
ORIGINAL ARTICLE

A methodological framework for AI-assisted
diagnosis of active aortitis using radiomic
analysis of FDG PET–CT images: Initial analysis

Lisa Duff, MSc,a,b Andrew F. Scarsbrook, BMBS,c,d Sarah L. Mackie, BM, PhD,e,f

Russell Frood, FRCR,c,d Marc Bailey, MBChB, PhD,a,g

Ann W. Morgan, MBChB, PhD,a,f and Charalampos Tsoumpas, PhDa,h,i

a Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds , UK
b Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK
c Leeds Institute of Medical Research - St James’s, University of Leeds, Leeds, UK
d Department of Radiology, St. James University Hospital, Leeds, UK
e Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
f Leeds Teaching Hospitals NHS Trust, Biomedical Research Centre, NIHR Leeds, Leeds, UK
g The Leeds Vascular Institute, Leeds General Infirmary, Leeds, UK
h Icahn School of Medicine at Mount Sinai, Biomedical Engineering and Imaging Institute, New

York
i Department of Nuclear Medicine and Molecular Imaging, University Medical Center of

Groningen, University of Groningen, Groningen, Netherlands

Received Apr 23, 2021; accepted Jan 5, 2022

doi:10.1007/s12350-022-02927-4

Background. The aim of this study was to explore the feasibility of assisted diagnosis of
active (peri-)aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglu-
cose Positron Emission Tomography–Computed Tomography (FDG PET–CT) images.

Methods. The aorta was manually segmented on FDG PET–CT in 50 patients with aortitis
and 25 controls. Radiomic features (RF) (n 5 107), including SUV (Standardized Uptake
Value) metrics, were extracted from the segmented data and harmonized using the ComBat
technique. Individual RFs and groups of RFs (i.e., signatures) were used as input in Machine
Learning classifiers. The diagnostic utility of these classifiers was evaluated with area under the
receiver operating characteristic curve (AUC) and accuracy using the clinical diagnosis as the
ground truth.
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Results. Several RFs had high accuracy, 84% to 86%, and AUC scores 0.83 to 0.97 when
used individually. Radiomic signatures performed similarly, AUC 0.80 to 1.00.

Conclusion. A methodological framework for a radiomic-based approach to support
diagnosis of aortitis was outlined. Selected RFs, individually or in combination, showed similar
performance to the current standard of qualitative assessment in terms of AUC for identifying
active aortitis. This framework could support development of a clinical decision-making tool for
a more objective and standardized assessment of aortitis. (J Nucl Cardiol 2022;29:3315–31.)

Key Words: Large-vessel vasculitis Æ FDG PET/CT Æ Radiomic feature analysis Æ Diagnosis Æ
Giant cell arteritis

Abbreviations
RF Radiomic feature

SUV Standardized uptake value

PCA Principal component analysis

LR Logistic regression

LVV Large-vessel vasculitis

FDG PET–

CT

[18F]-Fluorodeoxyglucose Positron

Emission Tomography–Computed

Tomography

GCA Giant cell arteritis

INTRODUCTION

Aortitis is an inflammatory syndrome affecting the

aorta and its major branches and can be caused by

various diseases, including giant cell arteritis (GCA),

Takayasu arteritis, isolated aortitis, and peri-aortic

inflammation (inflammation, retroperitoneal fibrosis,

IgG4-related disease).1,2 Most cases of aortitis are

treated initially with glucocorticoids. Glucocorticoid

therapy carries a risk of toxicity3–6 and it is therefore

important that treatment is based on an accurate diag-

nosis. Diagnosis of active aortitis can be challenging,

particularly for patients who have started treatment or

have atherosclerosis, as symptoms and blood tests are

non-specific.

[18F]-Fluorodeoxyglucose Positron Emission

Tomography–Computed Tomography (FDG PET–CT)

identifies areas of increased glycolytic activity in the

inflamed vessel wall (Figure 1). FDG PET–CT is often

used to assess patients with suspected aortitis due to

large-vessel vasculitis (LVV):7–9 imaging guidelines

advocate grading of FDG activity within the wall of

major arteries.10. This qualitative grading is based on

visual assessment by imaging specialists but this sub-

jective evaluation can be inconsistent.10–13 Semi-

quantitative parameters, objectively derived, are also

frequently assessed, most commonly the standardized

uptake value (SUV) mean (SUVmean) or maximum

(SUVmax). However, SUV measurements are influenced

by many factors, including image noise, glucose

concentration in plasma, and body habitus.10 Radiomics

is a pattern recognition technique involving extraction of

information, from medical images, referred to as radio-

mic features (RF) which may help better understand and

stratify disease.13–15 These features range from simple,

e.g., SUV metrics, to more complex descriptors of the

shape and spatial relationships between individual vox-

els. While the biological correlate of individual RFs is

yet to be fully elucidated, there is a renewed vigor for

biological validation to become standard practice which

could allow more definitive understanding and it is

possible that a radiomics approach could be more

discriminatory than conventional methods, e.g., for

distinguishing inflammation from atherosclerosis and

have a role in clinical decision-making16

The purpose of this study is to evaluate the

feasibility and explore the potential utility of RFs

extracted from FDG PET–CT for improving the accu-

racy of detecting active aortitis. The methodological

framework combined RFs and machine learning (ML)

classifiers to develop a prototype and rigorous semi-

automated analysis tool.17

METHODS

Adherence to TRIPOD criteria (transparent reporting

of a multivariable prediction model for individual prog-

nosis or diagnosis)18 is detailed in Online Resource 1.

Ethical Approval

The institutional research data access committee

confirmed that formal ethics committee approval was

not required for this study which was considered to

represent evaluation of an established clinical service.

Routinely collected patient meta-data were extracted by

the clinical direct care team and rendered pseudo-

anonymous for the purposes of analysis within this

study. The institutional clinical governance team con-

firmed that this was also exempt from formal research

ethics committee approval.

Prospective written consent was obtained from all

patients at the time of imaging for use of their

3316 Duff et al Journal of Nuclear Cardiology�
A methodological framework for AI-assisted diagnosis of active aortitis November/December 2022



anonymized FDG PET–CT imaging data in research and

service development projects. All patient data were

prospectively entered into a departmental database used

for retrospective identification and audit.

Patient Selection

Patients with a systemic inflammatory response

(pyrexia of unknown origin, high acute-phase response,

weight loss) or suspected active aortitis undergoing

FDG PET–CT were identified retrospectively from a

single institution, Leeds Teaching Hospitals NHS

Trust, between January 2011 and December 2019.

The ground truth diagnoses for all patients and controls

were confirmed by a consultant rheumatologist with 17

years’ experience of vasculitis (co-author AWM) based

on clinical assessment, blood tests, biopsies, and

qualitative assessment of FDG PET–CT scans by a

dual-certified radiologist and nuclear medicine physi-

cian (co-author AFS) with more than 15 years’

experience of reporting FDG PET–CT. Exclusion

criteria included synchronous metabolically active

conditions obscuring or interfering with the aorta, such

as malignancy. Patients with known LVV were

excluded if they did not have imaging evidence of

active aortitis. Control patients were excluded if they

had activity in the aorta related to atherosclerosis. For

LVV patients who had undergone multiple FDG PET

scans, only the first scan that showed aortitis was

selected. This study included a combination of newly

diagnosed patients and patients with relapse. The

imaging data for the selected aortitis patients

(n = 50) and controls (n = 25) were extracted from

the institutional PACS (Picture Archiving and Com-

munication System) and pseudo-anonymized.

Imaging Protocol

FDG PET–CT scans were acquired using a standard

protocol: images were acquired from the upper thighs to

the skull vertex.10,19,20 Imaging was acquired on three

scanners during the study period, including a 64-slice

Gemini TF64 scanner (Philips Healthcare, Best, the

Netherlands; n = 29), a 64-slice Discovery 690 scanner

(GE Healthcare, Chicago, IL, USA; n = 12), or a 64-

slice Discovery 710 scanner (GE Healthcare, Chicago,

IL, USA; n = 34). The images were reconstructed with

iterative reconstruction algorithms and were corrected

for attenuation, scatter, and randoms. Image reconstruc-

tion parameters for the different scanners are shown in

Online Resource 2. Acquisition and reconstruction

parameters were the same for all patients within each

scanner.

Segmentation

The entire aorta was manually segmented using 3D

Slicer (Version 4.10.2, https: //www.slicer.org/) on the

FDG PET–CT scan of each patient.21,22 Segmentation

was conducted by a single observer (Author LD, Physics

and Engineering researcher, limited experience) under

supervision of co-author AFS. An initial batch (n = 15)

of segmented volumes was validated against those

performed by a clinical radiologist with 3 years’ of

experience (acknowledged PA) to confirm inter-ob-

server concordance. Dice Similarity Coefficients (DSC)

were used for contour comparison. The PET images and

segmented masks were then resampled to a 4-mm

isotropic voxel size to ensure uniform sampling across

the entire cohort. This voxel size was selected as it was

the lowest resolution of the 3 scanners.

Feature Extraction

Pyradiomics (Version 3.0.1, //www.radiomics.io/p

yradiomics.html) was used to extract 102 RFs from the

entire 3D volume of the segmented aorta in the PET

images.23 Pyradiomics complies with the IBSI standards

for most RFs and SUV metrics; any minor deviations are

clearly described in their documentation (https://pyrad

iomics.readthedocs.io/en/latest/). All unfiltered features

available through Pyradiomics were used. The SUV bin

width was set to 0.075 in the Pyradiomics parameter

input file. This bin width was selected by finding the

max SUV value in the ROIs and dividing it by 64, a

commonly used bin number in radiomics. No additional

filters were used, and all other parameters were left as

default. Five SUV features not included in Pyradiomics

(SUVx) were calculated separately and added to the RFs

data set using Python packages Numpy (Version 1.18.1)

and Simple ITK (Version 2.01). Full definitions of each

radiomic feature are described in the Pyradiomics

documentation. The SUV metrics are defined as follows:

• SUV 90th Percentile—90% of the voxel’s SUV value

fall below this number

• SUV mean—the mean SUV value in the region of

interest

• SUV maximum—the maximum SUV value in the

region of interest

• SUV x (x = 50, 60, 70, 80, 90)—mean of the voxels

that are equal or greater than x% of SUV maximum

Extracted RFs and SUV metrics were harmonized

using the ComBat method (neuroCombat, Version 0.2.7)

(Online Resource 3). This method was first developed

by Johnson et al24 for adjusting the batch effects in

microarray data. Fortin et al adapted it for application to

medical imaging25 and Orlhac et al applied it to PET
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radiomics.26 The effectiveness of ComBat was further

verified by Da-Ano et al27 who also suggested improve-

ments to the method. In this study the methods used by

Fortin et al and Orlhac et al were used to reduce the

effect of acquiring data with different scanners. The

adjustments suggested by Da-Ano et al were not applied

as they only gave small improvements and would be

difficult to implement with the python library,

neuroCombat, used. The dataset was grouped by scanner

and each group was treated as a distinct batch. In

retrospective studies these factors cannot be standard-

ized without reducing the size of the dataset, so

harmonization is recommended to minimize the effect.

A list of all 107 RFs and SUV features used is provided

in Online Resource 4. SUV metrics were used instead of

target-to-blood pool ratio (TBR) as TBR is less fre-

quently used within this clinical scenario, liver activity

has become the common reference point.10

The effect of harmonization was evaluated with the

Mann–Whitney U test. The null hypothesis that the two

populations—the feature distribution for scanner x and

y—were different populations (P\ .05). Each pair of

scanner groups were compared before and after harmo-

nization for each of the 107 RFs and SUV metrics.

Figure 1. (Left) Sagittal FDG PET image of a patient with
active aortitis. (Right) Sagittal FDG PET image of a control
patient.

Table 1. Patient Demographics—at time of FDG PET–CT, clinical information within 4 weeks of FDG
PET–CT

Characteristic Aortitis Controls

Participants 50 25

Age at time of scan, years—median (range) 60 (41–84) 68 (37–82)

Sex (male/female) 17/33 13/12

LVV type GCA: 37, TAK: 4,

IgG4 or RPF: 4, Misc: 5

n/a

Prednisolone dose (at time of scan, mg—median

(range))

0 (0–40)* 0 (0–60)

Polymyalgic symptoms yes (n = 15), no (n = 24), not known

(n = 11)

n/a

Cranial symptoms yes (n = 11), no (n = 25), not know

(n = 14)

n/a

Claudication yes (n = 12), no (n = 25), not known

(n = 13)

n/a

CRP (mg/L)

-median (range)

39 (5–164),

not performed (n = 8), not known (n = 1)

n/a

ESR (mm/Hr)

-median (range)

54 (0–143),

not performed (n = 32), not known

(n = 3)

n/a

Blood glucose (mmol/L)

-median (range)

5.7 (4.2–9.9) 5.9 (4.2–

12.0)

*12 Aortitis Patients were taking prednisolone at the time of scanning at the following doses:\5 mg (n = 7), 20 mg (n = 1),
25 mg (n = 2), and 40 mg (n = 2)
LVV Large-Vessel Vasculitis, GCA Giant Cell Arteritis, TAK Takayasu’s arteritis, IgG4 IgG4-related disease RPF Retroperitoneal
Fibrosis, n/a Not Applicable, CRP C-reactive Protein, ESR Erythrocyte sedimentation rate
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Qualitative Grading of Vessel wall FDG
Activity

A radiologist (co-author AFS) reanalyzed all scans

and documented the vascular uptake score based on

EANM/SNMMI guidelines10:

0. No uptake (mediastinum)

1. Low-grade uptake (\ liver)

2. Intermediate-grade uptake (= liver), (possible

aortitis)

3. High-grade uptake ([ liver), (positive active aortitis)

SUV Metrics and Radiomic Feature
Diagnostic Utility Analysis

The diagnostic utility, also referred to as diagnostic

performance, of a range of commonly used SUV metrics

and extracted RFs was evaluated using two methods.

Firstly, the Mann–Whitney U test was used. The P value

for significance was adjusted using Bonferroni correc-

tion ([ 0.05/number of features) to reduce the risk of

false discovery related to multiple testing.

The second method of evaluating feature diagnostic

utility was to use ML classifiers. The diagnostic utility

of the ML classifiers was measured with area under the

receiver operating characteristic curve (AUC) primarily,

along with accuracy correctpredictions
allpredictions

� �
. As the literature

value for AUC was 0.81 to 0.9810 any AUC value

greater than 0.8 was considered a good performance.

Logistic Regression (LR) classifiers were trained with

SUV metrics and RFs individually (Sci-kit Learn Ver-

sion 0.23.2). First the hyperparameters for each feature

were tuned using the Sci-kit Learn function Grid-

SearchCV where every combination of hyperparameters

provided to the function was tested to find the optimal

set.

Stratified five-fold cross-validation (CV) was used

for both hyperparameter tuning and training of all final

ML algorithms meaning the ratio of patients to controls

in each fold was equal to the ratio in the total population.

The AUC and the accuracy were both used to select the

best performing hyperparameters. The tuned hyperpa-

rameters for each feature were used to train an LR model

for that feature and the overall diagnostic utility was

determined using the mean accuracy and mean AUC

from stratified fivefold CV. Confidence Intervals (CI), in

this case 95% CI, were determined using the standard

error of the five testing AUCs and accuracies. Only

training CV scores are reported in this study as splitting

the data into training/test samples would be inappropri-

ate for the sample size.28

RF Signature Building

Many RFs can be extracted but not all of the derived

features may provide useful information.29 Several RFs

can be clustered together to achieve higher diagnostic

Table 2. Grading of patient dataset based on the EANM/SNMMI guidelines10

Grade
No. of scans
(aortitis)

No. of scans
(control)

Ground truth
diagnosis of aortitis

Ground truth diagnosis of
no aortitis (control)

0 0 25 0 25

1 1 0 0 0

2 0 0 0 0

3 49 0 50 0

Table 3. Mann–Whitney U test results when feature distributions were compared before and after
harmonization

Before harmonization After harmonization

Scanners compared 1 vs 2 2 vs 3 1 vs 3 1 vs 2 2 vs 3 1 vs 3

Number of features where the null hypothesis

was accepted (out of 107)

52 97 66 81 99 85

Average p value 0.148 0.224 0.144 0.199 0.230 0.182

Scanner 1 GE Discovery 710, Scanner 2 Phillips Gemini TF64, Scanner 3 GE Discovery 690
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performance than single features. However, using all

available features retains a large amount of redundant

information and creates noise in the final diagnostic

model. Therefore, signatures of a smaller number of

features were built to reduce the noise of the larger

dataset while retaining the useful information provided.

Three signatures were built using the methods described

below.

Performance Criteria and Correlation

The first method involved selecting features with

high-individual diagnostic utility. For Signature A,

features had to meet the following criteria: mean AUC

C 0.5, mean accuracy C 0.7, and Mann-Whitney U test

p value � .05/n, where n = number of features

(n = 107). The criteria was applied to the extracted

feature results using Python package Pandas (Version

1.1.4) and the resulting features formed Signature A.

Signature B was generated by removing highly corre-

lated features from Signature A: for each pair of

features, if the correlation coefficient was [ 0.9, the

feature with the lower AUC was removed.

PCA

The number of features can be reduced using

principal component analysis (PCA). PCA represents a

large set of variables as a smaller set of principal

components by finding relationships between features

and combining them to reduce redundancy and mini-

mize loss of information. PCA was applied using Sci-kit

Learn (Version 0.23.2) and the number of PCs needed to

account for 90% of the variance was retained. These PCs

formed Signature C.

Radiomic Signature Diagnostic Utility
Analysis

Once the signatures were formed they were used as

an input for a ML algorithm to diagnose active aorti-

tis.30–32 To determine the best ML algorithm for

distinguishing aortitis nine classifiers were built, trained

and tested using Sci-kit Learn (Version 0.23.2): support

vector machine, random forest, passive aggressive, LR,

k nearest neighbors, perceptron, multi-layered percep-

tron, decision tree, and Gaussian process classification.

The nine ML classifiers were trained on the radiomics

signatures using the same methodology used for LR

training on individual RFs (described in Section ‘SUV

metrics and radiomic feature diagnostic utility analy-

sis’). The determined hyperparameters for the three

signatures are listed in Online Resource 5, 6, and 7. The

best classifier for each signature was determined using

the mean AUC of each classifier with a minimum mean

accuracy of 80% or 70% if necessary.

RESULTS

Patient Characteristics

Seventy-five participants were included, 50 of

whom had a FDG PET–CT scan indicating active

aortitis (Table 1). The age of the patients and female

predominance reflects the typical demographic of

patients with LVV, the commonest cause of which is

GCA. The sensitivity of FDG PET–CT is significantly

reduced within a few days of starting glucocorticoid

treatment; doses were zero at the time of scanning unless

stated otherwise.33 CRP (C-reactive protein) and ESR

(Erythrocyte sedimentation rate) are biomarkers of

systemic inflammation.

Segmentation

The manual segmentation method was shown to be

reproducible and accurate when compared to those

performed by an experienced radiologist. Inter-observer

variability scored an average Dice Coefficient of 0.91

(95% CI 0.90 to 0.92).

Qualitative Grading

Guidelines, defined in Methods above, advocate

qualitative grading of PET–CT scans based on FDG

activity in the aortic wall relative to the liver10.Table 2

shows the grades assigned by an experienced radiologist

on retrospective review of the images. Note the single

aortitis patient who graded as 1 rather than 3 was taking

25 mg of prednisolone at the time reducing the sensi-

tivity of FDG PET–CT.

Feature Harmonization

The Mann–Whitney U test was used to evaluate the

effect of harmonization. The null hypothesis was defined

as both feature distributions (before and after) being

from the same population. The average p value

increased in all cases as did the number of features

where the null hypothesis was accepted (Table 3). When

the two GE scanners were compared with the Mann–

Whitney U test, we found sufficient difference that we

chose to analyze them separately rather than combining

the two into a single batch.
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(a) Diagnostic  utility  of  SUV  metrics  for  distinguishing  active  aortitis  using  LR  classifiers  –  
after  harmonization

(b) Diagnostic  utility  metrics  of  the  5-best  performing  radiomic  features  for  
distinguishing  active  aortitis  using  LR  classifiers  –  after  harmonization

Figure 2. Diagnostic utility of SUV metrics and the 5-best performing radiomic features for distinguishing active aortitis. Before
and after harmonization. SUV standardized uptake value, GLDM Gray-Level Dependence Matrix, GLCM Gray-Level Co-Occurrence
Matrix, GLRLM Gray-Level Run Length Matrix, and GLSZM Gray-Level Size Zone Matrix. a Diagnostic utility of SUV metrics for
distinguishing active aortitis using LR classifiers—after harmonization. b Diagnostic utility metrics of the 5-best performing
radiomic features for distinguishing active aortitis using LR classifiers—after harmonization. c Diagnostic utility metrics of SUV
metrics for distinguishing active aortitis using LR classifiers—before harmonization. d Diagnostic utility metrics of the 5-best
performing radiomic features for distinguishing active aortitis using LR classifiers—before harmonization.
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(c) Diagnostic  utility  metrics  of  SUV  metrics  for  distinguishing  active  aortitis  
using    LR  classifiers  –  before  harmonization

(d) Diagnostic  utility  metrics  of  the  5-best  performing  radiomic  features  for  
distinguishing  active  aortitis  using  LR  classifiers  –  before  harmonization

Figure 2. continued.
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Diagnostic Utility of Harmonized SUV
Metrics

All SUV metrics evaluated, except SUVmin and

SUV 10th percentile, fulfilled the criteria based on the

Mann–Whitney U test that there was a statistically

significant difference between the mean metric value for

the aortitis and control group (Bonferroni-corrected

P\ .00047). Figure 2a demonstrates the performance of

harmonized SUV features in an LR classifier where

higher accuracy and AUC indicate good diagnostic

utility.

Diagnostic Utility of Harmonized Radiomic
Features

Using the Mann–Whitney U test 65/107 RFs

demonstrated a statistically significant difference

between the mean feature value for the aortitis and

control group (Bonferroni-corrected P\ .00047). The

five-best performing RFs in terms of AUC, when used

individually in an LR classifier, are shown in Figure 2b.

The performance of all SUV metrics and individual

RFs in LR classifiers and in the Mann–Whitney U test

can be viewed in Online Resource 8.

Diagnostic Utility of Non-harmonized
Features

Figure 2c and d shows the accuracy and AUC of

non-harmonized SUV metrics and RFs, respectively.

The 95% CI were too large to determine if there was a

significant difference created by harmonization. The

main difference between the two sets of results is a

different set of RFs being ranked in the top five;

however, overall performance was similar. No notice-

able decrease in diagnostic utility, along with the results

from the Mann–Whitney U test comparing scanner

populations, justify retaining harmonization in the pro-

posed methodology to improve generalizability.

Table 4. Correlation matrix of the best performing radiomic features and SUV metrics when harmonized
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Correlation Between SUV Metrics and Best
Performing Radiomic Features

Table 4 displays the correlation matrix of SUV

metrics and the best performing RFs. It showed an

intuitive split between the two groups but also empha-

sized that GLSZM Size Zone Non-Uniformity

Normalized is only weakly correlated to other well-

performing RFs. Table 5 displays the same information

but for non-harmonized data.

Radiomic Feature Signature Building
and Machine Learning

Signature A was based on passing minimum

thresholds of diagnostic performance metrics. For this

signature the best performing ML classifier was the

support vector machine with an accuracy of 82.7% (95%

CI 71.5 to 93.9%) and an AUC of 0.86 (95% CI 0.68 to

1.00). The ROC curve is shown in Figure 3a.

Signature B was built using the same thresholds but

also removed highly correlated features. For this signa-

ture the best performing ML classifier was random forest

with an accuracy of 84.0% (95% CI 72.8 to 95.2%) and

an AUC of 0.91 (95% CI 0.80 to 1.00). The ROC curve

is shown in Figure 3b. The results were not sensitive to

the correlation threshold. Varying the threshold between

70 and 95% (generally considered range for high

correlation) showed almost no variation in the best

results. Some variations can be seen in the ML models

that do not perform well, but these would not be utilized

in a final analytical pipeline so were not considered

important.

Online Resource 9 shows all accuracy (ACC_CV)

and AUC (AUC_CV) results.

Six PCs were produced to account for 90% of the

information in the original dataset. These PCs were used

in Signature C. The best performing ML classifier was

support vector machine with an accuracy of 82.7% (95%

CI 71.5 to 93.9) and an AUC of 0.87 (95% CI 0.74 to

1.00). The ROC curve is shown in Figure 3c.

When the three signatures were built using non-

harmonized features there was no significant change to

results (Figure 3d–f). A slight improvement can be seen

in Signature A when the data were not harmonized but

Table 5. Correlation matrix of the best performing radiomic features and SUV metrics without
harmonization

cFigure 3. ROC curves of the best performing machine
learning classifier trained on Signatures A, B, and C. a
Signature A Support Vector Machine Classifier—Harmonized.
b Signature B Random Forest Classifier—Harmonized. c
Signature C Support Vector Machine Classifier—Harmonized.
d Signature A—Random Forest Classifier—non-Harmonized.
e Signature B—Random Forest Classifier—non-Harmonized. f
Signature C—Support Vector Machine Classifier—non-
harmonized.
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(a) Signature A  -  Support Vector  Machine Classifier - Harmonized

(b) Signature B - Random Forest Classifier – Harmonized

(c) Signature C  - Support  Vector Machine  Classifier – Harmonized
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(d) Signature  A  -  Random  Forest  Classifier  –  non-Harmonized

(e) Signature  B  -  Random  Forest  Classifier  –  non-Harmonized

(f) Signature  C  –  Support  Vector  Machine  Classifier  –  non-Harmonized

Figure 3. continued.
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overall, there is not enough evidence to select non-

harmonized or harmonized as the superior method so

both results were retained. The performance of all ML

classifiers with Signatures A, B, and C can be viewed in

Online Resources 10, 11, and 12, respectively.

Summary of Diagnostic Performance

A summary of the diagnostic performance of each

method is shown in Table 6. The AUC range presented

for qualitative assessment were determined by a meta-

analysis exploring the diagnostic accuracy of FDG PET–

CT imaging in LVV.10 In the case of SUV metrics and

RFs the best individual feature was determined by their

AUC but with a minimum accuracy of 70%. The best

SUV metric and radiomic feature for distinguishing

aortitis was SUV 90th percentile and GLSZM High
Gray-Level Zone Emphasis, respectively.

DISCUSSION

The purpose of this study was to develop a

methodological framework to support AI-assisted diag-

nosis of active aortitis, using ML classifiers trained with

RFs from FDG PET-CT. The best performing individual

RF had an AUC of 0.9 (95% CI 0.83 to 0.97) when

harmonized (GLSZM Size Zone Non-Uniformity Nor-
malized), similar to the current clinical standard of

qualitative assessment (AUC = 0.81-0.9810). The three

signatures performed similarly to the best performing

individual RFs. Signature B has the highest mean AUC

of any of the proposed methods with an AUC of 0.91

(95% CI 0.80 to 1.00). There was no clear consensus on

whether harmonization improved diagnostic perfor-

mance. In most cases a similar result was achieved

using harmonization with the exception of Signature A.

Therefore, both methodologies will be retained for

future validation. This method has potential to be used

as an automated quantitative analysis tool alongside

standard clinical assessment toward a more rapid,

objective, and standardized evaluation of aortitis.

Visual scores were assigned as part of this study

using the EANM/SNMMI grading guidelines10 follow-

ing the results of Stellingwerf et al34 who demonstrated

a high diagnostic accuracy when arterial FDG uptake

was compared to liver FDG uptake. The visual scores

demonstrated good agreement with ground truth diag-

noses (Table 2) and are easy to perform, but subjective.

Subjective assessment risks inter-observer variability.

Qualitative assessment has been reported to have good

inter-observer agreement when the score comprises a

limited number of categories35 but this is less well

established in aortitis than in other areas, such as

lymphoma response assessment. No published data were

found on the effect of observer experience on visual

assessment in this clinical scenario. As borderline cases

were not used in the analysis, all but one case was

graded as either 0 or 3 meaning there was no uptake or

high-grade uptake, respectively. One case was graded as

1 (low-grade uptake); this reduced signal was a result of

prednisolone treatment (25 mg daily) which diminishes

PET sensitivity.33 A similar scoring system based on

arterial uptake across different regions was proposed by

Grayson et al named PET Vascular Activity Score

(PETVAS).13 PETVAS is not routinely used in clinical

practice as it is time consuming. Kang et al showed that

PETVAS is superior to SUVmax, but it is unclear if it is

better than a single visual score assigned using the

EANM/SNMMI guidelines.36 SUV metrics were used

instead of target-to-blood pool ratio (TBR) as TBR is

less frequently used in aortitis where liver activity has

become the common reference point.10

Table 6. Summary of the best diagnostic performance of each method

Method AUC
AUC

95% CI AUC
AUC

95% CI

Qualitative Assessment–Literature10 – – 0.81–

0.98

–

Harmonized Non-harmonized

SUV Feature—SUV50% 0.81 0.22 0.81 0.14

Radiomic Feature—GLSZM Size Zone Non-Uniformity Normalized

(harmonized)/GLDM Dependence Entropy(non-harmonized)

0.90 0.07 0.90 0.13

Signature A 0.86 0.18 0.90 0.13

Signature B 0.91 0.11 0.90 0.11

Signature C 0.87 0.14 0.86 0.14

SUV standardized uptake value, GLDM Gray-Level Dependence Matrix, GLCM Gray-Level Co-Occurrence Matrix, GLRLM Gray-
Level Run Length Matrix, GLSZM Gray-Level Size Zone Matrix
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The diagnostic utility of semi-quantitative measure-

ments using SUV, which are widely utilized in PET, was

compared against other features for detecting active

aortitis. In LR classifiers, SUV metrics with high mean

AUC values had a broad 95% CI range making them less

useful candidates when compared to qualitative assess-

ment. Overall SUV metrics had some diagnostic utility

in Mann–Whitney U and LR classifier testing.

The performance of SUVmax is affected by noise.37

Similarly, atherosclerosis can be associated with FDG

activity and although patients and controls with a large

amount of atherosclerotic plaque were removed from the

cohort, some degree of the condition is present in the

relevant age group.38 Together, these two factors may

have lowered the diagnostic utility of SUVmax. The

ability to reliably distinguish aortitis from atherosclero-

sis will need to be considered in any automated

diagnostic methods. SUVx also relies on SUVmax. In

particular, SUV50 performs better than other SUVx

metric, probably because it covers a larger percentage

of the voxels, so the effect of noise and bright patches is

mitigated. SUVmean and SUV50 would likely perform

better if only active tissue had been included in the ROI

rather than the whole aorta.

RFs demonstrating the highest mean diagnostic

utility focus mainly on high gray levels and heterogene-

ity. The GLSZM Size Zone Non-Uniformity Normalized
was the best RF according to AUC and performed well

in terms of accuracy and the Mann–Whitney U test. Its

value is higher in active aortitis than controls, which

means there is more heterogeneity in zone size volumes

in aortic imaging. This is an expected finding and

reflects greater metabolic activity in the aortic wall of

patients with active aortitis than in controls. The

importance of high gray values and zones and hetero-

geneity is further emphasized in other RFs with high

diagnostic utility. The addition of heterogeneity to

quantitative diagnostic models in aortitis may help

improve performance.

LIMITATIONS

Limitations of the study include the retrospective

single-center design, relatively small cohort, imbalanced

dataset, lack of an automated segmentation, lack of

independent testing, and need for external validation of

initial findings.39 The cohort size is an important

consideration when designing a radiomic study. Small

cohort sizes relative to the number of RFs can introduce

overfitting and type 1 errors.40,41 Bonferroni correction

and feature reduction were used to reduce these issues

but overfitting is still plausible. Sollini et al concluded in

their systematic review that the lack of external

validation was the key issue preventing radiomics

translating into routine clinical practice.42

As this study used PET images from multiple

scanners the images had to be resampled to attain a

uniform voxel size across the entire data set. Therefore,

the images were downsampled to 4 mm3 which results

in loss of resolution that can be considered a limitation.

However, there is no consensus on whether downsam-

pling or upsampling should be chosen in this situation43;

it is arguably a more cautious approach to reduce than

create data. Downsampled data are less computationally

expensive to analyze allowing easier transferability and

making the process more scalable for clinical applica-

tions. Downsampling to 4 mm3 also had the advantage

of being an integer size allowing for more precision.

Finally, another important limitation is that AUCs

are difficult to compare. Delong’s method44, which is

commonly used for this practice, is regarded as a

controversial method for AUC comparison and there is

no other well-accepted scientific approach to properly

compare AUCs. Delmier et al state that two models

developed and tested on the same data should not be

compared with Delong’s method as it would lead to a

low powered test with a conservative result.45 Thus, in

this study any conclusions drawn concerning AUCs

need to be considered with caution.

New Knowledge Gained

The initial analysis established that a method using

radiomics and ML classifiers has the potential to assist

in the diagnosis of active aortitis. Previously the utility

of radiomics in aortitis had not been established with the

most similar work being performed using SUV metrics

alone. In harmonized data, the SUV metric with the

highest AUC score, while also having an accuracy above

70%, was SUV50 with an AUC of 0.81 (95% CI 0.59 to

1.00). The RF that met these criteria was GLSZM Size

Zone Non-Uniformity Normalized with AUC = 0.90

(95% CI 0.83 to 0.97). When signatures were formed

with groups of RFs the highest AUC was scored by

Signature B, using high performing features that were

not highly correlated, with AUC = 0.91 (95% CI 0.80 to

1.00).

Future Work

In the future, it is envisaged that this method has the

potential to be automated, fast, and standardize PET–CT

imaging-based diagnosis of aortitis, reducing human

error and opening up possibilities for more precise

quantification of inflammation burden for disease mon-

itoring and prognosis. The methodology proposed here

could be implemented in clinical practice to aid
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diagnosis, reducing variation between observers and

improving diagnostic accuracy of aortitis in patients who

have already started treatment or who have co-incidental

atherosclerosis.46 This includes external validation of

the methodology using multi-center datasets.47

TRIPOD guidelines were followed to assure the

completeness of our method.18,48 Other scores such as

the Radiomics Quality Score (RQS) were referred to but

contained aspects beyond the scope of the methodology

proposed in this study.49 RQS and the aspects it

discusses such as external validation will be imple-

mented more thoroughly in future work. Other work

leading on from this study includes automating seg-

mentation.50–52 Doing so would increase the efficiency

of the analysis pipeline and improve reproducibility,53

which is important as several studies have reported that

RFs can be sensitive to the segmentation method54–57

Following on from this diagnostic method, potential

future work could include more specific classification

similar to the visual grading (defined in the Methods).10

Analysis could also go further and predict outcome and

treatment response once a larger cohort is available.

CONCLUSION

The purpose of this study was to develop a

methodological framework for assisted diagnosis of

active aortic inflammation using RF and SUV metrics

derived from FDG PET–CT. Selected RFs and SUV

metrics had high accuracy and AUC scores when used

individually in LR classifiers. ML classifiers trained on

radiomic signatures had similar diagnostic performance

to individual RFs. This demonstrates that a radiomic

method for assisted diagnosis of active aortitis may be

proven feasible, pending further validation, eventually

opening up the potential for automated and standardized

diagnosis of aortitis.
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