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Modeling the effects of environmental and perceptual uncertainty using deterministic
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(Dated: February 24, 2022)

Assessing the systemic effects of uncertainty that arises from agents’ partial observation of the
true states of the world is critical for understanding a wide range of scenarios, from navigation and
foraging behavior to the provision of renewable resources and public infrastructures. Yet, previous
modeling work on agent learning and decision-making either lacks a systematic way to describe
this source of uncertainty or puts the focus on obtaining optimal policies using complex models
of the world that would impose an unrealistically high cognitive demand on real agents. In this
work we aim to efficiently describe the emergent behavior of biologically plausible and parsimonious
learning agents faced with partially-observable worlds. Therefore we derive and present deterministic
reinforcement learning dynamics where the agents observe the true state of the environment only
partially. We showcase the broad applicability of our dynamics across different classes of partially
observable agent-environment systems. We find that partial observability creates unintuitive
benefits in several specific contexts, pointing the way to further research on a general understanding
of such effects. For instance, partially observant agents can learn better outcomes faster, in a more
stable way and even overcome social dilemmas. Furthermore, our method allows the application of
dynamical systems theory to partially observable multi-agent leaning. In this regard we find the
emergence of catastrophic limit cycles, a critical slowing down of the learning processes between
reward regimes and the separation of the learning dynamics into fast and slow directions, all caused
by partial observability. Therefore, the presented dynamics have the potential to become a formal,
yet practical, lightweight and robust tool for researchers in biology, social science and machine
learning to systematically investigate the effects of interacting partially observant agents.

I. INTRODUCTION

We do not observe the world as it is, but instead as
our limited sensory and cognitive apparatus perceives it.
There are always elements of the world that are hidden
from us, such as the detailed physical state of our en-
vironment and the internal states of other agents. As
such uncertainty is a fundamental feature of life. To
be more specific, we might not know what will happen
(stochastic uncertainty), what currently is (state uncer-

tainty) and what others are going to do (strategic un-

certainty), among other forms of uncertainty [1–3]. In
common with other animals, we must learn and make
decisions amid this uncertainty using the limited cogni-
tive resources available to us. So must everybody else.
Given the cognitive demands of fully integrating all

sources of uncertainty when learning from experience and
making decisions, real agents must employ methods of
bounded rationally [4] that use cognitive resources effi-
ciently to obtain acceptable solutions in a timely man-
ner [5]. As such, evolutionary game theory [6] takes
into account strategic uncertainty by assuming that other
agents are not perfectly rational but instead by allow-
ing agents to adapt to each other sequentially, with
relatively-successful strategies being reinforced and less
successful strategies selected against. Tools and methods
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from evolutionary game theory have also been used suc-
cessfully to formally study the dynamics of multi-agent
reinforcement learning [7, 8]. Börgers and Sarin [9] es-
tablished the formal relationship between the learning
behavior of one of the most basic reinforcement learn-
ing schemes, Cross learning [10], and the replicator dy-
namics of evolutionary game theory. Since then, this
approach of evolutionary reinforcement learning dynam-
ics has been extended to stateless Q-learning [11, 12],
regret-minimization [13] and temporal-difference learning
[14], as well as discrete-time dynamics [15], continuous
strategy spaces [16] and extensive-form games [17]. This
learning dynamic approach offers a formal, lightweight
and deterministically reproducible way to gain improved,
descriptive insights into the emerging multi-agent learn-
ing behavior.

Apart from strategic uncertainty, representing stochas-

tic uncertainty, i.e., uncertainty about what will happen
in the form of probabilistic events within the environ-
ment, requires foremost the presence of an environment.
Recent years have seen a growing interest to move evo-
lutionary and learning dynamics in stateless games to
changing environments. Here, the term environment can
mean external fluctuations [18, 19], a varying population
density [20, 21], spatial network structure [22, 23], or
coupled systems out of evolutionary and environmental
dynamics. Coupled systems may further be categorized
into those with continuous environmental state spaces
[24–28] or discrete ones [14, 29–31]. We’ll be focusing
on learning dynamics in stochastic games [14, 29] which
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encode stochastic uncertainty via action-depended tran-
sition probabilities between environmental states.

However, all dynamics discussed so far are either appli-
cable only to stateless environments, assume that agents
do not tailor their response to the current environmen-
tal state, or if they do, assume that agents observe the
true states of the environment perfectly. Yet, often in
real-world settings state observations are noisy and in-
complete. Thus, they are lacking a systematic way to
describe interacting agents under state uncertainty.

In this work, we relax the assumption of perfect
observations and introduce deterministic reinforcement
learning dynamics for partially observable environments.
With the derived dynamics we are able to study the
idealized reinforcement learning behaviour in a wide
range of environmental classes, from partially observable
Markov decision processes [POMDPs, 32], decentralized
(Dec-)POMDPs [33], and fully general partially observ-
able stochastic games [34].

Note, while a great deal of works on partially observ-
able decision domains is of normative nature, ours is de-
scriptive. For the normative agenda, agents are often
enriched with, e.g., generative models and belief-state
representations [32, 33], abstractions [35] or predictive
state representations [36] in order to learn optimal poli-
cies in partially observable decision domains. Also the
economic value of signal is often studied by asking how
fully rational agents optimally deal with a specific form
of state uncertainty [37]. However, such techniques can
become computationally extremely expensive [38]. It is
unlikely that biological agents perform those elaborate
calculations [39] and the focus on unboundedly rational
game equilibria lacks a dynamic perspective [40] making
it unable to answer which equilibrium (of the often many)
the agents select.

Instead, this work takes a dynamical systems perspec-
tive on individual learning agents employing the widely-
occurring principle of temporal-difference reinforcement
learning [41] in which the agents simply treat their obser-
vations as if they were the true states of the environment.
Temporal-difference learning is not only a computational
technique [42], it also occurs in biological agents through
the dopamine reward-prediction error signal [43, 44]. We
focus on agents which employ either so called memoryless
policies, at which they choose their actions based solely
on their current observation [45], or they use a short and
fixed history of current and past observations and actions
to base the current action upon. This has the advantage
of being simple to act upon [46] and they are easy to
realize at no or little additional computational cost.

To highlight the broad applicability of our dynamics
we study the emerging learning behavior across five par-
tially observable environment classes. We find a variety
of effects caused by partial observability which generally
depend on the environment and its representation. For
instance, partial observability can lead to better learn-
ing outcomes faster in a single-agent renewable resource
harvesting task, stabilize a chaotic learning process in

a multi-state zero-sum game and even overcome social
dilemmas. Compared to fully observant agents, partially
observant learning often requires more exploration and
less weight on future rewards to obtain the favorable
learning outcomes. Furthermore, our method allows the
application of dynamical systems theory to partially ob-
servable multi-agent leaning. We find that partial ob-
servability can cause the emergence of catastrophic limit
cycles, a critical slowing down of the learning processes
between reward regimes and the separation of the learn-
ing dynamics into fast and slow eigen-directions. We
hope that the presented dynamics become a practical,
lightweight and robust tool to systematically investigate
the effect of uncertainty of interacting agents.

II. BACKGROUND

A. Partially observable stochastic games

a. Definition. The game G = 〈N,S,A,O, T, R,O〉
is a stochastic game with N ∈ N agents. The environ-
ment consists of Z ∈ N states S = (S1, . . . , SZ). In
each state s, each agent i ∈ {1, . . . , N} has M ∈ N

available actions Ai = (Ai
1, . . . , A

i
M ) to choose from.

A =
⊗

i A
i is the joint-action set and agents choose

their actions simultaneously. A joint action is denoted
by a = (a1, . . . , aN ) ∈ A. With a−i = (a1, . . . , ai−1,
ai+1, . . . , aN ) we denote the joint action except agent
i’s. We chose an identical number of actions for all states
and all agents out of notational convenience. Throughout
this paper, we restrict ourselves to ergodic environments
without absorbing states.
The transition function T : S × A × S → [0, 1] deter-

mines the probabilistic state changes. T (s, a, s′) is the
transition probability from current state s to next state
s′ under joint action a.
The reward function R : S × A × S → R

N maps the
triple of current state s, joint action a and next state s′

to an immediate reward scalar for each agent. Ri(s, a, s′)
is the reward agent i receives.
Instead of observing the states s ∈ S directly, each

agent i observes one of Q ∈ N observations Oi =
(Oi

1, . . . , O
i
Q) according to the observation functions Oi :

S × Oi → [0, 1]. Oi(s, o) is the probability that agent i
observes observation o ∈ Oi given that the environment
is in state s ∈ S. O =

⊗
i O

i is the joint observation set
and O =

⊗
i O

i : S×O → [0, 1]N is the joint observation
function. We chose an identical number of observations
for all agents out of notational convenience. By construc-
tion, this observation function can model both noisy state
observations (Q = Z) and hidden states (Q < Z).
b. Policies. We consider agents that choose their

actions probabilistically according to their memoryless
policy Xi : Oi × Ai → [0, 1]. Xi(oi, ai) is the prob-
ability that agent i chooses action ai given that it ob-
served observation oi. We denote the joint policy by
X = X(o, a) =

⊗
i X

i(oi, ai) : O ×A → [0, 1]N .
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c. Histories. Besides memoryless policies we also
consider policies with fixed histories Hh of type h. The
type h is composed of h = ho × ha with ho ∈ N and

ha ∈ N
N . ho represents how many of current and past

observations are to be used to encode the histories. Like-
wise, ha represents how many past actions of each agent
are to be encoded in the histories. For example, the de-
fault memoryless policy is of type h = (1, 0). Practically,
histories induce an embedding of the game into a larger
state space at which the histories Hh correspond to the
larger state set and transitions, rewards and observations
are adjusted accordingly.

B. Temporal-difference reinforcement learning

Temporal-difference Q-learning is one of the most
widely studied reinforcement learning processes [42, 43,
47]. Agents successively improve their evaluations of the
quality of the available actions. Originally developed
under the assumption that agents can observe the true
Markov state of the environment, we here present the ba-
sic temporal-difference Q-learning algorithm in the more
general formulation, where agents use observations in-
stead of states. When observations exactly map onto the
states, the original algorithm is recovered.
At time step t agent i evaluates action ai at observation

oi to be of quality Qi
t(o

i, ai). Those state-action values
Qi

t(o
i, ai) are then updated after selecting action ait after

observing observation oit according to

Qi
t+1(o

i
t, a

i
t) = Qi

t(o
i
t, a

i
t) + α · δit(o

i
t, a

i
t), (1)

with the temporal-difference error

δit(o
i
t, a

i
t) := (1−γ)rit+γmax

b
Qi

t(o
i
t+1, b)−Qi

t(o
i
t, a

i
t). (2)

The discount factor parameter γ ∈ [0, 1) regulates how
much the agent cares for future rewards. The learning

rate parameter α ∈ (0, 1) regulates how much new infor-
mation is used for an observation-action-value update.
For the sake of simplicity, we assume identical parame-
ters across agents throughout this paper and therefore do
not equip parameters with agent indices. The variable rit
refers to the immediate reward at time step t. Note that
the (1− γ) prefactor in front of the reward occurs when
we assume that agents aim to maximize a return defined
as Gi

t = (1 − γ)
∑∞

k=0 γ
krit+k [14]. This leads the values

to be on the same scale as the rewards.
Agents select actions based on the current observation-

action values Qi
t(o

i, ai) balancing exploitation (i.e., se-
lecting the action of maximum quality) and exploration
(i.e., selecting lower quality actions in order to learn more
about the environment). We here use the widely used
Boltzmann policy function. The probability of choosing
action ai under observation oi is

Xi
t(o

i, ai) =
eβQ

i
t(o

i,ai)

∑
b∈Ai eβQ

i
t(o

i,b)
, (3)

where the intensity of choice parameter β controls the
exploration-exploitation trade-off. Throughout this pa-
per, we are interested in the idealized learning process
with fixed parameters α, β and γ throughout learning
and evaluating a policy.

III. DERIVATION

In this section we derive the deterministic reinforce-
ment learning dynamics under partial observability in
discrete time. As classic evolutionary dynamics oper-
ate in the theoretical limit of an infinite population, the
learning dynamics are derived by considering an infinite
memory batch [48, 49]. A learning dynamic update of the
current policy uses policy-averages instead of individual
samples. Thus, we need to construct the policy-average
temporal-difference error δ̄i to be inserted in the update
for the joint policy,

Xi
t+1(o

i, ai) =
Xi

t(o
i, ai) · exp[αβδ̄i(oi, ai)]∑

b X
i
t(o

i, b) · exp[αβδ̄i(oi, b)]
. (4)

Eq. 4 can be derived by combining Eqs. 1 and 3. The
bar on top of δi indicates implicitly that δ̄i depends fully
on the current joint policy Xt. Computing δ̄i(oi, ai) in-
volves averaging over policies, environmental transitions
and observations for the first two terms of the temporal-
difference error (Eq. 2), the immediate rewards and the
qualities of the next observation. The quality of the cur-
rent observation, Qi

t(o
i
t, a

i
t) becomes β−1 lnXi(oi, ai) in

the average temporal-difference error and serves as reg-
ularization term. This can be derived by inverting Eq.
3 and realizing that the dynamics induced by Eq. 4 are
invariant under additive transformations which are con-
stant in actions.

A. Beliefs

The challenge is that the rewards Ri(s, a, s′) in the
stochastic game model depend on the true states, not
on the observations of the agents. Thus, in order to ob-
tain the average observation-action rewards R̄i(oi, ai), we
need a mapping from observations to states. The obser-
vation function is a mapping from states to observations.
With Bayes rule,

B̄i(oi, s) =
Oi(s, oi)P̄ (s)∑
s O

i(s, oi)P̄ (s)
(5)

we can transform the observation function into a belief
function, following the rules of probability. B̄i(oi, s) is
the belief of agent i (or simply the probability) that the
environment is in state s when it observed observation
oi.
The only problem is how to obtain the policy-average

stationary state distribution P̄ (s). P̄ (s) is the left-
eigenvector of the average transition matrix T̄ (s, s) where
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the entry T̄ (s, s′) denotes the probability of transitioning
from state s to state s′. This matrix could be obtained
as T̄ (s, s′) =

∏
j

∑
aj Ȳ j(s, aj)T (s, a, s′) if we had the

probability for each agent j to choose action aj in state
s, Ȳ j(s, aj). However, we assumed that agents condition
their actions only on observations, Xj(oj , aj). Yet, when-
ever the environment is in state s, agent j observes ob-
servation oj with probability Oj(s, oj) and than chooses
action aj with probability Xj(oj , aj). Thus, with

Ȳ j(s, aj) :=
∑

oj∈Oj

Oj(s, oj)Xj(oj , aj), (6)

we can average out the observation and obtain the policy-
average state-policies Ȳ j(s, aj). Note that Ȳ j(s, aj) are
proper conditional probabilities, which can be seen by
applying

∑
aj to both sides of Eq. 6. With Ȳ j(s, aj) we

can then compute the policy-average transition matrix
T̄ (s, s), its left-eigenvector, the stationary state distribu-
tion P̄ (s), and thus, the policy-average belief of agent i
that the environment is in state s when it observed ob-
servation oi, B̄i(oi, s).

B. Rewards

Whenever agent i observes observation oi, with prob-
ability B̄i(oi, s) the environment is in state s where all
other agents j 6= i behave according to Ȳ j(s, aj), the en-
vironment transitions to a next state s′ with probability
T (s, a, s′), and agent i receives the reward Ri(s, a, s′).
Mathematically, the policy-average reward for action ai

under observation oi reads

R̄i(oi, ai) :=
∑

s

∑

aj

∑

s′

∏

j 6=i

B̄i(oi, s)Ȳ j(s, aj)

T (s, a, s′)Ri(s, a, s′). (7)

C. Qualities

Second, the policy-average of the quality of the next
observation (maxb Q

i
t(o

i
t+1, b) in Eq. 2) is computed by

averaging over all states, all actions of the other agents,
next states and next observations. Whenever agent i
observers observation oi, the environment is in state s
with probability B̄i(oi, s). There, all other agents j 6= i
choose their action aj with probability Ȳ j(s, aj). Conse-
quently, the environment transitions to the next state s′

with probability T (s, a, s′). At s′, the agent observes ob-
servation o′ with probability Oi(s′, o′) and estimates the
quality to be of value maxb Q̄

i(o′, b). Mathematically, we
write

maxQ̄i(oi, ai) :=
∑

s

∑

aj

∑

s′

∑

o′

∏

j 6=i

B̄i(oi, s)Ȳ j(s, aj)

T (s, a, s′)Oi(s′, o′)max
b

Q̄i(o′, b).

(8)

Here, we replace the quality estimates Qi
t(o

i, ai), which
evolve in time t (Eq. 1), with the policy-average
observation-action quality Q̄i(oi, ai), which is the ex-
pected discounted sum of future rewards from execut-
ing action ai at observation oi and then following along
the joint policy X. It is obtained by a discount factor
weighted average of the current policy-average reward
R̄i(oi, ai) and the policy-average observation quality of
the next observation V̄ i(o′),

Q̄i(oi, ai) = (1− γ)R̄i(oi, ai)

+ γ
∑

o′∈Oi

T̄ i(oi, ai, o′)V̄ i(o′). (9)

Here, T̄ i(oi, ai, o′) is agent i’s policy-average transition
probability of observing observation o′ at the next time
step given it observed observation oi at the current time
step and chose action ai. It is computed by averaging
over all states, next states and all actions of the other
agents. Whenever agent i observes observation oi and
selects action ai, the environment is in state s with prob-
ability B̄i(oi, s), where all other agents j 6= i select action
aj with probability Ȳ j(s, aj). Consequently, the environ-
ment will transition to the next state s′ with probability
T (s, a, s′) which is observed with probability Oi(s′, o′) as
o′ by agent i. Mathematically, we write

T̄ i(oi, ai, o′) =
∑

s

∑

aj

∑

s′

∏

j 6=i

B̄i(oi, s)Ȳ j(s, aj)

T (s, a, s′)Oi(s′, o′). (10)

Further at Eq. 9, V̄ i(oi) is the policy-average observa-
tion quality, i.e., the expected discounted sum of future
rewards from observation oi and then following along the
joint policy X. They are computed via matrix inversion
according to

V̄ i(o) = (1− γ)[1Q − γT̄ i(o, o)]−1R̄(o). (11)

This equation is a direct conversion of the Bellman equa-
tion V̄ i(oi) = (1−γ)R̄(oi)+γ

∑
o′ T̄

i(oi, o′)V̄ i(o′), which
expresses that the value of the current observation is the
discount factor weighted average of the current reward
and the value of the next observation. Underlined obser-
vation variables indicate that the corresponding object is
a vector or matrix and 1Q is a Q-by-Q identity matrix.

T̄ i(o, o) denotes the policy-averaged transition matrix
for agent i. The entry T̄ i(oi, o′) indicates the probability
that agent i will observe observation o′ after observing
observation oi at the previous time step, given all agents
follow the joint policyX. We compute them by averaging
over all states, all actions from all agents and all next
states,

T̄ i(oi, o′) =
∑

s

∑

aj

∑

s′

∏

j

B̄i(oi, s)Ȳ j(s, aj)

T (s, a, s′)Oi(s′, o′). (12)
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Actions, Rewards

Left, +1
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1-noise

noise noise

FIG. 1. Deterministic learning dynamics in a simple coordination task. The agent has to anti-coordinate its actions
on the environmental state, which it observes through a noisy channel (Panel A). Learning trajectories are computed for three
observational noise levels (0.0, 0.49, 0.5) and two intensities of choice, a low one (β′ = β/(1− γ) = 40), shown in the top row,
and a high one (β′ = 400), shown in the bottom row. Panel B shows the corresponding policy spaces in which the agent’s
probability of choosing Left, given the agent perceived the environment to be in the left state, is plotted on the x-axes; and the
agent’s probability of choosing Left, given the agent perceived the environment to be in the right state, is plotted on the y-axes.
5 individual trajectories, whose initial policies were centered around the center of the policy space, are plotted in color. Arrows
in gray indicate the flow of the learning dynamical system. Panel C shows the corresponding reward trajectories. Remaining
hyper-parameters were set as α = 0.01, γ = 0.9. Partial observability can cause the learning to enter low-rewarding limit cycles
under high intensity of choice.

For any observation oi, B̄i(oi, s) is the probability to be
in state s, where all agents j act according to Ȳ j(s, aj).
Therefore, the environment transitions with probability
T (s, a, s′) from state s to the next state s′, which is
observed by agent i as observation o′ with probability
Oi(s′, o′). Note that T̄ i(o, o) is a proper probabilistic
matrix. This can be seen by applying

∑
o′ to both sides

of Eq. 12.

Further in Eq. 11, R̄i(oi) denotes the policy-average
reward agent i obtains from observation oi. We compute
them by averaging over all states, all actions from all
agents and all next states. Whenever agent i observes
observation oi, the environment is in state s with proba-
bility B̄i(oi, s). Here, all agents j choose action aj with
probability Ȳ j(s, aj). Hence, the environment transitions
to the next state s′ with probability T (s, a, s′) and agent
i receives the reward Ri(s, a, s′),

R̄i(oi) :=
∑

s

∑

aj

∑

s′

∏

j

B̄i(oi, s)Ȳ j(s, aj)

T (s, a, s′)Ri(s, a, s′). (13)

Note that the quality maxQ̄i(oi, ai) depends on oi and ai

although it is the policy-averaged maximum observation-
action value of the next observation.

D. Temporal-difference error

All together, the policy-average temporal-difference er-
ror, to be inserted into Eq. 4, reads

δ̄i(oi, ai) = (1− γ)R̄i(oi, ai) + γmaxQ̄i(oi, ai)

−
lnXi(oi, ai)

β
. (14)

IV. EXPERIMENTS

We study the emerging learning dynamics across five
test environments: three single-agent decision problems
and two multi-agent games. Three environments will
cover noisy observations, the other two focus on a reduced
observation space, where a given observation is consistent
with multiple true states of the world. As one evaluation
metric we use the average reward,

∑
s P̄ (s)R̄i(s), where

P̄ (s) is the stationary state-distribution and R̄i(s) =∑
aj

∑
s′

∏
j Ȳ

j(s, aj)T (s, a, s′)Ri(s, a, s′) is the average

reward for each state given the current policy X (see Sec.
III). We defined a learning trajectory as having converged
if the norm between old and updated policy (according
to Eq. 4) is below 10−5. Since we defined the return with
the (1 − γ) prefactor we also consider a scaled version
of the intensity of choice parameter β = β′/(1 − γ) for
some experiments. Doing so preserves the ratio of explo-
ration and exploitation in the temporal-difference error
(Eq. 14) under changes in the discount factor γ.



6

FIG. 2. Deterministic learning dynamics with history

in a simple coordination task. Same situation as in Fig. 1
with high intensity of choice β′ = 400 and observational noise
level 0.5 but here, the agent remembers and conditions its ac-
tion not only on the last observation but also on its last action.
Thus, the left (right) panel shows a projection of the learn-
ing dynamics, given the last action was Left (Right). X-axes
show the probabilities of choosing Left, given the last environ-
mental observation was left. Y-axes show the probabilities of
choosing Left, given the last environmental observation was
right. The agent learns to alternate between Left and Right,
which yield the highest reward possible, in - at most - only
two time steps.

FIG. 3. Comparison between deterministic learning

dynamics and batch-learning algorithm in a simple co-
ordination task with noise level 0.4. The learning trajec-
tory from an initial policy of choosing Left with 30% given
both observations is shown for a batch reinforcement learn-
ing algorithm with batch sizes 128 (blue; sample size 25)
and 1024 (cyan; sample size 5) as well as for the determin-
istic theory (red); in policy space (left) and versus learning
steps (right). On the right only every forth learning step
of the batch learners mean policy values are plotted. Er-
ror bars indicate the standard deviation. Hyper-parameters
are α = 0.01, β′ = 40, γ = 0.09. The deterministic learning
dynamics are well approximated by the batch-learning algo-
rithm.

A. Simple coordination task

a. Environment description. The first environment
is a simple coordination task in which the agent must
move between the left and right environmental state in
order to obtain a maximum reward of 1. Coordinating
which of the two available actions (Left,Right) to choose
from is complicated by observational noise ν, letting the
agent perceive the correct state only with probability 1−
ν (Fig. 1A). This environment is adapted from Singh
et al. [45].
b. Results. Fig. 1 shows how partial observability

can cause the deterministic learning dynamics to en-
ter low-rewarding limit cycles under a high intensity of
choice. Often, learning a policy involves a trade-off be-
tween the amount of reward from that policy and the
amount of time required learning it. In the simple coor-
dination task with perfect observation, a high intensity
of choice can speed up the learning process by a factor of
6. The trajectories with β′ = 40 require about 18 time
steps to arrive at the optimal policy with average reward
1 (green lines, top row), the trajectories with β′ = 400 re-
quire only 3 time steps (green lines, bottom row). Thus,
a high intensity of choice is clearly preferable under per-
fect observation.
With fully uninformative observations (observational

noise level ν = 0.5, Fig. 1B, third column) a more ex-
plorative agent (i.e. lower intensity of choice, top row)
has an advantage. From all initial policies, it takes the
agent about 580 time steps to learn to fully randomize its
actions. This yields an average reward of zero and is also
the optimal memoryless policy [45]. The more exploita-
tive agent (bottom row) on the other hand enters a limit
cycle between choosing Left and Right almost determin-
istically, irrespective of its current observations. Thus,
while choosing Left the agent is trapped in the LEFT
state, obtaining an average reward of − 1. While choos-
ing Right, the agent is trapped in the RIGHT state also
obtaining an average reward of −1. The positive reward
obtained through the move between states is neglected,
since the derived dynamics consider the theoretical limit
of an an infinite memory batch [48]. This can also be in-
terpreted as a complete separation of the interaction time
scale and the adaptation time scale [14, 49]. The agent
experiences an infinite amount of negative reward dur-
ing interaction and only one single positive reward after
the policy adaptation. It will be interesting to reexamine
this scenario under relaxed conditions when interaction
and adaption time scales are not completely separated in
future work [cf., 50].
When observations are almost completely noisy, yet

still contain some information about the true environ-
mental state, the more exploitative agent learns a slightly
more rewarding policy faster (Fig. 1B second column).
An observational noise level of ν = 0.49 means that out
of 100 times being in the LEFT environmental state, the
agent will observe on average left 51 times and right 49
times. Here, from all initial policies, the more explorative
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FIG. 4. Deterministic learning dynamics in a navigation task. Learning trajectories under both partial (dashed lines)
and full observability (straight lines) are plotted for various hyper-parameter combinations from 15 random initial policies each.
Panel A shows the grid world. The trajectories of the policies’ action probabilities are projected into each observation / state,
such that a deterministic policy towards one direction appears at the edge of that direction in the center. Stochastic policies
appear inside the patches. Panel B shows the corresponding reward trajectories. In Panel C, two hyper-parameter grids show
the average reward at convergence for an agent with partial and full observability (with independent colour scales for each case).
The learning rate was set to α = 0.01. In contrast to a fully observant agent, neither a high weight on future rewards (large γ)
nor a high intensity of choice (large β′) leads to the highest reward for a partially observant agent. Instead, the highest reward
depends on the mutual combination of the two hyper-parameters.

agent (top row) converges to a fixed point in the upper
left part of the policy space in about 600 time steps, i.e.,
slower than under completely noisy observations. This
policy yields an average reward of about 0.013. The more
exploitative agent (bottom row) learns on an interesting
transient resembling the limit cycle of the fully uninfor-
mative case, yet manages to converge to the deterministic
policy in the upper left of the policy space. This yields
an average reward of about 0.02 and takes at most 250
times, depending on the initial policy. This is still dis-
tinctly faster than the more explorative agent.

Overall, it is interesting to observe how partial ob-
servability caused a well-known dynamical-systems phe-
nomenon in the learning dynamics, which can explain the
abrupt improvements in the reward trajectories (Fig. 1C
bottom): the separation of the dynamics into a fast
eigendirection along the diagonal from the bottom left to
the top right of the policy space and a slow eigendirec-
tion perpendicular to that [51]. The slow eigendirection
corresponds to a coordinated policy where the agent’s
observation is decisive for its actions. Along the fast
eigendirection the agent’s policy is independent of its
observations. The more explorative agent moves along
these axes whereas the more exploitative agent overrides.
Yet, as long as there is some information in the observa-
tions about the environmental state, the more exploita-
tive agent learns better policies faster.

So far we examined only memoryless policies, i.e.,
policies that condition their choice of action only on
the current observation. If the more exploitative agent
(β′ = 400) is able to condition its choice of action not
only on the current observations but also on its last ac-
tion, it learns the optimal policy with an average reward

of 1 in at most only 2 time steps - even under fully unin-
formative state observations (Fig. 2). The agent learns
to alternate between Left and Right. This learned pol-
icy and even the whole learning dynamics do not depend
on the state-observation, as shown by the straight line
trajectories and corresponding dynamical flow arrows in
Fig. 2.
As a consistency check we compare the derived de-

terministic learning dynamics with partial observability
to a sample-batch reinforcement learning algorithm, as
detailed in Ref. [49] (Fig. 3). The batch learning algo-
rithm collects observation and reward experiences inside
a batch of size K while keeping its policy fixed before it
then updates its policy using the whole information of the
collected batch. This is a widely occurring principle for
improved data-efficiency and learning stability [52] and is
used for example in memory-replay [53] and model-based
reinforcement learning [54]. Fig. 3 shows that our deter-
ministic theory describes such batch learning approaches
well under large batch sizes. Yet, the calculation time of
the deterministic dynamics was in the order of 100 times
faster than the simulation of the algorithms.

B. Navigation task

a. Environment description. The next environment
is the single-agent navigation task adapted from Parr and
Russell’s Grid World (1995). It consists of 11 states, 6
observations, 4 actions and 1 agent (Fig. 4A). The agent
can move north, south, east and west. If the agent would
move into a wall it stays on its current patch. The agent
wants to reach the patch in the upper right, which is re-



8

warded by a reward of 1. However, entering the patch
below is punished by a reward of −1. In both cases, the
episode ends and the agent begins a new episode on one
randomly chosen patch out of the nine other patches.
All other state-action combinations yield zero reward.
We use this environment to compare the effect of various
hyper-parameter combinations on the learning behavior
of an agent with partial observability to an agent with
full observability. Under partial observability the agent
can only observe whether or not there is a wall east and
west of its current patch. Imagine, for example, a robot
equipped only with haptic sensors on its sides or an insect
with corresponding antennae. With full observability, the
agent can distinguish each grid patch separately.

b. Results. In contrast to a fully observant agent,
neither a high weight on future rewards (large γ) nor a
high intensity of choice (large β′) leads to a large reward
for a partially observable agent. Instead, the highest
reward depends on the mutual combination of the two
hyper-parameters. For a hyper-parameter combination
of γ = 0.99 and β′ = 50 an agent with full observability
quickly learns the optimal policy (Fig. 4A&B, light-red
straight lines). Observe also how the light-red straight
lines in states (3,2) and (3,3) avoid being close to the
Penalty state. In contrast, less wight on future rewards
(a lower discount factor of γ = 0.4) and more explo-
ration with β′ = 20 lead to a lower average reward at
convergence (light blue straight lines). Observe how the
convergence points in policy space (light blue dots) are in-
creasingly farther apart from the optimal policy (light red
dots) the more steps the grid cell is away from the goal.
However, when we turn to the agent with partial ob-
servability, it is the other way around. Here, less weight
on future rewards and more exploration lead to a bet-
ter average reward at convergence (dark colored dashed
lines). This result can be explained as follows. In a fully
observable Markov decision process there is always an
optimal deterministic policy [56]. See how the light red
straight lines converges to edge of most grid cells, indi-
cating a deterministic action in that direction (Fig. 4A).
Yet, policies in a partially observable Markov decision
process often require stochasticity [45]. More exploration
directly ensures that, although not in a reward-targeted
way. Less weight on future rewards might be advanta-
geous under partial observability since too much weight
on too distant rewards in the future cannot pay off when
there is a fundamental uncertainty about which state the
agent occupies or even about what the real states of the
environment are. When the environment is only par-
tially observable, anticipating too distant rewards does
not have to be beneficial.

A systematic analysis of the hyper-parameter grid
(Fig. 4C) confirms that partial observability requires the
right combination of the two hyper-parameters in order
to learn the highest reward. Under full observability, sim-
ply setting a sufficiently high weight on future rewards γ
and a sufficiently strong intensity of choice β (i.e., little
exploration) leads to the average reward of the optimal

FIG. 5. Hyper-parameter grids for the deterministic

learning dynamics with history in the navigation task.

Two types of histories are compared. The left plots show
results for an agent which conditions its action on the current
observation and last action h = (1, 1). The plots on the right
show results for an agent which conditions its action on the
current and last observations h = (2, 0). The top plots show
the average reward at convergence, the bottom plots the time
steps to convergence, each on the same color scale. Results
are averaged over 15 Monte Carlo runs from random initial
policies. The learning rate was set to α = 0.01. Both types
of history obtain similar maximum average reward, but at
different hyper-parameter combinations.

policy. In contrast, for partial observability too much
farsightedness and too intense exploitation can hurt the
performance of the agent. Instead, the optimal reward at
convergence is obtained by a more randomly explorative
and myopic agent.
With memoryless policies, the average reward of the

partially observant agent is smaller by an order of mag-
nitude compared to the fully observant agent. Fig. 5
compares the results of the two simplest types of history,
i.e., where the agent uses one more piece of information.
Thus, the agent conditions its actions either on the cur-
rent observation and the last action h = (1, 1) or on the
current and last observations h = (2, 0). Both types of
history are able to obtain a similar maximum average
reward, with a slight advantage for history h = (1, 1).
Although both are of the simplest type of history con-
ceivable the difference in maximum reward between the
partially observant agent and fully observant agent is al-
ready halved, compared to the partially observant agent
without history.
Also, the set of hyper-parameter combinations that ob-

tain a high average reward is shifted to the lower right
corner of the parameter space where also the fully obser-
vant agent obtains its maximum. Interestingly though,
the set of high rewarding hyper-parameter combinations
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is not identical across the two types of history. The
action-depended history (h = (1, 1)) performs best with
a high weight on future rewards γ and more exploration,
whereas the two-observation history (h = (2, 0)) obtains
the highest rewards by more exploitation across a wider
range of weights on future rewards γ.
Furthermore, the learner experiences another dynam-

ical systems phenomenon: a critical slowing down of its
learning dynamics [51] before a hyper-parameter bifurca-
tion into the high rewarding regime (Fig. 5, bottom row).
In the area around the hyper-parameter regions which
obtain high average reward (yellow area in the plots in
the top row), the number of time steps it takes the agent
to converge is distinctly higher compared to other hyper-
parameter regions. Interestingly, this effect is absent in
the memoryless learner of Fig. 4 (not shown). Utilizing
such dynamical systems phenomena have the potential
to improve the efficiency of hyper-parameter search.

C. Renewable Resource Harvesting

a. Environment description. Harvesting a renew-
able resource is a foundational challenge in environmental
economics, the earth and sustainability science [57–60].
Here, we use a standard logistic growth model, in which
the (continuous) resource stock s̃t+1 = s̃t+ rs̃t(1− s̃t/C)
first regrows exponentially with rate r ∈ R until it sat-
urates at capacity C ∈ N. In order to turn the stock-
continuous logistic growth into a state-discrete Markov
decision process, we discretize the continuous resource
stock into the environmental states s ∈ {0, ..., C−1}. The
agent has three possible actions: harvest nothing, harvest
a small amount, or harvest a large amount. What is small
and large depends on the maximum amount, ∆smax, the
resource regrows from environmental states S. The small
harvest amounts to (1 − ∆E)∆smax, the large harvest
amounts to (1 + ∆E)∆smax, with ∆E representing the
deviation in the agent’s harvesting effort.
State transitions work as follows: The harvest amount

is subtracted from the current stock state st. The stock
regrows according to the logistic growth equation, yield-
ing a new hypothetical stock s̃t+1. In order to avoid the
complete depletion of the resource, the minimum hypo-
thetical stock yields a value proportional to a base level
s̃base. Since the agent should have an influence on the
regrowth of the resource, s̃base is multiplied by (1+∆E)
if the agent chose to harvest nothing, by (1−∆E) if the
agent chose to harvest a little, and by 0 if the agent chose
to harvest a lot. The resource stock is then discretized
by a normal distribution around s̃t+1 with variance σ2.
The probability mass that lies between stock st+1 − 0.5
and st+1 + 0.5 gives the probability to transition to the
new state st+1. (For st+1 = 0 the lower bound is −∞,
for st+1 = C the upper bound is +∞.) Thus, σ repre-
sents the level of stochasticity within the environmental
dynamics.
The rewards are identical to the harvest amount. Har-

vesting a lot yields a higher immediate reward than har-
vesting a little. Except when the resource is degraded,
i.e. either the current state st or the next state st+1

equals zero, than the rewards are only 10% of the har-
vest amount. Thus, the agent has always an immediate
incentive to harvest more over a little. The optimal policy
depends on the weight the agent puts on future rewards
(by its discount factor γ).

We use this environment to showcase how partial ob-
servability can be used to investigate the effect of differ-
ent (imperfect) representations of the environment. We
focus on representations under which the agent perceives
several adjacent states as a single coherent observations.
Fig. 6A & B illustrates the renewable resource harvesting
environment and the investigated observation represen-
tations for capacity C = 5.

b. Results. We find that inaccurate (reduced com-
plexity) representations of the environment can lead to
a better learning outcome faster, when compared to an
agent which perceives the environment accurately (at full
complexity) (Fig 6).

In the majority of cases an inaccurate representation
of the environment leads to a speed out-performance in
the order of 10%, i.e., a smaller number of time steps it
takes the learner to converge to a fixed point. Only four
representations of the 9-state environment take distinctly
longer to converge. Overall, there is a slight tendency
that simpler representations lead to faster convergence.
Representations (dots) are ordered from the most com-
plex, i.e., the accurate one, on the left to the simplest,
i.e., perceiving all states as one, on the right (per envi-
ronment). All top speed representations (dashed bars)
cluster the resource stock 0 and 1 together but separate
between stock 1 and 2. In the environments with capacity
8 and 9, a resource stock of 2 is represented completely
separate by all top speed representations.

In contrast, the majority of inaccurate representations
lead to a worse reward at convergence. Clearly visible
by the red dots on the right for each environment, the
simpler the representation the worse the performance.
Nevertheless, a few representations of intermediate com-
plexity lead to a reward out-performance in the order
of 1%. This is remarkable, since Blackwell [61]’s theorem
showed that a rational decision maker cannot improve by
an inaccurate representation. Of course, our result does
not contradict Blackwell, since we investigate a learning
process.

To better understand the relationship between the
learning process and the rational optimal policies Tab. I
shows the average reward of the optimal policy R∗,γ and
the average-reward optimal policy R∗,avg relative to the
reward obtained by the fully observant agent (shown in
Fig 6 by diamonds and downward triangles). The opti-
mal policy maximizes the state values for each state and
depends on the discount factor γ. The average-reward
optimal policy maximizes the average reward. Since in
this environment R∗,γ approaches R∗,avg under γ → 1,
the rewards between R∗,avg and R∗,γ |γ=0.9 represent the
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FIG. 6. Deterministic learning dynamics in renewable resource environments. Panel A sketches the functioning
of the renewable resource harvesting environment. 1) The agent decides on a harvest, which is subtracted from the current
environmental stock. 2) The stock regrows according to a logistic function. 3) The stock is discretized by a normal distribution
in order to have the number of states equaling the capacity C of the logistic growth function. We set the growth rate r = 0.8,
the effort deviation ∆E = 0.2, the stock base level s̃base = 0.1, and the environmental stochasticity σ = 0.5. Panel B shows the
possible observation spaces – how the environment is represented by the agent – ordered by decreasing complexity, for a world
in which there are five possible true environmental states. In the most complex (at the top) the agent perceives all real states of
the world as distinct; in the least complex (at the bottom), the agent makes the same observation regardless of the true state.
We investigate all representations where the agent perceives several adjacent states as a single coherent observation. Panels
C shows the reward out-performance R = r/rac − 1 (red), the speed out-performance S = 1 − l/lac (blue), and the combined
reward-speed out-performance R ·S( if R > 0∧S > 0) (purple) for all possible representations, for the four renewable resource
environments with capacities C and likewise number of states, 6− 9. Out-performance is measured with respect to the agent
which used the accurate representation of the environment and obtained a reward rac in lac time steps. For each environment,
each dot represents the average out of 100 Monte Carlo simulations from random initial policies of a single representation,
ordered from the most complex, i.e., the accurate one, on the left to the simplest, i.e., perceiving all states as one, on the
right. Violin plots show the distribution of rewards and speed, relative to the agent with the accurate representation. The
three top performing representations are shown schematically by the dashed lines. Additionally, the average rewards of the
optimal discounted policy R∗,γ and the optimal average-reward policy R∗,avg are shown. The agent’s discount factor γ = 0.9,
intensity of choice β′ = 25 and learning rate α = 0.02. There exist inaccurate representations (partial observation functions)
of the environment that lead to a better learning outcome faster compared to the fully observant agent.

rewards more patient or future caring agents could ob-
tain. Thus, the out-performing representations cause the
learner to behave as if it were more patient or future-
oriented than it actually is (defined by its discount fac-
tor γ). However, it is not obvious to identify regularities

across the environments between the top rewarding rep-
resentations. Moreover, Tab. I shows that the learning
process under full observability yields decent results. For
the environment with 8 states the learner obtains the
exact same reward as the optimal policy. In the environ-
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ment with 6 states the learner obtains an average reward
which is even above the one of the optimal policy.
Taken together, a speed out-performance in the or-

der of 10% multiplied by a reward out-performance in
the order of 1% leads to combined speed-reward out-
performance in the order of 0.1%. Along the four environ-
ments investigated, the magnitude in out-performance is
increasing with the number of environmental states. Fu-
ture work is needed to investigate this effect in larger,
more complex resource harvesting environments and also
how to obtain those representations which lead to better
outcomes faster.
Notably, this result resembles the one by Mark et al.

[62] who show also that simpler views on the world can
be of advantage. However, in their model perceiving the
truths comes with a cost which is subtracted from the
rewards of the environment. If this cost parameter is
sufficiently large, perceiving the truths cannot pay off by
design. We do not model such a cognitive cost of being
close to the truths and still find that some inaccurate
representations lead to better outcomes faster.

D. Uncertain Social Dilemma

a. Environment description. The emergence of co-
operation in social dilemmas is another key research chal-
lenge for evolutionary biology, the social and sustainabil-
ity sciences [63–65]. We’ll focus on the situation where
two agents can either cooperate (C) or defect (D) and ei-
ther face a Prisoner’s Dilemma or a Stag Hunt game with
equal probability [Fig. 7A, cf., 66, 67]. In the pure Pris-
oner’s Dilemma defection is the Nash equilibrium, which
leads to a sub-optimal reward for both agents, also known
as the tragedy of the commons [68]. In the pure Stag
Hunt game, both mutual cooperation and mutual defec-
tion are Nash equilibria with the difference that mutual
cooperation yields a higher reward than mutual defec-
tion for both agents. It is therefore also referred to as
a coordination challenge [69]. Here, we consider the sit-
uation when the agents are uncertain about the type of
game they are facing at each decision point. Whether we
are facing a tragedy or a coordination challenge is rel-
evant for, e.g., the mitigation of human-caused climate
change [70]. We investigate two scenarios. Under ho-
mogenous uncertainty (Fig. 7B), both agents’ observa-

Env. states 6 7 8 9

Reward R∗,avg 0.25 0.013 0.019 0.024
Reward R∗,γ -0.015 0.013 0 0.003

TABLE I. Average reward of the optimal average-reward pol-
icy R∗,avg and the optimal policy of the discounted reward
setting R∗,γ for the same four renewable resource environ-
ments as in Fig. 6. Rewards are also transformed in the same
way (R = r/rac − 1, with rac being the reward the fully ob-
servant agent obtained at convergence).

tions are blurred by an increasing level of observational
noise. Under heterogeneous uncertainty (Fig. 7C), only
agent 2’s observations become noisier. Since the envi-
ronment is symmetric under exchanging the roles of the
agents, it suffices to explore only one heterogeneous un-
certainty scenario.

b. Results. Homogeneous uncertainty can overcome
the social dilemma through the emergence of a stable,
mutually high rewarding fixed point above a critical level
of observational noise. Under perfect observation both
agents convergence to full defection when observing the
Prisoner’s Dilemma. When observing the Stag Hunt
game it depends on the initial joint policy whether the
agents converge to mutual defection or mutual coopera-
tion. Reward values are as such that the defective basin
of attraction is comparable small (see the light line at
an average reward of 0 in Fig. 7B). Increasing the obser-
vational noise level from zero under homogeneous uncer-
tainty will first decrease the average reward at conver-
gence. The agents still converge to the perfect observa-
tion policy which leads them to defect when they observe
the Prisoners’ Dilemma but the situation is actually the
Stag Hunt. However, increasing observational noise fur-
ther eventually leads to a bifurcation (Fig. 7B). Mutual
cooperation under both observations becomes a stable
fixed point. As a consequence both agents obtain an av-
erage reward of 5 at convergence. Interestingly, there
seems to be a small range of observational noise at which
all three rewards 0, ∼ 2 and 5 are supported by equilib-
ria. For large noise levels only the rewards at 0 and 5 are
stable.

Thus, we find that the deterministic learning dynam-
ics under homogeneous partial observability are able to
converge to mutually more rewarding policies compared
to the perfect observation case. The existence of those
equilibria is long known in traditional static game theory
[66]. Here we show that our derived dynamics are able to
serve as a dynamic micro-foundation for those static equi-
libria. They correspond not only to fixed points of the
derived learning dynamics, the transitions between equi-
libria are again accompanied by the dynamical systems
phenomenon of a critical slowing down of the convergence
speed (Fig. 7B, bottom).

However, the mutual benefit of uncertainty vanishes
when not all agents’ observations are uncertain (Fig. 7C).
Under slight uncertainty only the reward of the ill-
informed agent (Agent 2 in Fig. 7) decreases. After the
bifurcation point under large uncertainty, the ill-informed
agent converges to full cooperation under both observa-
tions, whereas the well-informed agent still defects in the
Prisoner’s Dilemma which earns it an average reward
of even more than 5. The knowledgable agent exploits
the ill-informed and heterogeneous uncertainty leads to
reward-inequality between the agents.

Interestingly, Fig. 7 suggests a difference in the type
of phase transition between the policy of mediocre re-
ward at low observational noise levels and the policies at
high noise levels. The phase transition under homoge-
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FIG. 7. Deterministic learning dynamics in an uncertain social dilemma. Panel A illustrates the environment. Panels
B and C show the average rewards at convergence for agent 1 in red and agent 2 in blue (top row) and the time steps it takes
the learners to convergence (bottom row) for various observational noise levels from 0 to 0.5. For each noise level, the plots
show a histogram via the color scale. Each histogram results from a Monte Carlo simulation from 100 random initial policies.
Panel B shows the case of homogeneous uncertainty where both agents’ observations are corrupted equally by noise. In Panel
C only agent 2 is increasingly unable to observe the environment correctly (Heterogeneous Uncertainty). The discount factor
was set to γ = 0.5 since future states are independent of the agents actions, which makes the discount factor irrelevant for the
learning in this case. Remaining hyper-parameters were set to α = 0.01 and β′ = 50. Homogeneous uncertainty can overcome
the social dilemma through the emergence of a stable, mutually high rewarding fixed point above a critical level of observational
noise. Heterogeneous uncertainty, however, leads to reward inequality. In both cases, the transition is accompanied by a critical
slowing down of the convergence speed.

FIG. 8. Deterministic learning dynamics in an uncertain zero-sum competition. Policy spaces and reward trajectories
are shown for three different observational noise levels: (A) ν = 0.0, i.e., perfect observation, (B) ν = 0.25, and (C) ν > 0.5, i.e.,
both states are observed inseparably as one. The probability of choosing action left, conditioned on the current observation, is
plotted on the x-axis for agent 1 and on the y-axis for agent 2. Learning trajectories are shown from 5 initial policies around
the center of the policy spaces. For better visual inspection only one of those trajectories is portrayed in color. Arrows in gray
indicate the flow of the learning dynamical system. Hyper-parameter were α = 0.005, β′ = 200, and γ = 0.9. Here, partial
observability is able to stabilize the learning process.

neous uncertainty seems to be discontinuous and shifted
towards greater noise levels whereas the transition under
heterogeneous uncertainty seems to be continuous. Inves-
tigating the relationship between the learning dynamics,
free energy equivalents [49] and phase transitions is a
promising direction of future work.

E. Uncertain Zero-sum Competition

a. Environment description. The last environment
we use as a test bed is a two-agent, two-state, two-
action zero-sum competition, also known as the two-state
matching pennies game [71]. It roughly models the sit-
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uation of penalty kicks between a kicker and a keeper.
Both agents can choose between the left and the right

side of the goal. The keeper agent scores one point if it
catches the ball (when both agents have chosen the same
action), otherwise the kicker agent receives one point.
The two states of the environment encode which agent is
the keeper and which one is the kicker. In state KeepKick

agent 1 is the keeper and agent 2 is the kicker. In the
state KickKeep it is the other way around. Agents change
roles under state transitions, which depend only on agent
1’s actions. When agent 1 selects either left as keeper
or right as kicker both agents will change roles. With
symmetrical rewards but asymmetrical state transitions,
this two-state zero-sum game presents the challenge of
coordinating both agents on playing a mixed strategy
with equiprobable actions. Similarly as in Sects. IVA
and IVD, the agents’ observations of the environmental
states are obscured by a noise level ν.
b. Results. Fig. 8 shows how partial observability

can stabilize the learning process. When both agents
observe the environment perfectly the learning dynamics
are prone to be unstable, either unpredictably chaotic or
on periodic orbits and limit cycles [Panel A, 14]. The
rewards of agent 1 and 2 are circulating around zero.
Under a medium observational noise level of ν = 0.25
the learning dynamics are still unstable. Especially the
transient dynamics in the policy space (Panel B, on the
right) appear strange. The average reward trajectory
looks damped compared to the fully observant agents.
Increasing the observational noise further such that the
agents perceive the two environmental states (KeepKick

and KickKeep) as a single observation (KK ), is able to
stabilize the learning process. Interestingly, the flow of
the learning dynamics is separated into two half circles
directed at the upper half of the line at which agent 1
chooses both actions with equal probabilities. As shown
by the gray arrows, the circled flow is on a fast time scale
compared to the movement downward to the center of the
policy space (which is not reached here within 1000 time
steps). At this downward movement, both agents play
the different roles of kicker and keeper in equal amounts,
since only agent 1 is responsible for the state transitions.
Any advantage agent 2 gains from deviating from the
equiprobable policy as kicker is balanced by the same
amount of disadvantage agent 2 looses as keeper. Thus,
the rewards for both agents quickly stabilize at zero.

V. DISCUSSION

In this article we analysed the efficacy of temporal-
difference reinforcement learning under irreducible envi-
ronmental uncertainty. To do so, we introduced deter-
ministic multi-agent reinforcement learning dynamics, in
which the agents are only partially able to observe the
true states of the environment. These dynamics operate
in the theoretical limit of an infinite memory batch, and
make implicit inference about the true states via Bayes

rule and can be well approximated by finite-size batch
learning algorithms. This limit allows us to systemati-
cally separate the stochasticity of reinforcement learning,
resulting from probabilistic environmental dynamics, ob-
servations and decisions, from the environmental uncer-
tainty that originates in the agents’ incomplete awareness
of the true state space.

Overall, we have shown how these dynamics can serve
as a practical, lightweight, deterministically reproducible
and robust tool, to systematically study the combined ef-
fects of strategic uncertainty, stochastic uncertainty and
state uncertainty in collectives of self-learning agents
across a wide range of partially observable environment
classes.

We have found a variety of effects caused by partial ob-
servability, yet general conclusion and recommendations
cannot be stated, due to the generality of the partially
observable agent-environment setting. Providing agents
with only a partial view of the true state of the world
might be expected to always result in poorer learning
decision-making outcomes. However, we have demon-
strated that irreducible environmental uncertainty can
instead lead to better learning outcomes, even in a single-
agent environment, stabilize the learning process and
overcome social dilemmas in multi-agent domains.

Furthermore, our method allows the application of dy-
namical systems theory to partially observable multi-
agent learning. We have found that partial observabil-
ity can cause the emergence of catastrophic limit cycles,
within which the agent obtains the worst possible reward.
We also found instances where partial observability in-
duces phase transitions between low and high rewarding
regimes accompanied by a critical slowing down of the
learning processes. Further, we saw partial observability
induced separations of the learning dynamics into fast
and slow eigen-directions, as well as multi-stability of the
learning process.

a. Potential applications. These results may be of
use in technological applications of multi-agent reinforce-
ment learning, with respect to training regimes, hyper-
parameter tuning, and the development of novel algo-
rithms. For example, if agents are able to detect that
they entered a slow eigendirection, they can safely in-
crease their learning rate for a faster convergence. Or
training regimes and hyper-parameter search techniques
might be on the lookout for a critical slowing down since
this can indicate a phase transition towards high reward-
ing solutions. With respect to the hyper-parameter val-
ues required for a decent performance we found across
environments that learning with partial observability de-
mands more exploration and less weight on future re-
wards, compared to fully observant agents. Moreover,
the learning with partial observability might depend cru-
cially on the precise combination of the two parame-
ters, whereas without uncertainty both parameters can
be tuned fairly independently. The fast computation
speed and visualization capabilities of the deterministic
learning dynamics approach might be particular suited
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for the challenge to engineer interpretable and safety-
critical learning systems.

We have shown that whether partial observability in
the classic principle of temporal-difference learning is ad-
vantageous depends on the specific nature of the envi-
ronment and its representation, [c.f., ecological rational-
ity, 72, 73]. Given that temporal-difference reinforce-
ment learning is a relatively simple and widely effective
algorithm, and one which closely matches known features
of neurological learning [43, 44], this points to a poten-
tial evolutionary pressure for agents to develop internal
models of the world that do not match the true state
space of their environment [cf. 62, 74]. The proposed dy-
namics are therefore a suitable tool to advance theoret-
ical research in cognitive ecology, which studies how an-
imals acquire, retain, and use information within their
ecology, evolution and behavior [75, 76]. Within this
area, research has begun to ask how agents’ may evolve
non-veridical or incomplete representations of the world
[62, 77, 78]; the dynamic model presented here offers a
tool to study the effect of non-veridical representations
in greater depth.

We also showed that partial observability can lead to
better collective outcomes in the case of social dilem-
mas. The question for the preconditions of cooperation
and sustainable behavior presents an important area for
deeper investigation [79–81]. Temporal-difference learn-
ing is a widespread principle in neuroscience and psy-
chology [44] and there is indeed evidence that humans
use a payoff-based learning rule in social dilemmas [82].
The topic of uncertainty is of special relevance in the
mitigation of the climate crisis through global coopera-
tion agreements [69, 83–86]. Our results highlight the
potential for a systematic investigation of mechanisms

that incorporate useful uncertainty [87] for learning and
adaptive actors. In our examples, the mutual benefit of
uncertainty in the social dilemma vanishes when not all
agents are likewise ill-informed causing reward-inequality
between the agents. This suggests that partial observ-
ability as a mechanism for solving social dilemmas may
need to be regulated externally (e.g. by authorities that
monitor information flow, or as a feature of the environ-
ment) rather than something that is likely to be gener-
ated as an evolutionary adaptation amongst individuals
in competition with each other.
b. Future directions. A promising directions for fu-

ture work is the integration of model uncertainty through
an analytical treatment of noisy dynamics [cf., 50]. The
stochastic noise models the finiteness of a reasonable
learning algorithm compared to the theoretical limit of
the infinite memory batch of the present dynamics. The
challenge is that this problem is ill-defined and many
reasonable learning algorithms exist. Furthermore excit-
ing is the embedding of representation and generalization
dynamics into the nonlinear dynamics of learning, acting
and environment to study the principles of advantageous
representations.

CODE AVAILABILITY

We will release python code of the presented dynamics
and figure upon final acceptance of this manuscript.
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[86] E. F. Domingos, J. Grujić, J. C. Burguillo, G. Kirch-
steiger, F. C. Santos, and T. Lenaerts, Timing uncer-
tainty in collective risk dilemmas encourages group re-
ciprocation and polarization, Iscience 23, 101752 (2020).

[87] H. H. Nax, S. Balietti, R. O. Murphy, and D. Helbing,
Adding noise to the institution: an experimental welfare
investigation of the contribution-based grouping mecha-
nism, Social Choice and Welfare 50, 213 (2018).


	Modeling the effects of environmental and perceptual uncertainty using deterministic reinforcement learning dynamics with partial observability
	Abstract
	Introduction
	Background
	Partially observable stochastic games
	Temporal-difference reinforcement learning

	Derivation
	Beliefs
	Rewards
	Qualities
	Temporal-difference error

	Experiments
	Simple coordination task
	Navigation task
	Renewable Resource Harvesting
	Uncertain Social Dilemma
	Uncertain Zero-sum Competition

	Discussion
	Code availability
	Acknowledgments
	References


