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Trapliners are pollinators that visit widely dispersed flowers along circuitous

foraging routes. The evolution of traplining in hummingbirds is thought to

entail morphological specialization through the reciprocal coevolution of

longer bills with the long-tubed flowers of widely dispersed plant species.

Specialization, such as that exhibited by traplining hummingbirds, is often

viewed as both irreversible and an evolutionary dead end. We tested these pre-

dictions in a macroevolutionary framework. Specifically, we assessed the

relationship between beak morphology and foraging and tested whether tran-

sitions to traplining are irreversible and lead to lower rates of diversification as

predicted by the hypothesis that specialization is an evolutionary dead end.

We find that there have been multiple independent transitions to traplining

across the hummingbird phylogeny, but reversals have been rare or incomplete

at best. Multiple independent lineages of trapliners have become morphologi-

cally specialized, convergently evolving relatively large bills for their body size.

Traplining is not an evolutionary dead end however, since trapliners continue

to give rise to new traplining species at a rate comparable to non-trapliners.

1. Introduction
For plants that are widely dispersed across a landscape, there is a premium in

attracting high-fidelity long-range pollinators and excluding low-fidelity short-

range pollinators [1–7]. Trapliners are pollinators that visit widely dispersed

flowers along circuitous foraging routes. Widely dispersed plant species may

gain an advantage from having adaptations in floral morphology, such as

nectar spurs or long corolla tubes, that allow access to rich nectar rewards for

traplining pollinators while barring access to non-trapliners [8–11]. For specializ-

ation as a trapliner to be profitable, plants must offer adequate rewards to

compensate for the energetic cost of travelling between widely dispersed flowers

and the opportunity cost of ignoring flowers of other species in the same vicinity

[12]. Trapliners should in turn evolve morphological adaptations, such as long

bills, that allow them to access the nectar of such flowers [13–17]. Through

coevolution with the flowers of the various species they pollinate, trapliners

may therefore become more morphologically and ecologically specialized than

their non-traplining counterparts. This hypothesis on the coevolution between

guilds of widely dispersed flowers and traplining pollinators inspires several

macroevolutionary predictions, which we test in this study of hummingbirds.

The most basic of these predictions is that the evolution of traplining should

entail convergent morphological specialization. Specifically, we addressed the

prediction that through coevolution with the flowers they pollinate, trapliners

should evolve relatively large bills for their body size and a higher wing surface

area relative to body size [18,19]. In evolving morphological specialization to a

© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution

License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original

author and source are credited.

 D
o

w
n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

3
 F

eb
ru

ar
y
 2

0
2
2
 



subset of flowers, traplinersmayexperiencemore rapid rates of

morphological evolution than the average non-trapliner due to

directional selection driven by reciprocal coevolution between

flowers and pollinators [20,21]. In particular, as flowers evolve

longer corolla tubes, hummingbirds should quickly evolve

longer bills. Directional selection for longer bills may also

lead to lineages of trapliners breaking ancestral allometric con-

straints on bill evolution, so that clades of trapliners have

weaker evolutionary correlations between bill and body size.

Ecological specialization on a subset of resources could be

hypothesized to be an ‘evolutionary dead end’ in the sense

that evolutionary reversals back to a generalized ecology are

rare and specialized species rarely give rise to new specialized

species [22,23]. The evolution of an increasingly specialized

morphology in hummingbirds to exploit specific sets of

flowers may make subsequent reversal to a generalist niche

more unlikely. While an adaptive ramp may be available for

hummingbirds tobecome increasinglymorphologicallyspecial-

ized through gradual coevolution with flowers, reversals may

be hindered by an absence of a gradual adaptive ramp in the

reverse direction due to competition with short-billed hum-

mingbird species for short-tubed flowers. An ecologically

specialized hummingbird may also be more vulnerable to

extinction than a generalist and may have reduced potential to

spawn new ecologically distinct species. This effect has been

found in some groups of organisms [24,25]. Hence, clades of

specialist hummingbirdsmayhave lower rates of diversification

thangeneralist clades.On the other hand, cladesof specialist tra-

pliners may be able to diversify in the specific flowers onwhich

they feed, supporting high rates of diversification, the opposite

of what the evolutionary dead ends hypothesis would predict.

Evidence in the literature for specialization being an evolution-

arydead end is currentlymixed [26,27].Here,we test these ideas

on hummingbirds using phylogenetic comparative methods to

characterize diversification and rates of morphological evol-

ution in relation to evolutionary transitions in foraging ecology.

2. Methods

(a) Data
We took three-dimensional (3D) scans of the entire bill and linear

measurements of bill length, bill width, bill depth, wing length

and tail length from one male museum specimen for each of 289

species at the Ornithological Collection of the Natural History

Museum in Tring (UK). Using data from ref. [28], we estimate

that intraspecific variance in body mass is only approximately

1.3% of interspecific variance in our data and intraspecific var-

iance in bill length is only approximately 1.1% of interspecific

variance, so intraspecific variation in morphological traits is

unlikely to impact our results on this scale of analysis. We 3D-

scanned and landmarked bills of specimens as described in ref.

[29]. There were four fixed landmarks and three semi-landmark

curves of 25 points each. We used the R package geomorph [30]

to perform landmark alignments and extract principal com-

ponents (PCs) of shape variation as well as bill centroid size

(mm), an overall measure of bill size defined as the square root

of the sum of squared Euclidean distances from the centroid to

each of the landmarks. We retained the first three PCs describing

greater than 95% of the variation in shape. We obtained data on

the mean body mass of each species in grams from ref. [31]. All

morphological measurements were loge transformed.

We were able to classify 238 hummingbird species

(approx. 80% of all genera) as either trapliners (70), territorial

(104) or opportunists (64). We also performed sensitivity analyses

where opportunists and territorial species were classed as non-tra-

pliners. We obtained information on the foraging behaviour of

hummingbird species from the ‘Handbook of the Birds of the

World’ [32], the Cornell Lab of Ornithology’s ‘Birds of the World’

online database (www.birdsoftheworld.org) [33] and the ‘Hum-

mingbirds of North America’ [34]. There can be strong sexual

dimorphism within hummingbird species in both morphology

and foraging behaviour [7,14,35,36]. Since we obtained morpho-

logical data for male museum specimens, species were classified

according to the foraging behaviour of males wherever sex-

specific information was available. There are 12 species in our

assembled dataset where foraging behaviour is described for

both sexes, and there is sexual dimorphism in six of these. The

terms ‘traplining’ and ‘territorial’ are regularly used as a dichot-

omy to describe hummingbird foraging behaviour in the

literature. We also considered descriptions such as ‘visiting dis-

persed flowers’ or ‘following circuitous foraging routes’ as

further support for classifying a species as a trapliner and descrip-

tions such as ‘feeding on clumps of flowers’ or ‘displaying

aggression towards other hummingbirds’ as further support for

classifying a species as territorial. Species we classified as oppor-

tunists are those that are described as ‘facultatively territorial’ or

displaying territorial behaviour seasonally or in some geographi-

cal locations but not others. Some hummingbird species are

described as ‘filchers’, sneaking into the territories of other hum-

mingbirds to feed on flowers. Since many of these species are also

described as ‘facultatively territorial’, they were classified as

opportunists. We acknowledge the potential for error in foraging

classifications. However, the inclusion of species with uncertain

classification into the intermediate opportunist category should

increase our power to detect differences between species that are

confidently classed as trapliners and those confidently classed

as territorial.

We used two alternative published phylogenies in our com-

parative analyses [37,38]. Trees from ref. [37] (available from

www.birdtree.org) are based on genetic sequence data plus taxo-

nomic imputation for 299 species, while trees from ref. [38]

(available from https://tree.opentreeoflife.org) are based on gen-

etic data only for 291 species. We constructed maximum clade

credibility trees from phylogenetic posterior distributions using

TreeAnnotator [39]. Taxonomic labels for ecological and morpho-

logical data were matched to the two phylogenies with

taxonomic synonym information from the Cornell Lab of

Ornithology’s ‘Birds of the World’ online database (www.bird-

softheworld.org) [33].

(i) Does the evolution of traplining entail convergent

morphological specialization?
We used random forest classification models [40,41] to test

whether differences in foraging behaviour are associated with

differences in the dimensions of morphological traits. Random

forest models use sets of decision trees to classify items according

to multiple variables and have an advantage in accounting for

potentially complex multi-dimensional relationships between

predictor and response variables. First, we performed a PC

analysis (PCA) on all morphological traits combined and used

the PCs as predictors of foraging behaviour. We also repeated

the analysis using phylogenetic PCA. In a second model, we per-

formed a separate PCA on bill centroid size and body mass alone

and used these PCs as predictors, as these traits are expected to

be most closely associated with foraging behaviour. PC1

accounted for 68% of the variation and PC2 accounted for the

remainder. Because this reduced model had the same predictive

power as the full model (see §3), we focused on just these two

traits in the rest of our analyses. We tuned forest size and

number of variables to consider at each split by trying different

values and seeing which maximized classification accuracy.
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Following initial tuning of forest size and number of variables to

consider at each split, we used fivefold cross-validation to estimate

classification accuracy. To generate a null expectation of classifi-

cation accuracy based on observed phylogenetic similarity

among species, we simulated the evolution of traits randomly

under the Brownian motion model of evolution 1000 times

using the fastBM function of the R package phytools (Revell

[42]) on rate-scaled trees inferred using BayesTraits v3 with

default settings [43] (http://www.evolution.rdg.ac.uk/; see

below) and used these randomly simulated traits as predictors

of foraging behaviour. We generated simulated data for bill cen-

troid size and body mass independently. As a complementary

analysis, we used phylogenetic generalized least squares (PGLS)

in the R package caper [44] to test for differences in the slopes

and intercepts of allometric relationships between bill size and

body size among trapliners, territorialists and opportunists.

(ii) Does the evolution of traplining entail higher rates of

morphological evolution and weaker evolutionary correlation

between bill size and body size?
We used the R package ratematrix [45,46] to test for an association

between foraging behaviour and rates of morphological evolution

in bill size and body size, as well as differences in the evolutionary

correlation between bill size and body size. For each discrete state,

ratematrix estimates a variance–covariance matrix for morpho-

logical traits under a correlated Brownian motion model of

evolution. We supplied ratematrix with 1000 stochastic character

mappings of the evolutionary history of foraging behaviour

on our phylogenies generated using the make.simmap function

of phytools [42]. We set normal priors on the phylogenetic

root states of bill size and body size with means and standard

deviations equal to those estimated from the data.We set a lognor-

mal prior on the evolutionary variances of both traits with a mean

of 0.1 and standard deviation of 1.5. For the correlation between

traits, we set a uniform prior. We ran four independent Markov

chain Monte Carlo (MCMC) chains in parallel for 20 million gen-

erations each with a burnin proportion of 0.25. We repeated

analyses using ‘trapliner’ and ‘non-trapliner’ classifications.

Determining whether differences in rates of morphological

evolution are associated with particular character states can be

complicated by background rate variation [47]. We therefore

used the MuSSCRat model [47], implemented in RevBayes [48]

(https://revbayes.github.io/), as an additional test of our hypoth-

esis. This allows us to test whether character states are associated

with different rates of evolution beyond what would be expected

from random background variation alone. We note, however, that

the MuSSCRat code currently available only allows for overall

rates in trait evolution, and not correlations between traits, to

vary between examined states.We ran four chains for 100 000 gen-

erations each with a burnin of 10 000 generations. All priors and

settings were the defaults except for the prior on the number of

expected number of transitions which we set to 20 based on a

prior judgement of how many transitions in foraging ecology

there appear to have been in the tree.

To further identify and visualize how rates of morphological

evolution vary across the phylogeny independent of foraging

behaviour, we used BayesTraits to fit a variable rates model

of correlated evolution between bill size and body size. Two

chains were run in parallel for 110 million generations each

with a burnin of 10 million generations. All other priors and

settings were the defaults.

For all analyses involving MCMC sampling, we visualized

traces and posterior distributions using Tracer [49]. We checked

that the effective sample size for parameters was greater than

200 and that Gelman and Rubin’s R diagnostic among chains

was less than 1.05.

(iii) Is traplining an evolutionary dead end?
We tested two predictions of the hypothesis that traplining is an

evolutionary dead end. First, we fitted models of evolutionary

transitions in foraging behaviour using the fitDiscrete function

in the R package geiger [50]. From fitting a full model in which

all transition rates between states were estimated, we found

that the transition rates from traplining to territorialism and

from opportunism to traplining were very close to zero. We

therefore fitted a reduced model in which these transition rates

were fixed to zero and compared the full and reduced models

using the Akaike information criterion (AIC). We used this to

test for irreversibility in transitions.

Second, we tested whether traplining is associated with

lower net diversification rates. Whether a discrete state is associ-

ated with differences in rates of speciation or extinction across a

phylogeny can be complicated by background rate variation [51].

We therefore used the R package SecSSE [52] to jointly estimate

transition rates and test for state-dependent diversification. We

tested models in which rates of speciation and extinction differ

between the three foraging states examined against models in

which speciation and extinction rates differ between three

hidden states and models with constant background rates. We

tested models with one, four and six independent transition

rates between states. To avoid the possibility of getting stuck in

a local likelihood optimum, we ran five independent repetitions

of the likelihood maximization algorithm with different starting

points as follows: (1) speciation and extinction rates set to their

maximum-likelihood estimates (ML) from a simple birth–death

model + transition rates set to 1/5 of speciation rates; (2) ML spe-

ciation rates double + ½ transition rates; (3) ½ ML speciation

rates + double transition rates; (4) double ML extinction rates + ½

transition rates and (5) ½ ML extinction rates + double transition

rates. We set num_cycles = Inf and optimmethod = ‘subplex’. We

selected the maximum of the five estimated likelihoods to com-

pare models. We compared models using AIC scores. We

assumed the sampling fraction of phylogenies to be 0.88 for all

examined states based on the proportion of taxonomically recog-

nized species (338) represented in the phylogeny. We repeated

analyses using the trapliner versus non-trapliner classification

of foraging behaviour.

3. Results

(a) Does the evolution of traplining entail convergent

morphological specialization?
The random forest classification model predicted foraging

behaviour from PCs of all morphological traits with an accu-

racy of 61% (σ = 6%) or 58% if using phylogenetic PCA.

However, PCs of bodymass and bill centroid size alone are suf-

ficient as predictors to achieve a classification accuracy of 60%

(σ = 5%). This can be contrastedwith the classification accuracy

achieved when the random forest model is applied to data

simulated under the assumption that morphology evolves

independently of foraging behaviour (classification accuracy:

41%; 95% CI = 34–50%). Opportunists might be expected to

be intermediate between trapliners and territorialists, bringing

down the overall classification accuracy. As expected, when

only considering trapliners and territorialists, the overall classi-

fication accuracy increases to 75% (σ = 11%). The classification

accuracy remains 75% when using phylogenetic PCA.

There is a significant difference in the slope of the allometric

relationship between bill size and body size between trapliners,

opportunists and territorialists (PGLS: F2,207= 5.71, p = 0.004).

The significance of this result is robust to the exclusion of the
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evolutionary outlier Ensifera ensifera, the sword-billed

hummingbird which has an extremely long bill. Between tra-

pliners and opportunists, trapliners tend to have the largest

extremes of relative bill size, although the predicted phylo-

genetic regressions are very close in the two groups. It could

be hypothesized that opportunists are therefore ecologically

adapted to traplining since they are at least facultatively trapli-

ners. This is not inconsistent with our hypotheses. Trapliners,

and opportunists, tend to have relatively larger bills for their

body size than territorialists (figure 1). To a large extent, this

trend is driven by species of the hermit hummingbird clade

(Phaethorninae). Trapliners of the inca clade (Coeligena) have

independently converged on a hermit-like morphology, as

have multiple isolated lineages of trapliners: e.g. E. ensifera,

Androdon aequatorialis, Doryfera species, Polytmus species and

Myrtis fannyi. Members of the traplining Chlorostilbon and

Lophornis clades, however, fall within the morphological

range of non-traplining hummingbirds.

(b) Does the evolution of traplining entail higher rates

of morphological evolution and weaker

evolutionary correlation between bill size and

body size?
Inferred differences among traplining, territorialist and

opportunist lineages in estimated average rates of bill size

and body size evolution, and their evolutionary correlation

inferred using ratematrix, are sensitive to the phylogeny on

which analyses are performed. (The results of all pairwise com-

parisons can be found in these figures: figure 2; electronic

supplementary material, figures S1 and S2.) We used the

results of the BayesTraits analyses of variable rates of trait evol-

ution to identify possible causes of the inconsistent results

across trees. This showed that the two main differences

between the phylogenies are the presence of Hylonympha

macrocerca and the greater upshift in rates of evolution within

the bee hummingbird clade in the Jetz et al. [37] phylogeny

(electronic supplementary material, figure S3). When we

repeat the ratematrix analysis with the evolutionary outlier

speciesH. macrocerca pruned from the Jetz et al. [37] phylogeny,

there is no longer a significant difference in rates of body size

evolution between trapliners, territorialists and opportunists

(overlap in Bayesian posterior distributions greater than 5%).

However, even when the Jetz et al. [37] phylogeny is pruned

to have only species that are also present in the McGuire et al.

[38] phylogeny, there is still a discrepancy between the two

sets of analyses. Only when H. macrocerca and all members of

the bee hummingbird clade are pruned from the Jetz et al.

[37] phylogeny are the results congruent with analyses on the

McGuire et al. [38] phylogeny. Given these facts and the signifi-

cant overlap in posterior distributions for parameters, we

conclude that there is no definitive evidence for differences in

the average rate of bill size and body size evolution, or the evol-

utionary correlation between them, for trapliners, territorialists

and opportunists. This remains true when considering the

binary classification of ‘trapliners’ and ‘non-trapliners’ (elec-

tronic supplementary material, figure S2). This conclusion is

supported by analysis with the MuSSCRat model (electronic

supplementary material, figure S4) which indicates that rates

of evolution are variable across the hummingbird phylogeny

but are unrelated to foraging behaviour.

(c) Is traplining an evolutionary dead end?
Transitions to an exclusively traplining lifestyle are relatively

rare in hummingbirds compared to transitions between

territorialism and opportunism (figure 3; electronic sup-

plementary material, figure S5). Reversals from traplining to

territorialism are rarer still. We found that a model in which

the transition rate from traplining to territorialism was fixed

to zero had a better fit than a model in which all transition

rate parameters were free to vary (ΔAIC = 4; electronic

supplementary material, table S6), suggesting that such tran-

sitions are mostly irreversible. Multiple traplining lineages

have transitioned to opportunism however, becoming at least

facultatively territorial.

Our estimation of ancestral states on the hummingbird

phylogeny identifies several non-sister clades of traplining

and opportunist species with a likely traplining ancestor:

the hermits (Phaethorninae), with approximately 37 species

found mostly in the tropical lowlands of South America;

the incas (Coeligena), an Andean clade with approximately

11 species; the coquettes (Lophornis), with approximately

10 species inhabiting South and Central America and

emeralds of the genus Chlorostilbon, with approximately

18 species found in South and Central America and the

Caribbean. Additionally, we identify multiple isolated

lineages of trapliners represented by only one or two species.

Based on the results of the SecSSE analysis, there is no evi-

dence to suggest that rates of speciation are generally any

different for traplining, territorial or opportunist clades (elec-

tronic supplementary material, tables S7–S9). The best-

supported models among the models we analysed indicate

variation in speciation rates among hidden states unrelated

to our foraging classifications (ΔAIC≫ 4).

4. Discussion
Specialization may be expected to result in convergent mor-

phological specialization, elevated rates of morphological

evolution and evolutionary dead ends. Our findings challenge

these assumptions. Although multiple lineages of trapliners

have independently become morphologically specialized to
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feed on long-tubed flowers, many other lineages of trapliners

remain morphologically unspecialized. While some trapliners

such as the sword-billed hummingbird (E. ensifera) have experi-

enced greatly elevated rates of morphological evolution, other

trapliners have not. Finally, though some clades of trapliners

have low rates of diversification, other clades have relatively

high rates of diversification for hummingbirds.

Multiple transitions from territorialism to traplining have

taken place in the course of hummingbird evolution

(figure 3), while reversals from traplining to territorialism are

rare or incomplete in the sense that trapliners only ever

become facultatively territorial opportunists. Traplining is

essentially a behavioural characteristic of a species’ foraging

ecology. Behavioural traits are thought to have intrinsically

high adaptive plasticitywithin species and evolutionary lability

across species [53]. We infer relatively high rates of transition

between lineages that are territorial and lineages that are facul-

tatively territorial opportunists, but once traplining evolves in a

lineage, it tends to be conserved. Lineages that evolve to become

true trapliners may also quickly become adaptively specialized
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rates of bill size evolution and the top right for their evolutionary correlation. The proportion of overlap between posterior distributions in pairwise comparisons

between regimes is indicated in the bottom left panel, with darker colours suggesting a more definite difference. Each rectangle in the bottom left panel follows the

structure of the 2 × 2 evolutionary variance–covariance matrix of bill size and body size evolution. From left to right, the three pairwise comparisons are: oppor-

tunist × territorial, opportunist × traplining and territorial × traplining. Numbers within rectangles are proportion overlaps between distributions. (Online version is

in colour.)
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to a niche as trapliners. Ecological competition among species,

mediated by morphological traits, is an important process in

hummingbird community assembly [28,54,55]. It is possible

that ecological competition with other hummingbird species

may prevent traplining hummingbirds from re-adapting to

life as territorialists. Traplining is not an evolutionary dead

end however, as in our best-supportedmodel traplining species

give rise to new species at a rate comparable to non-trapliners.

Hummingbird diversification is characterized by dis-

parity in rates among major clades [38], but that disparity

is unrelated to foraging behaviour. The clade of bee hum-

mingbirds in particular has experienced elevated rates of

diversification and stands out as one with a generally elev-

ated rate of evolution in bill size and body size in our

analyses. It may be that the ecological niches that bee hum-

mingbirds have occupied as uniquely small hummingbirds

have spurred both their diversification and high rates of mor-

phological evolution. We are cautious in this interpretation

because elevated rates of trait evolution can arise as an arte-

fact of a combination of trait measurement errors, the effects

of short branch lengths and phylogenetic error [51,56,57].

While we have no reason to assume that phylogenetic error

is a more severe problem for bee hummingbirds than any

other clade, we cannot rule out the possibility that trait

measurement error has some effect. This is because bee hum-

mingbirds are among the smallest hummingbirds and even if

absolute measurement error is similar among clades, the

potential for higher proportional error could disproportio-

nately elevate our measures of trait evolution for this clade.

While we do see evidence for repeated convergent evol-

ution of large bills relative to body size in trapliners, we do

not find conclusive evidence for an association between fora-

ging behaviour and rates of bill and body size evolution or

the evolutionary correlation between them. One may not

necessarily expect to detect elevated rates of trait evolution

in sets of living species if adaptive peak shifts which gave

rise to the current disparity in morphological traits happened

long ago [58]. Adaptive peak shifts may entail punctuational

breaks in patterns of trait evolution though equilibrium

quickly re-establishes itself. Traplining lineages that have

only recently experienced high rates of morphological evol-

ution due to coevolution with flowers may be poorly

represented among modern species.

Our macroevolutionary hypotheses necessarily make

assumptions about the chain of causation from the spatial dis-

tribution of plant species within habitats to the coevolution

among the traits of plants and pollinators to the evolution of

ecological specialization. Empirical evidence provides support

for these assumptions. Widely dispersed plants benefit from

being pollinated by traplining hummingbirds [1,4–7], and the

bill length of hummingbirds is correlated with the corolla

length of the flowers they visit and with ecological specializ-

ation [12,17,59,60]. However, there is some evidence to

challenge the assumption that traplining hummingbirds are

always more ecologically specialized than territorialists.

Traplining hermits visit more plant species than other hum-

mingbirds in at least one community [61]. Morphological

specialization need not result in ecological specialization if

there are minimal trade-offs involved in exploiting a wide

range of flowerswhen resources are abundant, while maintain-

ing adaptations to exploit a narrower range of flowers at times

of resource scarcity and high competition [62,63]. Failure of our

predictions to hold generally across all clades of trapliners may

be a reflection of the fact that these assumptions on the chain of

causation are not always met.

In conclusion, we found that the relationship among the

evolution of traplining, morphological specialization, rates

of morphological evolution and diversification is complex,

and it does not lead to simple deterministic outcomes. In a

broad comparative study of ecological adaptation, it is diffi-

cult to account for complex lineage-specific factors

balancing the costs and benefits of evolution towards mor-

phological and ecological specialization. This could be

addressed with more detailed field studies on the foraging

ecology of different clades of traplining hummingbirds, as

well as trapliners in other groups of pollinators.
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