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Present-day populations from England and Wales harbour more ancestry derived from 183 

Early European Farmers (EEF) than did people of the Early Bronze Age, suggesting later 184 

migrations from mainland Europe. To investigate how this occurred, we report genome-185 

wide data from 740 individuals from Bronze and Iron Age Europe, increasing the number 186 

of individuals with such data from Britain by more than 3-fold, and from the Western and 187 

Central European Iron Age by about 10-fold. We detect an increase in EEF ancestry in 188 

Britain in the Middle to Late Bronze Age around 1300-800 BCE produced by an influx of 189 

people most closely matching ancient individuals from France, coincident with or 190 

immediately following the most dramatic population growth in Britain in the four 191 

millennia prior to the common era: an approximately five-fold increase in population size. 192 

These migrations contributed around half of the ancestry of Iron Age people in England 193 

and Wales but had little impact in Scotland. We find no evidence of significant movement 194 

of people into Britain during the Iron Age after 800 BCE, when patterns of genetic change 195 

seem to have been largely independent of those on the mainland. The independent 196 

trajectories of genetic variants in Britain in the Iron Age is also reflected in the earlier rise 197 

of the lactase persistence allele (~50% by the Iron Age) than in Central Europe (~10%), 198 

suggesting a greater reliance on pastoralism in Britain in this period. The evidence for a 199 

demographically significant migration into Britain by the end of the Bronze Age but not in 200 

the Iron Age raises the possibility that early Celtic languages spread from the vicinity of 201 

France into Britain during this time, and decreases the plausibility of later spreads. 202 

Europe-wide, EEF ancestry proportions tended to increase in northern Europe and to 203 

decrease in the south by the end of the Bronze Age, coincident with an intensification of 204 

trade and expanding networks of shared ritual practices and highlighting the end of the 205 

Bronze Age as a peak of both cultural interaction and human mobility. 206 

 207 

“Migration” is a central concept in population genetics as well as in archaeology, but its 208 

meaning has evolved in divergent ways in the course of the development of these disciplines, 209 

which has sometimes contributed to misunderstandings1. Population geneticists use “migration” 210 

to refer to any movement of genetic material from one geographic region to another, but from 211 

an archaeological perspective this definition is too broad, as it means that even low-level 212 

symmetrical exchanges of mates between adjacent communities would be considered migration.  213 

In archaeology, the concept of migration is also haunted by its politicization in the early 214 

twentieth century, when invasion was sometimes argued to be the primary mechanism for the 215 
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spread and dominance of specific ethnic groups2, a theory that was used to justify claims on 216 

territory and wars of aggression3. Because of this history, some archaeologists tend to view  217 

“migration” as synonymous with migratory movements whereby a community consciously 218 

plans and executes a long-distance (and permanent) translocation of large numbers of people 219 

over a short period (at most a few years), along the lines of the migration of hundreds of 220 

thousands of members of the Helvetii described by Julius Caesar4. Other archaeologists favour a 221 

broader definition that is more compatible with the understanding in population genetics, using 222 

“migration” to refer to any process that through a combination of push and pull factors (often 223 

related to economic and social forces), results in movement of people from one geographic 224 

region to another and significant demographic change over a period that can be as long as 225 

centuries5,6. An example of a process that would qualify as a migration in this sense would be 226 

the eastward movement of people from the Steppe beginning in the third millennium BCE that 227 

contributed much of the ancestry of later Europeans7,8,9,10. Because we use this broader 228 

definition of “migration” here, our key finding of at least three major migrations into Britain in 229 

the prehistoric period should not be interpreted as a claim that any of these events were violent 230 

“invasions.” While social inequality could have been associated with some of these events, the 231 

human reality that characterized each of these migrations remains poorly understood and is best 232 

addressed through future work integrating archaeology and ancient DNA. 233 

 234 

Whole genome ancient DNA studies have shown that the first Neolithic farmers of Britain 235 

~4000 BCE derived roughly 80% of their ancestry from Early European Farmers (EEF) who 236 

originated in Anatolia more than two millennia earlier, and 20% from descendants of Mesolithic 237 

hunter-gatherers (Western European Hunter-Gatherers: WHG). The WHG ancestry was almost 238 

entirely due to admixture in mainland Europe, indicating that the migrants to Britain in the 239 

Neolithic nearly completely absorbed local populations.9-11 The Neolithic population of Britain 240 

was genetically similar to, and almost certainly derived from, contemporaneous populations on 241 

the European mainland especially from Iberia and France. This ancestry profile remained stable 242 

for about a millennium and a half. However, around 2450 BCE, there was another substantial 243 

movement of people into Britain coinciding with the spread of Bell Beaker traditions from 244 

mainland Europe,9 which brought a third major component of ‘Steppe ancestry’ derived 245 

ultimately from people living on the Pontic-Caspian Steppe ~3000 BCE (minimum 90% of 246 

ancestry from the new migrants). In the original study9 reporting this ancestry shift in Britain 247 

after ~2450 BCE, no further change in the proportion of EEF ancestry was inferred in the 248 

Bronze Age, but that study contained almost no data after 1300 BCE (Figure 1). Today, 249 
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however, EEF ancestry is significantly higher on average in southern Britain (defined here as 250 

England and Wales although we recognize modern boundaries are arbitrary) than in northern 251 

Britain (Scotland), raising the question of when this increase in EEF ancestry occurred.9,12 The 252 

rise in EEF ancestry in England and Wales cannot be explained by migrations from northern 253 

mainland Europe in the early medieval period (e.g. ‘Saxon’ or ‘Viking’ migrations13,14), as these 254 

populations harbored less EEF ancestry than was present in Bronze Age Britain and hence 255 

would have decreased EEF ancestry instead of increasing it as we observe.9  256 

 257 

We generated new ancient DNA data beginning in the Neolithic but focusing on the period from 258 

the Middle Bronze Age (defined here as beginning around 1550 BCE) through to the end of the 259 

pre-Roman Iron Age (defined here as 43 CE) (Supplementary Information Section 1, Online 260 

Table 1). We report new data from 409 individuals from the main island of Britain and its small 261 

surrounding islands, increasing the number of pre-Roman ancient individuals from Britain to 262 

648 and multiplying by 34-fold the number from the combined Late Bronze Age and Iron Age 263 

periods (from 10 to 343). We also report new data from 179 individuals from Bohemia (present-264 

day Czech Republic), and additional individuals from France (n=46), Slovakia (n=30), Hungary 265 

(n=30), the Netherlands (n=21), Slovenia (n=14), Spain (n=9), and Austria (n=3), mostly dating 266 

to the Late Bronze Age (LBA) and Iron Age (IA). We also increased data quality on 28 267 

previously published individuals (Online Table 2). To generate these data, we prepared powder, 268 

extracted DNA15-17, and generated sequencing libraries which we almost always pretreated with 269 

the enzyme uracil-DNA glycosylase (UDG) to reduce the characteristic cytosine-to-thymine 270 

errors of ancient DNA (Online Table 3).15,16,18 We enriched the libraries in solution and then 271 

sequenced them on Illumina instruments (Methods).19-21 We co-analyzed the data with 272 

previously reported data for a total of 5837 ancient and present-day individuals (Online Table 273 

4). We clustered individuals by time period and geography aided by 62 radiocarbon dates from 274 

bone or teeth that are newly reported in this study (Online Table 5). We also separately labelled 275 

individuals that were significantly different in ancestry from the clear majority cluster from 276 

each time and region (Supplementary Information Section 2, Online Tables 6 and 7). Although 277 

we report data from all individuals, we removed a subset of individuals from the main analysis: 278 

those with evidence of contamination based on variation in their mitochondrial sequence or on 279 

the X chromosome (the latter only possible in males)22,23,  those with a rate of damage in the 280 

final nucleotide lower than is typical for authentic ancient DNA16, or those that were first degree 281 

relatives of other higher coverage individuals in the dataset24 (Online Tables 6 and 7), or those 282 

that had too low coverage for accurate ancestry inference which we define as <30,000 single 283 



 8

nucleotide polymorphisms (SNPs) covered. However, we report data for all individuals. Figure 284 

1 shows a map of all the newly reported individuals. We identified 283 individuals from 96 285 

families as being genetically related (within the third degree) to at least one other individual in 286 

the dataset (Online Table 8). The largest family we detect from Britain is a newly-reported set 287 

of 11 individuals from the Hazleton North megalithic chambered tomb in Gloucestershire. All 288 

11 individuals are connected along the male line consistent with a patrilocal society, as 289 

suggested by previous archaeogenetic work on megalithic sites25 (Extended Data Figure 1, 290 

Supplementary Information section 3).291 
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(a) Neolithic to Middle Bronze Age     (b) Late Bronze Age to Iron Age 292 

 293 

 294 
(c) Time distribution of analysed individuals       295 

 296 
 297 
Figure 1: Ancient DNA dataset. (a) Geographic distribution of the Neolithic to Middle Bronze Age and (b) Late Bronze Age to Iron Age 298 
individuals analysed in this study; we show newly reported data in intense colors and previously published data in pale colors. (c) Temporal 299 
distribution of the newly reported individuals. To reduce overlap of points, we sample the date of each individual from their posterior 300 
distribution (based on their means and standard deviations specified in Online Tables 6 and 7) and add jitter on the Y axis.301 
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We computed symmetry-f4 statistics26,27 between all pairs of analysis clusters from Britain, 302 

testing for differences in the rate of allele sharing (shared genetic drift) with two major source 303 

populations: Yamnaya pastoralists from the Pontic Caspian Steppe (as a surrogate for Steppe 304 

ancestry) and Anatolian farmers (as a surrogate for EEF). We document a significant increase in 305 

the degree of allele sharing with EEF populations in England and Wales over time (Extended 306 

Data Table 1). To quantify this change, we estimated proportions of the three major ancestry 307 

components (EEF, Steppe, and WHG) using qpAdm7, choosing reference and source 308 

populations to drive down standard errors. Figure 2 and Extended Data Table 1 document a 309 

significant increase in EEF-related ancestry in England and Wales, with the proportion rising 310 

from an average of 32.3±0.6% in the Chalcolithic/Early Bronze Age (C/EBA: defined here as 311 

2450-1550 BCE, n=64), to 35.4±0.6% in the Middle Bronze Age (MBA: 1550-1250 BCE, 312 

n=32), to 38.4±0.8% in the Late Bronze Age (LBA: 1250-800 BCE, n=20), and stabilizing in 313 

the Iron Age, when it was 39.7±0.5% (IA: 800 BCE-43 CE, n=249) (here and in what follows, 314 

we always quote one standard error). In contrast, there is a barely perceptible change in EEF 315 

ancestry in Scotland, with the proportion starting at 33.7±1.0 % in the C-EBA (n=9), then 316 

35.2±1.1% in the MBA (n=4), reaching 34.9±1.2% in the LBA (n=4), and finally 35.7±0.7% in 317 

the IA (n=23). Our dense geographic coverage and large sample size makes it clear that elevated 318 

EEF ancestry was widespread in England and Wales by the IA, with average EEF ranging from 319 

37.5-40.6% in eight regions of England and Wales, and consistently lower at 35.4-36.0% in 320 

three regions of Scotland (Table 1, Extended Data Table 2). We considered the possibility that 321 

the rise in EEF ancestry in England and Wales was due to a resurgence of archaeologically less 322 

visible populations with more ancestry derived from people living in Britain during the 323 

Neolithic. However, our attempts to model IA populations of England and Wales as a mixture 324 

of groups who lived in Neolithic and C-EBA Britain failed (always P<10-9, Extended Data 325 

Figure 2). We are able to show that this model failure is due to M-LBA populations from 326 

Britain harboring significant excess allele sharing with Neolithic populations from mainland 327 

Europe that is not observed in earlier groups from Britain (Supplementary Information section 328 

4, Extended Data Table 3). The only plausible explanation for these changes in EEF ancestry is 329 

new migrations from mainland Europe into southern Britain330 
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 331 

 332 
 333 

Figure 2: A high resolution ancient DNA time transect through Britain. (Left) An increase in EEF ancestry in southern but not northern Britain. 334 
We show qpAdm estimates for all individuals passing basic quality control, divided into four periods (C/EBA, MBA, LBA and IA). X-axis positions 335 
are the average point estimates of dates for individuals in each time frame. Here and elsewhere we show one standard error. (Right) We show 336 
inferred effective population size (2Ne) based on short 4-8 centimorgan  runs of homozygosity (ROH) using the hapROH software28, with 95% 337 
confidence intervals shown in dark grey (individuals with large proportions of their genome in large runs of homozygosity as expected for unions 338 
of first or second cousin are shown as inverted triangles). The only significant population size increase in Britain in the four millennia from 4000-1 339 
CE is inferred to have occurred during the EBA-to-MBA transition, coinciding with the beginning of the migration we detect into Britain.340 
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Table 1: Variation in ancestry proportions within Iron Age Britain 341 
  Distal Model Proximal Model  

Region n P-value  WHG EEF Steppe P-value 
Margetts Pit 
& Cliffs End 

England Southcentral 84 0.164 12.1 ± .5% 40.6 ± .5% 47.4 ± .6% 0.62 50 ± 4% 

England Southeast 38 0.719 11.8 ± .5% 40.3 ± .6% 47.9 ± .7% 0.92 47 ± 4% 

England East Anglia 20 0.871 12.1 ± .5% 39.2 ± .6% 48.7 ± .8% 0.041 46 ± 5% 

England East Yorkshire 35 0.093 11.5 ± .5% 39.5 ± .6% 49.0 ± .7% 0.52 46 ± 5% 

England Cornwall 17 0.270 11.5 ± .6% 38.2 ± .7% 50.3 ± .9% 0.17 39 ± 5% 

England Midlands 20 0.034 11.7 ± .6% 37.8 ± .7% 50.5 ± .9% 0.33 33 ± 5% 

England North 17 0.002 11.2 ± .6% 37.7 ± .8% 51.1 ± .9% 0.50 32 ± 5% 

Wales 4 0.115   10.6 ± 1.1%   37.5 ± 1.5%   51.8 ± 1.6% 0.84 44 ± 9% 

Scotland West 7 7x10-5   10.5 ± 1.8% 35.4 ± .9%   54.2 ± 1.1% 0.15 25 ± 6% 

Scotland Southeast 12 0.032     9.8 ± 1.7% 35.5 ± .9%   54.7 ± 1.0% 0.16 21 ± 5% 

Scotland Orkney 4 3x10-5   11.6 ± 1.1%   36.0 ± 1.3%   52.4 ± 1.5% 0.010 20 ± 8% 
Notes: Estimates are from qpAdm. For the distal model the right set is (Mbuti, WHGA, Russia Samara EBA Yamnaya, Turkey 342 
N), and for the proximal model it is these plus (Netherlands Bell Beaker, Poland Globular Amphora). We separate “England 343 
East Yorkshire” from “England North” because of the large number of samples from East Yorkshire and the distinctive cultural 344 
context (Arras culture). P-values <0.01 indicate cases where the tested model fit the data poorly so estimates are less reliable. 345 
 346 

We modelled each individual from Britain using qpAdm, labelling significant ancestry outliers 347 

(at the p<0.005 level) relative to the main cluster for their time period (Figure 3 and Extended 348 

Data Figure 3). We discuss each group of outliers in turn from earliest to latest. 349 

 350 

First and replicating previous results9,11, we observe a cluster of Neolithic individuals from 351 

western Scotland showing high WHG admixture, likely reflecting unions between recent 352 

migrants from Europe and indigenous people from Britain (Extended Data Figure 3).  353 

 354 

Second, we observe high variability in EEF ancestry in the C-EBA, before proportions of EEF 355 

ancestry become relatively homogeneous by ~2100 BCE9 (Figure 3). This heterogeneity is 356 

apparent at C-EBA Amesbury Down where EEF ancestry in some burials is significantly below 357 

the period average of 32.3±0.6% (e.g. I2417 at 24.1±1.9% (P=1x10-8)), whereas in others it is 358 

above the average (e.g. I2416 at 51.5±2.5% (P=3x10-8) and I14200 at 49.0±2.4% (P=2x10-7)). 359 

The burials in the low EEF group are plausibly Beaker-period migrants who later mixed with 360 

local Neolithic farmers to produce the intermediate proportion of EEF ancestry that prevailed by 361 

the end of the EBA. The individual labeled I14200, with significantly elevated EEF ancestry 362 

compared to the period average, is the “Amesbury Archer”. This individual was located in the 363 

most well-furnished burial recovered from the Stonehenge mortuary landscape, and his isotopic 364 

profile indicates he spent parts of his childhood outside Britain, possibly the region of the Alps 365 

in Central Europe29. The Archer’s paternal-line ancestry is ultimately derived from Steppe 366 

pastoralists as indicated by his Y chromosome haplogroup R1b1a1b1a1a. The simplest 367 
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explanation is that the Archer migrated to Britain from the Alpine region of mainland Europe 368 

and was from a family associated with the Bell Beaker tradition with low Steppe (high EEF) 369 

ancestry23. However, we cannot rule out more complex scenarios involving recent ancestral 370 

admixture in Britain (e.g. his mother not having Steppe ancestry), combined with back-and-371 

forth childhood movements between Britain and Alpine Central Europe. In either case, the 372 

Archer’s anomalously low Steppe ancestry is important in revealing that Beaker-using people 373 

who came to Britain were not socially stratified in such a way that Steppe lineage from eastern 374 

Europe necessarily conferred the highest social status. The Archer’s ‘Companion’ (I2565), a 375 

burial found next to the Amesbury Archer, had a more typical ancestry proportion for C-EBA 376 

Britain (33.4±3.4% EEF; P=0.49 for consistency with the period average). The Archer and the 377 

Companion were not closely related genetically (we can rule out first or second degree 378 

relationships) despite sharing a rare tarsal malformation and similar grave good assemblages, 379 

which has been interpreted as likely to reflect kinship (Supplementary Information section 3).30  380 

 381 

Third, we observe outliers with high EEF ancestry in the Late Bronze Age. Individual I13716 382 

from Margetts Pit in Kent, dated to 1391-1129 calBCE (3019±31 BP, SUERC-49774), has 383 

50.0±1.9% EEF ancestry (P<10-12 for an excess compared to the MBA average of 35.4±0.6%), 384 

and she may be derived from one of the sources of migration in mainland Europe. Another 385 

individual from the same cemetery (I13617), dated to 1256-1051 calBCE (2946±27 BP, 386 

SUERC-49770), also has elevated EEF ancestry of 45.5±3.8%, although the excess is not 387 

significant (P=0.26) due to the larger uncertainty in ancestry estimates reflecting her lower 388 

coverage data and due to the fact that the EEF average in England and Wales had increased to 389 

38.6±0.8% by that time. We highlight two individuals at Cliffs End Farm in Kent with 390 

significantly elevated EEF ancestry at 46.9±2.3% (I14865 dating to 967-811 calBCE (2735±30 391 

BP, GrA-37713), P=1x10-4 for an excess) and 46.9±2.0% (I14861 dating to 912-808 calBCE 392 

(2713±29 BP, OxA-17804), P=8x10-5 for an excess), suggesting continued migration through 393 

the LBA. While it is possible in theory that we are observing the effect of a short burst of 394 

migration in the late MBA and early LBA followed by co-existence of separate communities 395 

with different proportions of EEF ancestry, strontium and oxygen isotope analyses confirms 396 

long-distance mobility at Cliffs End Farm by identifying multiple individuals of a non-local 397 

origin31, a finding that is more consistent with continuing migration. Strontium isotope ratios for 398 

individual I14861 suggest an origin in Scandinavia or the Alps; the latter would be consistent 399 

with their high EEF ancestry.  400 
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  401 

 402 

Figure 3: By-individual analysis of the British time transect. Estimates of EEF ancestry and one standard error for all individuals in the British 403 
time transect that pass basic quality control, that fit to a three-way admixture model (EEF + WHG + Yamnaya) at p>0.01 using qpAdm, and that 404 
date to 2450-1 BCE (we plot individuals based on the average of the date interval shown in Online Table 6: either a direct radiocarbon date or an 405 
archaeological context date range). The averages for the main clusters in both southern and northern Britain in each period are shown in dashed 406 
lines; significant outliers at the ancestry tails are shown in red (for England and Wales) and orange (for Scotland). Outliers like the three Middle 407 
and Late Bronze individuals at Margetts Pit and Cliffs End could reflect the source population for the increase in EEF ancestry in the LBA.  408 
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Fourth, we observe isolated cases of ancestry outliers through the IA. EEF ancestry in I14803 409 

from Thame, Oxfordshire (dated to 370-175 calBCE (2204±30 BP, SUERC-95011) is 410 

50.1±0.2% which is significantly above the England and Wales IA average of 39.7±0.5% 411 

(P=8x10-8 for an excess), and there is extreme diversity of ancestry within burials from 412 

Carsington Pasture Cave in Derbyshire (800-150 BCE) with one individual showing 413 

significantly elevated EEF ancestry and four others showing reduced EEF ancestry. EEF 414 

ancestry proportions in Britain at this time (39.7±0.5%) were lower than in much of Europe, as 415 

reflected in the average we observe in contemporary IA individuals from France (46.8±0.8%), 416 

Hungary (51.6±0.7%), and Bohemia (46.9±0.6%), and so we would expect to be able to detect 417 

any substantial IA migrations from mainland Europe (Figure 4). Thus, while Figure 3 does 418 

show isolated individuals from IA Britain with elevated EEF ancestry, the broader lack of a 419 

change in EEF ancestry proportion is consistent with a minimal demographic impact of new 420 

immigration from mainland Europe and relatively closed and self-sustaining social communities 421 

in Britain during the Iron Age.  422 

 423 

We also leverage our large sample-size to infer population size change over four millennia in 424 

Britain. For this analysis, we take advantage of the fact that when an individual inherits an 425 

identical long stretch of DNA on both their mother’s and father’s side they must share a recent 426 

ancestor; the rate of observation of 4-8 centimorgan segments of genetic homogeneity in a 427 

person’s genome thus provides information about the number of reproducing individuals living 428 

in a population in the last few dozen generations prior to the time individuals lived28. We infer 429 

an approximately constant population size from the beginning of the Neolithic to the end of the 430 

EBA, followed by a roughly five-fold expansion in the EBA-to-MBA transition with no 431 

significant evidence of further expansion until the end of the IA (Figure 2B). This suggests that 432 

the largest population size change in Britain for the four millennia from ~4000-1 BCE occurred 433 

shortly before or concurrent with M-LBA migration from the continent, further highlighting the 434 

MBA as a critical period of demographic transition in Britain. 435 

 436 
We co-analyzed our ancient DNA transects through time in Britain with time transects in 437 

Bohemia, The Netherlands, Iberia32, Hungary, and France33 (Online Table 7, Extended Data 438 

Figure 4, Figure 4, and Online Table 9). Average EEF ancestry increased in this period in 439 

Bohemia and the Netherlands, just as it did in Britain. The earliest individuals from Bohemia 440 

with increased EEF ancestry are associated with artefacts traditionally classified as part of the 441 

LBA Knoviz culture, a component of the broader Urnfield cultural complex which spread from 442 
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1300-800 BCE across much of Central Europe. Later individuals have similar EEF proportions, 443 

consistent with continuity through the LBA-IA with earlier Urnfield-associated groups. By 444 

contrast, in M-LBA France and Hungary there was little change in average EEF ancestry, and  445 

this ancestry decreased in M-LBA Iberia (Extended Data Figure 4, Figure 4, Online Table 9). 446 

The general increase in EEF ancestry in northern Europe, and its decrease in southern Europe, 447 

reflects a broad process of north-south genetic interchange that affected many regions. There are 448 

nonetheless some exceptions from more isolated regions, such as Scotland in the far north 449 

(Figure 2), and Sardinia in the far south34,35 (Online Table 9). We considered the possibility of a 450 

single unsampled group admixing from one region into all the others, but such a scenario does 451 

not fit the data. For example, people of the LBA Urnfield complex of Central Europe do not fit 452 

as a simple source for the new ancestry in Britain (Supplementary Information section 5).  453 

 454 

This study multiplies by almost ten-fold the number of IA individuals with genome-wide data 455 

from Central and Western Europe (from 61 to 572), and as a result makes it possible for the first 456 

time to track the frequency change of genetic variants with known biological function into the 457 

IA (Online Table 10). In addition to showing how variants associated with light skin 458 

pigmentation, such as SLC45A2, became more common in the IA throughout Europe20, we 459 

obtain an unexpected result for the A allele at the polymorphism MCM6-LCT rs4988235 460 

correlated with lactase persistence into adulthood20 (Extended Data Figure 5). Previous work 461 

showed that the frequency of this allele in IA Iberia was only a small fraction of its present-day 462 

incidence, which we confirm by showing that its frequency was ~10% in the IA compared to 463 

~40% today32, and in Bohemia where its frequency was ~11% in the IA compared to ~51% 464 

today. However, in Britain most of the rise in the frequency of this allele had already occurred 465 

by the IA (51% compared to the current 73%), suggesting that selection pressures acted earlier 466 

in this region (Figure 4, Extended Data Figure 5). There is no evidence that the main rise in 467 

frequency of the lactase persistence allele occurred on the European mainland and came into 468 

Britain during the M-LBA migrations, since the Margetts Pit and Cliffs End outliers who are 469 

plausible members of the migrating population did not carry the allele, and because we observe 470 

that most of the rise in frequency of the lactase allele in Britain occurred in the Middle to Late 471 

IA. Specifically, we observe the lactase persistence allele frequency rise from ~14% in the LBA 472 

to ~26% in IA samples that we can definitively date to before ~400 BCE, to >50% in the pool 473 

of later IA samples. This raises the question of whether milk consumption had an economically 474 

or culturally more important role in LBA-IA Britain than it did in Central Europe in this period. 475 

 476 
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In contrast to Neolithic and Beaker-associated ancestry transformations in Britain, both of 477 

which involved migration from a highly differentiated source, ancestry transformation in the M-478 

LBA was more subtle. Thus, FST measuring allele frequency differences between a pool of 479 

individuals before and after the M-LBA genetic shift in England and Wales was ~0.002 between 480 

the C-EBA and LBA-IA, and ~0.001 between the MBA and LBA-IA (Extended Data Table 4). 481 

It is important to recognize that the local pre-LBA population in Britain made a substantial 482 

genetic contribution to the post-LBA population; it was far from completely replaced. Direct 483 

evidence for this comes from Y chromosome haplogroup R1b-P312 L21/M529 484 

(R1b1a1a2a1a2c1), which today occurs much more frequently in Britain and Ireland (frequency 485 

of 14-71% depending on the region36) than it does in mainland Europe. We estimate that this 486 

haplogroup was already present at 88±6% in sampled individuals from C-EBA Britain 487 

(Extended Data Figure 6, Online Table 11), showing that the population established in Britain 488 

by the C-EBA contributed substantially to the ancestry of modern Britain (at least on the male 489 

line), in contrast to the genetic legacy of the Mesolithic11 and Neolithic9,11 people of the islands.490 
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 491 
 492 

Figure 4: Geographic differences in ancestry component and lactase persistence allele frequency. (Left) North-South ancestry convergence. 493 
We show seven ancient DNA time transects for up to four periods (2450-1550 BCE, 1550-1250 BCE, 1250-800 BCE, and 800-50 BCE). The 494 
dotted lines show which points are regionally grouped and should not be interpreted as implying a smooth change in ancestry over time. (Right) 495 
The allele conferring lactase persistence began rising in frequency earlier in Britain than in Central Europe suggesting  different selection 496 
regimes and possibly cultural differences in the role of dairying in the two regions in the IA. We visualize the frequency trajectory of the lactase 497 
persistence allele at SNP rs4988235 by using the GaussianProcessRegressor function from the Scikit-learn library in Python with parameter 498 
alpha=0.1 and 1*RationalQuadratic kernel with parameter length_scale_bounds=(1, 1000). We used the GLIMPSE37 software to impute diploid 499 
genotype posterior probabilities (GP), restricting to samples with max(GP)>0.9 for this SNP. The analysis includes 376 ancient individuals from 500 
Britain and 261 from Central Europe (Czech Republic, Slovakia, Croatia, Hungary, Austria, and Slovenia); to represent modern Britain we used 501 
a pool of 190 CEU and GBR individuals from the 1000 Genomes Project38, and to represent modern Central Europe we use 288 from modern 502 
Czechia39. Each vertical bar represents derived allele frequency for each individual with values [0, 0.5, 1], we use jitter on the x-axis for each 503 
vertical bar, and we show in shading the inferred 95% confidence interval for the allele frequency at each time point output by the Gaussian 504 
process. We confirmed the significantly earlier rise in frequency of the allele in Britain by randomly sampling a single sequence at each 505 
position; Extended Data Figure 5 shows that in the IA the derived allele frequency was 51% in Britain (46-56% 95% confidence interval) 506 
compared to 11% (4-19%) for Bohemia. 507 
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To gain insight into the possible sources of the ancestry that spread across England and Wales 508 

during the LBA, and to quantify the magnitude of gene flow, we fit the pooled IA individuals 509 

from England and Wales as a mixture of a group related to the main C-EBA cluster from 510 

England and Wales, and a second source. We examined 71 potential second sources: 69 from 511 

mainland Europe, the Margetts Pit outlier, and the pool of two Cliffs End outliers. We then 512 

carried out model testing using reference populations in qpAdm that had power to distinguish 513 

ancestry from C-EBA and IA England and Wales (Supplementary Information Section 6). We 514 

identified 17 putative sources that could fit at p>0.05. After probing each with 38 more stringent 515 

qpAdm testing, we reduced this to six plausible models (Table 2). The Margetts Pit and Cliffs 516 

End outliers both fit, consistent with their being immigrants or early generation descendants of 517 

immigrants. Our analysis also produces insight into the likely source of migration. Of the other 518 

four working surrogates for the source population, three out of four are from France (the one 519 

exception is an IA group from Hungary, whose limited data may be the reason for the fit). One 520 

fitting source from France is E-MBA Occitanie in the southwest (2100-1200 BCE), a second is 521 

IA Occitanie (600-200 BCE) and a third is IA Hauts-de-France (400-100 BCE). The IA groups 522 

post-date the LBA ancestry change in Britain by several centuries and so cannot be direct 523 

sources; however, they are plausibly descended from earlier populations in their regions or 524 

geographic vicinity that could be the true sources. The six fitting models also provide a 525 

quantitative estimate of the proportion of novel ancestry arriving into M-LBA England and 526 

Wales, ranging from Margetts Pit (42.6±4.4%) to E-MBA Occitanie (44.1±3.4%) to Cliffs End 527 

(50.3±5.3%) to IA Hauts de France (69.6±7.8%) (Table 2). Thus, a minimum of around half the 528 

ancestry of England and Wales owes its origin to the M-LBA population movements. The 529 

estimate of ~50% genome-wide population turnover by the end of this period is substantially 530 

larger than the estimate (23±8%) derived by estimating the degree of population turnover 531 

needed to decrease the proportion of L21/M529 Y chromosome haplogroups from 88±6% in 532 

C/EBA Britain to 66±5% by the IA (Extended Data Figure 6). While these results taken at face 533 

value suggest a female-biased spread of mainland European ancestry into Britain in the LBA, 534 

this inference is tentative as it assumes that L21/M529 haplogroups were not present among the 535 

migrants and that there was no social selection within Britain for L21/M529 male-line lineages; 536 

if either assumption was incorrect, we would be underestimating the male contribution. The 537 

possibility of female sex bias associated with the ancestry transition in the LBA is striking in 538 

light of evidence of Saxon migrations being sex-biased in the reverse direction40,41. For 539 

example, in present-day Central and Eastern Britain the M529 haplogroup frequency is 14% 540 

(Extended Data Figure 6) implying a minimum ~79% male-lineage replacement since IA times, 541 
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greater than the ~30-40% ancestry contribution from Saxon migrations implied by previous 542 

work13,14 but consistent with estimates based on contemporary Y chromosome data41 (this 543 

computation does not consider the possible contribution of non-Saxon post-IA migrations). 544 

 545 

Table 2: Working proxies for the new source of ancestry in Iron Age England 546 

Second Source  n Date range 
Basic ancestry 

est imate 
Std. 

error 
P-value 

basic 
P-value model 

competition  
England Margetts Pit outlier 1 1400-1100 BCE 42.6% 4.4% 0.57 0.43 

England Cliffs End outliers 2 1000-800 BCE 50.3% 5.3% 0.92 0.77 

France Occitanie EMBA 2 2100-1200 CE 44.1% 3.4% 0.17 0.32 

France Occitanie IA 6 600-200 BCE 43.5% 3.1% 0.35 0.99 

France Hauts De France IA 2 400-100 BCE 69.6% 7.8% 0.42 0.72 

Hungary IA Celtic 3 500-1 CE 59.2% 8.6% 0.09 0.43 
 547 
Note: Right populations for the basic ancestry estimate from qpAdm are (Mbuti.SDG, Netherlands_BellBeaker, 548 
Poland_Globular_Amphora, WHGA, Russia_Samara_EBA_Yamnaya, and Turkey_N). The first source is always 549 
England C/EBA. This analysis identifies 17 fitting populations at P>0.05 (Supplementary Information section 6 550 
gives the full list), and here we only show the subset that continues to fit after adding 38 pre-1000BP European 551 
populations to the reference set, then Bonferroni correcting the lowest p-value for the 38 hypotheses tested. 552 
 553 

The genetic links we report between England and Wales and parts of mainland Europe are 554 

striking in light of the archaeological record. The M-LBA has long been recognized as a time 555 

when cultural connections between Britain and regions of mainland Europe intensified. In this 556 

period, Britain and Ireland formed part of the ‘Atlantic Bronze Age’, a network of societies 557 

located along the Atlantic façade of Europe (including western Iberia and present-day northern 558 

and western France) that shared aspects of material culture and ritual practice42. Societies on 559 

both sides of the Channel, while far from culturally homogeneous, shared features including 560 

elevated enclosures (hillforts), diverse bronze swords and axes, bronze feasting equipment, 561 

sources of metals, and ritual deposition of metalwork hoards often around water43-45. The 562 

similarity in the rites of metalwork deposition suggest that these commonalities did not just 563 

reflect exchange of objects and methods of production, but also shared systems of belief. Early 564 

models of cultural change in LBA Britain often invoked ‘invasion’ from Central Europe46, 565 

while more recent discussions have emphasized trade, exchange, economy and the sharing of 566 

ideas42,47. Our genetic analyses provide overwhelming evidence that major movements of 567 

people into Britain occurred during the M-LBA, particularly during a period of intensification 568 

of exchange that led to the formation of the ‘Manche-Mer du Nord (MMN) complex’ among 569 

other cultural phenomena48,49. Our findings do not establish whether the population movements 570 

we detect were a cause or consequence of networks established as part of the Atlantic Bronze 571 

Age, but do suggest that interactions between local populations of Britain and new migrants 572 
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bringing ideas from mainland Europe may be responsible for some of the cultural change we 573 

see in M-LBA England and Wales. We do not have sample sizes from the Atlantic façade of 574 

mainland Europe that are comparable to what we report from Britain, and thus cannot test if the 575 

gene flow between the two regions in the M-LBA was largely unidirectional; ancient DNA 576 

sampling from northern France would make it possible to quantify the amount of gene flow in 577 

the reverse direction. 578 

 579 

Population movements are often a significant factor in cultural change, including in 580 

languages50,51. In the context of our results, it is therefore striking that a recent study has 581 

proposed that Celtic languages spread into Britain from France likely in the early IA or possibly 582 

the LBA52. Our identification of substantial M-LBA population movements into Britain from 583 

sources that fit populations in France notably better than in Iberia, the Netherlands, and 584 

Bohemia adds an independent line of evidence for this scenario. Moreover, our finding of a 585 

decrease of EEF ancestry in Iberia, where the proportion was high in the EBA, and the roughly 586 

simultaneous increase in Britain where the proportion was low, could, in theory, reflect a Celtic-587 

speaking group of people with intermediate EEF ancestry spreading into both regions, and could 588 

help to explain the occurrence of Celtic languages in both regions. Alternatively, this 589 

homogenization of EEF ancestry could reflect a generalized increase in mobility over the region 590 

and period of the Atlantic Bronze Age, facilitated by the emergence of a Celtic lingua franca53. 591 

While the fact that we do not detect an ancestry change in Scotland might seem like a problem 592 

for either of these related proposals, the lack of major ancestry change in Scotland might 593 

coincide with the evidence that a non-Celtic language remained in use into the first millennium 594 

CE in Scotland54. Our finding that there were no major migrations into Britain from the 595 

European mainland in the IA suggests that, if Celtic language spread was driven by the 596 

movement of people, it is unlikely to have happened in the IA. The adoption in IA Britain of 597 

cultural practices that originated in mainland Europe—particularly those linked to the La Tène 598 

tradition55—were also evidently independent of large-scale population movements, although 599 

there certainly were smaller movements of people, as attested by individual IA outliers with 600 

high EEF ancestry such as those at Thame or Winnall Down, and individuals with low EEF 601 

ancestry such as several at Carsington Pasture Cave (Figure 3). 602 

 603 

In the IA, EEF ancestry was highest in present-day southern England; lower in Wales, the 604 

Midlands, and the north of England (2.0-2.3% lower); and lowest in all regions of Scotland 605 

(Table 1); suggesting a broad south-north cline of decreasing EEF ancestry. Within the south of 606 
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Britain we detect six regional groupings with significantly different patterns of allele sharing 607 

with mainland groups: Wales, the combined region of northern England and the Midlands, the 608 

combined region of southeast and south-central Britain, Cornwall, East Anglia, and East 609 

Yorkshire (Extended Data Table 2). To understand this process in more detail, we carried out a 610 

qpAdm analysis fitting all the British IA groups as mixtures of the England C/EBA population 611 

and the six populations in Table 2 that fit as sources for the later migration (Online Table 12). 612 

We can fully explain the regional variation in ancestry in the IA in England and Wales as being 613 

driven by different proportions of ancestry from the population that spread through the region in 614 

the LBA; using Margetts Pit as the source of migration, we obtain estimates ranging from 615 

51±6% in south-central England to 31±5% and 32±5% in northern England and the Midlands 616 

(Table 1). Thus, the Iron Age was a period when material culture was increasingly regional in 617 

character56; as we show here, this was accompanied by subtle biological structure. A striking 618 

example is in East Yorkshire, where most of our analyzed individuals are associated with Arras 619 

Culture burial contexts, comprising square-ditched barrows and occasional chariot burials, and 620 

where our estimate of the new ancestry source is 45±5%57,58. Similarities between Arras 621 

funerary traditions in East Yorkshire and those recorded for IA societies in mainland Europe, 622 

particularly the Paris Basin and the Ardennes / Champagne Regions of France and Belgium, 623 

have led to suggestions that IA societies in East Yorkshire had been influenced by migrations 624 

from mainland Europe59. In this context, it is notable that differentiation between IA 625 

populations in Britain, as measured by FST, is highest between East Yorkshire and all other IA 626 

populations in England and Wales (Extended Data Table 5). Our analysis suggests that people 627 

buried in the style of the Arras Culture did indeed harbor a large proportion of ancestry most 628 

likely from France. However, without ancient DNA from the IA from the putative sources in 629 

mainland Europe we cannot determine whether this reflects the same M-LBA source that 630 

contributed to other southern British populations (followed by isolation within the island of 631 

Britain leading to high population-specific genetic drift), or alternatively distinctive migrations 632 

from mainland Europe in the IA specifically affecting this region. 633 

 634 

An important direction for future work will be to generate new ancient DNA data from 635 

mainland contexts and Ireland to test the alternative scenarios of population history raised here, 636 

and to develop theories integrating the genetic findings within archaeological frameworks.637 
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Methods 638 

 639 

Ancient DNA laboratory work. In dedicated clean rooms at Harvard Medical School, the 640 

University of Vienna, the Natural History Museum in London, and the University of 641 

Huddersfield, as well as during sampling trips, we obtained powder from ancient bones and 642 

teeth using a variety of methods including sandblasting, drilling and milling60,61. We 643 

extracted DNA using a variety of methods62-64, and prepared double- or single-stranded 644 

libraries almost all of them treated with the enzyme Uracil DNA Glycosylase (UDG) to 645 

reduce characteristic errors associated with ancient DNA degradation16-18,65. We enriched 646 

these sequences manually or in multiplex using automated liquid handlers for sequences 647 

overlapping the mitochondrial genome21,66 as well as about 1.24 million single nucleotide 648 

polymorphisms (“1240K capture”)19. We pooled enriched libraries which we had marked 649 

with unique 7-base pair internal barcodes and/or 7- to 8-base pair indices and sequenced on 650 

Illumina NextSeq500 or HiSeqX10 instruments using paired-end reads of either 76 base pairs 651 

or 101 base pairs in length (Online Table 3). 652 

 653 

Bioinformatic analysis. After trimming barcodes and adapters7, we merged read pairs that 654 

had at least 15 base pairs of overlap allowing no more than one mismatch. We aligned 655 

merged sequences to the mitochondrial reference genome RSRS67 or the human reference 656 

genome hg19 using BWA version 0.6.168. After identifying PCR duplicates by tagging all 657 

aligned sequences with the same start and stop positions and orientation and in some cases in-658 

line barcodes, we selected a single copy of each such sequence that had the highest base 659 

quality scores. For subsequent analysis, we trimmed the last 2 bases of each sequence for 660 

UDG-treated libraries and the last 5 bases for non-UDG-treated libraries to reduce the effects 661 

of characteristic errors associated with ancient DNA degradation. We built mitochondrial 662 

consensus sequences, determined mitochondrial haplogroups using HaploGrep269, and 663 

estimated the match rate to the consensus sequence using contamMix v.1.0-1270 for 664 

mitochondrial genomes with an average coverage of at least 2-fold. To represent the 665 

autosomal data, we randomly sampled a single sequence covering each of the 1.24 million 666 

SNP targets, and estimated coverage based on these targeted SNPs. We used ANGSD to 667 

estimate contamination based on polymorphism on the X chromosome in males with at least 668 

200 SNPs covered twice (males should be non-polymorphic if their data are 669 

uncontaminated)23. We automatically determined Y chromosome haplogroups using both 670 

targeted SNPs and off-target sequences aligning to the Y chromosome based on comparisons 671 
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to the Y chromosome phylogenetic tree from Yfull version 8.09 (https://www.yfull.com/), 672 

providing two alternative notations for Y chromosome haplogroups: the first using a label 673 

based on the terminal mutation, and the second describing all the associated branches of the 674 

Y chromosome tree based on the notation of the International Society of Genetic Genealogy 675 

(ISOGG) database version 15.73. (http://www.isogg.org).  676 

 677 

Determination of ancient DNA authenticity. We determined ancient DNA authenticity 678 

based on five criteria. First, we required that the lower bound of the 95% confidence interval 679 

for contamination from ANGSD (if we were able to compute it) was <1%. Second, we 680 

required that the upper bound of the 95% confidence interval for match rate to mitochondrial 681 

consensus sequence (if we were able to compute it) was >95%. Third, we required that the 682 

average rate of cytosine-to-thymine errors at the terminal nucleotide for all sequences passing 683 

filters was >3% for double-stranded partially UDG-treated libraries16 and >10% for single-684 

stranded USER-treated libraries and double-stranded non-UDG-treated libraries71. Fourth, we 685 

required the ratio of sequences mapping to the Y chromosome to the sum of sequences 686 

mapping to the X and Y chromosome for the 1240K data to be less than 3% (consistent with 687 

a female) or >35% (consistent with a male). Fifth, we required the number of SNPs covered 688 

at least once to be at least 5,000 (for most actual population genetic analyses, we required at 689 

least 30,000). For some individuals with evidence of contamination, we analyzed only 690 

sequences with terminal damage to enrich for genuine ancient DNA by using pmdtools, 691 

allowing us to rescue data for some individuals72. We do not include in our main analyses 692 

data from 71 individuals that failed our authenticity criteria (marked as “QUESTIONABLE” 693 

in Online Table 1); however, we publish the data as part of this study as a resource. 694 

 695 

Population genetic analyses. We used ADMIXTURE to cluster individuals and used Principal 696 

Component Analysis as implemented in smartpca to visualize gradients of ancestry and genetic 697 

drift, using the option lsqproject to project ancient individuals onto the patterns of genetic 698 

variation learned from modern individuals73. We computed f4-statistics and FST and carried out 699 

qpWave and qpAdm analyses using ADMIXTOOLS27 700 

(https://github.com/DReichLab/AdmixTools). We inferred relatives up to the third to fifth 701 

degree using a previously described method24.  702 

 703 

Allele frequency estimates of variants with functional importance. We clustered 704 

individuals from Britain, Iberia and Czech Republic into 5 temporal groups-3950-2450 BCE, 705 
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2450-1550 BCE, 1550-1250 BCE, 1250-800 BCE, and 800-50 BCE-matching our 706 

periodization into Neolithic, C-EBA, MBA, LBA, and IA in Britain. To estimate the allele 707 

frequency of a given SNP in a particular group, we used sequence counts at each SNP 708 

position in each individual and used a maximum likelihood approach20. We obtained 709 

confidence intervals using the Agresti-Coull method implemented in the binom.confint 710 

function of the R-package binom. 711 

 712 

Accelerator Mass Spectrometry (AMS) radiocarbon dating. We carried out AMS dating 713 

at a variety of laboratories; we refer readers to the individual laboratories for the experimental 714 

procedures. We calibrated all dates using OxCal 4.4.274 and IntCal2075. 715 

 716 

Data availability. The aligned sequences are available through the European Nucleotide 717 

Archive under accession number [to be made available on publication]. Genotype data used in 718 

analysis are available at https://reich.hms.harvard.edu/datasets. Any other relevant data are 719 

available from the corresponding authors upon reasonable request. 720 
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Extended Data Table 1: Ancestry change over time in Britain 739 

 740 
 741 
Note: We pool all individuals from each period and region while removing from the analysis outlier individuals that fail qpAdm modeling at p<0.005 as specified in Online Table 6. In the left 742 
columns are qpAdm estimates of ancestry for each group for the three-way admixture model. Above the diagonal are 2-sided p-values based on the Z-score from f4(Row population, Column 743 
population; Turkey_Neolithic, Russia_Samara_EBA_Yamnaya). Below the diagonal are p-values from Hotelling’s T-squared tests from qpWave using Left=(Row population, Column population) 744 
and Right=(Mbuti.SDG, Russia_Samara_EBA_Yamnaya, Turkey_N, WHGA). For the tests of differences in ancestry proportion, P-values are highlighted if <0.001.745 
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Channel Islands IA 2 0.88      13.4% 46.4% 40.2% 1.3% 1.6% 1.9% .. < 10-12 3x10-5 3x10-6 4x10-10 < 10-12 < 10-12 < 10-12 0.68 2x10-9 2x10-5 1x10-7 6x10-9 < 10-12 9x10-4 6x10-11 < 10-12

Channel Islands Neolithic 3 0.57      11.8% 86.9% 1.3% 1.3% 1.6% 1.6% < 10-12 .. < 10-12 < 10-12 < 10-12 < 10-12 0.071 0.074 < 10-12 < 10-12 < 10-12 < 10-12 < 10-12 0.063 < 10-12 < 10-12 0.015
England IA 231 0.32      12.0% 39.8% 48.2% 0.4% 0.5% 0.6% 5x10-4 < 10-12 .. 0.040 < 10-12 < 10-12 < 10-12 < 10-12 0.16 1x10-9 1x10-5 0.0016 2x10-5 < 10-12 0.89 2x10-8 < 10-12

England LBA 17 0.079    11.7% 38.6% 49.7% 0.6% 0.8% 0.9% 5x10-5 < 10-12 0.10 .. 0.0016 < 10-12 < 10-12 < 10-12 0.083 0.0090 0.011 0.091 0.016 < 10-12 0.45 3x10-5 < 10-12

England MBA 25 0.16      11.7% 35.6% 52.7% 0.5% 0.7% 0.8% 1x10-8 < 10-12 < 10-12 0.0014 .. 4x10-8 < 10-12 < 10-12 0.018 0.81 0.58 0.80 0.92 < 10-12 0.016 0.0087 < 10-12

England Chalcolithic/EBA 54 0.020    11.0% 32.3% 56.7% 0.5% 0.6% 0.7% < 10-12 < 10-12 < 10-12 < 10-12 1x10-7 < 10-12 < 10-12 0.0011 5x10-7 0.011 0.0015 9x10-4 < 10-12 4x10-6 0.80 < 10-12

England Neolithic 35 0.012    17.0% 81.8% 1.2% 0.5% 0.6% 0.6% < 10-12 5x10-5 < 10-12 < 10-12 < 10-12 < 10-12 .. 0.95 < 10-12 < 10-12 < 10-12 < 10-12 < 10-12 0.83 < 10-12 < 10-12 0.18
Ireland Neolithic 28 < 10-12 18.0% 83.1% -1.1% 0.5% 0.6% 0.6% < 10-12 2x10-7 < 10-12 < 10-12 < 10-12 < 10-12 1x10-11 .. < 10-12 < 10-12 < 10-12 < 10-12 < 10-12 0.77 < 10-12 < 10-12 0.16
Isle of Man Chalcolithic/EBA 1 0.12      10.4% 46.7% 42.8% 2.3% 3.5% 3.8% 0.49 < 10-12 0.17 0.14 0.024 0.0029 < 10-12 < 10-12 .. 0.019 0.013 0.026 0.018 < 10-12 0.17 0.0017 < 10-12

Scotland IA 23 0.0015  10.4% 35.6% 54.1% 0.6% 0.7% 0.9% 3x10-8 < 10-12 7x10-10 0.044 7x10-4 1x10-6 < 10-12 < 10-12 0.052 .. 0.49 0.92 0.79 < 10-12 0.024 0.008 < 10-12

Scotland LBA 4 0.011    10.1% 35.0% 54.8% 0.9% 1.2% 1.3% 1x10-7 < 10-12 4x10-5 0.052 0.047 0.021 < 10-12 < 10-12 0.047 0.88 .. 0.53 0.70 < 10-12 0.013 0.063 < 10-12

Scotland MBA 4 0.16      12.1% 35.2% 52.6% 0.9% 1.1% 1.3% 4x10-6 < 10-12 0.011 0.23 0.95 0.015 < 10-12 < 10-12 0.043 0.31 0.36 .. 0.77 < 10-12 0.063 0.025 < 10-12

Scotland Chalcolithic/EBA 8 0.0060  12.3% 33.8% 53.8% 0.8% 1.0% 1.1% 1x10-7 < 10-12 3x10-7 6x10-4 0.093 3x10-5 < 10-12 < 10-12 0.023 1x10-4 0.0061 0.32 .. < 10-12 0.025 0.024 < 10-12

Scotland Neolithic 32 2x10-5 17.4% 80.8% 1.8% 0.5% 0.6% 0.6% < 10-12 3x10-6 < 10-12 < 10-12 < 10-12 < 10-12 0.26 < 10-12 < 10-12 < 10-12 < 10-12 < 10-12 < 10-12 .. < 10-12 < 10-12 < 10-12

Wales IA 4 0.17      10.8% 37.9% 51.3% 1.1% 1.5% 1.6% 0.0092 < 10-12 0.97 0.89 0.074 8x10-5 < 10-12 < 10-12 0.23 0.12 0.073 0.26 0.022 < 10-12 .. 2x10-4 < 10-12

Wales MBA 5 0.59      12.9% 34.3% 52.8% 1.0% 1.3% 1.5% 2x10-9 < 10-12 4x10-7 4x10-4 0.057 0.93 < 10-12 < 10-12 0.0054 0.027 0.16 0.16 0.042 < 10-12 0.0029 .. < 10-12

Wales Neolithic 6 0.21      15.9% 80.7% 3.4% 1.0% 1.4% 1.5% < 10-12 0.0016 < 10-12 < 10-12 < 10-12 < 10-12 0.44 0.0026 < 10-12 < 10-12 < 10-12 < 10-12 < 10-12 0.24 < 10-12 < 10-12 ..

qpAdm  results Tests for  difference in ancestry proportions between row and column  (below diagonal qpWave, above-diagonal f4-statistic) 
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Extended Data Table 2: Genetic substructure among regions in Iron Age Britain. As shown in Online Table 12 and in Table 1, the significant 746 
differences between pairs of populations in England and Wales are in principle consistent with being driven by just a single migration from 747 
mainland Europe affecting different Iron Age groups in different proportions. 748 
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Extended Data Table 3: LBA and Iron Age populations had ancestry absent in earlier people from Britain 751 

Modeled population P-value for modeling with 
England/Wales sources 

P-value for modeling 
with Scotland sources 

England.and.Wales_N n/a (defined as a source) 0.033
England.and.Wales_C.EBA n/a (defined as a source) 0.000078 
England.and.Wales_MBA 0.0060 0.00001 
England.and.Wales_LBA < 10-12 < 10-12 
England.and.Wales_IA < 10-12 < 10-12

Scotland_N 0.025 n/a (defined as a source) 

Scotland_C.EBA 0.000055 n/a (defined as a source) 

Scotland_MBA 0.90 0.039 
Scotland_LBA 0.0071 0.0066 
Scotland_IA 0.012 2x10-4 
Isle.of.Man_C.EBA 0.10 0.050 
Ireland_N < 10-12 < 10-12 
Ireland_C.EBA < 10-12 < 10-12 
Channel.Islands_N 4x10-6 < 10-12 
Channel.Islands_IA 0.56 0.13 
 752 
Note: We model each group in qpAdm as a mixture of a Neolithic and a Chalcolithic/EBA population (first 753 
column from England and Wales, second column from Scotland). In each case the reference populations are 754 
(Mbuti.SDG, Netherlands_BellBeaker, Poland_Globular_Amphora, WHGA, Iberia_C, Czech_EBA, 755 
Italy_Sardinia_EBA, Russia_Samara_EBA_Yamnaya, Turkey_N). P-values from qpAdm are highlighted if 756 
<0.001. We definitively reject the model that people of LBA and IA England and Wales are directly 757 
descended from a mixture of Neolithic and C/EBA people from England and Wales (the failure of the models 758 
involving Irish populations may not reflect real modeling failure but instead could reflect systematic 759 
differences in data properties between shotgun sequencing data and in-solution enrichment data). 760 
  761 
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Extended Data Table 4: Pairwise FST among coarse population groupings in the British Isles 762 
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  N 3 2 28 35 54 25 17 231 32 8 4 4 23 6 5 4
Channel Islands Neolithic 3 0 0.023 0.018 0.021 0.037 0.035 0.032 0.031 0.019 0.036 0.031 0.035 0.035 0.019 0.037 0.031
Channel Islands IA 2 0.023 0 0.014 0.017 0.006 0.006 0.004 0.004 0.016 0.008 -0.001 0.01 0.003 0.001 0.006 0 
Ireland Neolithic 28 0.018 0.014 0 0.011 0.027 0.025 0.021 0.021 0.009 0.025 0.02 0.024 0.025 0.003 0.021 0.022
England Neolithic 35 0.021 0.017 0.011 0 0.024 0.023 0.022 0.021 0.005 0.023 0.021 0.022 0.023 0.003 0.023 0.022
England Chalcolithic/EBA 54 0.037 0.006 0.027 0.024 0 0.001 0.003 0.002 0.021 0.002 0 0.001 0.002 0.02 0.002 0.003
England MBA 25 0.035 0.006 0.025 0.023 0.001 0 0.002 0.001 0.019 0.002 0 0.001 0.001 0.019 0.001 0.002
England LBA 17 0.032 0.004 0.021 0.022 0.003 0.002 0 0.001 0.02 0.005 0.001 0.002 0.002 0.018 0.001 0.001
England IA 231 0.031 0.004 0.021 0.021 0.002 0.001 0.001 0 0.018 0.004 0.001 0.001 0.002 0.016 0.001 0.002
Scotland Neolithic 32 0.019 0.016 0.009 0.005 0.021 0.019 0.02 0.018 0 0.02 0.019 0.019 0.02 0.003 0.021 0.021
Scotland Chalcolithic/EBA 8 0.036 0.008 0.025 0.023 0.002 0.002 0.005 0.004 0.02 0 0.001 0.002 0.003 0.018 0.005 0.007
Scotland MBA 4 0.031 -0.001 0.02 0.021 0 0 0.001 0.001 0.019 0.001 0 -0.001 0 0.019 0.002 0.001
Scotland LBA 4 0.035 0.01 0.024 0.022 0.001 0.001 0.002 0.001 0.019 0.002 -0.001 0 0.001 0.02 0.002 0.002
Scotland IA 23 0.035 0.003 0.025 0.023 0.002 0.001 0.002 0.002 0.02 0.003 0 0.001 0 0.019 0.002 0.002
Wales Neolithic 6 0.019 0.001 0.003 0.003 0.02 0.019 0.018 0.016 0.003 0.018 0.019 0.02 0.019 0 0.021 0.019
Wales MBA 5 0.037 0.006 0.021 0.023 0.002 0.001 0.001 0.001 0.021 0.005 0.002 0.002 0.002 0.021 0 0
Wales IA 4 0.031 0 0.022 0.022 0.003 0.002 0.001 0.002 0.021 0.007 0.001 0.002 0.002 0.019 0 0
Note: We compute inbreeding-corrected FST, which samples a single allele from each locus to represent each individual. 763 
 764 
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Extended Data Table 5: Pairwise FST among fine-geographic groupings in the British Iron Age 765 

 766 
Note: We compute inbreeding-corrected FST, which samples a single allele from each locus to represent each individual.767 
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Extended Data Figure 1: Hazleton North Extended Family. The family structure is a best-guess reconstruction based on detection of pairs of 768 

relatives and patterns of sharing of segments of DNA that are identical by descent from a common ancestor. The evidence of a large pedigree of 769 

relatives connected along the male line is consistent with models of a patrilocal society in the Neolithic period in Britain. 770 

771 
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Extended Data Figure 2: Post-MBA Britain was not a mix of earlier British populations. 772 

We computed f4(Karitiana, Netherland_BellBeaker; England.and.Wales_IA, 773 

α(England.and.Wales_N) + (1-α)(England.Wales_C.EBA)). If England.and.Wales_IA is a 774 

simple mix of England.and.Wales_N and England.Wales_C.EBA without any additional 775 

contribution of ancestry, then for some mixture proportion the statistic will be consistent with 776 

zero (Supplementary Information section 4). However, we observe that it is positive for all 777 

values of α, showing that Karitiana share more alleles with IA people from England and Wales 778 

than do both Neolithic and C/EBA people; thus, they must have ancestry from an additional 779 

population deeply related to Karitiana that did not contribute to the earlier groups.  780 

781 
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Extended Data Figure 3: By-individual analysis of the British time transect. This is a version of Figure 3 with the time transect extended into 782 

the Neolithic period. Estimates of EEF ancestry and one standard error are shown for all individuals in the British time transect that pass basic 783 

quality control, that fit to a three-way admixture model (EEF + WHG + Yamnaya) at p>0.01 using qpAdm, and for the Neolithic period that fit a 784 

two-way admixture model (EEF + WHG) at p>0.01. Blue and green show individuals from southern and northern Britain that fit the average for 785 

the main cluster of their time, while red and orange show significant outliers at the ancestry tails. The averages for the main clusters in both 786 

southern and northern Britain in each period are shown in dashed lines.  787 
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Extended Data Figure 4: Ancestry change over time in multiple European time transects. 790 

Because of the genetic shift we observe in Britain, for each time transect we separated our 791 

samples into ‘Early’ (2250-1350 BCE) and ‘Late’ (1050-50 BCE). We show PCA plots where 792 

the ‘base individuals’ (light grey) are present populations used to calculate the PCA axes. 793 

Populations with high Steppe ancestry are shifted to the top left, and with high EEF and WHG 794 

ancestry to the bottom. We see increases in EEF ancestry in more northern regions (England 795 

and Wales (EW), Bohemia (Czech), and the Netherlands), decreases in more southern regions 796 

(Hungary and Iberia), and no clear average change in France. 797 

 798 
 799 

 800 

 801 
 802 
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Extended Data Figure 5: Frequency change over time at two phenotypically important alleles. (Top) The lactase persistence allele at 803 
rs4988235. (Bottom) The light skin pigmentation allele at rs16891982. In Britain the rise in frequency of the lactase persistence is significantly 804 
earlier than in Bohemia. This analysis is based on direct observation of alleles; imputation results are qualitatively consistent (Figure 4B). 805 
 806 
          (A)  LCT - Britain             (B)  LCT - Bohemia              (C) LCT - Iberia 807 

   808 

        (D)  SLC45A2 - Britain             (E) SLC45A2 - Bohemia     (F) SLC45A2 - Iberia 809 

 810 
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Extended Data Figure 6: Y chromosome haplogroup frequencies in the British transect. 811 

We show the estimated frequency of the characteristically British Y chromosome haplogroup 812 

R1b-P312 L21/M529 in all individuals for which we are able to make a determination and 813 

which are not first-degree relatives of a higher coverage individual in the dataset. The frequency 814 

increases significantly from ~0% in the whole island Neolithic, to 88±6% in the whole island 815 

Chalcolithic/EBA. It declines to 73±10% in the MBA and LBA (from this time on restricting to 816 

England and Wales because of the autosomal evidence of a change in ancestry in the south but 817 

not the north), and to 66±5% in the IA, a significant reduction relative to the Chalcolithic/EBA. 818 

There is a further reduction from this time to the present, where the proportion is 43±3% in 819 

Wales and the west of England, and 14±2% in the center and east of England potentially due to 820 

later immigrants bearing a different distribution of Y chromosome haplogroup frequencies. 821 
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