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We develop a mathematical model that builds on the
surprising nonlinear mechanical response observed
in recent experiments on nematic liquid crystal
elastomers. Namely, under uniaxial tensile loads, the
material, rather than thinning in the perpendicular
directions, becomes thicker in one direction for a
sufficiently large strain, while its volume remains
unchanged. Motivated by this unusual large-strain
auxetic behaviour, we model the material using
an Ogden-type strain-energy function and calibrate
its parameters to available datasets. We show
that Ogden strain-energy functions are particularly
suitable for modelling nematic elastomers because
of their mathematical simplicity and their clear
formulation in terms of the principal stretches, which
have a direct kinematic interpretation.

This article is part of the theme issue ‘“The Ogden
model of rubber mechanics: Fifty years of impact on
nonlinear elasticity’.

1. Introduction

Quasi-static uniaxial tensile tests on cat skin suggest
that the reorientation of dermal fibres causes an initial
increase in the skin thickness, while the material volume
may either increase or decrease [1] (see also the review
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in [2]). By contrast, many natural and synthetic materials tend to become thinner in any direction
perpendicular to the tensile load independently of volume changes.

Recently, a novel nematic liquid crystal elastomer (LCE) was shown to exhibit similar
behaviour, namely, the thickness of a stretched material sample increases at sufficiently large
strain while the material volume remains unchanged [3-6] (figure 1). When viewed as a two-
dimensional system, this auxetic effect (from the Greek word ab&nowc for ‘growth’ or ‘increase’)
coincides with an apparent sharp rotation, by /2, of the average nematic alignment direction.
However, in three dimensions, the sharp director rotation is accompanied by a gradual decrease
and then increase in uniaxial orientational order coupled with the emergence and subsequent loss
of biaxial symmetry [6].

This is different from the mechanical response of most other nematic LCEs, with a continuous
rotation of the director and a constant uniaxial order parameter, where shear striping patterns can
develop [7-13]. The so-called soft elasticity phenomenon where alternating shear stripes occur at
very low stress has been studied extensively. Its theoretical explanation is that, for these materials,
the energy is minimized by a state exhibiting a microstructure of many homogeneously deformed
parts [8,14-22].

In this paper, we present a mathematical model that builds on the auxeticity of a novel nematic
LCE, which deforms with a sharp rotation of the director at large strains, within the theoretical
framework of finite elasticity [23-25]. Specifically, a phenomenological Ogden-type strain-energy
function is adopted that matches the available experimental data with a relatively small number
of terms. In §2, we introduce and explain the chosen strain-energy function. This is followed, in §3,
by the calibration of model parameters to experimental data from uniaxial tensile tests. Directions
for future investigation are outlined in the concluding remarks.

2. A continuum model for auxetic liquid crystal elastomers

Nematic LCEs are cross-linked networks of polymeric chains containing liquid crystal mesogens
[26-28]. Their manufactured molecular structure then renders them capable of large reversible
deformations and makes them highly responsive to external stimuli, such as heat, light, solvents
and electric or magnetic fields [29-45].

Because of their intrinsic similarities with conventional rubber, suitable descriptions of LCEs
can be achieved by adapting existing hyperelastic models for rubber-like solids. For example,
a simple continuum model for ideal monodomains, where the director is uniformly aligned
throughout the material, is the so-called neoclassical model [46—48]. This is based on the molecular
network theory of rubber [49] where the parameters of the neo-Hookean-type strain-energy
density is derived from macroscopic shape changes at small strain or through statistical averaging
at microscopic scale [28,50]. Phenomenological models based on other hyperelastic strain-energy
functions (e.g. Mooney-Rivlin, Gent, Ogden) that capture the nonlinear elastic behaviour at large
strains have also been developed [16,51,52].

To model an incompressible nematic LCE, we first introduce the following isotropic elastic
strain-energy function [21,22] (see also [14,17-19,53]),

WE(E, Q,n) = W(F) + WO (GTFG), (2.1)

where F denotes the deformation gradient from the reference cross-linking state, satisfying
detF =1, and n is a unit vector for the (localized) direction of uniaxial nematic alignment in the
present configuration, referred to as the director. We denote by ng the reference orientation of the
local director corresponding to the cross-linking state. On the right-hand side of equation (2.1),
the first term is the strain-energy density associated with the overall macroscopic deformation,
and the second term represents the strain-energy density of the polymer microstructure, with Go
and G denoting the ‘natural’ (or ‘spontaneous’) deformation tensor in the reference and current
configuration, respectively. These tensors are assumed to satisfy the following relations [54] (see

SR o 5 o i s



Downloaded from https://royal societypublishing.org/ on 10 January 2023

(@)

: X,

IlO |
ﬂ h, X,
| Xl
)
hy<h,
() .
h, = h,
(d) .
n hy> h,

Figure 1. When the reference auxetic LCE sample (a) is stretched horizontally (in the X; direction), its volume remains
unchanged, while its thickness first decreases, h, < h, (b), then is preserved almost unchanged h, == hy, (c), then increases
again hq > hc (d). In this LCE, the nematic director n is initially aligned in the second direction, along ny, then rotates by 7 /2
to become parallel to the applied force. (Online version in colour.)

also [28], ch. 3):
Gi=co(I+2Q,) and G?=c(I1+2Q), (2.2)

where ¢p and c represent the effective step length of the polymeric chain, I =diag(1,1,1) is the
tensor identity, with diag(-, -, -) denoting the diagonal second-order tensor, and Q, and Q are the
symmetric traceless order parameter tensors ([28], pp. 48—49). The macroscopic tensor parameter
describes orientational order in nematic liquid crystals [55].

Next, we define the nematic strain-energy function given by the Landau-de Gennes expansion
in powers of the tensor order parameter [28, p. 15],

1 4 2
wloQ) = 74t(QQ) — ¢ Btr(QQQ) + 5Ctr(QQQQ) + - - (2.3)
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For incompressible nematic elastomers subjected to uniaxial stretches, the contribution given by
the above nematic function to the total strain-energy density was originally analysed in [54], and
more recently in [56-58]. In particular, it was demonstrated that there are significant differences
between the mechanical behaviour of real nematic solids and those of ideal LCE models are
described only by an isotropic elastic strain energy.

Using the strain-energy functions described by (2.1) and (2.3), the composite LCE model
function then takes the form

W) (F,Q,n) = W(E,Q,n) + W(Q), (2:4)

where F, Q and n are mutually independent variables.
The associated Cauchy stress tensor represents the internal force acting within the deformed
solid on a unit of deformed area and is equal to
aw(lce)

7o) = TFT —pl, (2.5)

where p is the Lagrange multiplier for the incompressibility constraint detF =1, and the upper
case T denotes the transpose.

The corresponding first Piola—Kirchhoff stress tensor, representing the internal force acting
within the deformed body on an area element which in its reference state was one unit of area, is

plce) — T(ICQ)F_T, (2.6)
where —T denotes the inverse transpose. The tensor P19 is known as the nominal stress tensor
[24, pp. 152-153].

For the elastic components of the LCE model, we use an Ogden-type strain-energy density
function [59], as follows:

M
mooc PN S PN ()
WO, a2, 25) = Y (xl”f 4 g - 3) ) 2.7)

I
1
=202

where {C]('l)}j=l,...,m and {p](.l)}jzl,m,m are constants independent of the deformation, and (22, k%, A%}
are the eigenvalues of the tensor FTF, such that MAgr3 =1, and

(2)
oo 20 2P 2@
W (a1, a0, a3) = Z ] (ozlp + azp] + oz3p] - 3) , (2.8)

2
o207

where {c](.z) }i=1,..,.n and {p](.z) }j=1,...,n are constants independent of the deformation, and {a%, oz%, a%}

are the eigenvalues of the elastic Cauchy-Green tensor ATA, such that arapa3 = 1, with the local
elastic deformation tensor A = G™FGy.
The composite model defined by (2.4) then takes the form

WD, 32, 35, Q) = W (1, 2, 23) + W (en, a2, 3) + W(Q). 2.9)
For this model, the principal Cauchy stresses are equal to

aw(lce)
T = kP i=123. (2.10)
1

The associated first Piola—Kirchhoff stresses are
(Ice) _ (lce), —1 -
Py =Th i=1,2,3. (2.11)

In particular, if c](1> =0, forallj=1,...,m, and p(12) =1 and p}z) =0 for all j=2,...,n, while

WU)(Q) is omitted, then the strain-energy function described by (2.9) reduces to the neoclassical
model. However, for suitable parameter values, this composite function can capture nonlinear
large-strain effects, as demonstrated next.

s ey s s i wamiioanoirio [



Downloaded from https://royal societypublishing.org/ on 10 January 2023

3. Representation of experimental data for uniaxial tests

Many nematic LCEs have uniaxial symmetry, given by the nematic director n [60-62]. However,
strain-induced biaxial nematic order, with a secondary axis of symmetry in a plane orthogonal
to n, is also possible ([28], Sec 6.6; for a summary of nematic order see also [28], Sec. 2.2). In
[3-6], experimental observations for a nematic LCE exhibiting auxetic effects when subject to
a uniaxial tensile force were reported where biaxial symmetry emerges. We choose a Cartesian
system of coordinates (X1, X2, X3) in which the tensile force is applied in the first, or longitudinal,
direction, while the second direction is along the reference director ng, and designate the third
direction as the direction of thickness (figure 1). Then, according to the experimental results, if the
material sample is stretched longitudinally, its volume remains unchanged, but its thickness first
decreases, then is preserved almost constant for a tensile range, then increases again, while the
director suddenly rotates to align in the direction of the applied force.

In this section, we calibrate a model function of the form given by (2.9) to the experimental
data for (A1,6,Q,b, A3,P(11CE)) recorded in table 2 (see appendix A). These data values are slightly
idealized compared to those reported in [6], in the sense that the angle 6 for the director
orientation remains equal to 7/2 until a critical extension is reached, then it becomes 0, i.e. it
is assumed that the director rotates by /2 instantly. Note that, in figure 2c, the sample thickness
first decreases, then increases at a critical large strain. Simultaneously, in figure 24, the magnitude
of the uniaxial order parameter decreases until the same critical strain is reached, then increases,
while in figure 2b, the magnitude of the biaxial order parameter is larger around the critical strain.
We set Q = P and b = 6P, where Py and Py are determined via Raman spectroscopy in [6].
A schematic of the molecular frame with respect to the director frame used in the derivation of
order parameters is shown in figure 3. For these parameters, Q = 1 corresponds to perfect nematic
order while Q = 0 is when mesogens are randomly oriented, and if b =0, then the system reduces
to the uniaxial case.

Setting the nematic director in the reference and current configuration as ng = [0, 1,0]T and
n=[cos6,sin6,0]7, respectively, where 6 € [0, 7/2], the deformation gradient takes the form

F= diag(}‘ll A2, )‘3)/ (31)

where A1ApA3 = 1. In fact, for the uniaxial deformation under consideration, all tensors involved
share the same principal directions, and thus, are all diagonal.
In the reference configuration, the LCE is uniaxial, and the order parameter tensor is equal to
[28, p. 14]:
. Qo Qo
Q ~ding (-2, 0, - L), 62)

where Qp is the scalar order parameter.
In the deformed configuration, when biaxiality emerges [28, p. 15]:

— If = /2, then the order parameter tensor takes the form

o Q-b Q+b
Q - dlag <_TI Q/ _T> 7 (33)
— If 6 =0, then
L Q-b Q+b
Q= dlag <Q/ _T, _T> ’ (3.4)

where Q and b are the uniaxial and biaxial scalar order parameters, respectively.
For the elastic Cauchy-Green tensor ATA, by (2.2)
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Figure 2. Experimental data recorded in table 2 for: (a) the uniaxial scalar order parameter Q; (b) the biaxial scalar order
parameter b; (c) the sample thickness A versus the longitudinal strain A; — 1. The nematic director is oriented in the second
direction until a critical strain is reached and the director suddenly aligns in the first direction, i.e. parallel to the applied tensile
load. In each plot, the vertical line is drawn at the critical strain where the director suddenly rotates by 7t /2. (Online version
in colour.)

Figure 3. Schematic of the molecular frame with respect to the director frame used in the derivation of uniaxial order parameter
Q= ((3/2) cos’ B — (1/2)) and biaxial order parameter b = (3/2) (sin? B cos(2cx)), where (-) denotes average value over
mesogen angles « and . (Online version in colour.)
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Figure 4. (a) Comparison of the computed first Piola—Kirchhoff stress Pf"e) as a function of the longitudinal strain A, — 1
(dashed line), with the experimental data for the applied stress recorded in table 2 (circles); (b) the calibration relative error
given by the absolute value of the difference between the computed and experimental values of the applied stress, divided by
the experimental value. The model function is described by (3.7) with parameter values recorded in table 1 (see also fig. 8 of
[6]). In each plot, the vertical line is drawn at the critical strain where the director suddenly rotates by 7z /2. (Online version in
colour.)

— If 6 =7/2, then

2 [ detd+20Q) 3 1-Q 2 [ detd+20Q) 1/31+2QO/\2
17| det 0 + 2Qy) 1—(Q=0)"" "2 [ detd+2Qp) 1420 7%

) [det(1+2Q)]1/3 1-Q o

ag = det 1+ 200) 1-Q+D) 35 (3.5)
— If9 =0, then

az_[det(l—i—ZQ)]l”l—QoAz a2_[det(1+2Q)]1/3 14200

17| det I+ 2Qo) 1+20° Y 727 | detd+2Qp) 1-(Q-b)"%

2 [detd+200 717 1-Qy

“3_[deta+zgo>] —Q+n™¥ (36)

The general model described by (2.9) can capture, in theory, both the nonlinear elasticity
and the nematic properties of the LCE material. In practice, many specific models of this form
that differ in number of terms can be obtained that reasonably approximate the data. We apply
Occam’s principle [63] and select a model with a relatively small number of terms, since simpler
models are more likely to be used even if their approximation of the observed phenomena are not
the best, as advocated in [64]. The chosen model function takes the form

0 0
ol (1) (1) (1) c (1) (1) (1)
R (xf’“ +a a3 —3>+ 2 (/\f”z +02 g —3)
2(p; ") 2(p; ')

e

2 2
1 P w2y ) Lilo2 (Q + b) (Q - b>
+ (O( +o,t oyt =3+ A|QH ) +| =
22y 1 2 3 3 2 2

~sn[o s (G0 () ]+ e[+ () (Y] en

As the second and third directions must be stress free, the associated principal Cauchy stresses,
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Table 1. Parameters of the strain-energy function described by (3.7) calibrated to experimental data recorded in table 2.
Numerical and experimental results are compared in figures 4 and 5. At small strain, the computed elastic modulus is equal
toF =3(c” + " + ) = 8.2850 (MPa) [67].

model function calibrated parameters

W defined by (27) AV = —0.077,p\" = 25429, " = 2.8372, p" = —1.5690
W® defined by (2.8) ¥ = 0.0015, p = 0741
WU defined by (2.3) A=0.0235,8=0.0008, ( = —0.0268

defined by (2.10), are equal to

1) (1) (1) O (1) (1) 2) (2) (1)
(ce) _ ©1 2p 2p ) 2p 2p ol 2p 2p
9= S () 5 (1 -3 ) S (o -
1 P2 P1
1) (1) (2)
ol (o o e (o) oY e (o o)
=\t BOA G R G
P P2 P
i=1,2,3. (3.8)

The corresponding first Piola—Kirchhoff stress are defined by (2.11).

Figure 4a shows the computed first Piola—Kirchhoff stresses in the three directions compared to
the given data. Numerically, we employed a nonlinear least-squares procedure (I sqnonl i n. m
implemented in MATLAB [65,66], whereby the optimal model coefficients were determined by
minimizing the residual between the Piola—Kirchhoff stresses in the first and second directions
and the associated data values at the prescribed stretches, respectively, while the stresses in the
third direction are set equal to zero. Namely, in the first direction, the applied stress data are
recorded in table 2, while in the second direction the stress data are all taken to be zero. This is
different from the usual model calibration in uniaxial tension where the stretches in the direction
orthogonal to that of the applied force are equal and the associated stresses are guaranteed to
be equal as well. The computed relative error is displayed in figure 4b. The resulting parameter
values are provided in table 1.

Figure 5 illustrates the principal Cauchy stresses given by (3.8) and also the nonlinear

stretch modulus Tglce) /log A1 versus the logarithmic strain log 1. Nonlinear elastic moduli for
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homogeneous isotropic hyperelastic materials are defined in [67]. For nematic LCEs, different
elastic moduli at small strain are analysed in [56].

4. Conclusion

In this paper, we focused on the uniaxial deformation of a nematic LCE, which, in contrast to
many other rubber-like materials and nematic elastomers, when extended, becomes thicker in a
perpendicular direction if the strain is sufficiently large, while its volume remains unchanged.
To capture this unusual large-strain auxetic response, we represented the material using an
Ogden-type strain-energy function and calibrated its parameters to experimental data. This is a
phenomenological model capable of describing the observed mechanical behaviour regardless of
the molecular composition. In this sense, the model is not unique, as other continuum models
may also be in agreement with the available datasets. Nevertheless, Ogden strain-energies
are particularly suited to modelling complex elastic materials, such as LCEs, because of their
mathematical simplicity and their clear formulation in terms of the principal stretches, which
have a direct kinematic interpretation. They are also well known to easily fit any experimental
data for finite deformations, with a relatively small number of terms.

Conversely, given the model parameters listed in table 1, one should be able to obtain A3, A3, Q
and b as functions of the stretch ratio 11. Hence, the auxetic elastic response at large strain should
be predicted. However, the inverse problem involved is highly nonlinear, and finding an effective
predictive model for this complex material behaviour remains open to future investigation.

Further, the mathematical model developed here was obtained by following traditional
deterministic approaches, where average data values are used. In practice, uncertainties in
experimental measurements emerge from sample to sample variability, observational data, which
may be sparse, indirect, and polluted by noise, and imperfect reversibility of elastic deformations,
especially at large strains. The data variability can be taken into account by more sophisticated,
non-deterministic models, where model parameters follow probability distributions [68,69].

Theoretical and practical challenges related to the modelling rubber-like elasticity, which
apply also to LCEs, are discussed in [70]. It is concluded there that, for a theory to be helpful
in explaining the elastic responses of a material, it should take into account its properties not
only in simple extension and compression, but also in other types of strain. For the nematic elastomer
considered in this paper, the mechanical properties under multiaxial deformations [22,53,71,72]
deserve to be further investigated.
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Appendix A. Experimental data

We present in this appendix the experimental data for the calibration of the LCE model
parameters. Details of the physical set-up are discussed in [6].
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Table 2. Experimental data (see also figs 8 and 10 of [6]).

X longitudinal Quniaxial order b biaxial order P (MPa)

stretch O directorangle  parameter parameter A thickness applied stress
1.0000

1.2800 /2 0.4866 —0.0132 0.8300 0.9757

133()()71—/2 ........................... 04549_0015508100 ........................ 1 0724 ..................
1380071—/2 ........................... 04298_0021008000 ........................ 1 1540 ...................
1440071/2 ........................... 03920_0022807800 ........................ 1 2454 ..................
1480071/2 ........................... 03885_0016807700 ........................ 1 2951 ...................
1540()71—/2 ........................... 03700_0027007400 ........................ 1 3712 ...................
1590071—/2 ........................... 03421_003350730() ........................ 1 4293 ..................
1640071/2 ........................... 02786_0053407200 ........................ 1 4818 ..................
169007-[/2 ........................... 02500_0079207100 ........................ 1 5269 ..................
1750071—/2 ........................... 02284_0037007000 ........................ 1 5904 ..................
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