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Abstract— In this paper, a harmonized fabrication and 

assembly process combining additive and subtractive 

manufacturing is introduced for the rapid manufacture of 

millimeter-wave components, especially those using hollow 

substrate integrated waveguide (HSIW). HSIW has been shown to 

have some significant advantages for millimeter-wave 

communications, radar and sensing systems, but its fabrication 

can be challenging. To pattern the metallic layers that form the top 

and bottom HSIW walls, as well as other structures such as 

microstrip lines and landing pads for integrated circuits and 

passive components, a subtractive fabrication process using a 

water-jet laser cutter was employed. To fabricate the dielectric 

substrate using low-cost Acrylonitrile Butadiene Styrene (ABS), 

with cavities for the waveguides, a Stratasys PolyJet 3D printer 

(Objet1000) was used. The HSIW components were then 

assembled using commercially-available through-substrate 

copper transitions, completely eliminating the process of through-

substrate via-hole formation and metallization. The 

manufacturing techniques conventionally used for these vias are 

generally expensive and intricate at millimeter-wave frequencies. 

Therefore, the proposed fabrication and assembly process in this 

paper decreases the overall fabrication cost and complexity, and it 

is shown that this is achieved without compromising the 

performance of the millimeter-wave HSIW components. The 

measurement results show that a propagation loss of 13.55 dB/m 

(0.01355 dB/mm) is achieved for the first HSIW prototype, which 

is believed to be among the lowest propagation losses ever reported 

at these frequencies. The proposed harmonized fabrication and 

assembly technique has also a strong potential, by combining the 

advantages of additive and subtractive manufacturing techniques, 

to realize a new class of millimeter-wave components with the 

possibility of manufacturing conformal and flexible component 

shapes, based on the materials used. 

 
Index Terms— Millimeter wave technology, substrate 

integrated waveguide, additive manufacturing, subtractive 

manufacturing. 

I. INTRODUCTION 

HE 3D printing technology, also known as additive 

manufacturing (AM), is defined as the development of an 

arbitrary 3D shape, by building layer upon layer [1]. 

Specifically, material jetting [2]-[3] offers the best printing 

accuracy and resolutions when compared with fused deposition 

modelling (FDM). This technique uses a nozzle head to drop 

the liquid photopolymer onto a plate. The photopolymer 

materials are cured by UV light to create 3D parts from CAD 

models with a fully automated process. Advancements in 3D 

printing technology have offered the benefit to develop fast and 

low-cost prototypes. It has replaced the time consuming and 

costly methods of production and manufacturing, like the 

computer numerical control (CNC), molding or casting. In the 

case of rapid prototyping and medium volume production, the 

3D printing technology is an excellent alternative [4]. 

According to [5], it is a printing process widely used to produce 

mechanical and electronic devices, even for high-frequency 

electronics ranging from a few MHz to optical regimes [6]-[10]. 

More specifically, it is being used in many sectors like medical, 

personal healthcare, dentistry, consumer goods and wireless 

communications [11], [13]-[16]. AM processes have been 

extensively used recently in the development of microwave, 

millimeter-wave, and even terahertz devices. Some examples 

include the design and prototyping of antennas, waveguides, 

filters and many other functional RF devices [6]-[8], [11], [17]-

[22]. The authors in [17] have designed and fabricated a 

microwave rectangular waveguide (RWG), operating in the Ku-

band, by using a FDM 3D printing process with Polylactic Acid 

(PLA) filament. The internal part of the waveguide is metal 

liquid filled. The authors achieved an attenuation constant 

better than 1.29 dB/m and demonstrated a low cost and high 

performance RWG. The authors in [16], fabricated a 3D printed 

dielectric lens for a slot antenna, that enhances the total radiated 

power. In [23], a 3D printed flexible antenna is demonstrated 

that combines Acrylonitrile Butadiene Styrene (ABS) and PLA 

filaments and is compact in size and light weight. The 3D 

printing process gave the added benefit of building flexible 

devices since many different materials can be mixed and used 

by 3D printing machines. 

In contrast to additive manufacturing, subtractive 

manufacturing (SΜ) is the process of cutting material away, 
using methods of grinding, cutting, or drilling, to form a 3D 
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shape. The process could be performed manually or by 

computer numerical control (CNC). In an automated CNC 

process, the machine can perform fabrication based on data 

from CAD, with minimal human assistance, or in many cases 

without user interaction. The user may need to consider the 

feeding rate and the cutting speed of the material to set the 

fabrication settings on the machine before starting the process. 

In general, SM process are used typically in prototyping where 

traditional manufacturing methods like molding and casting are 

not able to provide the required precision and fabrication 

tolerance. Newer methods of laser and water laser cutting 

methods are more efficient and able to process harder materials. 

The SM manufacturing processes have been also widely used 

in manufacturing many high-frequency components from RF to 

even some millimeter-wave devices [12], [24]-[29]. The 

authors in [26], [29] have built microwave sensors by using 

subtractive manufacturing with a LPKF ProtoLaser machine. 

The designed microwave sensors achieved high accuracy and 

can be integrated to industrial and biomedical systems. In [29], 

instead of building an SIW by using traditional PCB methods, 

the authors used milling and drilling to cut smooth and precise 

copper sheets to form an empty SIW, eliminating all dielectric 

losses. In general, the subtractive manufacturing methods used 

in these devices, have provided a precise and accurate cutting 

that enhance the performance of millimeter-wave and THz 

devices.  

These previous research works are generally based on only 

either additive or subtractive manufacturing. In this paper, a 

harmonized fabrication technique combining both AM and SM 

to fabricate high performance microwave and millimeter-wave 

components is introduced. To demonstrate the coordinated 

fabrication process, a HSIW transmission line operating from 

21-31 GHz was fabricated and characterized, with a primary 

interest in signal transmission losses. The proposed harmonized 

fabrication technique combines the advantages from both 

additive and subtractive manufacturing, i.e., rapid device 

prototyping and ease of fabrication with fully automated 

processes. The harmonized fabrication also completely 

removes the need for the chemical processes generally required 

for conventional material etching and metallization, such as 

photolithography and electroplating, which require toxic 

chemicals and experienced users to operate the process. 

Moreover, the commercially-available vertical through-

substrate copper transitions were used during the assembly 

process as electrical connections of the patterned metallic layers 

on top and bottom of the 3D-printed substrate. This process 

completely eliminates the traditional through-substrate etching 

and via hole metallization processes, introducing superior cost 

effectiveness, ease of fabrication and fabrication reliability.  

II. DESIGN AND GEOMETRY 

The geometrical structure of the HSIW consist of four parts. 

These are, a top and a bottom copper sheet, a dielectric substrate 

and prefabricated copper rivets, all shown in Fig. 1. The top and 

bottom copper sheets represent the waveguide horizontal walls. 

The copper sheets have a height of 0.15 mm and are supplied by 

Goodfellow [30]. Between the copper sheets, there is a dielectric 

ABS substrate, that is hollow in the middle; the hollow dielectric 

substrate minimizes the dielectric losses and so contributes to a 

lower propagation loss. Some commercially available copper 

rivets from Fortex [31], are used to attach the aforementioned 

layers together and these represent the vertical metallic walls of 

the waveguide. The prefabricated copper rivets are pressed with 

a mechanical PCB through hole plating (THP) method also 

supplied by Fortex [31], in order to bind the three layers (copper 

sheets and dielectric) together.  

It should be noted that this assembly step can be performed 

using a lamination technique, such as those used for large area 

multilayer PCBs in the mass production of consumer products. 

Frequencies in the 26-40 GHz range are already widely used in 

5G systems, employing quite conventional transmission-line 

components fabricated on these traditional laminate materials. 

For 6G systems, it is likely that so-called Terahertz frequencies 

will be used (over 100 GHz) and then the dielectric losses 

become much more of a problem and the HSIW can offer 

significant advantages. The designed HSIW has been simulated 

in the commercially available Electromagnetic (EM) solver 

CST Studio [32]. For measurement purposes, the HSIW is 

matched to 50-Ω microstrip feed lines, as shown by the 
geometry in Fig. 1. 

 

(a) 

 

(b) 

Fig. 1. 3D geometry of HSIW : (a) before assembly and (b) after assembly.  
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III. FABRICATION AND ASSEMBLY 

All the HSIW parts were fabricated in-house at the 

University of Leeds National Facility for Innovative Robotics, 

using a Synova MCS 300 Laser MicroJet® Cutter [33] and a 

Stratasys Objet 1000 PolyJet 3D printer. The processing of the 

copper sheets and dielectric substrate fabrication are now 

described.  

A. Copper Sheet Fabrication 

The copper sheets, supplied by Goodfellow [30], were 

patterned using the laser cutter. The Synova MCS 300 has an 

emitted power up to 100 W and water pressure up to 500 bar and 

is powerful enough to process metals like super alloys, 

aluminum, copper, stainless steel, nickel, titanium, etc. It also 

provides high precision cutting, with a beam diameter up to 30 

µm. The accuracy of the machine is ± 1 micron with repeatability 

± 1 micron. The laser cutter operates by using a jet of deionized 

and filtered water to guide the laser beam via total internal 

reflection, helping to cool the sample and remove debris. With 

the laser beam having minimum losses, it is possible to keep the 

material sample further from the emitted laser beam. According 

to Synova [33], the beam can be placed at up to 10 cm range, as 

opposed to a conventional laser beam cutter that has a limited 

working distance.  

The copper fabrication process starts by placing and fastening 

the copper sheet sample on the mounting table as shown in Fig. 

2, step Ⅰ. A pilot beam is emitted by the laser cutter to analyze the 
material and its dimensions. In step Ⅱ, the water-jet laser cutter 

starts emitting the water laser beam that is cutting the copper 

sheet to the required shape, and finally, in step Ⅲ, the air steam 
is activated to remove the remaining water on the surface of the 

copper sheet. The water-jet laser cutter has offered a very precise 

cut to the thin copper sheets. The fabricated copper sheets can be 

seen in Fig. 3(a) and these forms the enclosing top and bottom 

walls of the HSIW structure. 

B. Dielectric Substrate Fabrication 

Stratasys’s Digital ABS Plus material [34] was chosen for the 

design and fabrication of the 3D printed substate, which forms 

the core of the HSIW. This ABS material provides high flexural 

strength of 65-75 MPa and tensile strength of 55-60 MPa that 

these offer a new degree of design freedom for applications 

benefitting from the use of conformal and flexible structures in 

the future. The ABS material has a dielectric constant of εr = 2.75 

and a loss tangent of tan δ = 0.025 [1], [35]-[37]. The dielectric 

component was fabricated using the Objet 1000 3D printer [38], 

which uses poly-jet printing technology. The lateral dimensional 

accuracy of the machine is up to 600 microns and the smallest 

 

Fig. 2. Process flow for 3D printed substrate, top and bottom copper sheet 

patterning and HSIW integration process. 

 

Fig. 3. Fabricated HSIW prototype before assembly, which consists of the top 

copper sheet, 3D printed substrate, the bottom copper sheet and prefabricated 
vias.  
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thickness in each deposited layer is 16 microns. The geometry of 

the HSIW, after being designed and analyzed in the 

electromagnetic solver CST Studio [32], is exported in 

Stereolithographic (STL) format for the Objet Studio software 

which comes with the Objet 1000 Plus 3D printer. In this 

software, the user assigns materials to the assembly’s 
components and the build file are sent to the printer. The model 

material container of the 3D printer is filled with the photo-

polymer resin, that is ABS material for this work, and the support 

material container is filled with water soluble polymer. The print 

heads can then start jetting the model and the support materials 

onto the build tray. The machine carries on jetting droplets until 

it builds the complete 3D layer and the UV light on top of the 

platform is emitted to cure the layer into a solid and strong 

material. The process is repeated until all the layers overlap to 

form the final 3D structure. At the end, the water-soluble 

material is washed away, leaving behind the 3D printed part. The 

fabricated dielectric substrate of the HSIW is shown in Fig. 3. 

C. Assembly 

To construct the HSIW, the fabricated structures of the 

dielectric ABS and copper sheets are integrated. The three 

layers with sequence of top copper sheet, 3D printed substrate 

and bottom copper sheet, are attached using the Fortex 

Mechanical PCB THP machine and copper rivets [31]. First, the 

copper rivets, which are the outer diameter of 1.6 mm, are 

inserted through the via holes of the three layers as shown in 

Fig. 2. This is done for all via holes as shown in Fig. 4. After 

that, the THP is pressing the copper rivets until they shrink to 

permanently fix the three surfaces together as shown in steps at 

Fig. 2. The assembly process as performed in the University of 

Leeds laboratory can be seen in Fig. 5. After all the copper 

rivets are pressed and fixed, at each end of the structure a 

SOUTHWEST 2.4 mm connector is attached for connection to 

the measurement system. 

IV. RESULTS 

An Agilent (now Keysight) Technologies E8361A PNA 67 

GHz vector network analyzer was used to measure the samples, 

as shown in the set-up in Fig. 6. By following the multi-line 

calibration method as described in [39], it is possible to extract 

the propagation constant by manipulating the scattering 

parameters of two HSIW devices of different lengths. A two-port 

coaxial Short-Open-Load-Through (SOLT) calibration was used 

to set the reference planes at the ends of the cables and remove as 

many errors as possible. The frequency range of 15- 40 GHz was 

 

Fig. 4. Fabricated HSIW with prefabricated vias inserted through the via holes. 

 

Fig 5. Assembly process of the proposed HSIW, by using the Mechanical 

Through Hole Plating method. 

 

  

Fig. 6. Measurement of Scattering parameters on Agilent E8361A PNA. 
 

 
 

Fig. 7. Simulated and measured propagation loss. 
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chosen, with 3200 points, for the S-parameter measurements. The 

measured propagation losses were calculated from the two S-

parameter files and are plotted in Fig. 7, along with the results 

from the CST Studio simulation. There is some deviation of the 

measurement against the simulated attenuation constant. This 

difference is caused by the fabrication tolerances like surface 

roughness of the dielectric. Also, the assembly process caused 

some variations since the process was implemented manually; 

the use of PCB mechanical through-hole-press method has meant 

the manual force was variable and the three layers were not 

attached precisely. The deviation can be up to ~9 dB/m for some 

frequencies. Beyond 31 GHz, there is a significant increase in the 

attenuation constant and so the HSIW is presented as have an 

operating range of 21-31 GHz. Overall, the designed HSIW 

achieves for the selected band of operation with an exceptionally 

low propagation loss of 13.55 dB/m (0.01355 dB/mm), which is 

one of the lowest values reported among other state-of-the-art 

designs, as summarized in reference [11]. 

V. DISCUSSION 

Figure 8(a) shows the cross-sectional drawing in the XZ plane 

before assembly. After pressing the prefabricated vias to fix the 

three surfaces, Fig. 8(b) shows the cross-sectional drawing in the 

XZ plane after assembly, including the bending effect from over 

pressing force of THP machine. Figure 9 shows the attenuation 

constant versus frequency when varying the diameter of the vias, 

D, from 1.6 mm to 2.0 mm in step of 0.2 mm and height of the 

hollow substrate, h, from 0.50 mm to 0.45 mm in step of 0.025 

mm. The results show that the diameter of via does affect the cut-

off frequency. The bigger diameter gives a higher cut-off 

frequency, which is to be expected. On the other hand, the 

variation in hollow substate height has only a small effect on 

propagation loss.  

For SIW design, the frequency limit is dictated by design 

limitations and fabrication limitations. The main design 

limitation relates to the diameter of the vias and the distance 

between them [40]. In the practical case, the selected diameter 

of prefabricated vias depends on available diameter sizes that 

are available in the market [41]. In this paper, the HSIW is 

designed and fabricated for operating at 21 – 31 GHz. We 

choose the via diameter of 1.6 mm which satisfactory for use in 

this band. However, at higher frequencies the required diameter 

of vias is very small. We can change the technique for creating 

the via as reported in [42]. 

VI. FUTURE WORK 

The method of rapid prototyping HSIW-based millimeter-wave 

components using a combination of additive and subtractive 

manufacturing processes has proved effective. The proposed 

technique has advantages in the ease of design, low fabrication 

and material cost, requires no chemical processing, and can be 

used to realize a new class of microwave and millimeter-wave 

components with the possibility of conformal and flexible 

structures [43]. However, this method was necessary for 

fabricating the prototype components for testing the 

performance before considering mass production. This work 

has proved the concept, but further work is required to further 

automate the process to reduce the tolerance of the assembly 

processes. For example, controlling the pressed force of the 

mechanical head during assembly and using automatic stepping 

motors to align the center of the prefabricated vias before 

pressing. When comparing with a PCB process, fabrication of 

through substrate vias in the PCB process is very problematic 

since the via diameter is very small and thus the metallization 

process of filling or covering sidewall of the via with copper are 

very difficult, unreliable and very costly and require very 

sophisticated machines to achieve the task. 

VII. CONCLUSION 

In this paper, a new method for fabricating a HSIW waveguide 

at millimeter-wave frequencies has been demonstrated, using a 

combination of additive and subtractive manufacturing 

techniques. These methods provide fast development and 

assembly and low-cost fabrication, compared to other methods, 

which can be extremely costly and require specialist facilities. 

The methos obviates the need to use any chemical processing, 

which is particular advantageous as health, safety and 

environmental legislation rightly imposes ever greater 

requirements on laboratory management.  

The additive manufacturing process provides enhanced 

flexibility in choosing the dielectric material to be used as the 

hollow substrate. It has advantages of stability, ease of design, 

low-cost, lightweight, and the possibility for mechanical 

flexibility. It offers a new degree of design freedom for 

 
 (a) (b) 

Fig. 8. Cross section drawing XZ plane (a) before assembly and (b) after 
assembly. 

 

Fig. 9. Simulated results of the bending effect by varying the diameter of the 

vias, D, and height of the hollow substrate, h. 
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applications benefitting from the use of conformal and flexible 

structures. Specifically, the material jetting 3D printing 

technology provides the opportunity to choose from hundreds of 

materials and they can be mixed to produce composite 3D 

materials for a number of important new millimeter-wave 

components. 

Finally, the propagation constant results show an average 

12.5% difference between simulations and measurements over 

the operating frequency range. A very low attenuation constant 

of 13.55 dB/m (0.01355 dB/mm) is achieved for the whole 

operating frequency range of 21-31 GHz. 
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