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Abstract. Measurement and source apportionment of atmo-

spheric pollutants are crucial for the assessment of air qual-

ity and the implementation of policies for their improvement.

In most cases, such measurements use expensive regulatory-

grade instruments, which makes it difficult to achieve wide

spatial coverage. Low-cost sensors may provide a more af-

fordable alternative, but their capability and reliability in sep-

arating distinct sources of particles have not been tested ex-

tensively yet. The present study examines the ability of a low-

cost optical particle counter (OPC) to identify the sources of

particles and conditions that affect particle concentrations at

an urban background site in Birmingham, UK. To help evalu-

ate the results, the same analysis is performed on data from a

regulatory-grade instrument (SMPS, scanning mobility par-

ticle sizer) and compared to the outcomes from the OPC

analysis. The analysis of the low-cost sensor data manages

to separate periods and atmospheric conditions according to

the level of pollution at the site. It also successfully identifies

a number of sources for the observed particles, which were

also identified using the regulatory-grade instruments. The

low-cost sensor, due to the particle size range measured (0.35

to 40 µm), performed rather well in differentiating sources

of particles with sizes greater than 1 µm, though its ability

to distinguish their diurnal variation, as well as to separate

sources of smaller particles, at the site was limited. The cur-

rent level of source identification demonstrated makes the

technique useful for background site studies, where larger

particles with smaller temporal variations are of significant

importance. This study highlights the current capability of

low-cost sensors in source identification and differentiation

using clustering approaches. Future directions towards par-

ticulate matter source apportionment using low-cost OPCs

are highlighted.

1 Introduction

Particulate matter (PM) plays a dominant role in air qual-

ity and is known to cause adverse health effects (Dockery

et al., 1993; Pascal et al., 2013; Wu et al., 2016; Zeger et

al., 2008). As a result, regulatory limits are set for its con-

centrations, especially in urban areas (US EPA, 2012; WHO,

2006). For the implementation of such regulations, the identi-

fication of the sources of PM is required. To accomplish this,
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measurements of the concentrations of PM, typically along-

side PM composition, in the area of study are conducted.

Until recent years these measurements were typically made

using regulatory-grade instruments which, while providing

high quality data, are rather expensive, thereby limiting the

number that could be deployed and consequently the spa-

tial resolution of any measurement network. This increases

the spatial interpolation uncertainty (Kanaroglou et al., 2005)

and can result in inadequate connection between the levels of

air pollution exposures and resulting health effects (Holstius

et al., 2014), especially in complex urban environments (Har-

rison, 2017; Mueller et al., 2016). Additionally, many low-

and middle-income countries are unable to invest the large

economic assets currently required for source apportionment,

even though in many of these countries the air quality is poor

(Ghosh and Parida, 2015; Kan et al., 2009; Petkova et al.,

2013; Pope et al., 2018; Singh et al., 2020).

In the past decade, the development of new and cheaper

sensors for air quality monitoring has intensified. Many dif-

ferent sensors were introduced measuring either the num-

ber concentration or surface area of PM (or gas-phase

species) (Jovašević-Stojanović et al., 2015; Lewis et al.,

2018; Popoola et al., 2018). Overall, the low-cost PM sen-

sors currently offer better comparison with regulatory-grade

equipment compared to their gas-phase counterparts (Lewis

et al., 2018). However, many shortcomings have been iden-

tified in their application, with the most common being the

loss of accuracy in the measurements due to environmen-

tal conditions such as relative humidity (RH) variations or

high PM concentrations (Castell et al., 2017; Crilley et al.,

2018, 2020; Di Antonio et al., 2018; Hagan and Kroll, 2020;

Miskell et al., 2017; Zheng et al., 2018). Measurements in

ambient conditions also lead to discrepancies with research-

grade instruments, which often measure in controlled envi-

ronments that are air conditioned (U.S. Environmental Pro-

tection Agency, 2016). The reproducibility and variability of

the outputs from sensors of the same type can also be prob-

lematic (Austin et al., 2015; Sousan et al., 2016; Wang et al.,

2015). Therefore, the need for constant and careful calibra-

tion is repeatedly highlighted for many studies that evaluate

the potential of low-cost sensors (Rai et al., 2017; Spinelle

et al., 2015, 2017). When these calibration steps are imple-

mented, low-cost sensors have been shown to provide reli-

able near real-time measurements, maintaining high corre-

lations with research-grade instruments (Kelly et al., 2017;

Malings et al., 2020; Sayahi et al., 2019) with the added ad-

vantages of the lower cost and portability.

Consequently, low-cost sensors have been successfully de-

ployed in many studies for which the use of more expensive

instruments was not feasible. There is a number of applica-

tions in low- and middle-income countries (e.g. Nagendra et

al., 2019; Pope et al., 2018), in studies which included mo-

bile measurements within the urban environment (Ionascu et

al., 2018; Jerrett et al., 2017; Miskell et al., 2018), or studies

of indoor air quality from multiple sites, such as the SKO-

MOBO project conducted in New Zealand, in which the air

quality in schools was assessed (Weyers et al., 2018). The

greatest advantage though is likely, as their name implies,

their lower cost, which made possible the formation of a net-

work of measuring stations (Feinberg et al., 2019; Kotsev

et al., 2016; Moltchanov et al., 2015), increasing the spatial

resolution and through new data analysis methods improv-

ing the mapping of air pollution up to a sub-neighbourhood

level (Schneider et al., 2017; Shindler, 2019). Therefore, it

is suggested that the development and use of low-cost sen-

sors, either used individually or in conjunction with research-

grade instruments (Snyder et al., 2013), have the potential to

radically change the conventional approach of both pollution

measuring and policymaking (Borrego et al., 2018; Kumar

et al., 2015; Lagerspetz et al., 2019; Morawska et al., 2018),

providing a more effective general public information and

enhanced environmental awareness (Penza et al., 2014), even

for countries with smaller budgets (Amegah, 2018).

As yet, studying the different sources of particles at a site

with the use of data from low-cost sensors has not been

widely attempted. Pope et al. (2018) managed to identify

major pollution sources by studying the ratios of PM of dif-

ferent sizes provided by low-cost sensors, while Popoola et

al. (2018) using a network of sensors identified the sources

of pollution near Heathrow Airport in London, UK. Hagan

et al. (2019), applying a statistical method (non-negative ma-

trix factorisation) on low-cost sensor data, identified a com-

bustion factor in a three-factor solution in New Delhi, India.

The present study investigates the ability of low-cost sen-

sors to provide measurements that can be used to identify

the sources of pollution at a background site in Birmingham,

UK, using clustering of particle size profiles. This method

was successfully used in a number of previous studies,

though with the use of measurements from research-grade in-

struments (Beddows et al., 2009, 2015; Von Bismarck-Osten

and Weber, 2014; Dall’Osto et al., 2011, 2012; Sabaliauskas

et al., 2013). To support the clustering method, chemical

composition data from both research-grade and low-cost sen-

sor instruments were used, as well as meteorological data

from a closely located measurement station. Apart from at-

tempting the source differentiation with low-cost sensor data,

a direct comparison with the results from a similar analy-

sis using research-grade instruments is also conducted to not

only validate the results but also find the strengths and weak-

nesses of such an application.

2 Methods

2.1 Location of the site and instruments

The measurement site (Fig. 1), characterised as an ur-

ban background, is the Birmingham Air Quality Supersite

(BAQS) located at the grounds of the University of Birm-

ingham (52.45◦ N, 1.93◦ W), about 3 km southwest from the

Atmos. Meas. Tech., 14, 4139–4155, 2021 https://doi.org/10.5194/amt-14-4139-2021



D. Bousiotis et al.: Assessing the sources of particles using low-cost sensors 4141

Figure 1. Map of the location of the Birmingham Air Quality Su-

persite (BAQS) in the UK (Map by © HERE).

city centre (Alam et al., 2015). In the present study, measure-

ments from the following instruments for the period 24 Jan-

uary to 12 March 2020 (the date range was chosen to avoid

the effect of the lockdown due to COVID-19) were used (Ta-

ble 1, a picture of the low-cost sensors used at BAQS is found

in Fig. S1 in the Supplement).

The Alphasense OPC-N3, which is an optical particle

counter (OPC), measuring particle number concentrations

in the size range between 0.35 and 40 µm at rates up to

about 10 000 particles s−1. As the sample air stream enters

the instrument with a sample flow rate of 210 mL m−1 (dy-

namically monitored and corrected by the sensor), it passes

through a laser beam (wavelength at 658 nm). OPC-N3 mea-

sures the light scattered by individual particles carried in

a sample air stream through a laser beam. These measure-

ments are used to determine the particle size, related to the

intensity of light scattered via a calibration based on Mie

scattering theory and particle number concentration. Parti-

cle mass loadings (PM1, PM2.5 and PM10) are then calcu-

lated from the particle size spectra and concentration data,

assuming a particle density and refractive index (default den-

sity is 1.65 g mL−1, and complex refractive index is 1.5+ i0)

(Alphasense, 2019). Particles of larger size are likely lost to

impaction in the tubing prior to the OPC and thus are not

considered. The OPC is located within the air-conditioned

station, so measurements represent PM dry mass.

The AethLabs MA200 (microAeth MA200) provides

black carbon (BC) information (0–1 mg BC m−3). The sam-

ple is deposited onto an internal filter, and an IR light

(880 nm) is directed through the sample on the filter and into

a detector on the other side of the sample. The amount of

light absorbed from the sample is proportional to the BC con-

centration.

Two Naneos Partectors (Naneos Particle Solutions GmbH)

provide the lung-deposited surface area metric (LDSA,

µm2 cm−3) in the particle diameter range 10 nm to 10 µm. In

general, the instrument charges particles with an efficiency

proportional to the particle diameter to the power of 1.1

(d1.1) and is independent of particle composition (Todea et

al., 2015; Geiss et al., 2016). The particle number concentra-

tion (N ) is also provided for all particles, resulting in a Nd1.1

metric that can be correlated to LDSA. A catalytic stripper

(Catalytic Instruments CS015) was used to remove the semi-

volatile particles entering one of the two Naneos Partectors.

The other Naneos Partector was not subject to the catalytic

stripper and therefore measured the surface of all particles.

In the present study, apart from the values provided directly

from the sensors, the ratio between the measurements of the

two Naneos Partectors was also considered according to

LDSAratio =
LDSA after the catalytic stripper

LDSA before the catalytic stripper
. (1)

This was done to resolve whether such a configuration can

also provide information such as the level of pollution or

the age of the incoming air masses, as increased concentra-

tions of semi-volatile compounds are usually associated with

anthropogenic sources, especially in the urban environment

(Harkov, 1989; Mahbub et al., 2011; Schnelle-Kreis et al.,

2007; Xu and Zhang, 2011). Thus, a high LDSAratio is ex-

pected to be associated with fresher pollution, which usually

has a higher content of volatile compounds (i.e. pollution

sources at a close distance from the site), while lower ra-

tios are probably associated with either cleaner conditions or

more regional and aged pollution with higher concentrations

of semi-volatile compounds, usually associated with sources

at a greater distance from the measuring site. The specific

metric though should be considered with caution, as it can be

biased by the absolute surface areas measured.

The sensors monitoring nitrogen dioxide (NO2) and ozone

(O3) concentrations are part of an Alphasense BOx of Clus-

tered Sensors (BOCSs) (Smith et al., 2019), which is a low-

power instrument based on multiple low-cost air pollution

sensors allocated in two independent circuits to redundantly

measure concentrations and other airflow parameters. The

air is driven by a pump through the cell (air flow is about

4 L min−1) that hosts electrochemical (EC) sensors and the

nondispersive infrared (NDIR) sensors. The EC sensors re-

dundantly (six sensors per gas) measure carbon monoxide,

NO2, nitrogen monoxide and oxidising gases (Ox), and the

https://doi.org/10.5194/amt-14-4139-2021 Atmos. Meas. Tech., 14, 4139–4155, 2021
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Table 1. List of the measuring instruments used in the present study.

Monitoring Model Manufacturer Regulatory Approximate

grade cost (GBP)

NO2 NO2-B43F Alphasense No 250

Ox Ox-B43I Alphasense No 160

Black carbon MA200 AethLabs No 5700

Lung-deposited surface area Naneos No 8500

OPC OPC-N3 Alphasense No 250

SMPS TSI 3082 TSI Yes 80 000

ACSM Quad – ACSM Aerodyne Yes 170 000

PM Fidas 200E Palas Yes 25 000

NO2 T500U Teledyne Yes 15 000

Black carbon AE33 Magee Scientific Yes 25 000

O3 49i Thermo Yes 3000

NDIR sensors measure carbon dioxide. EC sensors are based

on recording the current generated by redox reactions that oc-

cur at the electrode–electrolyte interface in an electrochem-

ical cell composed of three electrodes (working electrode

(WE), counter electrode (CE) and reference electrode (RE)).

While the gas of interest reacts on the WE surface, the CE

completes the redox reaction, and the RE ensures that the WE

potential remains in the proper range. In the present study,

only the measurements of O3 (deriving from a linear regres-

sion of the values of the six Ox sensors with the measure-

ments from the reference instrument also located at BAQS)

and NO2 were used.

The Aethalometer, model AE33 by Magee Scientific, col-

lects aerosol particles continuously by drawing the aerosol-

laden air stream through a spot on the filter tape. It analyses

the aerosol by measuring the transmission of light through

one portion of the filter tape containing the sample versus the

transmission through an unloaded portion of the filter tape

acting as a reference area. This analysis is done at seven opti-

cal wavelengths spanning the range from the near-infrared to

the near-ultraviolet. The Aethalometer calculates the instan-

taneous concentration of optically absorbing aerosols from

the rate of change of the attenuation of light transmitted

through the particle-laden filter.

For the same period, data from regulatory-grade instru-

ments were also available. Thus, particle size composition

data from a model TSI 3082 scanning mobility particle sizer

(SMPS) in the size range 12–552 nm, along with PM data

for the sizes of 1, 2.5, 4 and 10 µm acquired using a Fidas

200E, were used. Additionally, chemical composition data

for NO2 and O3, as well as SO2−
4 , NO−

3 and organic content

(size range 40 nm to 1 µm), from an Aerodyne aerosol chem-

ical speciation monitor (ACSM) were also available. Meteo-

rological data (wind speed (WS) and direction, temperature,

RH, and rain level) from the Birmingham Air Quality Su-

persite were also used in the characterisation of the clusters

formed from both methods.

Planetary boundary layer (PBL) height data

were downloaded from ECMWF’s ERA5

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/

reanalysis-era5-single-levels, last access: 20 March

2021). Back-trajectory data calculated using the

HYSPLIT model (Draxler and Hess, 1998) were

extracted by the NOAA Air Resources Laboratory

(https://ready.arl.noaa.gov/READYtransp.php, last ac-

cess: 17 August 2020). Data were processed using the

Openair package for R (Carslaw and Ropkins, 2012).

2.2 k-means clustering

In this study, two size spectra are considered: one deriving

from the OPC and one from the regulatory-grade SMPS.

It is noted that the size spectra from the two instruments

only briefly overlap in the size range 350–552 nm, with

the SMPS mostly measuring smaller particles and the OPC

mostly measuring larger particles. For the time period stud-

ied (24 January–12 March 2020), 874 h of available data (av-

eraged from 10 s intervals – 76 % coverage) from the OPC

and 732 h from the SMPS (66 % coverage) were exposed to

k-means clustering. k-means clustering is a method success-

fully used in many studies for particle source differentiation

(Beddows et al., 2015; Brines et al., 2015, Von Bismarck-

Osten and Weber, 2014; Giorio et al., 2015; Wegner et al.,

2012) and has been shown to have better performance com-

pared to other clustering techniques (Beddows et al., 2009;

Salimi et al., 2014). The technique was found to produce

clusters with the highest similarity between their elements

and the highest separation against the other clusters formed

(Hennig, 2007). It is a method of vector quantisation which

aims to partition observations (x1, x2, ..., xn) into k sets,

minimising within-cluster variances (squared Euclidean dis-

tances) as

argmin

k∑

i=1

∑

x∈Si

‖x − µi‖
2 = argmin

k∑

i=1

|Si |VarSi, (2)

Atmos. Meas. Tech., 14, 4139–4155, 2021 https://doi.org/10.5194/amt-14-4139-2021
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where Si represents the sets (clusters) formed, and µi repre-

sents the centroid point of the cluster (Likas et al., 2003).

k-means clustering in this study was performed using the

“stats” library for R. The optimal number of clusters was

chosen using two metrics: the Dunn index and the Silhou-

ette width as proposed by Beddows et al. (2009). The Dunn

index provides a measure of the ratio of the minimum cluster

separation to the maximum cluster (providing a metric of the

compactness and separation of the clusters formed within the

space – Pakhira et al., 2004). The larger the Dunn index, the

better separated are the clusters formed. The Silhouette width

is a measure of the similarity of the spectra within each clus-

ter (Rousseeuw, 1987). Both the Dunn index and Silhouette

width were calculated using the “fpc” library for R. In the

present study the best statistically fitted solution was chosen

(the solution for which both metrics maximised), though in

source differentiation studies such a solution may not always

provide the best separation of all the available sources. Us-

ing the aforementioned statistical tests, a six-cluster solution

was independently suggested for both the OPC and SMPS

datasets. Although the clustering process could be applied

for the Fidas data, which are comparable in size range, it was

not performed in this study because of the limited size bin

data of the Fidas instrument.

3 Results

3.1 General conditions, sources of particles and

pollution at the site

Being an urban background site, it presents relatively low

concentrations of most pollutants (the average atmospheric

conditions for each cluster formed by both methods is pre-

sented in Table 2), without the effect of direct sources of pol-

lution, such as traffic. Wind rose and polar plots illustrating

the conditions in the period studied are found in Fig. S2. The

main source of pollution lies in the north and northeast sec-

tors, where the city centre is located, as well as in the south-

ern and eastern sectors, where a populous residential area is

located. As a result, the main sources of NO2 and BC as well

as the smaller-sized PM are associated with easterly winds

(this though is not reflected in particles observed in the SMPS

size range). For the PM10, apart from the aforementioned,

increased concentrations are also found with southwestern

winds likely associated with marine sources. Typical for the

UK, the average wind profile for the period consists mainly

of western and southwestern winds (McIntosh and Thom,

1969), reducing the effect of the pollution sources in the east

of the site. Finally, the secondary pollutants NO−
3 and SO2−

4 ,

which are in most cases associated with aged pollution and

long-distance transport, have less consistent profiles, though

they both seem to be mainly associated with southern wind

directions. Finally, for the period studied no new particle for-

mation (NPF) events were observed. This is consistent with

the general trend in the area as found by Alam et al. (2003)

for Birmingham (as well as in more recent studies by Bousio-

tis et al. (2019, 2021) at nearby sites in Oxford and London),

in which NPF events in southern UK are more frequent dur-

ing the summer months and barely occurring during winter

and early spring, mainly due to unfavourable meteorological

conditions.

3.2 Clustering of the OPC data

Due to the larger particle sizes measured by the OPC-N3, the

differences in the cluster profiles are mainly associated with

the particle number concentrations and to a lesser extent with

the different peaks, which are less distinct due to the smaller

variation found as particle diameter increases. The frequency

of the clusters formed, as well as their diurnal occurrence, is

shown in Fig. 2. The average particle size distribution spectra

and wind roses for the clusters formed are found in Figs. S3

and S4.

The six clusters formed from the OPC data are as follows:

– OPC.1 is a rather polluted group with the highest NO2

concentrations and average secondary pollutants, PM

and LDSA ratio. Its fresher polluted character is fur-

ther confirmed using the SMPS data which showed

higher-than-average particle concentrations for particles

with diameters smaller than 50 nm. This group presents

lower-than-average temperature, RH, and PBL height

and slower-than-average southwestern winds, which is

explained, to an extent, by the cluster being slightly

more frequent during night-time.

– OPC.2 refers mainly to a single midday event on

12 March 2020 (which explains the highest PBL height

found) with high-speed southwestern winds, which are

associated with lower pollution levels in the area (Mc-

Gregor and Bamzelis, 1995), high temperature and very

low RH. On this day the concentrations of all the pol-

lutants were rather low, though due to the high wind

speeds (an increase in the wind speed is observed at the

start of the occurrence of this cluster – at 10:00 LT –

which affects the particle distribution profile as can be

seen in Fig. S5) the PM10 values were close to average

(when PM1 and PM2.5 were rather low), indicating the

stronger presence of coarser particles, possibly of ma-

rine origin, as shown by the back trajectories, which is a

source with an increasing importance for larger-size PM

in this area (Harrison et al., 2004; Taiwo et al., 2014).

This group presents the highest LDSA ratio, which is in

agreement with the low concentrations of the secondary

pollutants.

– OPC.3 is a group occurring mainly during some of the

midday periods in January, with the lowest temperature

and wind speed averages, as well as the highest average

RH, containing both southwestern and southern winds.

https://doi.org/10.5194/amt-14-4139-2021 Atmos. Meas. Tech., 14, 4139–4155, 2021
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Figure 2. Frequency and diurnal variation of the clusters formed by the OPC data.

While the concentrations of the measured pollutants are

close to average, high sulfate and ozone concentrations

were found, with the former pointing to air masses with

higher concentrations of aged pollutants assisted by the

lowest PBL found for this cluster. The LDSA ratio,

though, was found to be very high despite the higher

concentrations of sulfate and nitrate. The near-average

NO2 concentrations may point to the effect of a nearby

pollution source that may have resulted in the increased

LDSA ratio found.

– OPC.4 is a group with low concentrations of NO2, BC

and PM but close-to-average secondary pollutant con-

centrations. It is associated with close-to-average tem-

perature, RH, PBL height and wind speed of mainly

southwestern directions. It is slightly more frequent dur-

ing daytime and has lower-than-average concentrations

of particles in the SMPS range.

– OPC.5 includes the most polluted conditions in the area

throughout the day. It is associated with western and

southwestern winds of average speed, high temperature

and lower-than-average RH. Most pollutant concentra-

tions, including PM, are rather high, while O3 is low.

Similarly, it presents the highest concentrations of par-

ticles in all SMPS size ranges, which is probably due

to the reduced atmospheric mixing in the lowest aver-

age PBL height among the OPC clusters. This cluster

also includes the more polluted conditions found with

northeastern winds.

Atmos. Meas. Tech., 14, 4139–4155, 2021 https://doi.org/10.5194/amt-14-4139-2021
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7 – OPC.6 is a group associated with rather clean condi-

tions, presenting the lowest concentrations of NO2, BC,

NO−
3 and organic content. It is associated with higher-

than-average temperature, PBL height and wind speed

and lower-than-average RH; it has low concentrations

of PM1 and PM2.5, while the PM10 concentration is

close to average. Its association with cleaner conditions

(lower concentrations of the pollutants with available

data) probably explains the highest O3 concentrations.

The fast-moving southwestern air masses, which this

group is associated with, are probably of marine origin

that have not passed through any significant pollution

sources, which can be further suggested by both the low

LDSA values and the highest LDSA ratio.

3.3 Clustering of the SMPS data

In the past, a number of studies on the sources of particles

were conducted for both the greater area of Birmingham and

specifically the site in the university (Harrison et al., 1997;

Taiwo, 2016; Yin et al., 2010). As these studies mainly fo-

cused on the chemical composition of coarser particles, to

the authors’ knowledge this is the first study that uses ul-

trafine particle size distribution data to study the sources of

particles in Birmingham, UK. The frequency and hourly oc-

currence of the six clusters formed from the SMPS data are

found in Fig. 3. The average particle size distributions and

wind roses for the clusters formed are found in Figs. S6 and

S7.

– SMPS.1 contains averagely polluted hours and is as-

sociated with fresher pollutants (such as NO2 or NO)

and PM, while secondary pollutants such as NH+
4 , NO−

3

and SO2−
4 are relatively low. Due to being associated

with fresher emissions, this group presents higher-than-

average concentrations of particles below 50 nm and a

low LDSA ratio. It is associated with average south-

western winds (it also includes the small portion of

northeastern winds) and temperature and higher-than-

average RH, and it occurs more frequently during late

night and early morning hours, which explains the low

PBL height among the SMPS clusters.

– SMPS.2 is similar to the first group, and average pol-

lutant concentrations are found in this group with low

concentrations of secondary pollutants. It is associated

with slow western and southwestern winds and lower-

than-average temperatures, RH, and PBL height, and

it is more frequent during early morning hours. It has

the highest concentrations of particles with diameters

smaller than 20 nm, but the particle concentrations be-

come relatively smaller as their size increases.

– SMPS.3 is a small group containing very clean night

hours mainly in February, with higher-than-average

temperature, lower-than-average RH, strong western

https://doi.org/10.5194/amt-14-4139-2021 Atmos. Meas. Tech., 14, 4139–4155, 2021



4146 D. Bousiotis et al.: Assessing the sources of particles using low-cost sensors

Figure 3. Frequency and diurnal variation of the clusters formed by the SMPS data.

and southwestern winds, and a remarkably great PBL

height for the time of the day. It has low concentrations

of pollutants and PM apart from O3 (despite the time of

day), though PM10 concentration is enhanced, probably

associating this group with stronger marine origins. The

particle concentrations of all size ranges below 500 nm

are the lowest among the groups formed and, along with

the high LDSA ratio, are in agreement with the very

clean conditions associated with this cluster. This clus-

ter, contrary to all others, presents two peaks: one peak-

ing just below 30 nm and another one just over 100 nm,

which indicates that it is probably associated with at

least two different sources.

– SMPS.4 presents near-average concentrations of all the

pollutants studied. PM1 average concentration is rather

low, while PM10 is higher than the average. It is asso-

ciated with average-speed southwestern winds, higher-

than-average temperature and PBL height, and low RH.

It is more frequent during midday and evening hours,

and it appears to represent the most common conditions

in the area, hence having the highest frequency of all

clusters.

– SMPS.5 is a unique group associated with southern

winds, the side at which the central part of the univer-

sity resides. This is the most polluted group, probably

affected by emissions from the university and the resi-

Atmos. Meas. Tech., 14, 4139–4155, 2021 https://doi.org/10.5194/amt-14-4139-2021
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dential area found in that direction, assisted by the very

low PBL height, with very high concentrations of all

the pollutants (apart from O3), PM and ultrafine parti-

cles with available data. The LDSA ratio is very high,

and this is probably due to the great surface area of the

involatile component found. It is associated with very

slow wind speeds, low temperature and very high RH,

and it occurred evenly throughout the day, mainly on the

first weeks of the campaign when pollution levels were

rather high, probably due to increased heating emis-

sions.

– SMPS.6 presents low concentrations of all pollutants

(apart from O3), PM and ultrafine particles with avail-

able data and is associated with western winds with

higher-than-average speed, near-average temperatures

and PBL height, and low RH. It occurred more fre-

quently during evening hours and almost equally fre-

quently throughout the whole study period apart from

the first 2 weeks when pollution levels were rather high.

3.4 Direct comparison between the methods

Due to the difference in the size ranges measured by the

SMPS and OPC instruments, it is evident that a direct com-

parison between the two methods would provide mixed re-

sults as some clusters found using the SMPS data are not

detectable with the OPC and vice versa. The particle size

range that is common between the two instruments lies at

about 350–550 nm. Therefore, many particle sources associ-

ated with particles in the size range below the minimum de-

tectable size of the OPC are not expected to be found using

its data and vice versa. At a background site though, many

of the sources of smaller-sized particles play a less important

role as they are usually associated with fresher emissions,

which are not common to such sites.

The clustering process attempts to separate the particle

size distributions into groups with as similar spectral profiles

as possible, while being as different to the other groups as

possible. As expected, the SMPS is more capable of sepa-

rating different cluster profiles at the size range smaller than

500 nm, a size range in which the cluster profiles (using the

SMPS data) formed by the groups from the OPC are almost

uniform (Fig. 4). This shows the limitation of the OPC data to

distinguish ultrafine particle variations; thus, it does not pro-

vide insight for the sources of particles within this size range.

On the other hand, the OPC performs much better in identify-

ing different sources when considering larger particles in the

range between 1–10 µm, for which it manages to clearly dis-

tinguish variations between the groups formed (Fig. 5). The

clusters formed using the OPC data appear to be better as-

sociated with different sources of PM1 (Fig. 6), compared to

those deriving from the SMPS data (Fig. S8), as distinct “hot

spots” of PM1 are more clearly defined on the polar plots

from the OPC compared to the less clear and mainly associ-

Figure 4. Particle contributions in the range 12–550 nm (using the

SMPS data) for the clusters formed using the OPC data (a) and the

SMPS data (b).

ated with calm (or almost calm) conditions from the SMPS

(providing no separation among possible sources of PM1).

Table 3 contains the cluster relationships between the two

methods, while Table S1 contains the conditions observed

when pairs of clusters from both methods are considered.

The OPC.2 and OPC.3 clusters appear infrequently, and it

would be nonsensical to directly associate them with SMPS

groups, as they appear under very specific conditions that are

either not detected or are not identified as separate cases by

the SMPS. As a result, they will be separately studied later

in this study.

The OPC.1 was mainly associated with SMPS.4 and

SMPS.6 and to a lesser extent with SMPS.1. OPC.1 has a

somehow higher frequency during night times and it shares

many of these hours with groups SMPS.4 and SMPS.6, while

with SMPS.1 it mainly shares early morning hours. It in-

cludes the more polluted portion of the rather clean SMPS.6

and a portion with lower PM10 (though not much difference

from average pollutant concentrations) from the more pol-

luted SMPS.4. It is interesting that the variation between the

subgroups (in relation to SMPS clusters) of the OPC.1 is

very small for the NO2 concentrations, a pollutant for which

its variations are not expected to be directly “visible” at the

https://doi.org/10.5194/amt-14-4139-2021 Atmos. Meas. Tech., 14, 4139–4155, 2021
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Table 3. Simultaneous occurrences of the clusters formed by both the OPC and SMPS.

OPC/SMPS SMPS.1 SMPS.2 SMPS.3 SMPS.4 SMPS.5 SMPS.6 Total

OPC

OPC.1 48 30 9 71 13 66 237

OPC.2 1 3 0 5 0 3 12

OPC.3 0 15 0 2 4 2 23

OPC.4 25 27 6 52 19 50 179

OPC.5 24 26 17 39 40 38 184

OPC.6 7 25 9 28 3 25 97

Total SMPS 105 126 41 197 79 184 732

Figure 5. Particle contributions in the range up to 10 µm (using the

Fidas data) for the clusters formed using the OPC data (a) and the

SMPS data (b).

size range of the OPC as it is mainly associated with fresher

emissions. No great variation was found for the wind direc-

tion in the subgroups of OPC.1, though it includes the lower-

temperature and higher RH conditions of the SMPS clusters

that it is associated with. The OPC.1 includes the relatively

clean part of the more polluted SMPS.1 and the more pol-

luted portion of the cleaner SMPS.6. While this does not pro-

vide a clear connection between the OPC and SMPS results,

Figure 6. Polar plots for PM1 (µg m−3) for the clusters formed by

the OPC data.

it shows that there is consistency in the results provided by

the former in identifying particle sources of specific qualities.

Similarly, OPC.4 was mainly associated with SMPS.4 and

SMPS.6. As the OPC.4 occurs under cleaner conditions, it in-

cludes the less polluted hours of both the SMPS clusters that

it is mainly associated with, though the concentrations of the

secondary pollutants such as NO−
3 and SO2−

4 are closer to the

average. The OPC.4 is associated with the cleaner portion of

the aforementioned SMPS clusters with higher-than-average

temperature and RH though with variable wind speeds.

OPC.5 represents a polluted group of hours associated

mainly with SMPS.4, SMPS.5 and SMPS.6. Being a group of

hours associated with higher concentrations of pollutants, it

Atmos. Meas. Tech., 14, 4139–4155, 2021 https://doi.org/10.5194/amt-14-4139-2021
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includes the more polluted portions of SMPS.4 and SMPS.6

with average meteorological conditions though lower wind

speeds. It also coincides with the largest portion of SMPS.5,

mainly in the sixth week when the temperature was the low-

est, including the portion with the higher concentrations of

organic content and NO−
3 . SMPS.5 is the group that is as-

sociated with southern wind directions, a side from which a

source of secondary pollutants (NO−
3 , SO2−

4 , NH+
4 ), organic

content and particles of diameter greater than 100 nm occurs.

OPC.5 is associated with the part of SMPS.5 which is more

burdened from secondary pollutants; hence, very large con-

centrations are observed for them.

Finally, OPC.6 is mainly associated with SMPS.2,

SMPS.4 and SMPS.6. Being a cleaner group of hours, it in-

cludes the portion of these SMPS clusters with lower pollu-

tant concentrations but higher PM10 concentrations (though

with lower PM1 concentrations). These rather clean condi-

tions, along with the western and southwestern high-speed

winds on average and the large PM10 concentrations, further

enhance the possible marine character of this cluster. Due to

the size range of these particles, such variation is not clearly

identified by the SMPS, resulting in them not being clearly

separated when their data are considered.

The weekly contribution of each cluster group from the

analysis of either dataset is found in Fig. 7, and the conditions

on each week studied are shown in Table S2. It is evident that

the variation from the SMPS is greater than that of the OPC,

as the latter is less affected by the diurnal variations. It is

apparent that it is easier to comprehend the clusters’ varia-

tion in association with the levels of pollution in the site (the

more polluted weeks have a greater portion of SMPS.1 and

SMPS.5), while for those with lower concentrations of pol-

lutants the SMPS.4 and SMPS.6 are more enhanced. These

variations are harder to distinguish using the OPC data, as

they are less apparent in the size range measured by the sen-

sor. To further understand the possible sources using the lat-

ter, information from other instruments which provide chem-

ical composition data are needed, though it is still hard to pin-

point exact sources, due to the OPC’s weakness in explaining

distinct particle sources within the day.

3.5 Case studies

3.5.1 OPC.2

OPC.2 occurs mainly on a single day in March (12 March)

with higher-than-average temperature and strong western

winds. This was the cluster with the lowest concentrations

of NH+
4 , NO−

3 (about an order of magnitude compared to

average conditions), and SO2−
4 ; rather low concentrations of

NO2 and BC; and high O3, which is probably the result of the

strong winds and the very high PBL height assisting in the re-

moval of the pollutants from the site. Using the SMPS data,

this group of hours seems to follow the trends of BC, asso-

ciating it with SMPS.6 for low concentrations, SMPS.1 and

Figure 7. Weekly contribution (week number refers to week of year

2020) of the clusters formed by the OPC (a) and SMPS (b).

SMPS.2 for medium concentrations, and SMPS.4 for higher

concentrations of BC. This cluster has very low PM1 and

PM2.5 and near-average PM10 concentrations, probably asso-

ciating it with marine sources (due to the high wind speed).

Because to this, it is not clearly separated using the SMPS

data, which it does so for the hours of this group accord-

ing to the level of fresher pollutants, the variation of which

is smaller in this type of environment. This cluster seems to

be the result of the change in the wind profile which greatly

affected the coarser particles at the site (Fig. S5).

3.5.2 OPC.3

The third cluster formed using the OPC data was a rather

small group of hours in late January (25, 27 and 28 Jan-

uary), with the lowest average temperature, wind speed and

PBL height compared to the rest of the clusters. The wind

direction profile for this group contains both western and

southern winds, with the latter being associated with high

concentrations of pollutants (as found by the study of the

SMPS data). The majority of the hours in this group (65 %)

were characterised as freshly polluted when using the SMPS

data, mainly associated with SMPS.2. Unfortunately, data of

NO2, BC, O3 and PM for this group were very scarce from

regulatory-grade instruments (due to instrument error – the

results provided in Table 2 for the OPC.3 are only from 2 h

of data that were available from the regulatory-grade instru-
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ment). The ACSM data, which were available for the hours of

this cluster, pointed to marginally lower-than-average values

of organic content, nitrate and ammonium, while the sulfate

concentrations were rather high. Using the low-cost sensor

data, it is found that this group has the highest BC (data from

this low-cost sensor are not included) and involatile compo-

nent of LDSA. This group also had the highest average par-

ticle concentration in the size range of the OPC, which is in

agreement with the highest PM concentrations in all ranges

(PM1, PM2.5, PM10) and is probably the result of the low

wind speed and PBL height. As this is not visible from the

SMPS, the cluster associated with this group has nearly av-

erage particle concentrations in the SMPS particle ranges.

This group was not distinctively detected by the SMPS due

to presenting variation in larger-sized particles, which can be

one of the weaknesses of studying the sources of such parti-

cles using SMPS data alone. The OPC.3 appears to contain

the more polluted slow-moving portion of SMPS.2 with en-

hanced SO2−
4 , BC and PM concentrations.

3.5.3 SMPS.3

The third cluster from the analysis of SMPS data presented

a unique profile with two peaks: one below 30 nm and one a

bit over 100 nm. This unique group was associated with very

clean conditions, with very low concentrations for all the pol-

lutants with available data (apart from O3) and low particle

concentrations for all the ranges in the SMPS and OPC range

as well as PM1 and PM2.5. The concentrations of PM10 and

SO2−
4 were somehow higher but still lower than the average

in the area for the period of the study. This group is associated

with high average temperature and wind speed and rather

low RH, with wind directions being mainly southwestern and

western. This group occurred solely at night hours during a

number of relatively warm nights mainly in February and to a

lesser extend in March. Even with very low particle concen-

trations (as found by both the SMPS and OPC), the presence

of two separate peaks in the size range of the ultrafine parti-

cles is indicative of more than one simultaneous source. Due

to these sources of particles occurring at the ultrafine parti-

cle range, the OPC was not able to distinguish this special

condition and grouped the hours of this cluster into a number

of clusters (mainly OPC.5 and to a lesser extend OPC.1 and

OPC.6), occurring either during night-time or throughout the

day. The inability of the OPC to distinguish complicated con-

ditions in the ultrafine range is a weakness of the OPC that

should be considered when such conditions are anticipated.

4 Discussion

As the SMPS measures smaller particle sizes and with en-

hanced accuracy compared to the OPC, it managed to bet-

ter separate the different sources of fresher pollution with

the main differentiating factor being the time of the day,

for which the variability of such sources is more prominent.

The differences in NO2 concentrations, which are mainly as-

sociated with fresher emissions, are more distinct between

the groups; using this data, better separation of very clean

(SMPS.3) and very polluted conditions from a distinct source

(SMPS.5) was achieved, while the other groups described

mostly average conditions with lesser variability (as expected

in this range at a background site). Additionally, using the

SMPS data, it is possible to distinguish multiple sources of

ultrafine particles (SMPS.3), as they can appear as multiple

peaks within the SMPS spectra. This is not possible using

the OPC data, as the size range measured by this instrument

cannot identify such cases.

Contrary to the SMPS, using the OPC data provided less

distinct separation of fresher emissions (as expected due to

the lack of data of small-sized particles). Additionally, the

OPC data are less sensitive to diurnal variations due to the

range of particles covered, which are in a size range that does

not vary significantly through the day but between days. This

results in the less distinct diurnal variations found between

the groups formed. The analysis of the OPC data, though,

managed to adequately separate conditions and/or sources

associated with larger particles, such as aged pollution (for

which it also managed to separate a small time window with

very strong sulfate presence – OPC.3), which has the great-

est contribution in the particle chemical composition for the

study area (Harrison et al., 2003; Taiwo, 2016; Yin et al.,

2010), RH variations or air masses of marine origin. To an

extent, this might be due to the number of clusters chosen,

as there is a possibility that a larger number of clusters from

the SMPS may separate sources of larger particles better but

with the risk of also separating similar sources. Additionally,

the pollution levels of the clusters formed directly follow the

trends of the PBL height in the area, which is a variation cap-

tured by both instruments, showing the importance of this

variable in the air quality of an area.

To sum up, the study of SMPS data with k-means cluster-

ing is far superior at separating complex pollution sources

within urban environments in which the variation of very

small particles is crucial for identifying particle and emission

sources. This advantage of the SMPS will not be overcome

even with a denser measuring network of OPCs that could be

acquired for the same cost of the SMPS. However, clustering

of the OPC data can provide useful information to assess the

sources of air pollution at background sites in which the di-

rect (smaller) particle sources are few. The method managed

to find sources of greater pollution associated with higher

concentrations of particles of greater sizes (which are mainly

associated with aged pollution), showing that the footprint of

pollution in the ultrafine particle range can have a detectable

effect in coarser particle distributions as well. While not as

precise as the SMPS, a denser network of such instruments

in background sites can be more beneficial and more cost

efficient in studying multiple pollution sources or hot spots

within the urban environment.
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The current inability of low-cost PM sensors to mea-

sure particle size spectra at small sizes (< 300 nm) is the

greatest drawback in their application for separating parti-

cle sources, since much information is contained in these

smaller sizes. OPCs using shorter-wavelength light sources

and hence smaller particle detection could be beneficial here.

Also, there are several low-cost sensors that provide insight

for the surface area or the total number of particles in the ul-

trafine particle size range (such as the LDSA sensor used in

this study). The combined use of the OPC with these instru-

ments, along with sophisticated statistical techniques, may

provide possibilities for more precise source differentiation

than shown in the present study.

It is noted that while clustering of particle number size

distributions is one approach in the study of the source as-

sessment of particles, other alternative methods, such as the

positive matrix factorisation (PMF), may also provide useful

results.

5 Conclusions

The present study investigates the capabilities of a low-cost

OPC sensor for source differentiation at an urban background

site in Birmingham, UK. It is used alongside a regulatory-

grade SMPS instrument, which has previously been used

successfully for source differentiation. The clustering ap-

proach identified optimal solutions of six clusters for both

the SMPS and OPC data. There were similarities between the

SMPS and OPC solutions, which provide insights into peri-

ods of low and high pollution. However, large differences

were also observed. A more distinct separation of direct

emission sources was achieved using the SMPS data, which

identified sources with time windows that correlated with ex-

treme NO2 concentrations (either high or low), as well as pe-

riods with more complex sources. The OPC was able to dis-

tinguish time periods with greater variation of supermicron-

sized particle sources (e.g. marine sources). There seems to

be a clearer distinction of the diurnal variability of sources

using the SMPS data, while the OPC seems to be able

to only distinguish the variability within periods of days

rather than hours, as found by the less variable diurnal and

weekly variation. This, though, might not be a great draw-

back when considering background sites, as this variabil-

ity is smaller in such environments which are mainly af-

fected by regional pollution, while the local emissions are

less and more distinct. Low-cost sensors can be a reliable

alternative for source identification studies in environments

with less complex sources, which present smaller alterations

within the span of the day. Still, such instruments cannot be

used for scientific analyses, which require greater precision.

Their application will probably be adequate when studying

the sources of particles with a more regional character (e.g.

marine sources) rather than direct and variable sources (e.g.

traffic or cooking emissions) and can provide enough in-

formation for the air quality levels, sources and conditions

that these are anticipated from. Such studies may include the

analysis of mineral dust events resulting from either anthro-

pogenic activities or meteorological events (e.g. dust storms),

bioaerosol events in forested areas and other sources which

affect mainly the composition of coarser particles.

This study demonstrates that single low-cost sensor PM

units can provide sensible source differentiation of large-

sized PM pollution sources. This allows for the prospect of

source apportionment via networks of low-cost sensors in

the near future, thereby allowing triangulation of sources.

The development of more sophisticated low-cost sensors in

conjunction with their low cost ensures the application of a

denser measurement network, making better air quality mon-

itoring and control feasible in the near future. However, this

requires additional studies, which can further elucidate the

strengths and weaknesses of those sensors compared to the

regulatory-grade ones, as they develop.
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