants deterministic scalar 

S Source data tensor deterministic tensor 

S Source data matrix deterministic matrix 

S Source random matrix random matrix 

S (t) tth sample of S deterministic matrix 

s Source random vector random vector 

s p pth source vector random vector 

s p pth source scalar random scalar 

s (t) tth sample of s deterministic vector 
˜ �( X ) New covariance matrix of random matrix X statistic operator 

�( x ) Conventional covariance matrix of random vector x statistic operator 

T Number of random samples deterministic scalar 

U Whitened mixing matrix deterministic matrix 

W Whitening matrix deterministic matrix 

X Observation data tensor deterministic tensor 

X Observation data matrix deterministic matrix 

X Original observation random matrix random matrix 
̂ X Whitened observation random matrix random matrix 

X (t) tth sample of X deterministic matrix 

x Observation random vector random vector 

x m m th observation vector random vector 

x m m th observation scalar random scalar 

x (t) tth sample of x deterministic vector 

RAMICA model in data tensors X and S instead of (3) as 

X = S ×1 A , (9) 

where ×1 denotes the mode-1 multiplication of a tensor by a ma- 

trix as defined in (5) . We can view (9) as a partial Tucker decom- 

position [23] . 

The RAMICA objective is to estimate the source tensor S and 

mixing matrix A given the data tensor X only. Fig. 1 (c) shows this 

RAMICA model for data tensor, which is viewed along the third 

mode (instead of the first mode of stacking as shown in Fig. 1 (a)) 

as T samples of the random matrix X , i.e. X (1) , . . . , X (T ) . 

Remark. Note that (7), (8) , and (9) in RAMICA correspond to 

(1), (2) , and (3) in classical ICA, respectively. When Q = 1 , the 

RAMICA model degenerates to the classical ICA model. Thus, RAM- 

ICA is a natural second-order generalization of classical ICA, with- 

out vectorization or unfolding. A key difference between (7) and 

(1) is that while s 1 , . . . , s P are independent, the components of each 

source random vector s p can be dependent and encode structural in- 

formation . This allows structural information to be better preserved 

in RAMICA than in classical ICA. 

To derive RAMICA algorithm, we make three assumptions anal- 

ogous to classical ICA [24] : 

1. The expectation of mixture or source matrix is zero, i.e. E( S ) = 

E( X ) = 0 P×Q . A centering process will be performed if the input 

data are not centered. 

2. The covariance matrix of the source random matrix is an iden- 

tity matrix. Note the definition in (6) is equivalent to vector- 

izing X , leading to the first, vectorization-based ICA approach. 

Thus, we need new definitions of related statistics for random ma- 

trix to embody structural information. 

3. At most one independent random vector from { s p } has multi- 

variate Gaussian distribution. 

3.2. New statistics of random matrix 

We define new statistics for RAMICA via tensor contraction . On 

its basis, we subsequently define the white random matrix and the 

whitened RAMICA model. 

Definition 1. The contracted covariance matrix of a zero-mean 

random matrix X = 
[
x 1 , . . . , x P 

]⊤ ∈ R P×Q is defined as: 

˜ �( X ) = 
1 

Q 
E[ X X 

⊤ ] ∈ R 
P×P . (10) 

Each element of ˜ �( X ) is the covariance of two corresponding ran- 

dom vectors: 

[ ̃  �( X )] i j = ̃  cov ( x i , x j ) = 
1 

Q 

Q ∑ 

q =1 

cov ( x iq , x jq ) , (11) 

where cov (·, ·) is the conventional covariance. 

Definition 2. Given a zero-mean random matrix X = [
x 1 , . . . , x P 

]⊤ 
∈ R P×Q , its contracted cumulant of order r ≥ 3 

denoted by [ ̃  Q r ( X )] i 1 ···i r or 
˜ cum ( x i 1 , · · · , x i r ) is defined as: 

[ ̃  Q r ( X )] i 1 ···i r = 
1 

Q 

Q ∑ 

q =1 

cum ( x i 1 q , . . . , x i r q ) , (12) 

where i 1 , . . . , i r ∈ { 1 , . . . , P } , and cum (·) is the conventional cumu- 

lant of a random vector. In particular, we denote a special case 

K r ( x p ) = ˜ cum ( x p , . . . , x p ︸ ︷︷ ︸ 
(r times ) 

) . (13) 

Lemma 1. The newly defined cumulants for random matrix X = [
x 1 , . . . , x P 

]⊤ ∈ R P×Q satisfies the properties of conventional cumu- 

lants for random vectors: (1) symmetry, (2) linearity, (3) indepen- 

dence, and (4) vanishing Gaussian. 

4 
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Proof. This lemma can be obtained by using the corresponding 

properties of cumulants for random vector in Section 2.2 multiple 

times and do a final average operation as denoted in (12) . �

Definition 3. A random matrix X = 
[
x 1 , . . . , x P 

]⊤ ∈ R P×Q is inde- 

pendent if the conditional distribution of x i given x j = x does not 

depend on x j (i.e. x i and x j are mutually independent): 

f x i | x j ( x i | x j ) = f x i ( x i ) . (14) 

Using these new statistics defined for random matrix, we can 

derive our RAMICA algorithm. 

3.3. Alternative forms of the RAMICA model 

Given P images of size R ×C ( R rows and C columns), we can 

form a data tensor X ∈ R P×Q×T in (9) in two ways: 

• Row-wise RAMICA ( rRAMICA ): each image row is treated as a 

random vector in R C and all the R rows are considered R sam- 

ples of this random vector so Q = C and T = R . 
• Column-wise RAMICA ( cRAMICA ): each image column is treated 

as a random vector in R R and all the C columns are considered 

C samples of this random vector so Q = R and T = C. 

Thus, rRAMICA and cRAMICA consider row and column struc- 

tural information of image data, respectively. Real-world image 

data often have structures in both rows and columns so both 

rRAMICA and cRAMICA can be effective. For example, in the real 

image BSS experiments in Section 6.2 , we know both row and col- 

umn structures present in most real images and the results in 

Fig. 3 (b) indeed show that both versions lead to improvement in 

the noiseless and low noise settings. 

These two versions of RAMICA capture different aspects of data, 

which can offer alternative explanations of the data. If we use 

RAMICA as a feature extractor, we can combine both versions to 

provide complementary features. 

If we have to choose one from the two, a model selection prob- 

lem arises. We can consider this choice as a hyper-parameter and 

determine it based on prior knowledge of the data, cross valida- 

tion, or other statistical model selection strategies, e.g., picking the 

one with a higher kurtosis. 

For convenience of discussion, when we talk about RAMICA, we 

refer to cRAMICA unless specified explicitly. 

4. The RAMICA algorithm 

Given zero-mean input, the RAMICA algorithm has two steps, 

i.e., whitening and IC estimation. 

4.1. RAMICA whitening 

Definition 4. A random matrix X = 
[
x 1 , . . . , x P 

]⊤ 
∈ R P×Q is con- 

tracted white if its covariance matrix is an identity matrix: 

˜ �( X ) = I P×P . (15) 

Therefore, the contracted whitening step of the RAMICA 

model (8) is to find a matrix W such that ˜ �( W X ) = I P×P . 

Theorem 1. For the RAMICA model (8) , let W denote any inverse 

square root of ˜ �( X ) , i.e. [ ̃  �( X )] −1 / 2 . W is the whitening matrix and 

W X is white. Literally, any square-root of the covariance matrix is a 

whitening matrix. 

Proof. Perform Singular Value Decomposition (SVD) on the mixing 

matrix A = EDV , where E and V are orthogonal, and D is diagonal. 

Compute the covariance matrix of X using the above decomposi- 

tion: 

˜ �( X ) = 
1 

Q 
E[ EDV S S ⊤ V 

⊤ DE ⊤ ] = ED 
2 E ⊤ . (16) 

The second equality is due to Assumption 2 of RAMICA and the or- 

thogonality of V . Denote by M ∈ R P×P any orthogonal matrix, then 

according to Ilmonen et al. [25] , W can be written as: 

W = MD 
−1 E ⊤ ∈ R 

P×P . (17) 

Next, we calculate the covariance matrix of W X as 

˜ �( W X ) = 
1 

Q 
E[ M D 

−1 E T X X 
⊤ ED 

−1 M 
⊤ ] 

= MD 
−1 E ⊤ [�( X )] ED 

−1 M 
⊤ 

= MD 
−1 E ⊤ [ ED 

2 E ⊤ ] ED 
−1 M 

⊤ 

= I P×P . (18) 

Therefore, we have proved that W X is white and W is the whiten- 

ing matrix. �

Similar to classical ICA, we can conduct eigenvalue decomposi- 

tion on the covariance matrix as 

˜ �( X ) = E �E ⊤ , (19) 

where E = [ e 1 , . . . , e P ] has the unit-norm eigenvectors as columns, 

and the diagonal matrix � consists of the eigenvalues. According 

to Theorem 1 , the whitening matrix is 

W = �
−1 / 2 

E ⊤ . (20) 

After RAMICA whitening, we have W X = WA S = U S . Since 
˜ �( W X ) = I P×P = U ̃  �( S ) U 

⊤ = UU 
⊤ , U is orthogonal. The whitened 

RAMICA model can be rewritten as 

̂ X = U S , (21) 

where ̂  X is the whitened random matrix and U is the whitened mix- 

ing matrix . 

Lemma 2. Given the whitened RAMICA model (21) , the fourth-order 

cumulants of (whitened) ̂ X satisfy: 

[ ̃  Q 4 ( ̂  X )] i jkl = 
∑ 

p u ip u jp u kp u l p K 4 ( s p ) , ∀ i, j, k, l ∈ { 1 , . . . , P } . (22) 

Proof. Calculate the fourth-order cumulants according to 

Lemma 1 . We have: 

[ ̃  Q 4 ( ̂  X )] i jkl = cum ( 
∑ 

p 

u ip s p , 
∑ 

p ′ 

u jp ′ s p ′ , 
∑ 

q 

u kq s q , 
∑ 

q ′ 

u lq ′ s q ′ ) 

= 

∑ 

p,p ′ ,q,q ′ 

u ip u jp ′ u kq u lq ′ cum ( s p , s p ′ , s q , s q ′ ) . (23) 

Due to the independence of { ̂  s p } , only those products with p = 

p ′ = q = q ′ are nonzero. Therefore, we have proved that 

[ ̃  Q 4 ( ̂  X )] i jkl = 

∑ 

p 

u ip u jp u kp u l p K 4 ( s p ) . (24) 

�

4.2. RAMICA IC estimation 

It is difficult to recover sources directly from cumulants. In- 

stead, we can convert the BSS problem to a matrix diagonaliza- 

tion problem as in JADE [10] , via a cumulant-based mapping of 

the whitened mixing matrix U . To do this, we firstly define a new 

cumulant operator. 

Definition 5. Given the whitened RAMICA model (21) , the cumu- 

lant operator F ̂  X is defined by the fourth-order cumulant tensor 
˜ Q 4 ( ̂

 X ) of random matrix ̂ X as: 

F ̂  X : M ∈ R 
P×P 	→ [ F ̂  X ( M )] i j = 

∑ 

k,l 

m kl [ ̃  Q 4 ( ̂  X )] i jkl ∈ R 
P×P . (25) 

5 
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Lemma 3. Given the whitened RAMICA model (21) , the cumulant op- 

erator F ̂  X satisfies: 

[ F ̂  X ( M )] i j = 
∑ 

p u ip u jp K 4 ( s p ) 
∑ 

k,l m kl u kp u l p , ∀ i, j ∈ { 1 , . . . , P } . 
(26) 

Proof. This lemma can be proved by substituting cumulants 

[ Q 4 ( ̂
 X )] i jkl in (25) by the derived (22) of Lemma 2 . �

Theorem 2. Given the whitened model (21) , the matrix [ U 
⊤ 
F ( M ) U ] 

is diagonal for ∀ M ∈ R P×P . 

Proof. According to matrix multiplication rules and Lemma 3 , we 

know for ∀ i, j ∈ { 1 , . . . , P } : 

[ U 
⊤ 
F ̂  X ( M ) U ] i j = 

∑ 

p,q 

u pi u q j [ F ̂  X ( M )] pq (27) 

= 

∑ 

p,q 

u pi u q j 
∑ 

m 

u pm u qm K 4 ( s m ) 
∑ 

k,l 

m kl u km u lm 

= 

∑ 

m 

K 4 ( s m ) 
∑ 

k,l 

m kl u km u lm 

∑ 

p 

u pi u pm 

∑ 

q 

u q j u qm . 

Since U is orthogonal, we have 

[ U 
⊤ 
F ̂  X ( M ) U ] i j = 

∑ 

m 

K 4 ( s m ) 
∑ 

k,l 

m kl u km u lm δim δ jm . (28) 

Only those products with i = j = m are nonzero. Thus, we have 

[ U 
⊤ 
F ̂  X ( M ) U ] 

i j = 

{
0 , if i � = j 

K 4 ( s i ) 
∑ 

k,l m kl u ki u li , if i = j. 
(29) 

Therefore, we have proved the diagonality of U 
⊤ 
F ( M ) U . �

4.3. RAMICA objective 

Theorem 2 reveals the connection between the whitened RAM- 

ICA model (21) and F ̂  X ( M ) . We can take a set of matrices M i 

and make the matrix set { U 
⊤ 
F ̂  X ( M i ) U } as diagonal as possible 

for BSS. In practice, they cannot be made exactly diagonal because 

the model does not hold exactly and there are sampling errors. In 

fact, the diagonality of a symmetric matrix Q = U 
⊤ 
F ̂  X ( M ) U can 

be measured by the sum of the squares of off-diagonal entries: ∑ 

i � = j q 
2 
i j [26] . Since for a given matrix F ̂  X ( M ) , the square sum over 

all elements of the matrix is preserved under an orthogonal trans- 

formation, minimizing the sum of squares of off-diagonal elements 

is equivalent to maximizing the sum of squares of diagonal el- 

ements [27] . We formulate our objective function based on this 

property. For a set of basis matrix { M i ∈ R P×P } , we maximize the 

following objective function with respect to orthogonal matrix U : 

∑ 

i 

|| diag ( U 
⊤ 
F ̂  X ( M i ) U ) || 2 , (30) 

where || diag (·) || 2 denotes the sum of squares of the diagonal ele- 

ments. In this paper, we use the standard basis of R P×P , i.e. { E i j = 

e i e 
⊤ 
j } P i, j=1 , which can reduce computational cost significantly. 

4.4. RAMICA optimization 

Similar to JADE, we apply Jacobi method to optimize (30) to 

compute the whitened mixing matrix U . To use the Jacobi method, 

we first align the set of matrices { F ( E i j ) } P 
i, j=1 into an ex- 

tended matrix M = [ F ( E 11 ) , . . . , F ( E PP )] . Then, we apply the Ja- 

cobi method on M to conduct a series of Jacobi rotations, each 

of which handles two rows and two columns at a time [28] . Af- 

ter this, we obtain U 
−1 by multiplying the rotation matrices. Sub- 

sequently, we get A from A 
−1 = U 

−1 W . The RAMICA algorithm is 

Algorithm 1 Random Matrix Modeling ICA (RAMICA). 

1: Input: a zero-mean data tensor X ∈ R P×Q×T . The last dimension contains the 

samples. 

2: Contracted whitening : viewing X as T samples of X , compute the sample es- 

timate of the whitening matrix W according to Theorem 1, and compute the 

whitened data tensor: X ×1 W . 

3: Construct the contracted cumulant tensor by (12). 

4: Construct cumulant matrices { F ̂ X ( E 
i j ) } according to (25) for ∀ i, j ∈ { 1 , . . . P} . 

5: Align the above matrices to form the matrix M = [ F ̂ X ( E 
11 ) , . . . , F ̂ X ( E 

PP )] . 

6: Apply Jacobi method to M to get rotation matrices. 

7: Get U −1 by multiplying the rotation matrices. 

8: Compute A −1 = U −1 W , and A = ( A −1 ) −1 . 

9: Compute S = X ×1 A 
−1 . 

10: Output: mixing matrix A and source tensor S . 

summarized in Algorithm 1 , where we view X as T samples of X 

to obtain sample-based estimates of various statistics. The theoret- 

ical properties of the newly defined cumulant can be extended to 

such empirical estimations following [24, §2.7] . 

5. Discussions 

5.1. Identifiability and uniqueness 

In our RAMICA formulation, the mixing matrix A in (8) plays 

exactly the same role as the mixing matrix A in (2) of classical 

ICA. The cumulant operator in Definition 5 maps the fourth-order 

cumulants of (whitened) mixture ̂ X to a P × P matrix in (5) . This 

contraction operates on the tensor observation data to reduce the 

RAMICA problem to JADE. Thus, the RAMICA objective function 

(30) is similar to the objective function in JADE [10] and theoretical 

results on JADE can be similarly applied here. 

Miettinen et al. [29] have proved that the joint diagonalization 

procedure achieves mixing matrix recovery for the identifiable case 

of at most one Gaussian source in Theorems 8 and 9 of their paper. 

These theorems help establish that the same joint diagonalization 

procedure in our proposed RAMICA can recover the mixing matrix 

when there is at most one Gaussian source and the contraction op- 

eration via ˜ Q 4 (·) does not lead to an ICA instance with all Gaussian 

sources. 

Note however that the mixing matrix can be identified only up 

to the order and signs (independent components are not ordered 

as in principal components). Therefore, if V 
⊤ 
F ̂  X ( M i ) V is diagonal 

for all M under the RAMICA formulation, we will get a V that is 

equivalent to U only up to the order (permutation) and signs. 

5.2. Higher-order extensions 

RAMICA can be extended to higher-order tensors by extending 

random matrix modeling to random tensor modeling , and tensor con- 

traction over one mode to over multiple modes. For instance, given 

a fourth order tensor ˜ X of size P × Q × R × T formed by stacking P 

tensors of size Q × R × T , the mixing model in (7) can be extended 

to M = P mixtures X 1 , . . . , X M ∈ R Q×R of P random matrix sources 

(ICs) as: 

X m = a m 1 S 1 + · · · + a mP S P . (31) 

Respectively, (8) becomes 

X = S ×1 A . (32) 

We can then view ˜ X as T samples of random tensors with size 

P × Q × R . We can subsequently define mode-wise covariance ma- 

trices and cumulant for mode 1, now with summation over Q and 

R instead of just Q . Given P third-order tensors, we will have three 

(instead of two) ways of forming a fourth-order data tensor: i.e., 

treating its mode- n slice ( n ∈ { 2 , 3 , 4 } ) as a random matrix. Further 

extensions (e.g., to fifth-order tensor of P × Q × R × S × T ) can be 

similarly formulated. 

6 
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5.3. Relationship to existing methods 

5.3.1. Differences with existing tensor-based ICA 

In terms of source separation, RAMICA captures structural infor- 

mation better than classical ICA, and lifts the restriction of rank- 

one sources in MMICA, while being superior over DTICA’s sin- 

gle source assumption that is hard to interpret and unable to do 

source separation. 

5.3.2. Connection to ISA 

Independent Subspace Analysis (ISA) [30,31] , a.k.a. group ICA 

or subspace ICA, is a generalization of ICA, which assumes some 

random (scalar) sources are mutually dependent, but the depen- 

dencies among the sources of different groups are minimized. In 

this sense, it shares similarity with RAMICA by viewing these de- 

pendent sources as random vector sources. However, the ways of 

RAMICA and ISA in modeling and solving the problems are essen- 

tially different. ISA arises from the relaxation of ICA assumptions 

by restricting its mixing matrix, and is often solved by first pre- 

processing the mixtures by an classical ICA algorithm and then 

grouping the estimated components with highest dependence. In 

contrast, RAMICA is a generalization of classical ICA designed from 

a random matrix formulation with a natural interpretation and our 

mixing matrix is general, as in the classical ICA. 

5.3.3. Connection to IVA 

Independent Vector Analysis (IVA) [32,33] is another general- 

ization of ICA to multiple datasets. IVA takes K data matrices as 

input and assumes that the k th data matrix is obtained by linearly 

mixing rows of the k th source matrix through the k th mixing ma- 

trix. Thus, there are K related ICA problems. IVA and RAMICA both 

take multiple data matrices as the input and make similar inde- 

pendence assumptions. However, IVA considers each data matrix as 

a dataset but RAMICA considers it as a sample of a dataset. There- 

fore, IVA estimates K mixing matrices but RAMICA estimates only 

one mixing matrix. RAMICA can be extended to deal with multiple 

matrix/tensor datasets following IVA. 

5.4. Potential significance of RAMICA 

Direct ICA on data tensor is a technically challenging problem 

without much success before this work. RAMICA provides theo- 

retical/conceptual contributions in overcoming the technical chal- 

lenges in a tensor-based ICA without unfolding, including a new 

random matrix modeling approach for ICA and new statistics for 

random matrix. This enables further development of robust vari- 

ants and higher-order extensions, as sketched above. Its connec- 

tion with ISA discussed above also sheds new light on ICA research. 

Thus, the significance of such contributions may go beyond ICA/BSS 

and impact not only ICA, but also more general tensor-based learn- 

ing (without unfolding) and random-matrix-based machine learn- 

ing. Although we showed only separation of real images below, 

RAMICA is promising in solving practical neuroimaging problems 

such as for EEG and fMRI, where ICA is very popular [34–36] . 

6. Numerical results 

In this section, we perform evaluations on BSS with data ten- 

sor input for sources having general 2D structures, rather than 

special structures such as rank one. We compare two versions of 

RAMICA, i.e. rRAMICA and cRAMICA, against classical ICA meth- 

ods FastICA, 2 JADE, 3 and Infomax 4 with default settings. The im- 

2 https://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml 
3 https://sccn.ucsd.edu/ ∼arno/eeglab/auto/jader.html 
4 https://github.com/sunnysong14/ICA-RAMICA/blob/main/matlab/ICAs/ 

infomaxICA.m 

plementation of RAMICA in MATLAB has been released at https: 

//github.com/sunnysong14/ICA-RAMICA . The mode-wise ICA with 

a multilinear-mixing model (DTICA) cannot do BSS because it as- 

sumes only one source matrix, while the one with a multilinear- 

source model (MMICA) can only recover rank-one sources by de- 

sign. Therefore, both DTICA and MMICA will fail on this more gen- 

eral setting of BSS with data tensor input. 

BSS experiments were conducted on both synthetic and real 

data. For synthetic data, we generate column-wise source random 

vectors for mixing. With only column structural information syn- 

thesized, we expect cRAMICA to perform well whereas rRAMICA 

not. For real data, we linearly mix natural images and then recover 

them from their mixtures. Natural images are expected to have 

both row and column structural information. Hence, both rRAMICA 

and cRAMICA are expected to recover the sources to some extent. 

Which one does better could depend on whether row or column 

structure is stronger. 

For BSS performance measurement, we use the popular Amari 

error [37] calculated over the demixing matrices (i.e., the inverse 

of the mixing matrices). For convenience, we report Amari error 

values multiplied by 100 throughout this paper. We report the av- 

erage performance with standard deviations (std) over 100 repeti- 

tions for each experimental setting below. 

6.1. Blind source separation on synthetic data 

We first study how well RAMICA can recover sources from syn- 

thetic data tensor generated according to the column-wise RAMICA 

model (9) . 

6.1.1. Data generation 

To simulate column-wise structural information in each random 

vector s ∈ R Q , only its first component s 1 is randomly generated, 

while its other components have the following linear relationships 

with s 1 : 

s q = αs 1 + β(q − 1) , (33) 

where α ∼ N (1 , 1) (Gaussian distribution) and β ∼ U(0 , 1) (uni- 

form distribution) are randomly generated, and q ∈ { 2 , . . . , Q} . 
Thus, { s 1 , . . . , s Q } are dependent rather than independent and s is 
a column random vector with column structures. We consider the 

following four distributions that generate the first component of 

each source random vector s p ∈ R Q for p ∈ { 1 , . . . , P } : 

• P sn : Pearson distribution with zero mean, unit variance, unit 

skewness, and unit kurtosis. 
• St u : Student- t distribution with 5 freedom degrees. 
• Exp: Exponential distribution with λ = 1 . 
• Lap: Laplace distribution with μ = 0 and b = 1 / 

√ 
2 . 

Following the above generation, T samples of the pth random 

vector s p form the pth source image S p = [ s p (1) , . . . , s p (T )] ∈ R Q×T . 

Finally, stacking P source images along the first mode, we have the 

source tensor S = [ S 1 ; · · · ; S P ] ∈ R P×Q×T . Such sources are much 

more realistic/general than the restricted rank-one sources synthe- 

sized in MMICA [7] . Note although rank-one sources can be com- 

bined to produce low-rank (or high-rank) sources, there is great 

indeterminacy. 

In generating the mixing matrix A , we need to guarantee its in- 

vertibility. We generate A in three steps: (i) uniformly generate a 

P × P matrix with each entry between zero and one; (ii) normal- 

ize the generated matrix by column; (iii) add an identity matrix 

to the one in (ii). With S and A generated, we further generate X 

according to (9) . 
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Fig. 2. Illustration of blind source separation on synthetic data with column structures. The illustration opts for the default design factors except that the number of sources 

is 2 for easier visualization. Specifically, the first component of each source is generated by Student- t distribution with 5 degrees of freedom ( Stu ), the dimension of the 

source random vectors is 32, and the number of random samples is 64. 

Fig. 3. Effect of the noise level σ 2 for synthetic and real image BSS. Other factors for synthetic BSS use default settings. There are four 256 × 256 source images in the image 

BSS experiment. The average Amari errors over 100 repetitions are reported. The Infomax results in the image BSS are higher than the chosen upper limit so they are not 

visible. 

6.1.2. Design factors 

In simulations, we have the following design factors investi- 

gated with several choices: 

• D ∈{ P sn, Stu , Exp, Lap} : the distribution used to generate the 
(first components of) sources. 

• P ∈{ 2 , 4 , 8 , 16 } : the number of sources. 
• Q ∈{ 16 , 32 , 64 , 128 } : the dimension of the source random vec- 

tors. 
• T ∈{ 16 , 32 , 64 , 128 } : the number of random samples. 
• σ 2 ∈{ 0 , 0 . 01 , 0 . 02 , . . . , 0 . 1 , 0 . 15 , 0 . 2 } : the Gaussian noise level 

that is added to the observation as: 

X = A S + E , (34) 

where E denotes standard Gaussian noise v ec( E ) ∼ N ( 0 , σ 2 I ) . 

The default setting is noise-free. 

When studying one factor, we vary it with other factors fixed 

to their default settings in bold above. 

6.1.3. Results on synthetic data 

Fig. 2 depicts experimental results on synthetic sources with 

column structures. We show two synthetic source images with 

strong column structures in Fig. 2 (a). Their mixtures are omitted 

Table 2 

Effect of the underlying source distribution D for synthetic BSS. Other factors 

use default settings. Amari errors are reported and each entry is the mean ±std 

of 100 repetitions. The best (second-best) Amari errors are highlighted in bold 

( underline ). 

D Infomax FastICA JADE cRAMICA rRAMICA 

Psn 10.03 ±1.71 7.07 ±1.47 6.90 ±1.61 5.12 ±2.11 7.63 ±1.23 

Stu 9.35 ±1.48 6.48 ±1.41 6.33 ±1.44 4.45 ±2.09 6.88 ±1.39 

Exp 9.04 ±1.50 6.03 ±1.22 5.93 ±1.19 3.72 ±1.73 6.73 ±1.24 

Lap 9.29 ±1.44 6.37 ±1.42 6.22 ±1.37 4.12 ±1.82 6.60 ±1.19 

in this figure for a neater presentation. We highlight some col- 

umn structures using red boxes to facilitate observing their recov- 

ery visually. We show the BSS results of FastICA, JADE, Infomax, 

cRAMICA and rRAMICA in Fig. 2 (b)–(f), respectively. We can see 

that cRAMICA can recover column structures better than classical 

linear ICA algorithms, e.g., FastICA cannot recover the second syn- 

thetic source well (the middle red box). As expected, rRAMICA can 

not do the separation for such strong column structures. 

Next, we study the performance of synthetic data separation in 

a more systematical way. Tables 2–5 report the performance with 

varying D, P , Q and T , respectively. When varying one factor, de- 

8 
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Table 3 

Effect of the number of sources P for synthetic BSS as in Table 2 . 

P Infomax FastICA JADE cRAMICA rRAMICA 

2 1.97 ±0.65 1.51 ±0.53 1.47 ±0.54 0.88 ±0.77 1.42 ±0.33 

4 9.35 ±1.48 6.48 ±1.41 6.33 ±1.44 4.45 ±2.09 6.88 ±1.39 

8 36.6 ±4.29 25.4 ±5.07 24.5 ±4.53 20.9 ±5.53 26.7 ±3.92 

16 134.4 ±10.1 103.2 ±13.0 99.4 ±12.4 92.5 ±14.9 106.0 ±11.2 

Table 4 

Effect of the dimension of the source random vectors Q for synthetic BSS as in 

Table 2 . 

Q Infomax FastICA JADE cRAMICA rRAMICA 

16 8.80 ±1.63 6.56 ±1.72 6.33 ±1.68 4.29 ±2.20 6.76 ±1.43 

32 9.35 ±1.48 6.48 ±1.41 6.33 ±1.44 4.45 ±2.09 6.88 ±1.39 

64 9.79 ±1.50 6.37 ±1.17 6.28 ±1.28 4.58 ±2.09 6.92 ±1.29 

128 10.09 ±1.44 6.26 ±1.12 6.20 ±1.21 4.72 ±2.09 6.93 ±1.19 

Table 5 

Effect of the number of samples T for synthetic BSS as in Table 2 . The last row 

reports the improvement rate when we increase T from 16 to 128. 

T Infomax FastICA JADE cRAMICA rRAMICA 

16 10.81 ±1.69 7.59 ±1.66 7.42 ±1.58 6.51 ±2.36 8.01 ±1.24 

32 9.91 ±1.39 7.55 ±1.39 7.13 ±1.25 5.71 ±2.01 7.59 ±1.33 

64 9.35 ±1.48 6.48 ±1.41 6.33 ±1.44 4.45 ±2.09 6.88 ±1.39 

128 9.08 ±1.58 5.87 ±1.13 5.78 ±1.14 3.19 ±1.47 6.47 ±0.98 

↑ 16.00% 22.66% 22.10% 51.00% 19.26% 

fault settings were applied for other factors. The effect of each fac- 

tor are summarized below. 

Effect of D. From Table 2 , almost all of the methods get the 

best results on Exp but the worst results on P sn , indicating P sn is 

more challenging than Exp. Among the five ICA methods, cRAMICA 

consistently achieves the best performance, though this is expected 

due to the column-wise data tensor generation. In particular, cRAM- 

ICA improves over JADE (the second best) by 31 . 4% on average. On 

the other hand, it is not surprising that rRAMICA gives poorer re- 

sults. Nonetheless, real-world data often have both row-wise and 

column-wise structures so both rRAMICA and cRAMICA can be ef- 

fective and reveal different aspects of data. This will be confirmed 

in the real data experiments. 

Effect of P . From Table 3 , cRAMICA consistently achieves the 

best performance and outperforms others by a large margin. For 

example, cRAMICA outperforms JADE by 29.70% for P = 4 . rRAMICA 

is inferior to cRAMICA, but it outperforms Infomax. 

Effect of Q . In Table 4 , classical ICA methods perform differ- 

ently with respect to Q . Infomax performs similarly as RAMICA but 

FastICA and JADE achieve slightly better performance with increas- 

ing Q . Such difference could be due to the trade-off between the 

benefits of having more samples QT and the detriments of more 

dependent samples. The detriments dominate for Infomax but the 

benefits dominate for JADE and FastICA. 

Effect of T . From Table 5 , the performance of all of the meth- 

ods become better with the increasing of T , where the improve- 

ment of cRAMICA is the most significant (as shown in the last 

row in Table 5 ). The improvements for classical ICA methods are 

less significant because they have to compensate the detriments 

of more dependent samples. Though the benefits of larger sample 

size dominate, the detriments of more dependent samples reduce 

their improvement rate. Comparing the results in Tables 4 and 5 , 

we can also see that T has a larger effect on the performance of 

RAMICA than Q . 

Effect of σ 2 . In the last study on synthetic BSS, we examine the 

sensitivity of these ICA methods with respect to noise as shown in 

Fig. 3 (a). We can see that cRAMICA and rRAMICA have similar sen- 

sitivity to noise with JADE and FastICA. It may be because they are 

all based on the fourth-order cumulants. Infomax is the least sen- 

sitive to noise but it performs the worst in most cases. In addition, 

cRAMICA largely outperforms the others in this experiment. 

6.2. Blind image separation 

We further perform evaluations on real-world image data. Nat- 

ural image data tend to have structures in both row and column. 

Thus, both rRAMICA and cRAMICA should work to some extent. 

Which one performs better will depend on whether row or col- 

umn structure dominates. Next, we conduct real data experiments 

to verify this. 

6.2.1. Data 

Source images are taken from the Caltech256 repository [38] . 

We selected 4,424 images with strong higher-order statistics from 

the total 30,607 images for blind image separation experiments. All 

selected images are resized to a standard size of 256 × 256 with 

256 gray levels so Q = T = 256 . 

6.2.2. Experimental settings 

We repeat the following process 100 times: 

• Randomly select four source images ( P = 4 ). 
• Mix them using a mixing matrix randomly generated in the 

same way as in the synthetic study to produce four mixture im- 

ages according to (9) (equivalent to the classical ICA model (3) ). 
• Recover the sources from the four mixtures by ICA methods. 
• Compute the Amari errors accordingly. 

In addition, we add noise to the mixing process to do sensitivity 

study. The average Amari errors are reported. 

6.2.3. Image separation results 

Fig. 4 presents an example of blind image separation. For il- 

lustration, we show the four randomly selected source images in 

Fig. 4 (a) and their mixtures in Fig. 4 (b) for which the mixing ma- 

trix is generated randomly according to Eq. (9) and they do not 

suffer from data noise. We also show the performance of Fas- 

tICA, JADE, Infomax, cRAMICA and rRAMICA in Fig. 4 (c)–(g), respec- 

tively. From the results, we can see that cRAMICA has achieved the 

best separation with the best (smallest) Amari error. FastICA and 

JADE also separated the source images well, while Infomax has the 

worst separation with the largest Amari error. 

Next, we study the performance of blind image separation in 

a more systematic way. Fig. 3 (b) shows the recovery performance 

across different noise levels. The results of Infomax are above the 

chosen upper limit in the figure (for clarity) so they are not visible 

there. We can see that both rRAMICA and cRAMICA can obtain bet- 

ter BSS performance than the other methods when the noise level 

is below 0.1. This confirms that real-world images contain both row 

and column structures and both rRAMICA and cRAMICA have their 

merits. Furthermore, cRAMICA outperforms the other methods by a 

large margin in the noise-free case. And this margin reduces as the 

noise level increases. The observation that cRAMICA outperforms 

rRAMICA indicates that the column structure is stronger than the 

row structure on the whole for the selected Caltech256 images. 

In addition, we also study and report the Signal to Interference- 

plus-Noise Ratio (SINR) loss to measure the performance of real 

image BSS in the noisy scenario [39] . The mean SINR loss of each 

ICA method across 100 repetitions is reported in Table 6 , and a 

smaller value means better performance. Both cRAMICA and rRAM- 

ICA can obtain better SINR than other methods at different noise 

levels, being consistent with the performance comparison in terms 

of the Amari error. 
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Fig. 4. Examples of source images, mixture images and recovered images by ICA methods for the blind image separation problem. 

Table 6 

Performance of real image BSS in terms of the SINR loss metric. Each value is the average SINR losses over 100 repetitions. 

The best performed values are highlighted in bold. 

Noise Level 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 

FastICA 81.35 34.78 20.77 14.27 10.62 8.25 6.73 5.61 4.80 4.19 2.41 1.71 

JADE 78.73 33.23 19.65 13.41 9.94 7.76 6.29 5.25 4.47 3.87 2.24 1.53 

Infomax 109.58 53.11 34.39 25.09 19.55 15.88 13.28 11.34 9.84 8.66 5.17 3.51 

cRAMICA 73.24 30.45 17.85 12.12 8.94 6.96 5.63 4.69 3.99 3.45 1.99 1.37 

rRAMICA 75.20 31.40 18.48 12.58 9.30 7.25 5.87 4.89 4.16 3.60 2.08 1.43 

Fig. 5. Average running time comparison on the blind image separation task. 

6.2.4. Computational efficiency 

Finally, we compare the computational efficiency on this blind 

image separation task. Fig. 5 shows the average running time of 

the four ICA algorithms averaged over 100 runs (using MATLAB 

R2021b on Ubuntu 18.04). With its efficient implementation, JADE 

is the fastest with an average running time of 0.01s. RAMICA is 

only slightly slower with an average running time of 0.015s. In 

contrast, FastICA and Infomax have an average running time of 

0.117s and 1.73s, respectively. 

7. Conclusion 

This paper proposed a new ICA method RAMICA for BSS with 

data tensor input. It differs from the classical vectorization-based 

approach and more recent mode-wise approach by dealing with 

data tensor directly, without vectorization or unfolding. Thus, it 

can do more general BSS while preserving structural information. 

We build RAMICA based on random matrix modeling with two 

versions: row-wise and column-wise. By defining new statistics of 

random matrix, we develop a two-step RAMICA algorithm with a 

new cumulant operator and the Jacobi method. Experimental re- 

sults on both synthetic and real image BSS showed that RAMICA 

outperformed competing ICA methods greatly in BSS on data ten- 

sor, with its two versions having their respective merits. Future 

directions include extensions of the proposed approach to faster, 

more robust algorithms, and random-matrix-based machine learn- 

ing and tensor analysis. 
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