
This is a repository copy of Direct ICA on data tensor via random matrix modeling.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/184123/

Article:

Song, L., Zhou, S. orcid.org/0000-0002-8069-2814 and Lu, H. (2022) Direct ICA on data 
tensor via random matrix modeling. Signal Processing, 196. 108508. ISSN 0165-1684 

https://doi.org/10.1016/j.sigpro.2022.108508

© 2022 Elsevier B.V. This is an author produced version of a paper subsequently 
published in Signal Processing. Uploaded in accordance with the publisher's self-archiving
policy. Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Direct ICA on Data Tensor via Random Matrix

Modeling

Liyan Songa,b, Shuo Zhouc, Haiping Luc,∗

aGuangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,

Department of Computer Science and Engineering, Southern University of Science and

Technology, Shenzhen 518055, China.
bResearch Institute of Trustworthy Autonomous Systems, Southern University of Science

and Technology, Shenzhen 518055, China.
cDepartment of Computer Science, University of Sheffield, Sheffield S1 4DP, United

Kingdom.

Abstract

Independent component analysis (ICA) is a fundamental method for blind source

separation (BSS). Classical ICA takes data matrix input formed by vector data.

This paper focuses on ICA for BSS with third-order data tensor input formed

by matrix data, such as 2D images. Two approaches exist for this problem. The

first reshapes each matrix into a vector to apply classical ICA, with structural

information lost. The second approach unfolds a data tensor into a data matrix

along different modes to perform classical ICA mode-wise, which partially pre-

serves structures but has strong or ill BSS assumptions. This paper proposes

a third approach via RAndom Matrix ICA (RAMICA) modeling. RAMICA

works on data tensor directly, without vectorization or unfolding, and preserves

row or column structures under more general BSS assumptions. We develop

the RAMICA model, algorithm, and related theories via defining new statistics

for random matrices and new procedures for whitening and independent com-

ponent estimation. We study the identifiability, higher-order extension, and

relationships with existing methods. Experiments on both synthetic and real

data show superior BSS performance of RAMICA over competing methods and
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offer insights on the trade-offs between different factors.

Keywords: Blind source separation, independent component analysis, tensor.

1. Introduction

Blind source separation (BSS) [1] assumes that observed data are generated

from unknown latent sources, and aims to recover these sources from the ob-

servations only. Independent component analysis (ICA) [2] is a fundamental

method for BSS. Classical ICA methods treat P sources as random variables,

and assume they are mutually independent and linearly mixed to produce M

observations {xm} as:

xm = am1s1 + · · ·+ amP sP , (1)

where random variables are underlined, xm is the mth observation, s1, · · · , sP
are the latent sources named as independent components (ICs), and am1, · · · , amP

are mixing coefficients. Stacking random variables into vectors, the vector-

matrix notation of (1) is:

x = As ∈ R
M , (2)

where x = [x1, · · · , xM ]⊤ and s = [s1, · · · , sP ]⊤ are observation (mixture) and

source random vectors, and A = {amp} ∈ R
M×P is the unknown constant

matrix, namely mixing matrix. It is usually assumed that M = P so that

A ∈ R
P×P is square, which we follow hereafter. Considering T available samples

of observations x (sources s), align all samples in column to form the data matrix

X (source matrix S). We can then write the ICA model in X and S as:

X = AS ∈ R
P×T . (3)

In other words, X contains T samples x(1), · · · ,x(T ) of random vector x in

column, and S contains T samples1 of random vector s in column. ICA aims

1In this paper, the term ‘sample’ refers to samples of random variables, and the number

of observations (P ) is the number of data samples/examples in typical machine learning

terminology.
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(a) Data tensor (b) Linear ICA

(c) Proposed ICA (d) Mode-wise ICA

Figure 1: Given a P × Q × T data tensor in (a), classical linear ICA vectorizes each image

mixture into a long row vector and stacks them into a P ×QT data matrix as in (b) for source

recovery. Mode-wise ICA models, such as DTICA [4, 5] and MMICA [6], unfold the data

tensor along an image (column or row) mode, to obtain a T × PQ (or Q× PT ) data matrix

as in (d), on which to apply classical ICA (twice). The proposed RAMICA model deals with

the data tensor directly without vectorization or unfolding as in (c).

to estimate the source matrix S and the mixing matrix A simultaneously with

data matrix X as the only input [3].

Real-world data are often matrices or even higher-order tensors, such as

multichannel electroencephalography (EEG) signals, images, videos, or social

networks [7]. In such cases, all observed data of a particular problem form a

data tensor X with their natural multidimensional structures. All observed

matrix data form a third-order data tensor, while all observed Nth-order tensor

form an (N +1)th-order data tensor. We can view such data tensor as stacking
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all data along a particular dimension (the first ‘mode’ by default). This paper

focuses on ICA for such data tensor input. For convenience of discussion, we

consider stacking P 2D images of size Q × T into a third-order data tensor of

size P ×Q× T . Figure 1(a) shows the stacking of images into a data tensor.

There are two existing ICA approaches for data tensor input. The first

classical approach is a linear one, which vectorizes (reshapes) images into vectors

so that we can apply classical ICA methods such as FastICA [8], JADE [9], or

Infomax [10]. Equivalently, we can view this vectorization process as unfolding

the data tensor of size P×Q×T into a data matrix of size P×QT along the first

mode, as shown in Fig. 1(b). The sources can be recovered as vectors first and

then folded (reshaped) back to images (matrices). However, the vectorization

breaks the original structure and leads to high-dimensional vectors, imposing

significant theoretical and computational challenges. There are some other ICA

variations [11, 12, 13] where more complicated data inputs are considered (e.g.,

images with known forming factors), but images are still represented as vectors

and they degenerate to classical ICA under basic (simplified) settings [6].

The second approach is to do mode-wise (linear) ICA to partially pre-

serve structural information and explore computational benefits (as shown in

Fig. 1(d)), where the data tensor is unfolded along each of the original image

dimensions (image row or column) into data matrices of size Q×PT and T×PQ

to apply classical ICA. This brings an additional issue of mixing modeling, with

two ways summarized below.

The first way of modeling in mode-wise ICA is a multilinear-mixing model as

in directional tensor ICA (DTICA) [4, 5], where an image mixture is generated

by one source matrix and two mode-wise mixing matrices (one for each mode).

DTICA forms row and column directional images by shifting the rows/columns

and then estimates two mixing matrices by mode-wise FastICA. Similarly, Virta

et al. [14, 15] generalize JADE and FOBI [16] to mode-wise versions for data

tensor input, using multiple mode-wise mixing matrices to mix one latent ten-

sor. Such multilinear-mixing models have an inherent limitation. They cannot

do BSS to recover multiple matrix/tensor sources since they model a single
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source/tensor matrix only, which is hard to interpret in a BSS context.

The second way of modeling in mode-wise ICA is a multilinear-source model

as in multilinear mode-wise ICA (MMICA) [6], where an image mixture is gen-

erated by two mode-wise source matrices via a multilinear mixing matrix. This

model resembles the mixing model (1) more closely. However, it assumes the

sources are rank one and constructed by mode-wise source matrices. Thus, al-

though MMICA can do BSS, it can only recover rank-one sources due to its

strong assumptions.

This paper proposes a new, third approach for ICA with data tensor input.

Different from all existing works, we aim to recover general (not only rank-one)

sources as the first approach can do while preserving multidimensional struc-

ture as the second approach. We do so by working with the original data tensor

directly as shown in Fig. 1(c), without vectorization or unfolding. We develop

our new method by considering random matrix in modeling so we name it RAn-

dom Matrix ICA (RAMICA). In the RAMICA model, a random matrix consists

of multiple random vectors. It assumes observed image data are generated by

mixing source images with row-wise or column-wise structures. We make three

major contributions in developing this RAMICA model and deriving the RAM-

ICA algorithm:

1. With random matrix modeling, we propose RAMICA, a new ICA ap-

proach for data tensor input that deals with data tensor directly without

vectorization or unfolding. Thus, RAMICA preserves multidimensional

structure and can recover general source matrices in BSS.

2. We define new statistics of random matrix including covariance matrix,

white matrix, independence, and higher-order cumulants, as the basis for

developing RAMICA for data tensor input.

3. We formulate the RAMICA objective function by introducing a whitening

step for a respective whitened random matrix and a new cumulant operator

for random matrices. Then we derive a new RAMICA algorithm to recover

source matrices with the Jacobi method.
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The rest of the paper is organized as follows. Section 2 offers a brief overview

of notation and technical preliminaries. Section 3 formulates the proposed

RAMICA model and Section 4 derives the proposed RAMICA algorithms. Sec-

tion 5 discusses identifiablity and uniqueness, higher-order extensions, relation-

ship to other methods, computational and memory cost, and the significance.

Section 6 reports our numerical studies on both synthetic and real data. Finally,

Section 7 draws conclusions.

2. Preliminaries

2.1. Notation

Table 1 lists the symbols used for easy reference. Constants are in normal

fonts, and random variables are underlined. Scalars, vectors, matrices, and

tensors are denoted by lowercase, lowercase boldface, uppercase boldface, and

bold calligraphic letters e.g., x, x, X, and X for constant variables, and x, x,

X, and X for random variables.

2.2. Random vector and cumulants

A random vector is a vector of random variables x = [x1, · · · , xQ]
⊤. Its

expectation is a vector E(x) = [E(x1), · · · , E(xQ)]
⊤. Its covariance matrix is

Σ(x) =




σ2(x1) · · · cov(x1, xQ)
...

...

cov(xQ, x1) · · · σ2(xQ)


 , (4)

where cov(xi, xj) is the covariance of xi and xj , and σ2(xi) is the variance of

xi. If x1, · · · , xQ are mutually independent, x has independent components, and

Σ(x) becomes diagonal. E(x) and Σ(x) are the first and second order cumulants

of x. Higher-order cumulants with order r ≥ 3 are denoted by [Qr(x)]i1···ir or

cum(xi1 , · · · , xir ), where i1, · · · , ir are the mode-wise indices.

Cumulants of a random vector x have the following four properties:

• symmetry : [Qr(x)]i1···ir = [Qr(x)]iσ(1)···iσ(r)
for any permutation σ(·);
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Table 1: Symbols with descriptions and types, sorted alphabetically.

Symbol Description Type

A Mixing matrix constant matrix

cum(· · · ) Conventional rth order cumulant tensor of random vector x statistic operator

c̃um(· · · ) New rth order cumulant tensor of random matrix X statistic operator

FX(·) New cumulant operator statistic operator

Kr(xp) c̃um(xp, · · · ,xp), a special Q̃r(X) statistic operator

M Number of observations constant scalar

P Number of sources constant scalar

Q̃r(X) c̃um(xi1
, · · · ,xir ) statistic operator

Qr(x) cum(xi1
, · · · , xir ) statistic operator

r Order of higher-order cumulants constant scalar

S Source data tensor constant tensor

S Source data matrix constant matrix

S Source random matrix random matrix

S(t) tth sample of S constant matrix

s Source random vector random vector

sp pth source vector random vector

sp pth source scalar random scalar

s(t) tth sample of s constant vector

Σ̃(X) New covariance matrix of random matrix X statistic operator

Σ(x) Conventional covariance matrix of random vector x statistic operator

T Number of random samples constant scalar

U Whitened mixing matrix constant matrix

W Whitening matrix constant matrix

X Observation data tensor constant tensor

X Observation data matrix constant matrix

X Original observation random matrix random matrix

X̂ Whitened observation random matrix random matrix

X(t) tth sample of X constant matrix

x Observation random vector random vector

xm mth observation vector random vector

xm mth observation scalar random scalar

x(t) tth sample of x constant vector

• linearity : cum(x1, · · · , xi+y, · · · , xr) = cum(x1, · · · , xi, · · · , xr)+cum(x1,

· · · , y, · · · , xr) and cum(x1, · · · , α xi, · · · , xr) = α cum(x1, · · · , xi, · · · , xr)

for any random variable y and constant α;

• independence : if ∃p, q ∈ {1, · · · , r} where xip and xiq are independent,

then [Qr(x)]i1···ir = 0;
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• vanishing Gaussian : if x is Gaussian, [Qr(x)]i1···ir = 0 for any order

r ≥ 3.

2.3. ICA steps and tensor mode-1 product

ICA has three standard steps.

1. Centering : remove the first-order statistics from the data by shifting the

sample mean to the origin.

2. Whitening : remove the second-order statistics from the data to obtain

whitened variables. Here, the second-order statistics and the whitening

process need to be redefined for the proposed model.

3. IC Estimation: use higher-order statistics of the data to estimate ICs. It

is the core step of ICA, and different methods do it differently.

The mode-1 product of a third-order tensor A ∈ R
I1×I2×I3 by a matrix

U ∈ R
Jn×In , denoted by A×1 U, is a tensor with entries [17, 18]:

(A×1 U)j1i2i3 =
∑

i1

Ai1i2i3 ·Uj1i1 . (5)

3. A Random Matrix Model for ICA

3.1. RAMICA model and assumptions

First, we view ICA from a random matrix perspective. A random matrix is

a matrix of random variables X = [xij ] ∈ R
P×Q and its expectation matrix is

E(X) = [E(xij)] ∈ R
P×Q. Traditionally, its covariance matrix is defined as

Σ(X) := Σ(vec(X)) ∈ R
(PQ)×(PQ), (6)

where vec(·) is the vectorization operator [19, 20, 21], and its higher-order cu-

mulants are defined via vectorizing the random matrix to the random vector.

Thus, the independence of random matrix involves the independence of all el-

ements. Equivalently, these definitions treat random matrix as its vectorized

version, without considering any structural information.
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Here, we follow (1), (2), and (3) in classical ICA. Instead of (1), we have M

mixtures x1, · · · ,xM ∈ R
Q of P random vector sources (ICs) as:

xm = am1s1 + · · ·+ amP sP , (7)

where xm is the mth mixture random vector, s1, · · · , sP are the independent

source random vectors, and am1, · · · , amP are mixing coefficients. Again, we as-

sume M = P . Stacking P random vectors {xm} and {sp} into random matrices

along the first mode respectively, we obtain the observation (mixture) matrix

X =
[
x1, · · · ,xP

]⊤ ∈ R
P×Q, and the source matrix S =

[
s1, · · · , sP

]⊤ ∈ R
P×Q.

We have the full matrix notation version of (7) instead of (2) below:

X = AS, (8)

where A ∈ R
P×P is the mixing matrix and assumed to be full-rank. With T

samples of such random matrices, we form the data tensor X and source tensor

S of size P ×Q×T . Then we can write RAMICA model in data tensors X and

S instead of (3) as

X = S ×1 A, (9)

where ×1 denotes the mode-1 multiplication of a tensor by a matrix as defined

in (5). We can view (9) as a partial Tucker decomposition [22].

The RAMICA objective is to estimate the source tensor S and mixing matrix

A given the data tensor X only. Figure 1(c) shows this RAMICA model for

data tensor, which is viewed along the third mode (instead of the first mode of

stacking) as T samples of the random matrix X, i.e. X(1), · · · ,X(T ).

Remark. Note that (7), (8), and (9) in RAMICA correspond to (1), (2), and

(3) in classical ICA, respectively. When Q = 1, the RAMICA model degenerates

to the classical ICA model. Thus, RAMICA is a natural second-order gener-

alization of classical ICA, without vectorization or unfolding. A key difference

between (7) and (1) is that while s1, · · · , sP are independent, the components

of each source random vector sp can be dependent and encode structural infor-
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mation. This allows structural information to be better preserved in RAMICA

than in classical ICA.

To derive RAMICA algorithm, we make three assumptions analogous to

classical ICA [23]:

1. The expectation of mixture or source matrix is zero, i.e. E(S) = E(X) =

0P×Q. A centering process will be performed if the input data are not

centered.

2. The covariance matrix of the source random matrix is an identity matrix.

Note the definition in (6) is equivalent to vectorizing X, leading to the

first, vectorization-based ICA approach. Thus, we need new definitions of

related statistics for random matrix to embody structural information.

3. At most one independent random vector from {sp} has multivariate Gaus-

sian distribution.

3.2. New statistics of random matrix

We define new statistics for RAMICA via tensor contraction. On its basis,

we subsequently define the white random matrix and the whitened RAMICA

model.

Definition 1. The contracted covariance matrix of a zero-mean random

matrix X =
[
x1, · · · ,xP

]⊤ ∈ R
P×Q is defined as:

Σ̃(X) =
1

Q
E[XX⊤] ∈ R

P×P . (10)

Each element of Σ̃(X) is the covariance of two corresponding random vectors:

[Σ̃(X)]ij = c̃ov(xi,xj) =
1

Q

Q∑

q=1

cov(xiq, xjq), (11)

where cov(·, ·) is the conventional covariance.

Definition 2. Given a zero-mean random matrix X =
[
x1, · · · ,xP

]⊤ ∈ R
P×Q,

its contracted cumulant of order r ≥ 3 denoted by [Q̃r(X)]i1···ir or c̃um(xi1 ,

· · · ,xir ) is:

[Q̃r(X)]i1···ir =
1

Q

Q∑

q=1

cum(xi1q, · · · , xirq), (12)
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where i1, · · · , ir ∈ {1, · · · , P}, and cum(·) is the conventional cumulant of a

random vector. In particular, we denote a special case

Kr(xp) = c̃um(xp, · · · ,xp
︸ ︷︷ ︸
(r times)

). (13)

Lemma 1. The newly defined cumulants for random matrix X =
[
x1, · · · ,xP

]⊤ ∈
R

P×Q satisfies the properties of conventional cumulants for random vectors: (1)

symmetry, (2) linearity, (3) independence, and (4) vanishing Gaussian.

Proof. This lemma can be obtained by using the corresponding properties of

cumulants for random vector in Sec. 2.2 multiple times and do a final average

operation as denoted in (12).

Definition 3. A random matrix X =
[
x1, · · · ,xP

]⊤ ∈ R
P×Q is independent

if the conditional distribution of xi given xj = x does not depend on xj (i.e. xi

and xj are mutually independent):

fxi|xj (xi|xj) = fxi(xi). (14)

Using these new statistics defined for random matrix, we can derive our

RAMICA algorithm.

3.3. Alternative forms of the RAMICA model

Given P images of size R×C (R rows and C columns), we can form a data

tensor X ∈ R
P×Q×T in (9) in two ways:

• Row-wise RAMICA (rRAMICA): each image row is treated as a random

vector in R
C and all the R rows are considered R samples of this random

vector so Q = C and T = R.

• Column-wise RAMICA (cRAMICA): each image column is treated as a

random vector in R
R and all the C columns are considered C samples of

this random vector so Q = R and T = C.
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Thus, rRAMICA and cRAMICA consider row and column structural informa-

tion of image data, respectively. Real-world image data often have structures

in both rows and columns so both rRAMICA and cRAMICA can be effective.

For example, in the real image BSS experiments in Sec. 6.2, we know both row

and column structures present in most real images and the results in Fig. 2(b)

indeed show that both versions lead to improvement in the noiseless and low

noise settings.

These two versions of RAMICA capture different aspects of data, which

can offer alternative explanations of the data. If we use RAMICA as a feature

extractor, we can combine both versions to provide complementary features.

If we have to choose one from the two, a model selection problem arises.

We can consider this choice as a hyper-parameter and determine it based on

prior knowledge of the data, cross validation, or other statistical model selection

strategies, e.g., picking the one with a higher kurtosis.

For convenience of discussion, when we talk about RAMICA, we refer to

cRAMICA unless specified explicitly.

4. The RAMICA Algorithm

Given zero-mean input, the RAMICA algorithm has two steps, i.e., whiten-

ing and IC estimation.

4.1. RAMICA whitening

Definition 4. A random matrix X =
[
x1, · · · ,xP

]⊤ ∈ R
P×Q is contracted

white if its covariance matrix is an identity matrix:

Σ̃(X) = IP×P . (15)

Therefore, the contracted whitening step of the RAMICA model (8) is to

find a matrix W such that Σ̃(WX) = IP×P .

Theorem 1. For the RAMICA model (8), let W denote any inverse square

root of Σ̃(X), i.e. [Σ̃(X)]−1/2. Then W is the whitening matrix and WX is

white. Literally, any square-root of the covariance matrix is a whitening matrix.
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Proof. Perform singular value decomposition (SVD) on the mixing matrix A =

EDV, where E and V are orthogonal, and D is diagonal. Compute the covari-

ance matrix of X using the above decomposition:

Σ̃(X) =
1

Q
E[EDVSS⊤V⊤DE⊤] = ED2E⊤. (16)

The second equality is due to Assumption 2 of RAMICA and orthogonality of

V. Denote by M ∈ R
P×P any orthogonal matrix, then according to [24], W

can be written as:

W = MD−1E⊤ ∈ R
P×P . (17)

Next, we calculate the covariance matrix of WX as

Σ̃(WX) =
1

Q
E[MD−1ETXX⊤ED−1M⊤]

= MD−1E⊤[Σ(X)]ED−1M⊤

= MD−1E⊤[ED2E⊤]ED−1M⊤

= IP×P . (18)

Therefore, we have proved thatWX is white andW is the whitening matrix.

Similar to classical ICA, we can conduct eigenvalue decomposition on the

covariance matrix as

Σ̃(X) = EΛE⊤, (19)

where E = [e1, · · · , eP ] has the unit-norm eigenvectors as columns, and the

diagonal matrix Λ consists of the eigenvalues. According to Theorem 1, the

whitening matrix is

W = Λ−1/2E⊤. (20)

After RAMICA whitening, we have WX = WAS = US. Since Σ̃(WX) =

IP×P = UΣ̃(S)U⊤ = UU⊤, U is orthogonal. The whitened RAMICA model

can be rewritten as

X̂ = US, (21)

where X̂ is the whitened random matrix, U is the whitened mixing matrix.
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Lemma 2. Given the whitened RAMICA model (21), the fourth-order cumu-

lants of (whitened) X̂ satisfy:

[Q̃4(X̂)]ijkl =
∑

p

uipujpukpulpK4(sp), ∀i, j, k, l ∈ {1, · · · , P}. (22)

Proof. Calculate the fourth-order cumulants according to Lemma 1. We have:

[Q̃4(X̂)]ijkl = cum(
∑

p

uipsp,
∑

p′

ujp′sp′ ,
∑

q

ukqsq,
∑

q′

ulq′sq′)

=
∑

p,p′,q,q′

uipujp′ukqulq′cum(sp, sp′ , sq, sq′). (23)

Due to the independence of {ŝp}, only those products with p = p′ = q = q′ are

nonzero. Therefore, we have proved that

[Q̃4(X̂)]ijkl =
∑

p

uipujpukpulpK4(sp). (24)

4.2. RAMICA IC estimation

It is difficult to recover sources directly from cumulants. Instead, we can

convert the BSS problem to a matrix diagonalization problem as in JADE [9],

via a cumulant-based mapping of the whitened mixing matrix U. To do this,

we firstly define a new cumulant operator.

Definition 5. Given the whitened RAMICA model (21), the cumulant op-

erator F
X̂

is defined by the fourth-order cumulant tensor Q̃4(X̂) of random

matrix X̂ as:

F
X̂
:M∈R

P×P 7→ [F
X̂
(M)]ij=

∑

k,l

mkl[Q̃4(X̂)]ijkl∈R
P×P . (25)

Lemma 3. Given the whitened RAMICA model (21), the cumulant operator

F
X̂

satisfies:

[F
X̂
(M)]

ij
=

∑

p

uipujpK4(sp)
∑

k,l

mklukpulp, ∀i, j ∈ {1, · · · , P}. (26)
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Proof. This lemma can be proved by substituting cumulants [Q4(X̂)]ijkl in (25)

by the derived (22) of Lemma 2.

Theorem 2. Given the whitened model (21), the matrix [U⊤
F (M)U] is diag-

onal for ∀M ∈ R
P×P .

Proof. According to matrix multiplication rules and Lemma 3, we know for

∀i, j ∈ {1, · · · , P}:

[U⊤
F

X̂
(M)U]ij =

∑

p,q

upiuqj [FX̂
(M)]pq (27)

=
∑

p,q

upiuqj

∑

m

upmuqmK4(sm)
∑

k,l

mklukmulm

=
∑

m

K4(sm)
∑

k,l

mklukmulm

∑

p

upiupm

∑

q

uqjuqm.

Since U is orthogonal, we have

[U⊤
F

X̂
(M)U]ij =

∑

m

K4(sm)
∑

k,l

mklukmulmδimδjm. (28)

Only those products with i = j = m are nonzero. Thus, we have

[U⊤
F

X̂
(M)U]

ij
=





0, if i 6= j

K4(si)
∑

k,l mklukiuli, if i = j.
(29)

Therefore, we have proved the diagonality of U⊤
F (M)U.

4.3. RAMICA objective

Theorem 2 reveals the connection between the whitened RAMICAmodel (21)

and F
X̂
(M). We can take a set of matrices Mi and make the matrix set

{U⊤
F

X̂
(Mi)U} as diagonal as possible for BSS. In practice, they cannot be

made exactly diagonal because the model does not hold exactly and there

are sampling errors. In fact, the diagonality of a symmetric matrix Q =

U⊤
F

X̂
(M)U can be measured by the sum of the squares of off-diagonal entries:

∑
i 6=j q

2
ij [25]. Since for a given matrix F

X̂
(M), the square sum over all elements

of the matrix is preserved under an orthogonal transformation, minimizing the

sum of squares of off-diagonal elements is equivalent to maximizing the sum of

15



squares of diagonal elements [26]. We formulate our objective function based

on this property. For a set of basis matrix {Mi ∈ R
P×P }, we maximize the

following objective function with respect to orthogonal matrix U:

∑

i

||diag(U⊤
F

X̂
(Mi)U)||2, (30)

where ||diag(·)||2 denotes the sum of squares of the diagonal elements. In this

paper, we use the standard basis of RP×P , i.e. {Eij = eie
⊤
j }Pi,j=1, which can

reduce computational cost significantly.

Algorithm 1 Random Matrix Modeling ICA (RAMICA)

1: Input: a zero-mean data tensor X ∈ R
P×Q×T . The last dimension contains the samples.

2: Contracted whitening: viewing X as T samples of X, compute the sample estimate of

the whitening matrix W according to Theorem 1, and compute the whitened data tensor:

X ×1 W.

3: Construct the contracted cumulant tensor by (12).

4: Construct cumulant matrices {F
X̂
(Eij)} according to (25) for ∀i, j ∈ {1, · · ·P}.

5: Align the above matrices to form the matrix M = [F
X̂
(E11), · · · ,F

X̂
(EPP )].

6: Apply Jacobi method to M to get rotation matrices.

7: Get U−1 by multiplying the rotation matrices.

8: Compute A−1 = U−1W, and A = (A−1)−1.

9: Compute S = X ×1 A−1.

10: Output: mixing matrix A and source tensor S.

4.4. RAMICA optimization

Similar to JADE, we apply Jacobi method to optimize (30) to compute

the whitened mixing matrix U. Specifically, to use the Jacobi method, we

first align the set of matrices {F (Eij)}Pi,j=1 into an extended matrix M =

[F (E11), · · · ,F (EPP )]. Then, we apply the Jacobi method on M to conduct

a series of Jacobi rotations, each of which handles two rows and two columns

at a time [27]. After this, we obtain U−1 by multiplying the rotation matri-

ces. Subsequently, we get A from A−1 = U−1W. The RAMICA algorithm

is summarized in Algorithm 1, where we view X as T samples of X to obtain

sample-based estimates of various statistics. The theoretical properties of the
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newly defined cumulant can be extended to such empirical estimations following

[23, §2.7].

5. Discussions

5.1. Identifiability and uniqueness

In our RAMICA formulation, the mixing matrix A in (8) plays exactly the

same role as the mixing matrix A in (2) of classical ICA. The cumulant operator

in Definition 5 maps the fourth-order cumulants of (whitened) mixture X̂ to a

P×P matrix in (5). This contraction operates on the tensor observation data to

reduce the RAMICA problem to JADE. Thus, the RAMICA objective function

(30) is similar to the objective function in JADE [9] and theoretical results on

JADE can be similarly applied here.

Miettinen et al. [28] have proved that the joint diagonalization procedure

achieves mixing matrix recovery for the identifiable case of at most one Gaussian

source in Theorems 8 and 9 of their paper. These theorems help establish that

the same joint diagonalization procedure in our proposed RAMICA can recover

the mixing matrix when there is at most one Gaussian source and the contraction

operation via Q̃4(·) does not lead to an ICA instance with all Gaussian sources.

Note however that the mixing matrix can be identified only up to the order

and signs (independent components are not ordered as in principal components).

Therefore, if V⊤
F

X̂
(Mi)V is diagonal for all M under the RAMICA formula-

tion, we will get a V that is equivalent to U only up to the order (permutation)

and signs.

5.2. Higher-order extensions

RAMICA can be extended to higher-order tensors by extending random

matrix modeling to random tensor modeling, and tensor contraction over one

mode to over multiple modes. For instance, given a fourth order tensor X̃ of

size P ×Q×R× T formed by stacking P tensors of size Q×R× T , the mixing
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model in (7) can be extended to M = P mixtures X1, · · · ,XM ∈ R
Q×R of P

random matrix sources (ICs) as:

Xm = am1S1 + · · ·+ amPSP . (31)

Respectively, (8) becomes

X = S ×1 A. (32)

We can then view X̃ as T samples of random tensors with size P ×Q×R. We

can subsequently define mode-wise covariance matrices and cumulant for mode

1, now with summation over Q and R instead of just Q. Given P third-order

tensors, we will have three (instead of two) ways of forming a fourth-order data

tensor: i.e., treating its mode-n slice (n ∈ {2, 3, 4}) as a random matrix. Further

extensions (e.g., to fifth-order tensor of P × Q × R × S × T ) can be similarly

formulated.

5.3. Relationship to existing methods

5.3.1. Differences with existing tensor-based ICA

The covariance matrix and cumulant of RAMICA have the sizes of P × P

and P r respectively, while their linear (vectorization-based) counterparts (of

JADE) have much larger sizes of PQ×PQ and (PQ)r (typically r = 4 in ICA).

Thus, they have much smaller computational and memory footprints than its

linear counterparts. In terms of source separation capability, RAMICA captures

structural information better than classical ICA, and lifts the restriction of

rank-one sources in MMICA, while being superior over DTICA’s single source

assumption that is hard to interpret and unable to do source separation.

5.3.2. Connection to ISA

Independent subspace analysis (ISA) [29, 30], a.k.a. group ICA or subspace

ICA, is a generalization of ICA, which assumes some random (scalar) sources

are mutually dependent, but the dependencies among the sources of different

groups are minimized. In this sense, it shares similarity with RAMICA by view-

ing these dependent sources as random vector sources. However, the ways of
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RAMICA and ISA in modeling and solving the problems are essentially differ-

ent. ISA arises from the relaxation of ICA assumptions by restricting its mixing

matrix, and is often solved by first preprocessing the mixtures by an classical

ICA algorithm and then grouping the estimated components with highest de-

pendence. In contrast, RAMICA is a generalization of classical ICA designed

from a random matrix formulation with a natural interpretation and our mixing

matrix is general, as in the classical ICA.

5.3.3. Connection to IVA

Independent vector analysis (IVA) [31, 32] is another generalization of ICA

to multiple datasets. IVA takes K data matrices as input and assumes that

the kth data matrix is obtained by linearly mixing rows of the kth source ma-

trix through the kth mixing matrix. Thus, there are K related ICA problems.

IVA and RAMICA both take multiple data matrices as the input and make

similar independence assumptions. However, IVA considers each data matrix

as a dataset but RAMICA considers it as a sample of a dataset. Therefore,

IVA estimates K mixing matrices but RAMIC estimates only one mixing ma-

trix. RAMICA can be extended to deal with multiple matrix/tensor datasets

following IVA.

5.4. Computational and memory cost

The covariance matrix and cumulant of RAMICA have sizes of P×P and P r

respectively, which aremuch smaller than the sizes of their linear (vectorization-

based) counterparts, PQ × PQ and (PQ)r respectively. Thus, the covariance

matrix and cumulant of RAMICA have much smaller computational and mem-

ory cost than its linear counterparts. For example, in the BSS experiments on

256 × 256 gray-level images (Sec. 6.2), the average running time (in second)

over 100 runs with noise level 0.01 was 0.05450 and 0.00132 for JADE and

RAMICIA, respectively. This confirms the superior computational efficiency of

RAMICA over its vectorization-based counterpart.
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Moreover, although computing higher-order statistics like cumulants is com-

putationally expensive in general, most of the computations in RAMICA can be

parallelized to improve the scalability, benefiting from the tensor-based formu-

lation. This is particularly advantageous with the wide availability of parallel

computing.

5.5. Potential significance of RAMICA

Direct ICA on data tensor is a technically challenging problem without much

success before this work. RAMICA provides theoretical/conceptual contribu-

tions in overcoming the technical challenges in a tensor-based ICA without un-

folding, including a new random matrix modeling approach for ICA and new

statistics for random matrix. This enables further development of robust vari-

ants and higher-order extensions, as sketched above. Its connection with ISA

discussed above also sheds new light on ICA research. Thus, the significance of

such contributions may go beyond ICA/BSS and impact not only ICA, but also

more general tensor-based learning (without unfolding) and random-matrix-

based machine learning. Although we showed only separation of real images

below, RAMICA is promising in solving practical neuroimaging problems such

as for EEG and fMRI, where ICA is very popular [33, 34].

6. Numerical Results

In this section, we perform evaluations on BSS with data tensor input for

sources having general 2D structures, rather than special structures such as rank

one. We compare two versions of RAMICA, i.e. rRAMICA and cRAMICA,

against classical ICA methods FastICA,2 JADE,3 and Infomax4 with default

settings. The mode-wise ICA with a multilinear-mixing model (DTICA) can-

not do BSS because it assumes only one source matrix, while the one with a

2https://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml
3http://bsp.teithe.gr/members/downloads/Jade
4https://inc.ucsd.edu/ marni/code.html
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multilinear-source model (MMICA) can only recover rank-one sources by de-

sign. Therefore, both DTICA and MMICA will fail on this more general setting

of BSS with data tensor input.

BSS experiments were conducted on both synthetic and real data. For syn-

thetic data, we generate column-wise source random vectors for mixing. With

only column structural information synthesized, we expect cRAMICA to per-

form well whereas rRAMICA not. For real data, we linearly mix natural images

and then recover them from their mixtures. Natural images are expected to

have both row and column structural information. Hence, both rRAMICA and

cRAMICA are expected to recover the sources to some extent. Which one does

better could depend on whether row or column structure is stronger.

For BSS performance measurement, we use the popular Amari error [35]

calculated over the demixing matrices (i.e., the inverse of the mixing matrices).

For convenience, we report Amari error values multiplied by 100 throughout

this paper. We report the average performance with standard deviations (std)

over 100 repetitions for each experimental setting below.

6.1. Blind source separation on synthetic data

We first study how well RAMICA can recover sources from synthetic data

tensor generated according to the column-wise RAMICA model (9).

6.1.1. Data generation

To simulate column-wise structural information in each random vector s ∈
R

Q, only its first component s1 is randomly generated, while its other compo-

nents have the following linear relationships with s1:

sq = αs1 + β(q − 1), (33)

where α ∼ N (1, 1) (Gaussian distribution) and β ∼ U(0, 1) (uniform distri-

bution) are randomly generated, and q ∈ {2, · · · , Q}. Thus, {s1, · · · , sQ} are

dependent rather than independent and s is a column random vector with col-

umn structures. We consider the following four distributions that generate the

first component of each source random vector sp ∈ R
Q for p ∈ {1, · · · , P}:
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• Psn: Pearson distribution with zero mean, unit variance, unit skewness,

and unit kurtosis.

• Stu: Student-t distribution with 5 freedom degrees.

• Exp: Exponential distribution with λ = 1.

• Lap: Laplace distribution with µ = 0 and b = 1/
√
2.

Following the above generation, T samples of the pth random vector sp

form the pth source image Sp = [sp(1), · · · , sp(T )] ∈ R
Q×T . Finally, stack-

ing P source images along the first mode, we have the source tensor S =

[S1; · · · ;SP ] ∈ R
P×Q×T . Such sources are much more realistic/general than

the restricted rank-one sources synthesized in MMICA [6]. Note although rank-

one sources can be combined to produce low-rank (or high-rank) sources, there

is great indeterminacy.

In generating the mixing matrix A, we need to guarantee its invertibility.

We generate A in three steps: (i) uniformly generate a P ×P matrix with each

entry between zero and one; (ii) normalize the generated matrix by column; (iii)

add an identity matrix to the one in (ii). With S and A generated, we further

generate X according to (9).

6.1.2. Design factors

In simulations, we have the following design factors investigated with several

choices:

• D ∈ {Psn,Stu, Exp, Lap}: the distribution used to generate the (first

components of) sources.

• P ∈{2,4, 8, 16}: the number of sources.

• Q∈{16,32, 64, 128}: the dimension of the source random vectors.

• T ∈{16, 32,64, 128}: the number of random samples.
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• σ2 ∈ {0, 0.01, 0.02, · · · , 0.1, 0.15, 0.2}: the Gaussian noise level that is

added to the observation as:

X = AS+E, (34)

where E denotes standard Gaussian noise vec(E) ∼ N (0, σ2I). The de-

fault setting is noise-free.

When studying one factor, we vary it with other factors fixed to their default

settings in bold above.

6.1.3. Results on synthetic data

Tables 2, 3, 4, 5 report the performance with varying D, P , Q and T ,

respectively. When varying one factor, default settings were applied for other

factors. The effect of each factor are summarized below.

Effect of D. From Table 2, almost all of the methods get the best results on

Exp but the worst results on Psn, indicating Psn is more challenging than Exp.

Among the five ICA methods, cRAMICA consistently achieves the best perfor-

mance, though this is expected due to the column-wise data tensor generation.

In particular, cRAMICA improves over JADE (the second best) by 31.4% on

average. On the other hand, it is not surprising that rRAMICA gives poorer

results. Nonetheless, real-world data often have both row-wise and column-

wise structures so both rRAMICA and cRAMICA can be effective and reveal

different aspects of data. This will be confirmed in the real data experiments.

Table 2: Effect of the underlying source distribution D for synthetic BSS. Other factors use

default settings. Amari errors are reported and each entry is the mean±std of 100 repetitions.

The best (second-best) Amari errors are highlighted in bold (underline).

D Infomax FastICA JADE cRAMICA rRAMICA

Psn 10.03±1.71 7.07±1.47 6.90±1.61 5.12±2.11 7.63±1.23

Stu 9.35±1.48 6.48±1.41 6.33±1.44 4.45±2.09 6.88±1.39

Exp 9.04±1.50 6.03±1.22 5.93±1.19 3.72±1.73 6.73±1.24

Lap 9.29±1.44 6.37±1.42 6.22±1.37 4.12±1.82 6.60±1.19
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Table 3: Effect of the number of sources P for synthetic BSS as in Table 2.

P Infomax FastICA JADE cRAMICA rRAMICA

2 1.97±0.65 1.51±0.53 1.47±0.54 0.88±0.77 1.42±0.33

4 9.35±1.48 6.48±1.41 6.33±1.44 4.45±2.09 6.88±1.39

8 36.6±4.29 25.4±5.07 24.5±4.53 20.9±5.53 26.7±3.92

16 134.4±10.1 103.2±13.0 99.4±12.4 92.5±14.9 106.0±11.2

Effect of P . From Table 3, cRAMICA consistently achieves the best per-

formance and outperforms others by a large margin. For example, cRAMICA

outperforms JADE by 29.70% for P = 4. rRAMICA is inferior to cRAMICA,

but it outperforms Infomax.

Effect of Q. In Table 4, classical ICA methods perform differently with

respect to Q. Infomax performs similarly as RAMICA but FastICA and JADE

achieve slightly better performance with increasing Q. Such difference could be

due to the trade-off between the benefits of having more samples QT and the

detriments of more dependent samples. The detriments dominate for Infomax

but the benefits dominate for JADE and FastICA.

Table 4: Effect of the dimension of the source random vectors Q for synthetic BSS as in Table

2.

Q Infomax FastICA JADE cRAMICA rRAMICA

16 8.80±1.63 6.56±1.72 6.33±1.68 4.29±2.20 6.76±1.43

32 9.35±1.48 6.48±1.41 6.33±1.44 4.45±2.09 6.88±1.39

64 9.79±1.50 6.37±1.17 6.28±1.28 4.58±2.09 6.92±1.29

128 10.09±1.44 6.26±1.12 6.20±1.21 4.72±2.09 6.93±1.19

Effect of T . From Table 5, the performance of all of the methods become

better with the increasing of T , where the improvement of cRAMICA is the

most significant (as shown in the last row in Table 5). The improvements for

classical ICA methods are less significant because they have to compensate the

detriments of more dependent samples. Though the benefits of larger sample size

dominate, the detriments of more dependent samples reduce their improvement
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Table 5: Effect of the number of samples T for synthetic BSS as in Table 2. The last

row reports the improvement rate when we increase T from 16 to 128.

T Infomax FastICA JADE cRAMICA rRAMICA

16 10.81±1.69 7.59±1.66 7.42±1.58 6.51±2.36 8.01±1.24

32 9.91±1.39 7.55±1.39 7.13±1.25 5.71±2.01 7.59±1.33

64 9.35±1.48 6.48±1.41 6.33±1.44 4.45±2.09 6.88±1.39

128 9.08±1.58 5.87±1.13 5.78±1.14 3.19±1.47 6.47±0.98

↑ 16.00% 22.66% 22.10% 51.00% 19.26%

rate. Comparing the results in Tables 4 and 5, we can also see that T has a

larger effect on the performance of RAMICA than Q.

Effect of σ2. In the last study on synthetic BSS, we examine the sensitivity

of these ICA methods with respect to noise as shown in Fig. 2(a). We can see

that cRAMICA and rRAMICA have similar sensitivity to noise with JADE and

FastICA. It may be because they are all based on the fourth-order cumulants.

Infomax is the least sensitive to noise but it performs the worst in most cases.

In addition, cRAMICA largely outperforms the others in this experiment.
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(a) Synthetic BSS.
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(b) Real image BSS.

Figure 2: Effect of the noise level σ2 for synthetic and real image BSS. Other factors for

synthetic BSS use default settings. There are four 256× 256 source images in the image BSS

experiment. The average Amari errors over 100 repetitions are reported. The Infomax results

in the image BSS are higher than the chosen upper limit so they are not visible.

25



6.2. Blind image separation

We further perform evaluations on real-world image data. Natural image

data tend to have structures in both row and column. Thus, both rRAMICA

and cRAMICA should work to some extent. Which one performs better will

depend on whether row or column structure dominates. Next, we conduct real

data experiments to verify this.

6.2.1. Data

Source images are taken from the Caltech256 repository [36]. We selected

4,424 images with strong higher-order statistics from the total 30,607 images

for blind image separation experiments. All selected images are resized to a

standard size of 256× 256 with 256 gray levels so Q = T = 256.

6.2.2. Experimental settings

We repeat the following process 100 times:

• randomly select four source images (P = 4);

• mix them using a mixing matrix randomly generated in the same way as

in the synthetic study to produce four mixture images according to (9)

(equivalent to the classical ICA model (3));

• recover the sources from the four mixtures by ICA methods;

• compute the Amari errors accordingly.

In addition, we add noise to the mixing process to do sensitivity study. The

average Amari errors are reported.

6.2.3. Image separation results

Figure 3 presents an example of blind image separation. For illustration, we

show the four randomly selected source images in Figure 3(a) and their mixtures

in Figure 3(b) for which the mixing matrix is generated randomly according to

Eq. (9) and they do not suffer from data noise. We also show the performance of
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(a) Four source images (b) Mixed images without data noise injection

(c) Separation by FastICA with Amari error 0.077 (d) Separation by JADE with Amari error 0.072

(e) Separation by Infomax with Amari error 0.229

(f) By cRAMICA with Amari error 0.069 (g) By rRAMICA with Amari error 0.081

Figure 3: An example of the source images, mixed images and separated images by ICA

methods for the blind image separation problem.

FastICA, JADE, Infomx, cRAMICA and rRAMICA in Figures 3(c), 3(d), 3(e),

3(f) and 3(g), respectively. We can see that cRAMICA can achieve the best

blind image separation with the best (smallest) Amari error, and both FastICA

and JADE can also perform good image separation.

Figure 2(b) shows the recovery performance across different noise levels. The

results of Infomax are above the chosen upper limit in the figure (for clarity) so

they are not visible there. We can see that both rRAMICA and cRAMICA can

obtain better BSS performance than the other methods when the noise level is

below 0.1. This confirms that real-world images contain both row and column

structures and both rRAMICA and cRAMICA have their merits. Furthermore,

cRAMICA outperforms the other methods by a large margin in the noise-free
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case. And this margin reduces as the noise level increases. The observation

that cRAMICA outperforms rRAMICA indicates that the column structure is

stronger than the row structure on the whole for the selected Caltech256 images.

7. Conclusion

This paper proposed a new ICA method RAMICA for BSS with data tensor

input. It differs from the classical vectorization-based approach and more recent

mode-wise approach by dealing with data tensor directly, without vectorization

or unfolding. Thus, it can do more general BSS while preserving structural

information. We build RAMICA based on random matrix modeling with two

versions: row-wise and column-wise RAMICA. By defining new statistics of

random matrix, we develop a two-step RAMICA algorithm with a new cumulant

operator and the Jacobi method. Experimental results on both synthetic and

real image BSS showed that RAMICA outperformed competing ICA methods

greatly in BSS on data tensor, with its two versions having their respective

merits. Future directions include extensions of the proposed approach to faster,

more robust algorithms, and random-matrix-based machine learning and tensor

analysis.
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