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Abstract: Cross-domain decision-making systems are suffering a huge challenge with the rapidly

emerging uneven quality of user-generated data, which poses a heavy responsibility to online

platforms. Current content analysis methods primarily concentrate on non-textual contents, such as

images and videos themselves, while ignoring the interrelationship between each user post’s contents.

In this paper, we propose a novel framework named community-aware dynamic heterogeneous graph

embedding (CDHNE) for relationship assessment, capable of mining heterogeneous information,

latent community structure and dynamic characteristics from user-generated contents (UGC), which

aims to solve complex non-euclidean structured problems. Specifically, we introduce the Markov-

chain-based metapath to extract heterogeneous contents and semantics in UGC. A edge-centric

attention mechanism is elaborated for localized feature aggregation. Thereafter, we obtain the node

representations from micro perspective and apply it to the discovery of global structure by a clustering

technique. In order to uncover the temporal evolutionary patterns, we devise an encoder–decoder

structure, containing multiple recurrent memory units, which helps to capture the dynamics for

relation assessment efficiently and effectively. Extensive experiments on four real-world datasets

are conducted in this work, which demonstrate that CDHNE outperforms other baselines due to

the comprehensive node representation, while also exhibiting the superiority of CDHNE in relation

assessment. The proposed model is presented as a method of breaking down the barriers between

traditional UGC analysis and their abstract network analysis.

Keywords: user-generated contents; relation assessment; community detection; graph representation

learning

1. Introduction

Nowadays, user-generated contents (UGCs) are riddled in various large-scale online
platforms such as e-commerce platforms, discussion forums, live streaming platforms
and social networks [1–4]. The research on UGC can be roughly divided into intrinsic
quality improvement and their interrelation analysis, which are indispensable parts of the
online decision-making platform. Normally, researchers focus on the possible contents
distortion or quality degradation, while neglecting the importance of relation assessment
among various UGCs. Tapping into relationships of those high-quality UGCs can attract
general attentions and produce great social benefits. In reality, many tangled contents can
be described and analyzed by the relevant characteristics of a complex network.

The research on entities’ relationships via abstract network structures has always been
a hotspot in many fields [5–8]. Accurate relation assessment and prediction are helpful to
analyze the UGC network evolution patterns and assist network maintenance, which is of
great significance to enhance the survivability and to improve the reliability in both static
and dynamic networks. More precisely, relation prediction in network refers to forecasting
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the underlying existence of a link between two nodes based on the network structural
information and the intrinsic information of nodes [9].

Among the existing relation prediction methods, the heuristic methods measure
the connectivity of two nodes and the graph statistical features from the perspective of
similarity, such as the degree of node, node centrality and the clustering coefficient [10,11],
while the graph representation learning methods concentrate on encoding the intricate
network structures into low-dimensional vector space so as to capture the multi-scale and
high-level node features from the underlying topology [12]. These approaches [13–15],
on the other hand, mainly represent the network under the assumption that the network is
homogeneous, while focusing on the static attributes of the network. Actually, the abstract
UGC network in the real world is normally composed of multiple types of nodes or edges,
while the relationship between nodes is complex and evolves over time, which presents
heterogeneous and dynamic characteristics. This renders the straightforward application
of most existing relation prediction methods infeasible [16].

Dynamic heterogeneous networks are composed of different types of entities and
relations, which usually evolve over time. Taking Figure 1 as an example, above the
timeline is a commodity supply–demand network containing three types of nodes (i.e.,
customer, item and merchant) and edges (i.e., customer–customer, customer–item and
merchant–item). The demands for T-shirts and shorts are greater in summer, while, as
Christmas approaches, customers show demands for other products, such as Christmas
trees and stockings, which demonstrates how the structure of networks varies over time
with dynamic characteristics.

Figure 1. A user generated dynamic heterogeneous network example: a commodity supply–demand

network and its generalization of abstract graph structure. The solid line denotes the relations

between customers and items, the dotted lines indicate the relations between customers, and the

dashed lines indicate the relations between merchants and the produced items.

Up to now, limited attempts have been made to investigate the embedding of dynamic
heterogeneous networks. Kong et al. [17] used the graph convolutional network (GCN)
to extract the spatial structural features from heterogeneous information networks (HINs)
and employed the long short-term memory (LSTM) network to forecast the existence
of links. However, this shallow GCN merely captured neighbors with low proximity
while ignoring the heterogeneous characteristics, and cannot be stacked for multiple layers
due to the over-smoothing problem. DHNE [18] devises a historical–current networks
structure, which takes all neighbors in the time step into consideration in order to learn the
latent node embedding from the dynamic condition; moreover, a metapath-based random
walk is conducted to capture the heterogeneous semantic information. DyHATR [19]
integrates a hierarchical attention module and recurrent neural network based model to
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learn heterogeneity as well as temporal evolution. More recently, Ji et al. [20] introduce a
Hawkes-process-based method to model the formation process of heterogeneous events
adequately and use the importance sampling strategy to capture representative events for
influence propagation. Xie et al. [21] propose the DyHINE method, comprising a temporal
dynamic embedding module and an online updating module, which can deploy real-time
updated embedding when the network evolves.

Although the above approaches work well in many types of applications, they still
have some drawbacks. In general, traditional matrix factorization methods usually perform
relatively poorly due to the high computational cost of decomposing the massive matrix,
while most graph embedding techniques mainly focus on the homogeneous network.
To address this challenge, our dynamic heterogeneous graph embedding method tends
to learn a map function that converts complicated input networks into low-dimensional
space for better representation while capturing the evolutionary properties of networks.
The Markov-chain-optimized metapath is able to preserve the heterogeneous structure
and semantics while improving computational efficiency. Despite multi-scale features on
networks have been thoroughly explored, the current network embedding methods solely
consider the low- or high-order proximity characteristics of nodes in a limited perspective,
while ignoring the global features represented by community structures. To solve the struc-
tural information loss in feature extraction, we not only integrate other side information,
but also capture global structure semantics via a clustering technique. Moreover, there
is a lack of research about capturing temporal evolution characteristics, which is also of
great importance in dynamic relation prediction. To address this issue, we propose an
encoder–decoder structure to learn the temporal dependencies after obtaining the nodes
representation, which contains comprehensive heterogeneous topology information and
can be delivered for distilling the implicit correlations between each time step. Our main
contributions can be summarized as follows:

• User generated contents-driven method: We proposed a graph representation learning-
based method, named the community-aware dynamic heterogeneous graph embed-
ding method (CDHNE), for predicting and assessing the relationships between differ-
ent user-generated contents. We consider the generalized user-generated contents as
abstract nodes, which form a dynamic heterogeneous network, so as to introduce the
graph embedding methods. The objective of this work is to explore the semantics of
human activities and perform a comprehensive relation assessment of these activities.

• Multi-level representation learning: We facilitated the metapath-based random walk,
utilizing Markov chain approximation, for localized heterogeneous contents learn-
ing. An edge-centric attention mechanism is introduced for subgraph-level feature
aggregation. The clustering technique, depending on node embedding, offers effective
global structure semantic extraction without prior information.

• Temporal dynamics extraction: We devised an encoder–decoder structure with two
variants, i.e., CDHNE-GRU and CDHNE-LSTM, to learn the temporal evolutionary
patterns in dynamic heterogeneous networks. Concretely, we split the dynamic het-
erogeneous network into several snapshots and leveraged the recurrent memory unit
to capture long-term dependencies over time steps. In each hidden unit, the generated
parameters are delivered to trigger the next gate. Finally, we can obtain the output
through a fully connected decoder.

• Experimental results: We constructed datasets containing a series of human activities,
which included academic collaboration, commercial promotions and social inter-
actions, and conducted extensive experiments to demonstrate the effectiveness of
CDHNE under the user-generated contents scenarios. Specifically, we evaluated our
proposed model on relation prediction problems and conduct community detection
tasks to validate the effectiveness of CDHNE in global structure semantic extraction.
The experimental results on four real-world datasets show that our proposed model
outperforms the other competitive baselines in terms of AUROC and AUPRC.
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The rest of this paper is organized as follows. Section 2 provides an overview of
existing relation assessment methods. In Section 3, we introduce some necessary definitions
that will be used in this paper and formulate the relation prediction task for dynamic
heterogeneous networks. Section 4 describes our proposed model in detail. Extensive
experimental results and analyses are presented in Section 5. Finally, we conclude this
paper in Section 6. The main notations used in this paper are listed in Table 1.

Table 1. Summary of Main Notations.

Notation Description

G the set of observed network snapshots
G t the network snapshot at t-th snapshot
At adjacency matrix of Gt

V t the set of nodes at t-th snapshot
E t the set of edges at t-th snapshot
F the mapping function for node types
ϕ the mapping function for edge types
T the set of node types
R the set of edge types
T number of snapshots in set G
Z t the overall node embedding at t-th snapshot
d number of final embedding dimension

2. Literature Review

In this section, we briefly review the research development trends concerning relation
prediction and divide the approaches into two categories, including traditional heuristic
methods and graph representation learning methods.

The traditional heuristic methods for relation prediction, such as common neigh-
bors [22], Jaccard coefficient [23], Adamic Adar (AA) [24], resource allocation (RA) [25]
and preferential attachment (PA) [26], mainly exist in static homogeneous networks where
nodes and edges are of the same type. These methods attempt to quantify neighborhood
overlap between nodes, while minimizing deviations caused by degrees. The basic idea of
heuristic-based methods is typically based on the measures of nodes similarity. In general
terms, the more similar the two nodes are, the more likely to have a link between them.
For instance, both RA index and AA index attach more importance to common neighbor
nodes in low degrees, which intuitively provide more information than common neigh-
bor nodes in high degrees. Albeit simple, these strategies can still achieve competitive
performance compared with other methods in a specific scenario.

The idea of graph representation learning is to extract the latent network features from
the complicated topological structure and to encode features, such as node embedding
vectors in a low-dimensional space. For a relation prediction task, the learned hidden
features should preserve network properties in local-wise and global-wise, so that the
unknown links can be accurately predicted. However, most graph representation learning
methods focus on the topological properties of nodes (e.g., in-degree or out-degree, random
walk distance, first-order proximity and so on). Early solutions [13,14] learned the hidden
representations of vertices by deploying random walk in the static graph, which samples
the first- and second-order similarity of nodes. Subsequently, node2vec [15] made some
innovations in generating the random walk strategy, which combines depth-first sampling
(DFS) and the breadth-first sampling (BFS), while efficiently exploring spatial contextual
information in graph data. Ribeiro et al. [27] proposed struc2vec, which measures the
structural similarity from a global perspective without requiring two nodes to be nearby.
GraphSAGE [28] sampled a certain number of neighborhoods for further aggregation.
Graph attention network (GAT) [29] utilized the self-attention mechanism to learn the
weighting function for neighborhood matching.

Considering that networks based on UGC in real life normally vary over time, which
exhibits dynamic evolution characteristics, several approaches were proposed to capture
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the temporal features. A straightforward way of modeling dynamic network is to split
it into snapshot sequences along the timeline, which discretizes the continuous changes.
Goyal et al. [30] proposed the dyngraph2vec, which learns the underlying network dynam-
ics of evolution by constructing a deep recurrent architecture. Similarly, [31,32] adopted
the long short-term memory network (LSTM) to learn the temporal dependencies of all
dynamic network snapshots. Such recurrent methods capture temporal features through
selective memory and forgetting mechanism which enables the model to handle long
sequences. However, the shortage of these methods is obvious, which depend heavily on
the time span of aggregated snapshot. Different from the above methods, researchers in
DySAT [33] extract the structural information and dynamics node embedding simultane-
ously, via a self-attention mechanism. EvolveGCN [34] adapted the graph convolutional
network (GCN) throughout the time dimension and utilized an RNN architecture to update
the GCN parameters.

Furthermore, with the increasing diversity of the real-world, user-generated network,
the nodes and edges in networks have gradually developed from a single type to a mixture
of multiple types, which shows multi-source heterogeneous characteristics. The heteroge-
neous graph neural network (HetGNN) [35] conducted heterogeneous graph embedding
by gathering the nodes with same type via a correlated sampling. Dong et al. [36] devel-
oped two metapath-based representation learning methods, namely metapath2vec, and its
variant metapath2vec++, which learn the topological and semantic correlations in heteroge-
neous networks. Cen et al. [37] divided a node embedding procedure into two portions,
namely the base embedding and the edge embedding, which share parameter information
across different edge types, allowing the extraction of heterogeneous information.

Currently, limited attempts have been made to investigate the embedding of dynamic
heterogeneous networks. HA-LSTM [17] firstly employ GCN to extract structural features
from heterogeneous information network, then leverage a broad learning- and attention-
based structure to capture the dynamic changes over timeline. DHNE [18] constructed
a historical–current network structure with consecutive snapshots to capture temporal
dependencies in the dynamic heterogeneous network, then a metapath-based random walk
was conducted to extract intricate semantic information. The DyHATR [19] model built
a hierarchical attention model to better learn the heterogeneity of static snapshots and
captured the temporal evolution patterns via an attentive RNN structure. Nevertheless,
none of the preceding techniques have established a multi-view embedding strategy, instead
of focusing on the localized features while neglecting the global characteristics.

3. Preliminaries

In this section, we formulate the relation prediction problem for dynamic heteroge-
neous network. Firstly, we introduce some definitions and necessary notations that will be
used in this paper, as follows:

Definition 1 (Dynamic heterogeneous network). A dynamic heterogeneous network (DyHN)
can be represented as a set of observed graph, G =

{
G1,G2, · · · ,GT

}
, which contains T snapshots.

G t =
(
V t, E t,F , ϕ

)
, with a adjacency matrix At, denotes the snapshot at time t, where V t is the set

of nodes and E t is the set of edges. F : V t → T denotes the mapping function for node types, while
ϕ : E t → R is the edge type mapping function. For a dynamic heterogeneous network, the following
conditions must be satisfied that |T |+ |R| > 2.

Definition 2 (Dynamic heterogeneous network representation learning). Given a dynamic
heterogeneous network, G =

{
G1,G2, · · · ,GT

}
, the objective of graph representation learning is to

encode the node as a low-dimensional vector that contains graph structure and local neighborhood

information, that is, mapping snapshot G t into a hidden space, Z t ∈ R
|V t|×d, where d is the final

embedding dimension.

Definition 3 (Relation prediction). Given a series of observed network snapshots, G = {G1,G2,
· · · ,GT}, relation prediction tasks in dynamic heterogeneous network can be viewed as a prediction
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on an evolving network with multiple types of nodes and edges. Besides, each snapshot is considered
as a static heterogeneous network in this work, the link connection at time stamp, t+ 1, is determined
by the spatial features and temporal evolutionary trajectory extracted from historical snapshots.

4. Community-Aware Dynamic Heterogeneous Network Embedding Method

In this section, we propose a community-aware dynamic heterogeneous network
embedding method. In Section 4.1, we derive heterogeneous properties guided by a
Markov-chain-optimized metapath. For the sake of computation efficiency, we perform
negative sampling for learning node embedding in the skip-gram model. Then, we aggre-
gate subgraph-level features using the edge-centric attention mechanism in Section 4.2,
which preserves the low-order proximity of nodes. In Section 4.3, we extract the structure
semantic of network from a macro perspective using clustering technique. To capture
the temporal evolutionary patterns, we develop an encoder–decoder structure based on
recurrent neural network in Section 4.4.

4.1. Heterogeneous Contents Encoding

Different from the homogeneous network, a heterogeneous network is made up
of multiple types of nodes and edges. To extract the heterogeneity, inspired by metap-
ath2vec [36], we perform random walk under the guidance of metapath on each heteroge-
neous network snapshot in order to capture the spatial topology and semantic informa-
tion. Generally, a metapath strategy, P , can be described as a path that is predefined as:

P : T1
R1−→ T2

R2−→ · · · Tt
Rt−→ · · ·

Rn−→ Tn+1; therein, R = R1 • R2 • · · · • Rn represents
the multi-level relationships between nodes T1 and Tn+1. For illustration, consider the
commodity supply–demand network shown in Figure 2, the metapath “CIC” denotes
the common interest in items between two customers, and “CIMIC” represents that two
customers purchase similar items from the same merchant.

Figure 2. An illustrative example of a heterogeneous commodity supply–demand network guided

by different metapaths.

The key point of conducting random walk on heterogeneous networks is to determine
the transition probabilities for each step. For the sake of efficiency and effectiveness,
we associate the metapath-based random walk with higher-order Markov chains [38] to
facilitate the learning of nodes distribution.

Theorem 1. Given an arbitrary metapath, P : T1
R1−→ T2

R2−→ · · · Tt
Rt−→ Tt+1, there exists a

k-order Markov chain if—and only if—P can be decomposed into a collection of distinct k-length

metapaths, {Tl
Rl−→ Tl+1

Rl+1
−−→ · · ·

Rl+k−1
−−−−→ Tl+k}, while satisfying the condition that current state,

Tl+k, is only determined by {Tl , Tl+1, · · · , Tl+k}. We can then leverage the transition probabilities
obtained by k-length Markov chain to guide P-concerned random walks.

Note that the metapath decomposition mentioned above can be interpreted as a
process of factor extraction. For instance, we can decompose the metapath “CIMIC” into a
set of metapath factors: “CIM”, “IMI”, “MIC” and “ICI”. It is evident that the present state
can only be determined by the last two states. Therefore, motivated by this, we utilize a
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second-order Markov chain to represent the metapaths of this “CIMIC” type and introduce
the node transition probability matrix, as follows:

Mk|j,i ,

{
PTl+1‖Tl+2

,F : vi,j,k → Tl,l+1,l+2

0 , otherwise
(1)

where Mk|j,i indicates the transition probability to node k, given the last hop node, j, and the
second last hop node, i. F denotes the type mapping function for nodes i, j and k. PTl+1‖Tl+2

represents the transition probabilities proposed in path ranking algorithm (PRA) [39],
which can be calculated as follows:

PTl+1‖Tl+2
= D−1

Tl+1‖Tl+2
ATl+1‖Tl+2

(2)

where ATl+1‖Tl+2
is the adjacency matrix between nodes in type Tl+1 and nodes in type

Tl+2, and DTl+1‖Tl+2
is the degree matrix. Thus, given a dynamic heterogeneous network

snapshot, G t =
(
V t, E t,F , ϕ

)
, and a meta path scheme, P : T1

R1−→ T2
R2−→ · · · Tt

Rt−→ Tt+1

satisfies the second-order Markov chain. The transition probability at step t is defined
as follows:

Prob{Xt = k|Xt−1 = j, Xt−2 = i,P} , Mk|j,i (3)

To ease exposition, we abbreviate term Prob{·} as p(·). Subsequently, we utilize
the skip-gram to learn node representations on the dynamic heterogeneous networks
snapshot by maximizing the probability of the existence of heterogeneous neighbor nodes.
After given a dynamic heterogeneous network snapshot G t with |T | types of nodes and
the neighborhood sampling corpus, VP , guided by metapath P , we define the objective
function as follows:

arg max
θ

∑
i∈VP

∑
c∈T

∑
m∈Nc(i)

log p(m|i; θ) (4)

where Nc(i) denotes the neighborhoods of node i with type c, and θ is the set of pa-
rameters. Generally, the transition probability p(m|i; θ) is normalized by the softmax
function [18,36,40].

p(m|i; θ) =
exp

(
Xt

cm
· Xt

i

)

∑m′∈VP exp
(
Xt

m′ · X
t
i

) (5)

where Xt
cm

is the context vector of m and Xt
i indicates the embedding of node i.

To relieve the burden of calculation, we deploy a negative sampling, the same as [40],
which yields great performance in practice. We firstly define a negative sample size, N,
then the final objective function is shown as follows:

log σ
(
Xt

cm
· Xt

i

)
+

N

∑
n=1

Eun∼P(u)

[
log σ

(
−Xt

un
· Xt

i

)]
(6)

where σ(·) is the sigmoid function that limits the value to a range of [0, 1], P(u) is the
predefined sampling distribution and un means node u has been negative sampled for n
times. The stochastic mini-batch gradient descent (SMGD) algorithm is utilized to optimize
the objective function, which reduces the computational overhead and randomness while
maintaining a fast convergence rate.

4.2. Subgraph-Level Feature Aggregation

After conducting metapath-based random walk on dynamic heterogeneous snapshots,
we obtain the node-centric embedding, while the heterogeneous network also contains
different types of edges. In order to incorporate edge-wise heterogeneous information to
each node representation, we introduce edge-centric embedding method, including embed-
ding for the same types of edges and different types of edges, with attention mechanism.
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In general, we perform a subgraph-level aggregation operation to obtain the representation
of each snapshot in a micro perspective.

For the edge in same type, the edge-centric attention model aims to learn the impor-
tance coefficient of each node’s neighborhoods in same type and aggregate these features
to generate hidden representations. Taking Figure 3 as an example, there are five neighbors
around the node v1, while node v2, v3 and v6 are the same type as node v1. Therefore, this
step involves handling with the set of nodes {v1, v2, v3, v6}.

Figure 3. The schematic diagram of calculating the weight coefficient of edge based neighbors for the

middle node.

Suppose the input features consist of node embedding of each snapshot, G t ∈ G;
we deploy edge-centric attention model for each node pair with the same edge type.
The importance coefficient of node j ∈ Nir to node i with edge type r and t-th snapshot can
be formulated as follows:

wt
(i:j)r

=
exp

(
σ
(

αT
r

[
WrXt

i ⊕WrXt
j

]))

∑u∈N t
ir

exp
(
σ
(
αT

r

[
WrXt

i ⊕WrXt
u

])) (7)

where N t
ir

denotes the neighbors of node i with type r at t-th snapshot, and Wr is the

learnable parametric matrix. σ(·) is the LeakyReLU activation function. Xt
i , Xt

j and Xt
u

are the embedding for node i, j, and u at t-th snapshot, respectively, and ⊕ represents the
concatenation operation. Then, we aggregate the features of neighbors with same type
edge by employing nonlinear transformation, as follows:

X̃t
ir
= σ


 ∑

j∈N t
ir

wt
(i:j)r
·WrXt

j


 (8)

where X̃t
ir

is the aggregated embedding of node i for the same type of edges at t-th snapshot.
Here, σ(·) is the tanh function.

Subsequently, we further explore the impact of edge-type-based neighbors for cer-
tain nodes. Firstly, we carry out the feature transformation that map aggregated node

embedding into high-level space σ
(

We · X̃t
ir
+ be

)
through a nonlinear function, σ(·), such

as ReLU, tanh and sigmoid. We and be are the learnable parametric matrix and bias vector,
respectively. Then, we measure the influence of different types of edges to a specific node
by implementing an edge-centric attention model. The weight coefficient of node i with
edge type r at t-th snapshot βt

ir
is normalized by the softmax function:



Sensors 2022, 22, 1402 9 of 24

βt
ir
=

exp
(

qT · σ
(

We · X̃t
ir
+ be

))

∑r∈R exp
(

qT · σ
(

We · X̃t
ir
+ be

)) (9)

where q is the attentive parameterized vector and tanh function is utilized as activation
function. With the normalized attention weights, we can finally obtain the embedding for
node i at t-th snapshot from different edge-levels, which can be expressed as follows:

X̃t
i =

|R|

∑
r=1

βt
ir
· X̃t

ir
(10)

After obtaining the representation of each node in the snapshot, the overall node em-

bedding at t-th snapshot can be described as follows: Z t
micro =

{
X̃t

1, X̃t
2, · · · , X̃t

i , · · · , X̃t
|V t |

}
,

where X̃t
i ∈ R

F, F≪
∣∣V t

∣∣ is the number of feature embedding dimensions.

4.3. Community-Level Semantic Learning

The local structure of nodes is crucial for dynamic heterogeneous network represen-
tation, while the global structure also plays an important role in portraying the network.
Community structure exists in many real-world networks, whether they are homogeneous
or heterogeneous, which reflect the global structure of networks in a macroscopic perspec-
tive. Motivated by this intuition, we present a community-aware graph embedding method
with network clustering technique for extracting the structure semantic in community-level,
which encode node information into low-dimensional representations.

However, in dynamic heterogeneous networks, community structures are generally
regarded as a priori information, which can not be known in advance. Following the work
DEC [41], we first initialize a set of K cluster centroids {cj}

K
j=1 by a random selection proce-

dure. The clustering objective function is defined as a Kullback–Leibler divergence (KL)
loss between the soft probability distribution, Q, and the auxiliary probability distribution,
P, which can be expressed as follows:

Lc = KL(P‖Q) = ∑
i

∑
j

pij log
pij

qij
(11)

where qij can be interpreted as the probability that measures the similarity between node i
and cluster center j by Student’s t-distribution, as follows:

qij =
(1 + ‖X̃t

i − cj‖
2/n)−

n+1
2

∑j′∈K

(
1 + ‖X̃t

i − cj′‖2/n
)− n+1

2

(12)

where n denotes the degree of freedom of the Student’s t-distribution, and X̃t
i is the micro

node embedding of node i generated in Section 4.2. Empirically, we set n = 1 in our
experiments. pij is the auxiliary probability distribution calculated by the following:

pij =
q2

ij/ ∑i qij

∑j′∈K q2
ij′/ ∑i qij

(13)

During backpropagation, the stochastic gradient descent algorithm is utilized to
iteratively optimize the cluster loss function so as to bring the node closer to its cluster
centroid. The partial derivative of Lc with respect to variables X̃t

i and cj are shown
as follows:

∂Lc

∂X̃t
i

=
n + 1

n

K

∑
j=1

(1 +
‖X̃t

i − cj‖
2

n
)−1 ·

(
pij − qij

)(
X̃t

i − cj

)
(14)
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∂Lc

∂cj
=

n + 1

n

|V t|

∑
i=1

(1 +
‖X̃t

i − cj‖
2

n
)−1 ·

(
pij − qij

)(
cj − X̃t

i

)
(15)

After sending the gradients down to update the parameters, we can obtain the node
embedding, Zmacro, and cluster centroids, cj, from a macro perspective, where Zmacro ∈

R
|V t|×d is constructed by updated X̃t

i , and d is the dimension of the embedded features.
Finally, we construct the ultimate node embedding using a combination of the micro

node embedding Zmicro and macro node embedding Zmacro, which is to model the overall
structure of a dynamic heterogeneous network. Specifically, the overall node embedding
Z t at t-th snapshot is defined as follows:

Z t = λZ t
micro + (1− λ)Z t

macro (16)

where λ denote the trade-off parameter that balances the weight of the micro and macro
node embedding at ultimate node representations. The overall framework of CDHNE is
presented in Figure 4.

4.4. Temporal Evolutionary RNN Model

One of the major characteristics of dynamic heterogeneous networks is the time-
varying characteristic. There are many scenarios of changing network structures, such as
establishing citation relationships between authors, product recommendations between
users, those newly added or removed UGCs, and so forth. For this reason, we propose two
variations of our method, as presented in Figure 4: (i) CDHNE-GRU, (ii) CDHNE-LSTM.
Two high-profile, RNN-based models—gated recurrent unit (GRU) and long short-term
memory (LSTM)—are leveraged in our proposed method with encoder–decoder structure
to enable the capability of capturing a network’s evolutionary patterns and to further
extract comprehensive information along continuous snapshots.

Gated recurrent unit is a modification to the RNN hidden layer that makes it much
better for capturing long-range connections and helps a lot with the vanishing gradient
problems. Through the above structural semantic learning and feature aggregation opera-
tion, we can finally obtain the node embedding for all snapshots,

{
Z1,Z2, · · · ,ZT

}
, where

Z t ∈ R
|V t|×d and

∣∣V t
∣∣ denote the number of nodes at t-th snapshot, and d is the size of

the embedded dimension. Then, we take these embeddings as the input of GRU. These
following are the equations that govern the computation of a GRU unit:

Γt
u = σ

(
Wu

[
ct−1 ⊕Z t

]
+ bu

)

Γt
r = σ

(
Wr

[
ct−1 ⊕Z t

]
+ br

)

c̃t = tanh(Wc

[(
Γr ∗ ct−1

)
⊕Z t

]
+ bc)

ct = Γu ∗ c̃t + (1− Γu) ∗ ct−1

at = ct

(17)

where Γu, Γr ∈ R
F denote the update and reset gates, respectively. ct, c̃t are the memory unit

and the candidate value, respectively. Wu, Wr, Wc ∈ R
F×2d and bu, br, bc ∈ R

F are trainable
parameters. F is the dimension of output embedding. σ(·) is the activation function. ⊕
indicates the concatenation operation, and ∗ is the the operation of Hadamard product.
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Figure 4. The overall architecture of the proposed CDHNE. At the t-th snapshot, CDHNE extracts

micro node representations and macro structure semantic sequentially, and fuse them with pa-

rameterized weights as the input of temporal dynamic extraction model. The changes of entities

and semantics in DyHN are captured with RNN-based model due to its superiority in handling

long sequences. Finally, the output are transformed to the probability distribution through the

fully-connected decoder.

Compared with the GRU, the LSTM model achieves better representation and in-
troduces the forget gate, Γ f , for controlling the information of previous moments more

independently. The formulations of the single LSTM network at t-th snapshot are shown as
follows:

Γt
u = σ

(
Wu

[
at−1 ⊕Z t

]
+ bu

)

Γt
f = σ

(
W f

[
at−1 ⊕Z t

]
+ b f

)

Γt
o = σ

(
Wo

[
at−1 ⊕Z t

]
+ bo

)

c̃t = tanh(Wc

[
at−1 ⊕Z t

]
+ bc)

ct = Γu ∗ c̃t + Γ f ∗ ct−1

at = Γt
o ∗ tanh

(
ct
)

(18)

where Γt
u, Γt

f , Γt
o ∈ R

F denote the update, forget and output gate, respectively. State vector

at is the element-wise product of the output gate, Γt
u, and the memory unit, ct. Wu, W f , Wo,

Wc ∈ R
F×2d and bu, b f , bo, bc ∈ R

F are trainable parameters. The other notations represent
the same meaning as the GRU model.
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As depicted in Figure 4, in order to achieve a more effective temporal evolution
learning, we stack several LSTM networks to construct a multi-layer structure. In each
layer, there can be T recurrent memory units arranged like a chain, which is to deliver
parameters to next timestamp. Firstly, we encode the input node embedding into hidden
representation via an RNN-based model, then apply several fully connected layers as the
decoder for the final relation prediction between two nodes.

4.5. Complexity Analysis of CDHNE

In this work, dynamic heterogeneous networks are represented by T static snapshots.
Therefore, for each snapshot, we mainly consider the time complexity on two stages. Firstly,
for the subgraph-level information extraction, which consists of heterogeneous contents
learning and feature aggregation. During the metapath-based random walk, given a
metapath set P with

∣∣V t
∣∣ nodes, walk length, l, and walks per node, w, the time complexity

is O(dw
∣∣V t

∣∣l2), in which d is the embedding dimension. In the process of calculating
node embeddings, the theoretical time complexity of skip-gram is extremely high; we
employ negative sampling for reducing complexity as much as possible. During the feature

aggregation stage, the time complexity is O(dl|R|2
∣∣E t

∣∣), where |R| is the number of edge
types, and

∣∣E t
∣∣ is the number of edges at t-th snapshot.

For the community-level semantic learning, in each snapshot, the time complexity of
calculating node embedding in macro perspective can be divided into two parts. To cal-
culate the probability distribution qij and pij, our method takes O

(
dK

∣∣V t
∣∣) and O

(
K
∣∣V t

∣∣),

respectively, where K is the initial number of cluster centroids. The other is O
(
dK

∣∣V t
∣∣), in

calculating the gradient of parameters X̃t
i and cj simultaneously. Since d≪

∣∣V t
∣∣, the time

complexity of this part is almost linear with the number of nodes.
Besides, for the extraction of temporal evolution patterns, we utilize the RNN-based

model, of which the time complexity is normally related to hardware execution. Thus,
we introduce the model complexity in this subsection. The number of parameter for each
cell in the LSTM model is 4 ∗

(
dn

∣∣V t
∣∣+ n + n2

)
, where n denotes the size of output term.

Finally, the pseudocode for CDHNE is shown in Algorithm 1.

Algorithm 1 The CDHNE algorithm

Input: A dynamic heterogeneous network G with T snapshots, the predefined embedding
dimension d.
Output: The probability of the linkage between two nodes

1: for each snapshot G t ∈
{
G1,G2, · · · ,GT

}
do

2: Xt
i ← A Markov-chain-optimized metapath random walk

3: for each edge in specific type r ∈ R do
4: Calculate the importance weight wt

(i:j)r
of node pair (i, j) by Equation (7)

5: Aggregate the features of neighbors in same type and obtain the type-specific node

embedding X̃t
ir

6: end for
7: Calculate the weight coefficient βt

ir
of node i with edge type r at t-th snapshot by

Equation (9)
8: Obtain the node representation at t-th snapshot Z t

micro in a micro perspective through
feature aggregation with different type of edges

9: Obtain the community-level semantic information Zmacro by a clustering process
10: end for
11: Generate comprehensive node embedding Z t for each snapshot by Equation (16)
12: Get the probability of the link existence through GRU/LSTM encoder–decoder structure

5. Experiments and Result Analysis

In this section, we evaluate the performance of the proposed model on four real-
world datasets. We firstly introduce the datasets and the configuration of the experimental
environment. Then, we introduce the baselines in detail. We also conduct elaborate experi-
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ments for relation prediction tasks and demonstrate the effectiveness of main components.
Moreover, we analyze the influence of sampling granularity and investigate the sensitiv-
ity of hyper-parameters. The detailed statistics of datasets are summarized in Table 2.
(https://github.com/ZijianChen1998/CDHNE.git) The implementation of our CDHNE
model are publicly accessed on 8 February 2022.

Table 2. Statistics of relation prediction datasets.

Datasets Types #Nodes #Edges #Node-Type #Edge-Type #Snapshots Time Span

DBLP Academic 132,582 275,206 3 3 19 19 years
Aminer Academic 41,901 68,068 3 3 16 16 years
EComm Commercial 37,724 91,033 2 4 11 11 days
Math Overflow Social 24,818 506,550 1 3 11 2350 days

5.1. Experiment Setup and Dataset Description

We abstract various user-generated contents as heterogeneous nodes and select four
dynamic heterogeneous networks covering academic, commerce and social interaction
fields as our experimental datasets. The detailed description are presented as follows:

• DBLP [42] (https://dblp.uni-trier.de) (15 December 2021): The DBLP dataset com-
prises academic literature information in the field of computer science. In this exper-
iment, we adopt a subset of the DBLP dataset collected by [18], and compress the
information into 19 snapshots, which contains 3 types of nodes, i.e., authors, papers
and venues.

• AMiner [43] (https://www.aminer.cn/data) (15 December 2021): AMiner is a big data
mining and service system platform which helps researchers to mine rich academic
information. In this paper, we use the evolved dynamic heterogeneous network
released by [18], which establishes the relationships among authors, articles and
conferences.

• EComm (https://tianchi.aliyun.com/competition/entrance/231721) (15 December
2021): The EComm dataset was launched in CIKM-2019 E-Commerce AI Challenge,
which records the consumers’ shopping behavior over an 11-day period from 10 June
2019, to 20 June 2019. It consists of three files (i.e., user behavior files, user information
sheets and product information tables).

• Math-Overflow (https://snap.stanford.edu/data/sx-mathoverflow.html) (15 Decem-
ber 2021): This dataset [44] contains interactions of users over time, which are sampled
from the stack exchange website Math-Overflow. There are three different types of
directed edges (i.e., answer–question, comment–question, comment–answer) over a
time span of up to 2350 days.

Evaluation Metrics: We choose two commonly used evaluation indicators, AUROC
and AUPRC [45], to compare the relation prediction performance of different methods in
dynamic heterogeneous networks. Among them, AUROC is the abbreviation of the area
under the receiver operating characteristic curve (ROC), while AUPRC is the abbreviation
of the area under the precision recall curve (PRC).

Noting that, AUROC can be interpreted as the probability of a randomly chosen miss-
ing link being ranked higher than a randomly chosen nonexistent link. Then, the AUROC
can be formulated as follows:

AUROC =
n′ + 0.5n′′

N
(19)

where N denotes the number of independent processes, and there are n′ times that the
score of missing link is greater than the score of nonexistent link and n′′ times when the
opposite scenario occurs. Similarly, the PRC is plotted by precision–recall pairs. Precision
measures the capacity of the classifier to label the missing links correctly, while the recall
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reflects the completeness of the model to discover all missing links. Intuitively, the closer
the value of AUROC and AUPRC are to one, the more discriminative the model is.

In the task of community detection, we take modularity to measure the capacity of
discovering community structure in dynamic heterogeneous networks, which does not
need prior information about the ground truth. Let Cu denotes the affiliation of node u.
The calculation formula of modularity is defined as follows:

Q =
1

2m ∑
uv

[Auv −
kukv

2m
]δ(Cu, Cv) (20)

where Q denotes the modularity, the closer it is to 1, the better the effect of community
division. m is the number of overall edges in network. Auv indicates the linkage between
node u and v. δ(Cu, Cv) = 1 only if node u and v belong to the same community, otherwise
δ(Cu, Cv) = 0.

During the phase of heterogeneous information processing, we employ metapath
guided random walk for node representations, which based on the transition probability
of k-order Markov chain. In dataset DBLP, we mainly consider metapaths involving APA
(i.e., the coauthors semantic), and APCPA (i.e., the sharing publication on conferences from
different authors). In dataset Aminer, we also pay attention to metapaths including APA
and APCPA, with similar meanings. For the EComm dataset, we consider the relations
between customers and items including browse, buy, add-to-cart and add as favorite.
For the Math Overflow dataset, we are interested in the interactions between users, which
manifests as answering, questioning and commenting.

To make a fair comparison, all experiments are conducted using the Windows(64-bit)
PC with Intel Core i5-9300HF CPU 2.4 GHz, 16 GB RAM and NVIDIA GeForce GTX 1660Ti
6G GPU. The programming environment of CDHNE-GRU/LSTM are Python 3.7 and
Tensorflow 1.15. The detailed experiment configurations are represented in Table 3.

Table 3. Parameter configurations of the proposed models for relation prediction.

Parameters Setting

The trade-off of final node embeddings λ = 0.8
The embedding dimension d = 128
The random walk length l = 100

The number of walks per node 50
The number of sampled neighborhood 25

The number of negative samples 5
The number of filters 64

The training rate 0.001
The dropout rate 0.2

5.2. Baseline Description

We compare our proposed model against eleven methods in four categories, includ-
ing static homogeneous network embedding methods, static heterogeneous network em-
bedding methods, dynamic homogeneous network embedding methods, and dynamic
heterogeneous network embedding methods. The detailed descriptions are as follows.

5.2.1. Static Homogeneous Network Embedding

• DeepWalk [13]: DeepWalk is a homogeneous network embedding method, which
conducts random walk to learn the node representation in static network.

• node2vec [15]: The idea of node2vec is similar to DeepWalk, while considering the
DFS and BFS neighborhoods simultaneously, thus improving the effect of network
embedding.

• GAT [29]: Graph attention network leverages the attention mechanism to assign
different weights to each neighbor, which adaptively realized the matching weights of
different neighbors.
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• GraphSAGE [28]: GraphSAGE samples the neighbor nodes of each vertex on the
static homogeneous graph, then aggregates the feature information from neighbors.

5.2.2. Static Heterogeneous Network Embedding

• metapath2vec [36]: metapath2vec performs a path determined random walk in hetero-
geneous network and leverages the skip-gram model to generate the node embedding.

• metapath2vec++ [36]: metapath2vec++ improves the metapath2vec by further extract-
ing the structural and semantic correlations in heterogeneous networks.

• HetGNN [35]: HetGNN is a graph neural network-based model for static heteroge-
neous network, which sample-correlated the neighbors for heterogeneous nodes with
a restart random walk and obtained deep feature interactions through a encoding
module.

5.2.3. Dynamic Homogeneous Network Embedding

• dyngraph2vec-RNN [30]: A deep architecture with sparsely connected long short-
term memory networks, which is able to learn the evolution patterns in homogeneous
graph structures.

• dyngraph2vec-AERNN [30]: An improved version of dyngraph2vec-RNN, which
leverage multiple fully connected layer to learn the initially hidden representations.

• DySAT [33]: DySAT obtains the node representations by jointly conducting self-
attention operation to extract the structural information and temporal dynamics.

5.2.4. Dynamic Heterogeneous Network Embedding

• DHNE [18]: A network representation learning method for dynamic heterogeneous
networks, which construct historical–current networks snapshots in timelines and
capture heterogeneous semantic information under the guidance of metapaths.

• DyHATR [19]: DyHATR utilize a hierarchical attention mechanism to learn het-
erogeneous information and capture network dynamic evolutional patterns via a
temporal-attention-based recurrent neural network.

5.3. Relation Prediction

The objective of a relation prediction task for dynamic heterogeneous networks is
to learn various node representations from previous t-th snapshots, then forecast the
relation existence at (t + 1)-th snapshots. Concretely, we take previous t snapshots,{
G1,G2, · · · ,G t

}
, as inputs and feed them into the model, then we can obtain the node

embedding at (t + 1)-th snapshots, which contain rich information about the network,
and thus are used to predict relations.

Abundant experiments are conducted on four datasets. For datasets DBLP and AMiner,
we hide a certain percentage of edges to generate the training set, respectively. Meanwhile,
due to the fact demonstrated in the previous work that significant metapaths help solving
downstream tasks [46,47], we set different weights for APA and APCPA in DBLP as {0.8, 0.2}.
Similarly, we allocate weights in AMiner as {0.6, 0.4}. As for dataset EComm, there is
only one type of metapath CI with full weight. Moreover, metapath strategy in Math
Overflow is based on homogeneous nodes due to the single type of nodes. We trained our
proposed models for a maximum of 1000 epochs with Adam optimizer [48], which is built
into tensorflow. Early stopping mechanism is utilized for better efficiency. Weights are
initialized through Xavier uniform initialization [49]. We conducted all the experimental
tests five times, independently.

Experimental results are summarized in Table 4. Overall, CDHNE achieves the best
performance among the four datasets on two criteria, namely, AUROC and AUPRC. The
notable improvement validates the effectiveness of our model in extracting comprehen-
sive features from dynamic heterogeneous networks, while avoiding high computational
overheads. Profiting from the appropriate encoding and aggregating for subgraph-level
features, CDHNE significantly outperforms metapath2vec. We also concentrate on the
representation of macro semantic information, which also lead to high practical connotation
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in heterogeneous network relationships mining. Specifically, our proposed model achieves
highest score (0.903 for AUROC and 0.885 for AUPRC) in DBLP, which surpasses the
static homogeneous baselines by an average of 14.7% and 10.9%, respectively. Besides,
our CDHNE conduces to performance gains over latest dynamic heterogeneous methods
DHNE and DyHATR with 14.6% and 4%, respectively, for AUROC in DBLP. However,
on the Math Overflow dataset, our model performs slightly higher than static homogeneous
methods, which attributes to the fact that there is only one type of node in Math Overflow,
so that our heterogeneous encoding component scarcely take effects.

As presented in Figure 5, we further vary the ratio of training set from 20% to 80% with
the step of 10%. Five typical methods are selected for comparing the impact of different
training ratio. Obviously, our model outperforms other methods, whether the training set is
large or small, which validates the efficiency of CDHNE in extracting comprehensive node
features. It should be noted that practically all methods perform poorly at low training
ratios, while the value of AUROC grows rapidly when training ratio reaches 40% and
becomes smooth at high training ratios. Thus, we can conclude that sufficient learning of
node features brings advantages in handling relation prediction tasks.

Figure 5. The impact of training ratio on DBLP, AMiner, EComm and Math Overflow datasets

in term of area under the receiver operating characteristic curve (AUROC). Five typical baselines,

i.e., node2vec, GAT, matapath2vec, DHNE and DyHATR, are selected to compare with our proposed

models, which validates that CDHNE-GRU/LSTM can effectively handle relation prediction tasks

regardless of the training set size.
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Table 4. Performance comparison on four datasets for the task of relation prediction on dynamic

heterogeneous networks. The best results are highlighted in bold.

Methods
DBLP AMiner EComm Math Overflow

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

DeepWalk [13] 0.743 0.762 0.719 0.741 0.564 0.561 0.707 0.756
node2vec [15] 0.747 0.766 0.724 0.746 0.597 0.594 0.713 0.714
GAT [29] 0.762 0.774 0.757 0.751 0.647 0.642 0.735 0.763
GraphSAGE [28] 0.773 0.801 0.761 0.754 0.595 0.590 0.637 0.660

metapath2vec [36] 0.852 0.855 0.795 0.804 0.603 0.653 0.696 0.749
metapath2vec++ [36] 0.853 0.861 0.798 0.811 0.621 0.686 0.706 0.751
HetGNN [35] 0.871 0.863 0.786 0.793 0.646 0.692 0.721 0.734

dyngraph2vec-RNN [30] 0.651 0.679 0.683 0.677 0.499 0.506 0.523 0.562
dyngraph2vec-AERNN [30] 0.672 0.691 0.685 0.684 0.512 0.509 0.582 0.597
DySAT [33] 0.659 0.701 0.693 0.686 0.508 0.511 0.501 0.538

DHNE [18] 0.757 0.766 0.776 0.779 0.553 0.619 0.678 0.721
DyHATR [19] 0.863 0.869 0.832 0.817 0.693 0.731 0.743 0.778
CDHNE-GRU (proposed) 0.886 0.879 0.851 0.833 0.717 0.745 0.762 0.791
CDHNE-LSTM (proposed) 0.903 0.885 0.854 0.841 0.725 0.751 0.775 0.797

5.4. Community Detection

To evaluate the performance of our proposed model in community structure detection,
we use modularity as an assessment criteria. Since the concept of modularity was intro-
duced, various related approaches have been proposed [50–55]. Among them, Louvain [50]
attempts to discover communities by maximizing modularity with the greedy mechanism.
Quick community adaptation (QCA) [52] is elaborated for tracking the evolution of com-
munity over time and updating the community structure simultaneously. Batch [51] is
a batch-based incremental technique that relies on predefined strategies. GreMod [53]
also performs incremental updating for capturing dynamic changes of communities. M-
NMF [54] aims to preserve community structure in network embedding through matrix
factorization. LBTR-SVM [55] utilized vertex classifier to affect community assignments.

Figure 6 shows the modularity comparison between six typical algorithm and our
proposed model on four real-world datasets, respectively. Apparently, we can observe that
CDHNE substantially outperforms the other algorithms. Specifically, CDHNE achieves on
average 19%, 10.1%, 12.2% and 6.7% percent higher than GreMod on all the snapshots of
DBLP, AMiner, EComm and Math Overflow, respectively, which demonstrate the superior-
ity of our proposed model in assigning communities. Even compared with Louvain, our
method still reaches only 0.2%, 0.7%, 1.6% and 2.3% percent lower on all the snapshots of
DBLP, AMiner, EComm and Math Overflow, respectively. The effectiveness of CDHNE in
detecting community structure comes from the pre-learning strategy, with which we first
intensify the heterogeneous feature extraction at subgraph-level, then conduct clustering
in the embedded space by minimizing the KL divergence. Different from capturing the
tiny changes for each snapshot in a dynamic heterogeneous network, we highlight the
importance of node representation learning in community detection. We visualize the first
snapshot of four datasets in a low dimensional space from the learned node embedding
during community-level semantic extraction. The result displayed in Figure 7 demonstrates
the capacity of CDHNE in assigning communities, while embodying the drawbacks of
randomly initialized centroids in handling large scale networks, according to Figure 7d.
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Figure 6. The modularity results on four real-world networks. (a) DBLP. (b) AMiner. (c) EComm.

(d) Math Overflow. Six typical community detection algorithms, i.e., Louvain, QCA, Batch, GreMod,

M-NMF and LBTR-SVM, are selected as competing algorithms. Observe that using the proposed

CDHNE can effectively discover the community structure, while reaching a relatively high modularity

compared with other methods.

Figure 7. A 2D visualization of CDHNE on the first snapshot of DBLP, AMiner, EComm and Math

Overflow, respectively. Here, heterogeneous nodes are depicted in the same type. Top 10 communities

in scale are colored for better distinction.

5.5. Granularity of Snapshots Sampling

In this work, we heuristically analyze the impact of sampling granularity on relation
prediction tasks, which mainly reflected in the number of snapshots. Normally, we consider
the dynamic heterogeneous network as an observed series, G =

{
G1,G2, · · · ,GT

}
, which,

to some extent, discretize the network at a certain sampling frequency. It is evident that
different sampling granularity can bring varied effect on node representation learning,
which is a problem worth pondering over. Taking Math Overflow as an example, the time
span is 2350 days, which we divided into 11 snapshots in previous tasks, in which the
duration of each snapshot is nearly 214 days. Figure 8 displays the experiment results
of CDHNE on Math Overflow. We can observe that there exists certain regularity of
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AUROC variations in terms of embedding dimension and number of snapshots. Specifically,
the value of AUROC grows as the number of sampled snapshots increases when the
embedding dimension is fixed. The performance of CDHNE-LSTM continuously improves
from 0.731 up to 0.784 in the range of {7, 9, 11, 13, 15, 17, 19} snapshots under the condition
that the embedded dimension is configured as 128. Thus, as the number of snapshots
grows, our proposed model is capable of capturing comprehensive information over the
dynamic network and perceiving more explicit information and implicit associations for
predicting link existence.

Figure 8. The performance of proposed model CDHNE under different sampling granularity on

Math Overflow. The x-axis represents the sampling granularity, that is the number of snapshots,

while the y-axis varies with the embedding dimension. The AUROC value for relation prediction

task is given in each cell accompanied with a color bar on the right.

In addition, we also explore the effect of the embedding dimension in node represen-
tation learning on the Math Overflow dataset. The value of AUROC keeps growing in the
range of {4, 8, 16, 32, 64, 128} embedding dimension. However, the AUROC drops with
embedding dimension of 256, indicating that oversize embedding dimension can cause
overfitting problems. We can conclude that the finer embedding dimension and granularity
are necessary ingredients in learning node representations and capturing dynamic patterns.

5.6. Sensitivity of Hyper-Parameters

In this section, we investigate the effect of different hyper-parameter setting on relation
prediction tasks. We evaluate two variants of our proposed model, i.e., CDHNE-GRU and
CDHNE-LSTM, which differ in capturing temporal dynamics, on four real-world datasets.
As Figure 9 shows, the value of trade-off λ between micro and macro node embedding
influences the performance of our model, which measures the importance of micro and
macro node embedding. All models are consistently reinforced with larger value of λ and
reach highest AUROC at λ = 0.8, which indicates the significance of micro node embedding
involving localized heterogeneous contents. Interestingly, we find that the value of AUROC
drops significantly when λ decreases from 0.4 to 0.2 on Math Overflow compared with
other datasets. Due to the fact that the node types in the Math Overflow are single, while
the heterogeneity that is mainly reflected in the types of edges and its community structure
is not obvious according to previous analysis, thereby performing relatively poorly under
this circumstance.
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Figure 9. The AUROC on four datasets with respect to the trade-off λ between micro and macro

node embedding. CDHNE-GRU and CDHNE-LSTM mean the two variants of our model use gated

recurrent unit and long short-term memory as temporal dynamic encoder, respectively.

Moreover, we further explore the effect of different batch size during the model training
phase. Figure 10 shows that with more data added in one batch, the performance of two
variants fluctuate slightly in a uptrend, accelerating the training speed and increasing
the parallelism. The best AUROC achieved by CDHNE-LSTM in DBLP, AMiner, EComm
and Math Overflow are 0.903, 0.854, 0.725 and 0.775, respectively. The investigation of
hyper-parameters helps us to find the best setting of our models.

Figure 10. The AUROC on four real-world datasets with respect to the training batch size.
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6. Conclusions

In this paper, we abstract the source of user-generated content into a dynamic het-
erogeneous network and present a novel graph representation learning method, named
community-aware dynamic heterogeneous network embedding, for assessing complicated
relations in whole graph, abbreviated as CDHNE. Our proposed model mainly consists
of three components for micro, macro node representation learning and for capturing
evolutionary patterns, respectively. Based on the Markov-chain-optimized metapath, our
model is able to learn the heterogeneous contents using skip-gram model. The procedure
of edge-centric attention makes features aggregation at the subgraph level. We further ex-
plore the latent community structure through the clustering technique and obtain the node
embedding from a macro perspective. Using an intuitive aggregation mechanism, these
two parts jointly incorporate both graph structure and heterogeneous side information (e.g.,
node and edge features). Ultimately, we present two variants of our model with different
recurrent memory unit, i.e., CDHNE-GRU and CDHNE-LSTM, for dynamics learning. Our
experimental analysis shows that the well-learned useful and discriminative network infor-
mation, resulting in an omnipotent representation space, leads to the effectiveness of our
proposed model in various downstream tasks, such as relation assessment and community
detection, compared with other state-of-the-art methods. Moreover, the visualization of
CDHNE on four datasets highlights its validity in network global information extraction.
The stable and competitive performance also shows the reliability of our model while under
different sampling granularity.

However, there are also some problems and salient drawbacks in our work. Our
proposed model is de facto a combination of graph representation learning with sequence
models. The graph embedding techniques captures the heterogeneous node information
from multiple perspectives, while the sequence model captures the long-term dependencies
within network evolution. This solution converts the dynamic network into a static network,
which enables the use of various techniques for static networks, while enlarging the
potential loss of information. Further research is needed in three main directions. Firstly,
we will concentrate more on digging continuous time information with less information
loss. Secondly, theoretical work is needed to analysis the stability of the CDHNE to network
perturbations. Finally, the implementation of our method will be reconstructed in an
end-to-end way.
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