
This is a repository copy of Quantitative Verification with Adaptive Uncertainty Reduction.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/183788/

Version: Accepted Version

Article:

Alasmari, Naif, Calinescu, Radu orcid.org/0000-0002-2678-9260, Paterson, Colin
orcid.org/0000-0002-6678-3752 et al. (1 more author) (2022) Quantitative Verification with
Adaptive Uncertainty Reduction. Journal of Systems and Software. 111275. ISSN 0164-
1212

https://doi.org/10.1016/j.jss.2022.111275

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Quantitative Verification with Adaptive Uncertainty Reduction

Naif Alasmari1, Radu Calinescu1, Colin Paterson1, and Raffaela Mirandola2

1. Department of Computer Science, University of York, UK

2. Politecnico di Milano, Italy

Abstract

Stochastic models are widely used to verify whether systems satisfy their reliability, performance and other nonfunctional
requirements. However, the validity of the verification depends on how accurately the parameters of these models can be
estimated using data from component unit testing, monitoring, system logs, etc. When insufficient data are available,
the models are affected by epistemic parametric uncertainty, the verification results are inaccurate, and any engineering
decisions based on them may be invalid. To address these problems, we introduce VERACITY, a tool-supported iterative
approach for the efficient and accurate verification of nonfunctional requirements under epistemic parameter uncertainty.
VERACITY integrates confidence-interval quantitative verification with a new adaptive uncertainty reduction heuristic
that collects additional data about the parameters of the verified model by unit-testing specific system components over
a series of verification iterations. VERACITY supports the quantitative verification of discrete-time Markov chains,
deciding which components are to be tested in each iteration based on factors that include the sensitivity of the model to
variations in the parameters of different components, and the overheads (e.g., time or cost) of unit-testing each of these
components. We show the effectiveness and efficiency of VERACITY by using it for the verification of the nonfunctional
requirements of a tele-assistance service-based system and an online shopping web application.

Keywords: quantitative verification; probabilistic model checking; confidence intervals; uncertainty reduction;
nonfunctional requirements; unit testing

1. Introduction

Many software systems must satisfy dependability, per-
formance, cost and other requirements not directly related
to the functionality they provide. These requirements are
termed nonfunctional requirements [1, 2], and their verifi-
cation needs to consider the stochastic nature of software
characteristics such as inputs, workloads, timeouts and
failures. As such, stochastic models ranging from Markov
chains [3, 4] and probabilistic automata [5, 6] to stochastic
Petri nets [7, 8] are widely used to perform this verification.
However, ensuring that stochastic models are sufficiently
accurate to support this verification is very challenging.
While the structure of the models can be extracted from
the actual code [9] or from software artefacts such as activ-
ity diagrams [4, 10], their parameters (e.g., probabilities,
timing and other quantitative information) are affected by
uncertainty.

These parameters need to be estimated using data ob-
tained, for instance, from testing the system components
individually, or (for systems already in use) from system
logs. Point estimators such as the mean of the observed
parameter values are typically used for this purpose. How-
ever, the point estimation of the uncertain model parame-
ters produces imprecise verification results, and risks caus-
ing invalid engineering decisions [11, 12], especially when
only few observations are available. In mature subjects

like medicine [13, 14] and in established engineering disci-
plines like civil [15] and mechanical [16] engineering, this
risk is deemed unacceptable, and it is mitigated by com-
puting confidence intervals for the model parameters and
the verified properties [17, 18]. In contrast, this risk is
rarely considered in software performance and dependabil-
ity engineering. Instead, the research in this area focuses
on devising new techniques, tools and applications for the
verification of stochastic models, under the strong assump-
tion that using point estimates for the model parameters
is sufficiently accurate.

To address the risk of invalid decisions associated with
this assumption, we introduce VERACITY,1 a tool-sup-
ported approach for the quantitative verification of discrete-
time Markov chains under epistemic parametric (i.e., tran-
sition probability) uncertainty. Uncertainty is termed epis-
temic when it is due to insufficient data (and therefore re-
ducible by gathering additional data), and aleatory when
it is intrinsic to the analysed system (and therefore irre-
ducible) [19].

VERACITY builds on our previous research on com-
puting confidence intervals for the reliability, performance
and other nonfunctional properties of a system [11, 20].
This computation uses a parametric discrete-time Markov
chain (i.e., a discrete-time Markov chain with unknown

1quantitative VERification with Adaptive unCertaInTY reduction

Preprint submitted to Journal of Systems and Software February 17, 2022

state transition probabilities) that models the system be-
haviour, and observations of the system behaviour avail-
able from component unit testing, runtime monitoring or
system logs. However, when insufficient observations are
available, these confidence intervals are too wide to ver-
ify whether nonfunctional requirements that impose con-
straints on such properties are satisfied. As an example,
given too few observations, the 99% confidence interval for
the probability that user requests are handled successfully
by a web server may be [0.76, 0.98],2 which is too wide
for verifying the requirement ‘The web server shall handle
user requests with a success probability of at least 0.92 at
99% confidence level.’ To handle this frequently encoun-
tered problem efficiently, VERACITY obtains additional
observations by unit-testing specific system components
over a series of adaptive uncertainty reduction iterations.
The components tested in each iteration are decided using
a heuristic that takes into account multiple factors. These
factors are detailed later in the paper, and include the
sensitivity of the nonfunctional properties to variations in
the parameters associated with different components, and
the overheads (e.g., time or cost) of testing each of these
components.

VERACITY supports both the verification of new sys-
tem designs, and the verification of planned updates to
existing systems. Using VERACITY to decide whether a
new system should be deployed or not involves applying
our approach with few or no initial observations of the sys-
tem parameters. Multiple uncertainty reduction iterations
are typically required to acquire sufficient observations of
the parameters of the system and to reach a decision in
this case. In contrast, when deciding whether updated
versions of specific system components should be adopted,
VERACITY can exploit a large number of initial obser-
vations of the parameters associated with the components
not being updated. Accordingly, fewer uncertainty reduc-
tion iterations are typically necessary in this case, primar-
ily to acquire observations of the parameters associated
with the updated components.

VERACITY relies on the possibility to test the com-
ponents of a system individually. Such unit testing of
software components is widely used in software develop-
ment [21]. For certain types of software systems, the in-
dividual testing of their components is also feasible after
deployment. As an example, the third-party services used
by a service-based system can be invoked independently
at any stage of the software development life cycle.

The contributions of the paper are threefold. First,
we introduce a new heuristic for the efficient reduction of
epistemic parametric uncertainty of Markov chains used
in dependability and performance software engineering.
Second, we present a new approach that integrates this
heuristic with a recently proposed method for formal ver-

2In the case when no observations are available (corresponding to
the common scenario of a system that has not yet been tested), this
confidence interval is [0, 1].

ification with confidence intervals [11, 20], and a tool that
implements the approach, automating the verification of
nonfunctional requirements under parametric uncertainty.
Finally, we present extensive experimental results show-
ing: (i) the effectiveness of the VERACITY verification
approach during initial software development and software
updating; and (ii) the efficiency of the VERACITY un-
certainty reduction compared to uncertainty reduction by
uniformly testing all the components of the system under
verification (SUV).

We organised the remainder of the paper as follows.
Section 2 defines the probabilistic model checking and for-
mal verification with confidence concepts and notation re-
quired to present VERACITY. Section 3 introduces a mo-
tivating example that we then use to present our quantita-
tive verification approach in Section 4. Sections 5 and 6 de-
scribe the tool support we implemented for our approach,
and the case studies we carried out to evaluate VERAC-
ITY, respectively. Finally, we discuss related work in Sec-
tion 7, and we conclude with a brief summary and we
suggest directions for future work in Section 8.

2. Preliminaries

2.1. Parametric Markov chains

Definition 1. A discrete-time Markov chain is a tuple

M = (S, s0,P, L), (1)

where: S is a finite set of states; s0∈S is the initial state;
P : S×S → [0, 1] is a transition probability matrix such
that, for any states s, s′ ∈S, P(s, s′) is the probability of
transition from s to s′ and, for any s∈S,

∑

s′∈S P(s, s′)=
1; and L : S → 2AP is a function that maps every state
s ∈ S to those elements of an atomic proposition set AP
that hold in state s.

To extend the range of properties that can be veri-
fied using discrete-time Markov chains, their states and/or
transitions are often annotated with non-negative quanti-
ties termed rewards.

Definition 2. A reward structure over a discrete-time
Markov chain M is a pair of functions (ρ, ι) that map the
states and state transitions of M to non-negative quanti-
ties called rewards: ρ : S → [0,∞) and ι : S×S → [0,∞).

For Markov chains used in software performance and
dependability engineering, the states may correspond to
different SUV configurations, to different operations being
executed, to different outcomes of these executions, etc.
In these models, the rewards may specify expected execu-
tion times, resource use and other quantitative character-
istics of the operations carried out by the SUV. Finally,
the continuous variables used to define the unknown tran-
sition probabilities and rewards represent parameters of
the SUV components.

2

Definition 3. A parametric (discrete-time) Markov chain
is a discrete-time Markov chain comprising one or sev-
eral unknown state transition probabilities and/or rewards
that are specified as rational functions (i.e., as fractions
whose numerators and denominators are polynomial func-
tions, e.g., 1−p or (1−p1)/p2 [22]) over a set of continuous
variables [23].

The continuous variables used to specify the transition
probabilities and/or rewards of parametric Markov chains
correspond to parameters of the SUV.

2.2. Probabilistic computation tree logic

To verify the nonfunctional requirements of a system
modelled by a parametric Markov chain, these require-
ments are expressed in rewards-extended [24] probabilistic
computation tree logic (PCTL) [25, 26] with the syntax:

Φ ::= true | a |Φ ∧ Φ | ¬Φ | P▷◁p[Ψ]
Ψ ::= X Φ | Φ U≤k Φ | Φ U Φ
Θ ::= R▷◁r[I

=k] |R▷◁r[C
≤k] |R▷◁r[FΦ] |R▷◁r[S]

(2)

where Φ is a state formula, Ψ a path formula, Θ a reward
state formula, k∈N a timestep bound, ▷◁ ∈{≤, <,≥, >} a
relational operator, p ∈ [0, 1] a probability bound, r ≥ 0 a
reward bound, and a∈AP an atomic proposition.

The PCTL semantics is defined using a satisfaction re-
lation |=. Given a state s of a Markov chain M , s |= Φ
means “Φ holds in state s”, and we have: always s |= true;
s |= a iff a ∈ L(s); s |= ¬Φ iff ¬(s |= Φ); s |= Φ1 ∧ Φ2 iff
s |= Φ1 and s |= Φ2; and s |= P▷◁p[Ψ] iff the probability
x that paths starting at state s (i.e., sequence of states
s1s2s3 . . . such that s1 = s and ∀i > 0 : P(si, si+1) > 0)
satisfy the path property Ψ satisfies x ▷◁ p. The next for-
mula X Φ holds for a path if Φ is satisfied in the next
state on the path; the bounded until formula Φ1 U

≤k Φ2

holds for a path iff Φ1 holds in the first i < k path states
and Φ2 holds in the (i + 1)-th path state; and the un-
bounded until formula Φ1 UΦ2 removes the bound k from
the time-bounded until formula. Finally, the four reward
state formulae Θ from (2) use the reward operator R to
verify whether the expected reward x: at timestep k; ac-
cumulated up to timestep k; accumulated to reach a state
that satisfies Φ; and at steady state, respectively, satisfies
x ▷◁ r. For a detailed description of the PCTL semantics,
see [24, 25, 26].

Additionally, the notation F≤k Φ ≡ true U≤k Φ and
FΦ ≡ trueUΦ is used when the left-hand side of a bounded
until and until formula, respectively, is true; and P=?[·]
and R=?[·] are used to denote the value of the probability
and expected reward from a PCTL state and reward state
formula, respectively.

2.3. Formal verification with confidence intervals

Formal verification with confidence intervals [11] is a
mathematically based technique for the computation of

confidence intervals for nonfunctional properties of sys-
tems with stochastic behaviour. Given a parametric Markov
chain M = (S, s0,P, L) that models the behaviour of a
SUV, a PCTL formula P=?[·] or R=?[·] corresponding
to a nonfunctional property of the SUV, and a confidence
level α ∈ (0, 1), the technique computes an α confidence
interval for the property.

To perform this computation, the technique starts by
calculating confidence intervals for the parameters of the
Markov chain by using observations of the outgoing tran-
sitions from all states with unknown outgoing transition
probabilities. Assuming that Z ⊆ S is the subset of these
states, the required observations are provided by a func-
tion

O : Z × S → N (3)

that maps each pair of states (z, s) ∈ Z×S to the number
O(z, s) of times the transition from z to s has been ob-
served, within the given observation time. We note that
O(z, s) = 0 for the states s ∈ S for which no transition
from z to s was observed. This may be the case even when
such transitions are possible (e.g., because they correspond
to rare SUV events), and the potential lack of these ob-
servations is the very reason for using confidence intervals
instead of point estimates in the formal verification. Given
such observations, the confidence interval computation is
done in three stages. In the first stage, a confidence inter-
val is calculated for each parameter of the Markov chain.
In the next stage, parametric model checking is used to
obtain a closed-form expression (i.e., a mathematical ex-
pression containing only the basic arithmetic operators +,

−, × and /, and exponent, e.g., p1(1−p2)
2

1−p3p4

) for the non-

functional property.3 This expression is a rational func-
tion over the SUV parameters, and is a byproduct of the
technique exploited by our VERACITY approach. Finally,
in the third stage, the parameter confidence intervals and
the property expression are used to establish the confi-
dence interval for the nonfunctional property of interest.
For a detailed description of the technique and of a model
checker that implements it see [11] and [20], respectively.
This model checker supports non-nested PCTL properties
P=?[·], and all types of PCTL reward properties.

The number of available observations and the confi-
dence level α used by the technique influence the width of
the confidence interval. Thus, few observations and large
α values yield wide confidence intervals that may contain
the lower/upper bound that a nonfunctional requirement
specifies for the property. In this case, verifying whether
the requirement is satisfied or not is impossible, and addi-
tional observations need to be collected to allow the com-
putation of a narrower confidence interval that does not
contain the bound.

3Parametric model checking is supported by a growing number of
model checkers, including PARAM [27], PRISM [28], Storm [29] and
ePMC/fPMC [30, 31].

3

3. Motivating example

To motivate our VERACITY approach, we use a tele-
assistance service-based system (TAS) introduced in [32].
TAS aims to support a patient suffering from a chronic
condition in the comfort of their home by using: (i) a
set of vital-sign monitoring sensors mounted on a medical
device worn by the patient; and (ii) remote assistance ser-
vices offered by emergency, medical and pharmacy service
providers.

The workflow implemented by the TAS system is mod-
elled by the parametric Markov model from Figure 1.4

Periodically, the patient’s vital signs are measured by the
wearable device (a workflow step whose completion is mod-
elled by the Markov model transition from the initial state
s1 to state s2), and a third-party medical analysis service is
invoked to analyse them in conjunction with the patient’s
medical record (state s2). This invocation may succeed
(transition s2 → s4) or fail (transition s2 → s3). Depend-
ing on the results of this analysis (state s4), TAS may
confirm that the patient is fine (transition s4 → s9), may
invoke a pharmacy service to request the delivery of differ-
ent medication to the patient’s home (state s5, followed by
a transition to s9 if the invocation succeeds or to s7 other-
wise), or may invoke an alarm service (state s6, followed by
a transition to s9 if the invocation succeeds or to s8 other-
wise). The invocation of the alarm service is also triggered
when the patient presses a panic button on the wearable
device (modelled by the transition s1 → s6), and results
in a medical team being dispatched to provide emergency
assistance to the patient. Once the TAS system is done
with executing this workflow (state s9), it may return to
the state in which it awaits further requests (state s1) or
it may reach the end of its deployment (state s10, whose
self-loop of probability 1 shows that no further transition
to other Markov model states is possible). We assume that
the operational profile of the system is known (e.g., from
previous deployments) and is given by the probabilities
annotating the outgoing transitions from states s1, s4 and
s9 from Figure 1.

We suppose that a team of software engineers wants
to verify whether the third-party services they consider
for the implementation of the TAS system satisfy—at 95%
confidence level—the nonfunctional requirements from Ta-
ble 1. We assume that the three services are yet to be
tested, and therefore the success probabilities pma , pph
and pal for the medical analysis service, pharmacy ser-
vice and alarm service, respectively, are unknown contin-
uous variables, as specified in Definition 3. As such, the
Markov chain that the engineers can use to verify the TAS
requirements is parametric (Figure 1), and the three ser-
vices must be tested to observe how many of their exe-
cutions succeed and how many fail (e.g., by not finishing

4As described in [33, 34] and summarised in Appendix A, discrete-
time Markov models for software systems can be derived from estab-
lished software engineering models such as UML activity diagrams.

end

s10

1request

alarmFail

analysisFail

pharmacyFail

doneresult

alarm

analysis

pharmacy

s1

s2

s3

s4

s5

s6

s7

s8

s90.1

0.9

1−pma

pma

pph

1−pph

pal

1−pal

0.696

0.3

0.004

0.02

0.98

1

1

1

Figure 1: Parametric Markov chain modelling the TAS workflow
(adapted from [10])

in a timely manner). With these observations, the engi-
neers can use formal verification with confidence intervals
(cf. Section 2.3) to compute 95% confidence intervals for
the probabilities from the three TAS requirements, which
are formally expressed in PCTL in the last column from
Table 1. Furthermore, once enough observations are avail-
able, these confidence intervals will be sufficiently narrow
to ensure that the bounds from the requirements in Ta-
ble 1 (i.e., 0.26 for requirement R1, 0.04 for R2, and 0.0003
for R3) fall outside the intervals, allowing the engineers to
verify whether the requirements are satisfied or not.

However, under the realistic assumption that service
invocations take non-negligible time, the engineers will
want to complete this verification with as few invocations
(i.e., observations) of each service as possible. Minimising
this testing effort is particularly important when the ver-
ification needs to be performed at runtime, e.g., to find a
suitable replacement for a failed component of a system,
or when testing a system component has some other cost
associated with it (e.g., an invocation charge paid to the
provider of a service, or using battery energy on an embed-
ded system). Deciding how many observations to obtain
for each service in order to complete the verification of the
requirements with minimal testing effort is very challeng-
ing. Our VERACITY verification approach addresses this
challenge as described in the next section.

4. The VERACITY verification approach

4.1. Problem definition

The VERACITY verification approach is applicable to
systems comprising m > 1 components that can be tested
independently. We consider a component-based system
whose n ≥ 1 nonfunctional requirements are of the form

propi ▷◁i bound i, (4)

where, for all i ∈ {1, 2, . . . , n}, propi is a nonfunctional
system property (e.g., reliability or, through the use of
properties that compute the expected reward accumulated
to reach states that model the completion of operations,
response time), ▷◁i ∈ {<,≤,≥, >}, bound i ∈ R places

4

Table 1: Nonfunctional requirements for the TAS system

ID Requirement PCTL formula

R1 The probability that an alarm failure ever occurs during the lifetime of
the TAS system shall be below 0.26.

P<0.26[F alarmFail]

R2 The probability that the handling of a request by the TAS workflow
ends with a service failure shall be below 0.04.

P<0.04[¬done U serviceFail]

R3 The probability that an invocation of the medical analysis service is
followed by an alarm failure shall be below 0.0003.

P<0.0003[¬done U alarmFail{analysis}]†

†We adopt the extended PCTL syntax of the PRISM model checker [28] to specify that this PCTL formula should be

verified for the Markov chain state for which the atomic proposition analysis holds (i.e., state s2) instead of the initial

state s0, which is the default.

a constraint on the acceptable values of propi, and the
i-th requirement can be expressed as a PCTL formula
P▷◁iboundi

[·] or R▷◁iboundi
[·] over a parametric Markov

chain M = (S, s0,P, L). Given such a system, the ver-
ification problem addressed by VERACITY is to verify
whether the n nonfunctional requirements (4) are satisfied
at confidence level α ∈ (0, 1):

1. with minimum overall testing cost;
2. by using a (possibly empty) initial set of observations

given by an observation function O0 : Z × S → N

with the semantics from (3);
3. by obtaining additional observations through unit-

testing the m system components as required, where
each unit test of the j-th component: (i) generates
one additional observation of an outgoing transition
for every state in a non-empty set Zj ⊂ Z, such
that the state sets Z1, Z2, . . . , Zm are disjoint and
⋃m

j=1 Zj = Z; and (ii) has an associated cost costj ,
that may represent testing time, resources, price, or
a combination thereof.

Using the notation [li, ui] to denote the α-confidence in-
terval that can be computed for propi from (4) after ob-
taining n1, n2, . . . , nm additional observations for compo-
nent 1, 2, . . . ,m, respectively, the problem addressed by
VERACITY is to find n1, n2, . . . , nm ≥ 0 such that the
overall testing cost

m
∑

j=1

njcostj is minimised (5)

subject to

∀i = 1..n : (▷◁i∈ {<,≤} ∧ ui ▷◁i bound i)
∨ (▷◁i∈ {>,≥} ∧ li ▷◁i bound i)

(6)

or

∃i = 1..n : (▷◁i=< ∧ li≥bound i) ∨ (▷◁i= ≤ ∧ li>bound i)
∨ (▷◁i=> ∧ ui≤bound i) ∨ (▷◁i=≥ ∧ ui<bound i).

(7)
The constraints (6) and (7) correspond to the scenarios
where all requirements (4) are satisfied and where at least
one of requirements (4) is violated (meaning that the set
of requirements as a whole is violated), respectively.

Due to the epistemic uncertainty associated with this
verification problem and the stochastic nature of the com-
ponent-testing results, a strategy guaranteed to achieve
a minimum overall testing cost does not exist. We illus-
trate this limitation with an example. Consider a system
that uses two web services, A and B. This system imple-
ments a simple workflow: first, it invokes service A, which
is available with probability pA; next, it invokes service
B, which is available with probability pB ; next, it stops.
Suppose that we want to establish whether the probabil-
ity of successful invocation of both services is at least 0.9
(i.e., whether pApB ≥ 0.9) at confidence level α = 0.95.
If the two unknown probabilities are pA = 0 (i.e., service
A is never available) and pB = 0.95, then allocating all
the testing effort to unit-testing service A is the cheapest
strategy for establishing that the requirement is violated,
as this strategy will quickly show that pA cannot be large
enough for the requirement to be satisfied. Conversely,
if pA = 0.95 and pB = 0, unit-testing only service B is
the cheapest strategy. However, with no prior knowledge
about pA and pB , it is impossible to always choose the best
testing strategy. Therefore, our objective is to achieve an
overall testing cost that is, on average, significantly lower
than the cost associated with uniformly testing all com-
ponents. Furthermore, for practical reasons, we add the
constraint that the overall cost does not exceed a prede-
fined testing budget budget ∈ N.

Example 1. Consider the TAS system from our motivat-
ing example. Its n = 3 nonfunctional requirements R1–R3
from Table 1 are of the form in (4), are expressed as PCTL
formulae over the parametric Markov chain from Figure 1,
and need to be verified at confidence level α = 0.95. The
set of Markov chain states with unknown outgoing transi-
tion probabilities is Z = {s2, s5, s6}, and the (empty) ini-
tial set of observations is defined by the function O0(z, s) =
0 for any (z, s) ∈ Z × S. The system comprises m = 3
components that can be tested independently: the medi-
cal analysis service (component 1), the pharmacy service
(component 2) and the alarm service (component 3). Ad-
ditionally, invoking one of these services once provides an
additional observation of an outgoing transition for the
state in one of the disjoint sets Z1 = {s2}, Z2 = {s5} and
Z3 = {s6}, where Z1 ∪ Z2 ∪ Z3 = Z. Finally, to fully

5

cast the task of verifying requirements R1–R3 in the for-
mat from our problem definition, we assume that a testing
budget budget = 150000 is available to complete the ver-
ification, and that the per-invocation costs of testing the
three services are cost1 = 1, cost2 = 1 and cost3 = 2, e.g.,
based on the ratios between their mean execution times.
We chose a very large budget to ensure that the verifica-
tion completes without exhausting the budget; this may
be unacceptable in practice, in which case the verification
might terminate without a decisive result (e.g., if the ac-
tual values of some of the n nonfunctional properties are
extremely close to their associated bounds).

4.2. VERACITY verification process

To solve the problem from Section 4.1, VERACITY
employs the iterative verification process depicted in Fig-
ure 2. Each round (i.e., iteration) of this process comprises
the four steps described below.

In the first step, formal verification with confidence in-
tervals [11] is used to compute confidence intervals [l1, u1],
[l2, u2], . . . , [ln, un] at confidence level α and (as a byprod-
uct, as explained in Section 2.3) closed-form expressions
expr1, expr2, . . . , exprn for the n properties from the non-
functional requirements (4). The observations O used to
compute the n confidence intervals include the initial ob-
servations O0 and, starting with the second iteration, all
the additional observations O′ obtained in the previous it-
erations of the process. If the observation set O0 is empty,
then the confidence interval [li, ui] computed for the i-th
property in the first iteration is [0, 1] or [0,∞), depending
on whether the i-th requirement is of the form P▷◁iboundi

[·]
or R▷◁iboundi

[·].
In the second step, VERACITY checks whether the n

confidence intervals are sufficiently narrow for either con-
straint (6) or constraint (7) to hold. If either of these
conditions are met, the verification problem is solved, and
a verification result is produced. Otherwise, additional
observations are needed to complete the verification. Two
cases are possible in this situation. First, when the test-
ing budget was fully utilised in the previous VERACITY
rounds, the process terminates with an inconclusive ‘bud-
get exhausted’ result. Otherwise, testing budget is still
available, and the VERACITY adaptive uncertainty re-
duction heuristic detailed in Section 4.3 is used to calculate
the numbers of additional component observations nobs1,
nobs2, . . . , nobsm for the next round of the verification
process, where

m
∑

j=1

nobsjcostj ≈ rbudget (8)

and rbudget ∈ [0, budget] is a parameter of the VERAC-
ITY approach called the round budget.5 The heuristic is

5Equality cannot be always achieved in (8) because nobs1, nobs2,
. . . , nobsm must take non-negative integer values.

adaptive in the sense that these numbers of additional ob-
servations vary from round to round, as the heuristic takes
into account the actual observations from all the previous
rounds (and any initial observations that may be avail-
able). The maximum number of rounds for the verifi-
cation process is ⌈budget/rbudget⌉. Accordingly, larger
round budgets yield fewer rounds, and therefore less op-
portunity for adaptation but lower overheads (due to the
fewer rounds). In contrast, smaller round budgets lead to
more rounds, which offer more opportunity for adaptation
but also come with higher overheads.

In the third step of the VERACITY process, nobsj
tests of component j are carried out for j = 1..m. As
we will explain in Section 5, these tests can be fully auto-
mated, or can be performed by a software engineer when
requested by the VERACITY verification tool. The results
of these tests are then encoded as an observation function
O′ with the format from (3).

Finally, in the fourth and last step of VERACITY, the
new observations O′ are integrated with all the observa-
tions obtained in the previous rounds of the process and
the initial observations O0, and the combined set of all
available observations O is used in the next round of the
verification process.

Example 2. For the three requirements for the TAS sys-
tem from our motivating example, ▷◁1= ▷◁2= ▷◁3=<. Ac-
cordingly, the requirements will be verified as satisfied at
95% confidence level if the observations acquired over suc-
cessive rounds of the VERACITY verification process (and
within the available budget) lead to the calculation of 95%
confidence intervals ([li, ui])i=1..3 that satisfy u1 < bound1,
u2 < bound2 and u3 < bound3. If, on the other hand,
li ≥ bound i for any i ∈ {1, 2, 3} in one of the verification
rounds, the verification process will decide that require-
ment i is violated at 95% confidence level, and will termi-
nate in that round. Finally, if the testing budget is used
up before sufficient observations of the medical analysis,
pharmacy and alarm services are obtained to allow either
of these decisions to be made, the verification process will
terminate with a ‘budget exhausted’ outcome.

4.3. Adaptive uncertainty reduction heuristic

4.3.1. Desiderata

Before describing the VERACITY heuristic for parti-
tioning the round testing budget rbudget among them sys-
tem components, we present a set of desirable properties
(i.e., desiderata) that we propose for any such heuristic:

D1. The requirements already verified as satisfied in pre-
vious rounds should not influence the partition of
the round budget, as the uncertainty associated with
these requirements has already been lowered enough
to complete their verification.

D2. Reaching a resolution on requirements whose verifi-
cation requires additional data (i.e., on requirements
with bound i ∈ [li, ui]) that are likely to be violated

6

Additional

observations O′

1. Formal

verification with

confidence intervals

Confidence intervals

([li, ui])i=1..n
;

Property expressions

(expr i)i=1..n

3. Additional unit

testing of system

components

2. Interval checking

& adaptive

uncertainty

reduction heuristic

Confidence

level α

Verification

result

Budget

exhausted

Initial

observations O0

Available

observations O

4. Observation

integration

Component costs (costj)j=1..m

and state sets (Zj)j=1..mParametric Markov chain M ;

Nonfunctional requirements

(propi ⊲⊳i bound i)i=1..n

Testing budget ;

Round budget rbudget

Additional

testing plan

(nobsj)j=1..m

Figure 2: Iterative four-step process of the VERACITY quantitative verification with adaptive uncertainty reduction

Algorithm 1 Adaptive uncertainty reduction heuristic

1: functionNewObs(rbudget ,M , (propi ▷◁i bound i)i=1..n, ([li, ui])i=1..n, (expr i)i=1..n, (costj)j=1..m, (Zj)j=1..m,O, ϵ1, ϵ2)
2: U = {i ∈ 1..n | bound i ∈ [li, ui]} ▷ desideratum D1

3: if ∃i ∈ U : |bound i−Wrong(▷◁i, li, ui)|/|bound i−Right(▷◁i, li, ui)| < ϵ1 then ▷ desideratum D2

4: R ← {argmini∈U |bound i−Wrong(▷◁i, li, ui)|/|bound i−Right(▷◁i, li, ui)|}
5: else

6: R ← U
7: end if

8: paramEstimate ← EstimateParams(M,O)
9: (relevancej ← 0)j=1..m

10: for i ∈ R do

11: weight = (ui − li)/max{|bound i − (li + ui)/2|, ϵ2} ▷ desideratum D3

12: for j = 1 to m do

13: sensitivity ←
∑

p∈Params(M,Zj)

∣

∣

∣

∂expri(paramEstimate)
∂p

∣

∣

∣
▷ desideratum D4

14: relevancej ← relevancej + weight · sensitivity
15: end for

16: end for

17: for j = 1 to m do

18: nobsj ←
⌊

rbudget ·
relevancej∑

m
k=1

relevancek
· 1
costj

⌋

▷ desideratum D5

19: end for

20: return (nobs)j=1..m

21: end function

should be prioritised when the round budget is par-
titioned. This desideratum captures the fact that
verifying a requirement as violated ends the verifica-
tion process immediately. Such requirements can be
identified by noting that their bound i is very close
to the “wrong” end of the confidence interval [li, ui].
For instance, if bound i were much closer to li than
to ui, narrowing down the confidence interval [li, ui]
even slightly has a good chance (but is, of course,
not certain) of showing that requirement i is vio-
lated, and of terminating the verification process.

D3. If several requirements whose verification requires
additional data influence the partition of rbudget ,
those requirements whose bound i value is closer to

the middle of the confidence interval [li, ui] should
have a bigger influence. This desideratum reflects
the fact that the verification of such requirements is
particularly affected by epistemic uncertainty, as a
significant narrowing of their confidence intervals is
likely to be needed in order to decide whether they
are satisfied or violated.

D4. The rbudget fraction allocated to each component
should reflect the sensitivity of the properties prop1

to propn from (4) to the parameters of that compo-
nent. For instance, if the closed-form expression for
the i-th requirement is expr i = p1+0.01p2, where p1
and p2 are probabilities associated with components
C1 and C2, respectively, component C1 should be al-

7

located a larger rbudget fraction than C2 (all other
factors being equal).

D5. When the testing of different components is expected
to yield similar uncertainty reductions, the round
budget partition should prioritise the components
with lower testing costs: the value of a new obser-
vation of a component is given by the ratio between
the (expected) reduction in uncertainty brought by
the observation and the cost of that observation.

4.3.2. Algorithm

The numbers of new component observations nobs1,
nobs2, . . . , nobsm for each VERACITY verification round
are computed by function NewObs from Algorithm 1.
This function takes the following arguments (cf. Figure 2):

• the round testing budget rbudget ;

• the Markov chain M and the requirements (propi ▷◁i
bound i)i=1..n;

• the property confidence intervals ([li,ui])i=1..n and
expressions (expr i)i=1..n obtained in the previous step
of the round;

• the component testing costs (costj)j=1..m and associ-
ated state sets with unknown transition probabilities
(Zj)j=1..m;

• the observationsO available at the start of the round;

• the configuration parameters ϵ1, ϵ2 ∈ (0, 1), whose
role is described later in this section.

The algorithm has three parts. In the first part (lines 2–
7), it identifies the set of relevant requirements R that will
influence the partitioning of the round budget. Accord-
ing to desideratum D1, the set U of requirements whose
verification requires additional data is computed in line 2.
Next, the if statement in lines 3–7 checks if bound i of any
requirement from U is much closer (i.e., 1/ϵ1 times closer)
to the “wrong” end of the confidence interval [li, ui] than
to the “right” end, where:

• the “wrong” end of [li, ui] is the end beyond which
requirement i is violated, i.e., li if ▷◁i ∈{<,≤}, and
ui otherwise;

• the helper functions Wrong, Right return the re-
spective ends of [li, ui];

• ϵ1∈(0, 1) is a VERACITY configuration parameter.

As explained in desideratum D2, requirements with this
property are likely to be violated. Therefore, if any such
requirements exist, only the requirement most likely to
be violated is retained in the relevant requirement set R
(line 4). Otherwise, R is initialised to include all the
requirements whose verification requires additional data
(line 6).

The second part of the algorithm (lines 8–16) starts by
using the observationsO to calculate estimates for each un-
known transition probability (i.e., parameter) associated
with a state from Z =

⋃m
j=1 Zj (line 8). This calculation

is performed by the auxiliary function EstimateParams,
which estimates the unknown transition probabilities be-
tween each state z ∈ Z and each state s ∈ S using the ob-
served transition frequency O(z, s)/

∑

s′∈S O(z, s′). The
special case when

∑

s′∈S O(z, s′) = 0 for one or more states
z ∈ Z may be encountered in the first round, as we allow
an empty initial set of observations O0 (cf. Section 4.1).
In this case, which we do not show in Algorithm 1 in order
to keep the pseudocode simple, EstimateParams raises
an exception and the round budget is split uniformly be-
tween the components whose state sets Zj include states
with zero observations.

Next in this part of the algorithm, a component rele-
vance measure relevancej is first initialised in line 9, and
then updated with contributions corresponding to the rele-
vant requirements R by the for loop from lines 10–16. Each
such contribution is the product of two factors (line 14)
that correspond to desiderata D3 and D4, respectively:

• weight , a factor calculated as the ratio between the
width of the confidence interval [li, ui] and the dis-
tance between bound i and the middle of the interval
[li, ui] (line 11, where a small VERACITY configu-
ration parameter 0 < ϵ2 ≪ 1 is used to prevent a
division by zero);

• sensitivity , a measure of the sensitivity of expression
expr i to the epistemic uncertainty affecting the pa-
rameters of component j, calculated by summing the
absolute value of the partial derivatives of expr i with
respect to every parameter of component j (line 13),6

where the set of all such parameters is provided by
the auxiliary function Params, and the partial deriva-
tives are evaluated for the parameter values esti-
mated in line 8.

The third and final part of the algorithm (lines 17–19)
decides the number of new observations for each compo-
nent based on the relevance and testing cost of that compo-
nent. In accordance with desideratum D5, the number of
new observations for component j is calculated (in line 18)

by allocating to the component a fraction of
relevancej∑

m
k=1

relevancek

of rbudget , and dividing this “component budget” by costj .
To avoid ending with nobs1 = nobs2 = . . . = nobsm =

0, it is sufficient to use a round budget that satisfies the

6Our sensitivity measure resembles the Birnbaum’s measure of
component importance for multicomponent systems [35], which is
often used in fault tree analysis [36].

8

constraint rbudget ≥
∑m

j=1 costj because:

∀j = 1..m : nobsj = 0

=⇒ ∀j = 1..m : rbudget ·
relevancej∑

m
k=1

relevancek
< costj

=⇒
∑m

j=1

(

rbudget ·
relevancej∑

m
k=1

relevancek

)

<
∑m

j=1 costj

=⇒ rbudget <
∑m

j=1 costj .

To achieve good progress with the verification process,
rbudget should in fact be much larger (e.g., at least one
order the magnitude larger) than

∑m
j=1 costj in practice.

For improved readability, a couple of efficiency im-
provements are not included in Algorithm 1. In particular,
the function Params and the partial derivatives required
for factor sensitivity (line 13) can be precomputed once (in
the first round of the VERACITY verification process), as
the SUV parameters associated with a component do not
change; only the evaluations of the precomputed partial
derivatives need to be done in each round, for the new
paramEstimate from that round.

With these improvements in place, the complexity of
algorithm is O(mn), because of the two nested for loops
from lines 10–16 and 12–15, respectively. This is typically
negligible compared to the complexity of the formal veri-
fication with confidence intervals and the additional unit
testing from steps one and three of the VERACITY veri-
fication process, respectively.

Example 3. Figure 3 shows the difference between the
verification of the TAS nonfunctional requirements from
Table 1 using the VERACITY verification process from
Figure 2 with: (a) our adaptive uncertainty reduction
heuristic from Algorithm 1; and (b) our heuristic replaced
with a uniform splitting of the round testing budget among
the three system components. These results were obtained
assuming that the unknown probabilities from the Markov
chain in Figure 1 were pal = 0.94, pma = 0.99 and pph =
0.95, and using random number generators to synthesise
additional observations O′ based on these probabilities in
the additional unit testing step of the VERACITY veri-
fication process from Figure 2. The verification was per-
formed with a round budget rbudget = 5000, unlimited
overall testing budget , and the default values ϵ1 = 0.15
and ϵ2 = 10−6 for the two parameters of the VERACITY
heuristic from Algorithm 1.

The top three pairs of graphs from Figure 3 show the
95% confidence intervals ([li, ui])i=1..3 (depicted as vertical
lines) for the nonfunctional properties from the three TAS
requirements from Table 1. These confidence intervals be-
come narrower as additional observations are obtained in
each round of the verification process, until they are nar-
row enough to fit completely under the bound i threshold
(drawn as a horizontal line) from their associated require-
ment, i.e., until ui < bound i. As soon as this condi-
tion is met for a confidence interval [li, ui], that interval
is no longer calculated in subsequent verification rounds.
When the condition is met for all three confidence inter-
vals, the epistemic uncertainty was reduced sufficiently to

conclude that all requirements are satisfied, and the verifi-
cation process terminates successfully. As shown by these
graphs, VERACITY and the uniform uncertainty reduc-
tion method finish the verification of each requirement af-
ter a different number of verification rounds, and VERAC-
ITY completes the verification of the entire set of require-
ments with an overall testing cost of 55, 000 compared to
a 127% higher overall testing cost of 125, 000 for the ap-
proach based on uniform uncertainty reduction. We also
note in these graphs that the lower bounds of confidence
intervals are not always increasing and the upper bounds
of confidence intervals are not always decreasing from one
VERACITY iteration to the next. As explained in [11],
this is because the calculation of confidence intervals for
the multinomially distributed transition probabilities (and
therefore also for the properties) of Markov chains is con-
servative, so increasing the number of observations may
occasionally widen the confidence interval slightly. This
does not affect the validity of formal verification with con-
fidence intervals.

The bottom pair of graphs from Figure 3 shows the
cumulative testing cost per system component. When uni-
form uncertainty reduction is used, this cost is identical for
all components, and is growing linearly with the number
of verification rounds. In contrast, for the VERACITY
approach, the cumulative cost grows at different rates for
different components. Furthermore, the rate of growth for
any single component varies across verification rounds be-
cause VERACITY continually adapts its partitioning of
the round budget to the observations acquired in previous
rounds, and to the effect that these observations have on
confidence intervals ([li, ui])i=1..3.

5. Implementation

We implemented the VERACITY verification process
as a Java tool built on top of our FACT model checker [20].
The VERACITY tool takes as input: a parametric Markov
chain M expressed in the PRISM modelling language [28]
and annotated with the component costs (costj)j=1..m and

state sets (Zj)j=1..m, and with the initial observations O0;
a set of PCTL-encoded nonfunctional requirements; and a
confidence level α.

The overall testing budget and round testing budget
rbudget are specified via a configuration file. In addition,
this configuration file allows the user to optionally specify
a component testing script that the tool can execute with
the command

testing-script j nobsj

in order to obtain nobsj additional observations for compo-
nent j automatically in the third step of the VERACITY
verification process (cf. Figure 2). If provided, this script
needs to run nobsj unit-test against component j (e.g., by
invoking the appropriate third-party service for the TAS
system from our motivating example), and to return the

9

0.00

0.10

0.20

0.30

[l
1

,u
1

]

0.00

0.02

0.04

0.06

[l
2

,u
2

]

0.00

2.00

4.00

[l
3

,u
3

]

10
-4

0 1 2 3 4 5

budget 10
4

0.00

1.00

2.00

3.00

4.00

c
o

m
p

o
n

e
n

t
b

u
d

g
e

t

10
4

Alarm

Med. Analysis

Pharmacy

0.00

0.10

0.20

0.30

[l
1

,u
1

]

0.0

0.0

0.0

0.1

[l
2

,u
2

]

0.00

2.00

4.00

[l
3

,u
3

]

10
-4

0 1 2 3 4 5 6 7 8 9 10 11 12

budget 10
4

0.00

1.00

2.00

3.00

4.00

c
o

m
p

o
n

e
n

t
b

u
d

g
e

t

10
4

Alarm; Medical Analysis; Pharmacy

(a) VERACITY (b) uniform uncertainty reduction

Figure 3: Verification of the nonfunctional requirements for the TAS system from the motivating example using (a) VERACITY adaptive vs.
(b) uniform uncertainty reduction

nobsj observations from these tests as a list of numbers
of transitions from the states in Zj to other states of the
Markov chain M . Alternatively (i.e., if the testing script
is not provided), the tool asks the user to supply the re-
quired nobsj observations interactively at each round of
the verification process.

Our VERACITY tool uses the model checkers FACT [20]
and PRISM [28], as well as MATLAB7 to compute the con-
fidence intervals and property expressions in the first step
of its verification process. As such, the tool supports the
same fragment of PCTL as FACT, i.e., non-nested PCTL
properties P=?[·] and all types of PCTL reward prop-
erties (cf. Section 2.3). The tool is freely available from
our project website https://www.cs.york.ac.uk/tasp/

VERACITY, together with detailed instructions and all the
models, requirement sets, and results from this paper.

6. Evaluation

We evaluated VERACITY by performing an extensive
set of experiments aimed at answering the following re-
search questions (RQs).

7http://www.mathworks.co.uk/products/matlab

RQ1. Does VERACITY reduce the testing budget needed
to verify a set of nonfunctional requirements compared to
the baseline approach that partitions the testing budget of
each verification round equally among SUV components?

RQ2. How effective is VERACITY at reducing the test-
ing budget in scenarios where the SUV components have
different testing costs?

RQ3. What effect does adjusting the round budget have
on the VERACITY testing budget and verification time?

Answering research questions RQ1 and RQ2 required
the comparison of experimental data from the use of VE-
RACITY and of the baseline approach. We carried out
this comparison using established empirical methods from
software engineering [37, 38, 39, 40] as follows. We started
by applying the Shapiro-Wilk normality test, and estab-
lished (as detailed in Sections 6.2 and 6.3) that our exper-
imental data were not normally distributed. As such, we
used three non-parametric methods to compare the two
approaches:

1. We used the non-parametric Wilcoxon signed-rank
test (as recommended, for instance, in [37, 40]) to
assess whether VERACITY completes the verifica-

10

tion with a smaller testing budget than the baseline
approach.

2. We computed the probability of superiority for depen-
dent-groups [41] to evaluate the effect size associated
with the use of VERACITY—this is a robust non-
parametric measure of effect size recommended for
software engineering experiments [38]; and we gen-
erated scatter plots for the visual inspection of the
experimental data.

3. We calculated the difference in overall testing cost
between VERACITY and the baseline approach, and
we report the median value of these differences (where
a negative value indicates a reduction in cost). Ad-
ditionally, we plotted box plots (enabling the easy
visual examination) of the percentage difference be-
tween the testing budgets required by the two ap-
proaches. The systematic review from [37] confirms
that the comparison of the median values and the
use of box plots are non-parametric measures used
frequently for the analysis of software engineering
experiments.

In line with the established practice, we used the Shapiro-
Wilk test and the three non-parametric methods with the
following thresholds: a Shapiro-Wilk test p value below
0.05 as indicating non-normality; and a Wilcoxon signed-
rank test p value below 0.05, a probability of superiority
above 0.5 and a negative median difference to indicate that
VERACITY requires a lower testing budget than the base-
line approach.

To assess the generality of VERACITY, we report ex-
perimental results from two case studies in which VERAC-
ITY was applied to software systems from different do-
mains. The first case study was based on the TAS system
from our motivating example. In the second case study,
we applied VERACITY to the verification of an online
shopping web application. This system is introduced in
Section 6.1, followed by descriptions of the experiments
carried out to address the three research questions in Sec-
tions 6.2, 6.3 and 6.4, and by a discussion of threats to
validity in Section 6.5.

To enable the reproducibility of our results, we have
made all the models, properties and data from our ex-
periments available on the VERACITY project website
at https://www.cs.york.ac.uk/tasp/VERACITY, which
also presents a third case study that uses VERACITY for
a model with more complex parametric probability distri-
butions, and a fourth case study that applies VERACITY
to a larger, 18-parameter model.

6.1. Online shopping web application

The system we used for the second case study is an on-
line shopping application adapted from [42]. We modelled
the shopping process implemented by this application us-
ing a parametric Markov chain that comprises a combina-
tion of known and unknown transition probabilities. The
known transition probabilities correspond to application

s15

s11

s12

s13

s14 s16s5

s6

s7

s8

s9

s1

s0 s2

s3

s4 s10

login

pa

1−pa

.35

.65

1

1

1

1

1

1
1

1

pa

1−pa

logout

newCustomer

retCustomer

search

search addItem

addItem

pay

fastShipping

stdShipping

payFail,
done 1

fastShipFail,
done

stdShipFail,
done

authFail,
doneretrieve

pfs

pss

1−pfs

1−pss

pp

1−pp

.2
.5

.3

.15
.6

.25

1

1

success,
done

1 1

1

Figure 4: Parametric Markov chain modelling the online shopping
application. To enable the verification of requirement R3 from Ta-
ble 2, the model is augmented with a reward structure that “counts”
the uses of new components; this reward structure associates a re-
ward ρ(s0) = ρ(s10) = ρ(s11) = ρ(s12) = ρ(s14) = 1 with each
state associated with the use of a new component (as shown in small
squares next to these states) and zero rewards with the other states
and with all state transitions of the Markov chain.

components that have been in use for a long time, and for
which the values of these probabilities can be determined
from application logs. In contrast, the unknown transition
probabilities correspond to new versions of several compo-
nents that the online shopping company’s developers have
re-implemented and want to evaluate through A/B testing.

A/B testing [43, 44, 45] is a method for testing a new
online-application feature, or a new implementation of an
existing feature. Frequently used by leading companies like
Amazon, Facebook, Google and Microsoft, the method in-
volves splitting the users of a web application into two sets,
such that one set of users is given access to a version of
the application that includes the new feature (or the new
implementation of a feature), while the other set contin-
ues to use the standard version of the application. In this
way, A/B testing allows companies to evaluate new fea-
tures and components, and to decide whether they should
be included in their online applications or not. In our case
study, we use A/B testing to motivate the scenario where
a system has two different versions, such that one is well
known in its behaviour and the other is still open to ex-
perimentation.

For our case study, we assume that the engineers want
to verify whether the nonfunctional requirements from Ta-
ble 2 would be satisfied if four application components
were to be replaced with new variants of those compo-
nents. Furthermore, we assume that in order to limit the
disruption of the user experience that may occur if these
requirements are in fact violated, the company wants to
perform this verification with as little A/B testing of each
of the four new component implementations as possible.

The parametric Markov chain modelling the opera-
tion of the online shopping application is shown in Fig-
ure 4. In the initial state (s0) a customer attempts to
login. We assume that the authentication web page is
one of the components for which a new implementation
needs to be tested, and therefore the probability that the
customer can follow the authentication instructions and

11

Table 2: Nonfunctional requirements for the online shopping application

ID Requirement PCTL formula

R1 The probability that customers complete the shopping process successfully shall be above bound1. P>bound1
[F success]

R2 The probability that the authentication component fails shall be below bound2. P<bound2
[F authFail]

R3 The average number of uses of new components per shopping session† shall exceed bound3. R>bound3
[F done]

†This is a measure of how far the application users progress with the shopping process before giving up or encountering a component failure.

succeeds to login, denoted pa , is unknown. If the au-
thentication succeeds (state s2), the customer is identified
either as a returning customer (whose settings from the
previous shopping session are restored, state s1) or as a
new customer (for whom default settings are used, state
s3). In both cases, the customer searches for items to pur-
chase (states s4/s6) and adds them to the shopping basket
(states s7/s9), until eventually all the required items are
in the shopping basket and the customer moves to check-
out where they select between two shipping options: fast
shipping (state s10) or standard shipping (state s12). We
assume that the probabilities of the incoming transitions
into states s1, s3, s4, s6, s7, s9, s10 and s12 are known
(from the previous use of the web application) and have
the values from Figure 4.

However, we assume that the web application compo-
nents for selecting the two shipping options have been re-
implemented, and therefore the probabilities pfs and pss
that the customer manages to use them successfully and
to reach the payment state s11 are unknown. Likewise,
we consider that a new version of the payment component
has been implemented, and that the probability pp that
the customer manages to use it successfully (and to move
to the logout state s14) is unknown. Finally, we assume
that the logout involves the use of the same new authen-
tication component that was used for login, and therefore
its (unknown) probability of succeeding is pa.

6.2. Research question RQ1

For each of the two systems used in our evaluation,
we synthesised and examined a broad range of simulated
scenarios (assuming unit component testing costs cost1 =
cost2 = . . . = costm = 1). In these scenarios, each param-
eter of the Markov chain M from Figure 2 was given a de-
terministic value (drawn randomly from the interval [0, 1])
and test outcomes were sampled accordingly. Likewise,
the bounds from the nonfunctional requirements (4) were
given fixed values drawn randomly from the interval [0, 1].
We synthesised a sufficiently large number of scenarios to
ensure that the impact of stochasticity in the experiments
is low, and that the evaluation covered a combination of:

1. scenarios in which all requirements were satisfied:
(i) by a narrow margin, i.e., the actual values of the
properties from the nonfunctional requirements (4)
were close to their associated bounds; (ii) by a wide
margin; and (iii) some by a narrow margin and the
others by a wide margin;

2. scenarios in which some of the requirements were
satisfied and the remaining requirements were vio-
lated by: (i) a narrow margin; (ii) a wide margin;
and (iii) some by a narrow margin and the others by
a wide margin;

3. scenarios in which all requirements were violated by:
(i) a narrow margin; (ii) a wide margin; and (iii) some
by a narrow margin and the others by a wide margin.

In all the experiments, we used the VERACITY tool
in conjunction with a simulated component-testing script
with the characteristics described in Section 5. This script
emulated the outcome of unit testing the SUV components
by using a separate Java pseudorandom number generator
for each component. To avoid any bias in the comparison
of VERACITY with the baseline approach mentioned in
research question RQ1, we used the same pseudorandom
number generator seeds in the corresponding experiments
for the two approaches.

Case Study 1 (TAS). For the TAS system, we carried
out experiments that examined the effectiveness of VE-
RACITY for a set of 33 scenarios that were randomly
generated as described at the beginning of this section.
For each of these scenarios, the verification of the TAS
nonfunctional requirements was carried out at three con-
fidence levels: α = 0.90, α = 0.95 and α = 0.99. Finally,
to answer research question RQ1, two experiments were
performed for each scenario and each confidence level α:
one in which we used the VERACITY uncertainty reduc-
tion heuristic, and one in which we used the baseline ap-
proach that partitions the testing budget of each verifica-
tion round equally among the TAS components. In total,
we performed 198 verification experiments, corresponding
to 33 scenarios × 3 confidence levels × 2 uncertainty re-
duction methods.

The Shapiro-Wilk normality test showed that the 33 ex-
perimental data points are not normally distributed for
any of the six combinations of uncertainty reduction method
and confidence level (p = 1.73×10−7, p = 1.91×10−7 and
p = 2.31×10−6 for VERACITY with α = 0.90, α = 0.95
and α = 0.99, respectively; and p = 5.09×10−6, p = 4.89×
10−8 and p = 3.03×10−6 for the baseline method with
α = 0.90, α = 0.95 and α = 0.99, respectively). There-
fore, we compared the VERACITY and baseline outcomes
by using the three non-parametric methods mentioned at
the beginning of Section 6, obtaining the following results,
all of which confirm the superiority of VERACITY over
the baseline approach:

12

0 250 500 750 1000 1250 1500 1750

VERACITY Budget (103)

0

250

500

750

1000

1250

1500

1750

U
n
if
or
m

B
u
d
ge
t
(1
03
)

0 250
0

250

0 500 1000 1500 2000 2500

VERACITY Budget (103)

0

500

1000

1500

2000

2500

U
n
if
or
m

B
u
d
ge
t
(1
03
)

0 250
0

250

0 1000 2000 3000 4000

VERACITY Budget (103)

0

1000

2000

3000

4000

U
n
if
or
m

B
u
d
ge
t
(1
03
)

0 250
0

250

(a) α = 0.90 (b) α = 0.95 (c) α = 0.99

Figure 5: [RQ1:TAS] Testing budgets required to complete the verification of the TAS nonfunctional requirements using the VERACITY and
the uniform methods for partitioning the testing round budget among the components of the TAS system. The wide range of budgets required
to complete the verification process for different scenarios reflects the variety of these scenarios: in some scenarios, the TAS requirements
are satisfied or violated by a wide margin (so less testing is needed, as shown by the inset diagrams), whereas in others some or all of the
requirements are satisfied or violated by a narrow margin (so much more testing is needed).

alpha=0.90

-50

0

50

100

150

200

250

300

350

%
 a

d
d

it
io

n
a

l
te

s
ti
n

g
 b

u
d

g
e

t

alpha=0.95

-50

0

50

100

150

200

250

300

350

%
 a

d
d

it
io

n
a

l
te

s
ti
n

g
 b

u
d

g
e

t

alpha=0.99

-50

0

50

100

150

200

250

300

350

%
 a

d
d

it
io

n
a

l
te

s
ti
n

g
 b

u
d

g
e

t

Figure 6: [RQ1:TAS] Additional testing budget required to com-
plete the verification of the TAS nonfunctional requirements when
the round budget is partitioned using the uniform method instead
of the VERACITY method. To ensure readability, the upper part of
the boxplots is truncated, meaning that the outliers at 404%, 1200%
and 18150% (for α = 0.90), and at 4252% and 6900% (for α = 0.95)
are not shown. No outliers exist below the bottom whisker of any of
the boxplots.

1. for α = 0.90, Wilcoxon p = 0.003, probability of
superiority 0.697, and median difference −1988;

2. for α = 0.95, Wilcoxon p = 0.000, probability of
superiority 0.788, and median difference −25957;

3. for α = 0.99, Wilcoxon p = 0.000, probability of
superiority 0.848, and median difference −25902.

As mentioned at the beginning of Section 6, we also pro-
vide scatter plots and box plots enabling the visual inspec-
tion of the experimental data (Figures 5 and 6).

These results show that VERACITY outperforms the
baseline method by completing the verification process
with smaller testing budgets for a great majority of the sce-
narios and at all confidence levels. In a few scenarios, the
baseline method performs better than VERACITY (typi-
cally only marginally better). This is expected given the
stochastic nature of the verified system, and the fact that
the verification starts with no knowledge about the be-
haviour of the three TAS components. Finally, in a small
number of additional scenarios, VERACITY achieves only

modest testing cost savings. This is also expected, as the
best way to reduce epistemic uncertainty in some verifi-
cation scenarios is to partition the round testing budget
approximately equally among the tested system compo-
nents, and our approach manages to do this well.

The experimental results show that the testing budget
reductions enabled by VERACITY are particularly signif-
icant when the verification is carried out at higher con-
fidence levels. This is extremely useful for two reasons.
First, in real-world scenarios, the nonfunctional require-
ments of software systems should be verified with high
levels of confidence (α = 0.99 or even higher, as in e.g.
medicine); deploying a system whose requirements were
only verified at a low confidence level introduces signifi-
cant risks. Second, the testing budget needed to complete
the verification increases with the confidence level α, as
the epistemic uncertainty needs to be reduced much more
in order to make decisions with higher confidence. This
increase of the required testing budget for larger α values
is clearly visible in the scales of the graphs from Figure 5.
As such, the scenarios in which VERACITY reduces the
cost of testing the most are: (i) of particular practical im-
portance; and (ii) characterised by high testing costs, so
the cost reductions achieved by our uncertainty reduction
method are especially beneficial.

Case Study 2 (Online shopping web application). To assess
the effectiveness of VERACITY for the online shopping
web application (WebApp), we performed a similar suite
of experiments to those described for the TAS case study.
This time, we examined the ability of VERACITY to re-
duce testing costs compared to the baseline uncertainty
reduction method for the verification of 30 randomly gen-
erated scenarios. In each of the 30 scenarios, the verifica-
tion of the WebApp requirements was carried out at three
confidence levels (α = 0.90, α = 0.95 and α = 0.99), for
both the VERACITY and the uniform uncertainty reduc-

13

tion methods, giving a total of 180 experiments.
The 30 experimental data points are not normally dis-

tributed for any combination of uncertainty reduction method
and confidence level (Shapiro-Wilk test p = 6.35 × 10−7,
p = 9.30 × 10−6, and p = 1.44 × 10−6 for VERACITY
with α = 0.90, α = 0.95 and α = 0.99, respectively; and
p = 1.30 ×10−8, p = 3.41× 10−7, and p = 2.33× 10−7 for
the baseline method with α = 0.90, α = 0.95 and α = 0.99,
respectively). TheWilcox signed-rank test, the probability
of superiority measure, and the median difference all in-
dicate that VERACITY outperforms the baseline method
for every confidence level:

• for α = 0.90, Wilcoxon p = 0.001, probability of
superiority 0.800, and median difference −5000;

• for α = 0.95, Wilcoxon p = 0.002, probability of
superiority 0.733, and median difference −10000;

• for α = 0.99, Wilcoxon p = 0.018, probability of
superiority 0.700, and median difference −11000;

Figures 7 and 8 summarise the results of these exper-
iments. As for the TAS system, VERACITY successfully
reduces the testing budget required to complete the veri-
fication of the nonfunctional requirements, across a wide
range of testing budget needs (where small testing budgets
are needed when the requirements are satisfied or violated
by a wide margin, and large budgets when some or all of
the requirements are narrowly satisfied/violated). In the
small number of scenarios where the uniform round bud-
get partitioning method achieves better results, the overall
testing budget is small, and the VERACITY-based verifi-
cation is typically only marginally more expensive. Again,
many significant budget reductions occur when (i) the
baseline method budget is high and (ii) the requirements
are verified at higher confidence levels. For instance, all
of the baseline method budgets above 400,000 from Fig-
ure 7 (one for α = 0.90, four for α = 0.95, and three for
α = 0.99) are at least halved by VERACITY.

Discussion. VERACITY is a heuristic whose behaviour
depends on the configuration parameters ϵ1 and ϵ2 from
Algorithm 1, on the configuration of the formal verifica-
tion with confidence intervals step from Figure 2, and on
the stochasticity of its component testing outcomes. As
such, it is expected that VERACITY cannot always out-
perform the baseline method, just like a superior medical
treatment is unfortunately not always outperforming an
inferior treatment. Therefore, we used established analy-
ses methods from the software engineering domain to eval-
uate VERACITY, and the results of these analyses show
its superiority over the baseline method. Additionally, our
examination of scenarios in which VERACITY used larger
testing budgets than the baseline method revealed that
these were typically scenarios in which:

• the uniform budget partitioning used by the base-
line method was the (nearly) optimal option, so the

best VERACITY could have achieved was to match
the performance of the baseline method—but this
would have required perfectly chosen values for the
VERACITY configuration parameters;

• the stochastic effects of the component testing re-
quired for the verification had an adverse effect on
VERACITY;

• calibrating the values of the VERACITY configura-
tion parameters (instead of using their default val-
ues) can improve the performance of our method;

• a combination of the previous three factors was at
play.

The influence of such factors is unavoidable for software
engineering methods that employ heuristics, and—given
the positive results of the analyses presented earlier in this
section and in the rest of our evaluation—it does not affect
the usefulness of VERACITY.

6.3. Research question RQ2

Experiments similar to those from Section 6.2 (but fo-
cusing on varying the component testing costs) were car-
ried out to evaluate the ability of VERACITY to handle
the practical situations where the costs of testing different
components of a system are different. One situation when
this is likely to be true is, for instance, when these costs
represent the times required for the regression testing of
a software system with several modified components [46].
Another situation when this may apply is for testing dif-
ferent web services at runtime, when a limited overall time
(i.e., testing budget) is available to verify whether using
these services as part of a service-based system like TAS
satisfies a set of nonfunctional requirements [3]. This is
also likely to be true for the A/B testing of new features
of an online application [43, 44, 45] like the shopping appli-
cation from Section 6.1, where these costs may represent
the different (expected) business impact of each of the new
features not working as intended.

To evaluate the usefulness of VERACITY in such sit-
uations, we repeated all the experiments from Section 6.2
assuming different testing costs for the components of the
TAS and WebApp systems from our two case studies. To
this end, we took each of the 33 TAS verification scenar-
ios and of the 30 WebApp verification scenarios, and we
assigned randomly generated testing costs in the interval
[1, 5] to the three TAS components and the four WebApp
components, respectively.

The Shapiro-Wilk test indicated that the experimental
results were not normally distributed: p = 1.15 × 10−7,
p = 7.64 × 10−7, and p = 6.58 × 10−7 for VERACITY
applied to TAS at α = 0.90, α = 0.95 and α = 0.99;
p = 7.35 ×10−7, p = 1.23 × 10−6, and p = 1.99 × 10−6

for VERACITY applied to WebApp at α = 0.90, α = 0.95
and α = 0.99; p = 5.51 × 10−7, p = 2.97 × 10−6 and
p = 3.98 × 10−6 for the baseline method applied to TAS

14

0 200 400 600 800 1000

VERACITY Budget (103)

0

200

400

600

800

1000

U
n
if
or
m

B
u
d
ge
t
(1
03
)

0 250
0

250

0 200 400 600 800

VERACITY Budget (103)

0

200

400

600

800

U
n
if
or
m

B
u
d
ge
t
(1
03
)

0 250
0

250

0 200 400 600 800 1000 1200

VERACITY Budget (103)

0

200

400

600

800

1000

1200

U
n
if
or
m

B
u
d
ge
t
(1
03
)

0 250
0

250

(a) α = 0.90 (b) α = 0.95 (c) α = 0.99

Figure 7: [RQ1:WebApp] Testing budgets required to complete the verification of the WebApp nonfunctional requirements using the VE-
RACITY and the uniform methods for partitioning the testing round budget among the components of the online shopping system.

alpha=0.90

-50

0

50

100

150

200

250

300

%
 a

d
d

it
io

n
a

l
te

s
ti
n

g
 b

u
d

g
e

t

alpha=0.95

-50

0

50

100

150

200

250

300

%
 a

d
d

it
io

n
a

l
te

s
ti
n

g
 b

u
d

g
e

t

alpha=0.99

-50

0

50

100

150

200

250

300

%
 a

d
d

it
io

n
a

l
te

s
ti
n

g
 b

u
d

g
e

t

Figure 8: [RQ1:WebApp] Additional testing budget required to com-
plete the verification of the WebApp nonfunctional requirements
when the round budget is partitioned using the uniform method in-
stead of the VERACITY method. To ensure readability, the upper
part of the boxplots is truncated at 300%, meaning that the outliers
at 616% and 1344% (for α = 0.90) are not shown. No outliers exist
below the bottom whisker of any of the boxplots.

at α = 0.90, α = 0.95 and α = 0.99; and p = 6.23× 10−7,
p = 6.06 × 10−7 and p = 1.87 × 10−6 for the baseline
method applied to WebApp at α = 0.90, α = 0.95 and
α = 0.99. We therefore applied the three non-parametric
analysis methods, obtaining the following results for the
TAS experiments:

• for α = 0.90, Wilcoxon p = 0.001, probability of
superiority 0.818, and median difference −29973;

• for α = 0.95, Wilcoxon p = 0.002, probability of
superiority 0.758, and median difference −19985;

• for α = 0.99, Wilcoxon p = 0.000, probability of
superiority 0.970, and median difference −639617,

and the results below for the WebApp experiments:

• for α = 0.90, Wilcoxon p=0.024, probability of su-
periority 0.700, and median difference −4000;

• for α = 0.95, Wilcoxon p = 0.002, probability of
superiority 0.767, and median difference −19000;

• for α = 0.99, Wilcoxon p = 0.001, probability of
superiority 0.733, and median difference −59000.

These results indicate the superiority of VERACITY over
the baseline approach, at all confidence levels and for both
TAS and WebApp.

The testing budgets required to complete the verifica-
tion process using the VERACITY and the baseline round-
budget partitioning methods in these scenarios with dif-
ferent component testing costs are compared in Figures 9
and 10. As in the scenarios with the same testing costs
for all components, our VERACITY verification approach
outperforms the baseline verification approach in the ma-
jority of the examined scenarios, often by a large mar-
gin. As shown in Figure 10, this margin increases as α
increases. This increase is particularly significant for the
TAS system, where the median additional testing bud-
get required by the baseline verification approach grows
from 33% at α = 0.90 to 42% at α = 0.95, and 335%
at α = 0.99. This growth is less pronounced but still
present for the WebApp system, where the median addi-
tional testing budget increases from 16% at α = 0.90 to
26% at α = 0.95, and 38% at α = 0.99.

In the small number of scenarios where the baseline ap-
proach completes the verification within a smaller testing
budget, the difference between this approach and VERAC-
ITY is typically modest, and/or occurs for scenarios where
both approaches perform the verification with relatively
small overall testing budgets.

6.4. Research question RQ3
The round testing budget rbudget is a key parameter of

VERACITY. Large rbudget values are undesirable because
they lead to all the component observations needed to com-
plete the verification of the nonfunctional requirements
being acquired in a small number of verification rounds.
This gives VERACITY limited opportunity to meaning-
fully adapt its partitioning of the round budget to the sys-
tem and requirements being verified. Small rbudget val-
ues are equally undesirable because they yield only a few
additional observations in each round. As such, they pro-
vide insufficient information to properly guide the round-
budget partitioning in the early verification rounds, and

15

0 1 2 3 4 5

VERACITY Budget (106)

0

1

2

3

4

5

U
n
if
or
m

B
u
d
ge
t
(1
06
)

0 1
0

1

0 2 4 6 8

VERACITY Budget (106)

0

2

4

6

8

U
n
if
or
m

B
u
d
ge
t
(1
06
)

0 1
0

1

0 2 4 6 8 10 12 14

VERACITY Budget (106)

0

2

4

6

8

10

12

14

U
n
if
or
m

B
u
d
ge
t
(1
06
)

0 1
0

1

(a) TAS, α = 0.90 (b) TAS, α = 0.95 (c) TAS, α = 0.99

0 250 500 750 1000 1250 1500

VERACITY Budget (103)

0

250

500

750

1000

1250

1500

U
n
if
or
m

B
u
d
ge
t
(1
03
)

0 250
0

250

0 500 1000 1500 2000 2500 3000

VERACITY Budget (103)

0

500

1000

1500

2000

2500

3000

U
n
if
or
m

B
u
d
ge
t
(1
03
)

0 250
0

250

0 1000 2000 3000 4000 5000

VERACITY Budget (103)

0

1000

2000

3000

4000

5000

U
n
if
or
m

B
u
d
ge
t
(1
03
)

0 250
0

250

(d) WebApp, α = 0.90 (e) WebApp, α = 0.95 (f) WebApp, α = 0.99

Figure 9: [RQ2] Testing budgets required to complete the verification process using the VERACITY and the uniform methods for partitioning
the testing round budget among the components of the TAS and WebApp systems.

TAS, alpha=0.90

0

200

400

600

800

1000

1200

%
 a

d
d

it
io

n
a

l
te

s
ti
n

g
 b

u
d

g
e

t

TAS, alpha=0.95

0

200

400

600

800

1000

1200

%
 a

d
d

it
io

n
a

l
te

s
ti
n

g
 b

u
d

g
e

t

TAS, alpha=0.99

0

200

400

600

800

1000

1200

%
 a

d
d

it
io

n
a

l
te

s
ti
n

g
 b

u
d

g
e

t

WebApp, alpha=0.90

-50

0

50

100

150

200

250

300

%
 a

d
d

it
io

n
a

l
te

s
ti
n

g
 b

u
d

g
e

t

WebApp, alpha=0.95

-50

0

50

100

150

200

250

300

%
 a

d
d

it
io

n
a

l
te

s
ti
n

g
 b

u
d

g
e

t

WebApp, alpha=0.99

-50

0

50

100

150

200

250

300

%
 a

d
d

it
io

n
a

l
te

s
ti
n

g
 b

u
d

g
e

t

Figure 10: [RQ2] Additional testing budget required to complete
the verification of the TAS and WebApp nonfunctional requirements
when the round budget is partitioned using the uniform method in-
stead of the VERACITY method. To ensure readability, the upper
part of the TAS boxplots is truncated at 1200%, meaning that two
TAS outliers at 12950% (for α = 0.90) and at 1984% (for α = 0.99)
are not shown. No other hidden outliers exist for any of the boxplots.

lead to large numbers of verification rounds, which can be
computationally expensive because of the formal verifica-
tion with confidence intervals step of VERACITY.

To analyse these effects of rbudget , we randomly se-
lected five of the TAS verification scenarios and five of the
WebApp verification scenarios from Section 6.2, and we
used VERACITY to verify the nonfunctional requirements
of the two systems for each round budget value in the set
RB = {1250, 2500, 5000, 10000, 20000, 40000, 80000}. The
experimental results are presented in Figure 11. First, the
graph from Figure 11(a) shows the number of verification
rounds required when the verification was carried out using
each of the round budgets from RB . The dashed line from
this graph shows what the “ideal” effect of increasing the
round budget would look like, i.e., a halving of the number
of verification rounds each time when rbudget is doubled,
from the baseline of 100% for rbudget = 1250 to 50% of
that baseline for rbudget = 2500, 25% for rbudget = 5000,
etc. In reality, the number of verification rounds is in-
creasingly above the ideal value as rbudget grows, until
it is above this ideal value for all 10 verification scenar-
ios both for rbudget = 40000 and for rbudget = 80000.
This indicates that very large rbudget values increase the
overall testing budgets required by VERACITY—a find-

16

1250 2500 5000 10000 20000 40000 80000

round budget

0

10

20

30

40

50

60

70

80

90

100

%
 m

a
x
 o

v
e

ra
ll

te
s
ti
n

g
 b

u
d

g
e

t

1250 2500 5000 10000 20000 40000 80000

round budget

1

2

4

6

8
10

20

40

60

80
100

v
e

ri
f.

 r
o

u
n

d
s
 (

%
 o

f
ro

u
n

d
s
 f

o
r

rb
u

d
g

e
t=

1
2

5
0

)

(a) (b)

Figure 11: [RQ3] Effect of varying the VERACITY round budget on (a) the number of verification rounds; and (b) a normalised measure of
the overall testing budget (see main text for details). The plots show mean values and ranges over 10 randomly selected verification scenarios
with unit component testing costs cost1 = cost2 = . . . = costm = 1.

ing that is further confirmed by Figure 11(b), which shows
how the overall testing budget necessary to complete the
verification grows with rbudget .

To summarise the very different overall testing budgets
required for our 10 randomly selected verification scenar-
ios in a consistent way, Figure 11(b) considers the over-
all testing budgets b1, b2, . . . , b7 associated with each
verification scenario and the seven rbudget values from
RB , finds bmax = max{b1, b2, . . . , b7}, and computes the
percentages of bmax that b1, b2, . . . , b7 correspond to,
i.e., pb1 = 100b1/bmax, pb2 = 100b2/bmax, . . . , pb7 =
100b7/bmax. These “normalised” budgets show the round
budget for which VERACITY requires the highest over-
all testing budget (e.g., pb7 = 100 means that the highest
overall testing budget is needed when rbudget = 80000),
and how the testing budgets for other rbudget values com-
pare to that (e.g., pb1 = 75 means that the overall testing
budget for rbudget = 1250 is 75% of the highest over-
all testing budget). Figure 11(b) shows how the mean of
these normalised budgets increases from pb1 = 75.5% for
rbudget = 1250 to pb7 = 97% for rbudget = 80000. The
variability of the budget values is very large across the
10 verification scenarios from our experiments, except for
the largest round budget rbudget = 80000, which indicates
that this round budget is consistently too large across the
majority of the scenarios.

While the effects of using very large rbuget values are
clear in Figure 11, noticing the effects of small rbuget val-
ues requires a more careful analysis of the experimental
results. A first observation we can make is that the exper-
iments with the smallest rbudget values of 1250, 2500 and
5000 used the largest number of verification rounds (as
expected, see Figure 11a) without delivering smaller mean
overall testing budgets than the experiments for rbudget =
10000 (see Figure 11b). In fact, the numerical results show
a very slight decrease in the mean overall testing budgets

from 75.7% for rbudget = 1250 to 75.5% for rbudget =
2500, 75.47% for rbudget = 5000 and 75.05% for rbudget =
10000. Thus, Figure 11b illustrates the first undesirable
effect of using small rbudget values, namely an increase in
the cost of the component testing without enabling VE-
RACITY to adapt its partition of the round budget more
effectively.

The second undesirable effect of using small rbudget
values is visible in Figure 12, which depicts the end-to-end
verification times for each of the five TAS verification sce-
narios and each of the five WebApp verification scenarios
we used for the experiments described in this section. As
shown by the logarithmic-scale graphs from this figure, the
VERACITY execution times approximately double each
time the round budget is halved from rbudget = 10000
to rbudget = 5000, to rbudget = 2500 and, finally, to
rbudget = 1250. Even when VERACITY is used at de-
sign time and execution times of close to 30 minutes (for
rbudget = 1250) are acceptable, the results from Fig-
ure 11b show that such long execution times yield no bene-
fit, so very small rbudget are not recommended. As a side
comment, we note that the VERACITY execution time
does not always decrease monotonically in Figure 12b.
This is due to variations in the computation time required
to calculate the confidence intervals in step 1 of the VE-
RACITY verification process (cf. Figure 2), to the stochas-
ticity of the observations from the component testing per-
formed in step 3 of this process, etc.

6.5. Threats to validity

Construct validity threats may arise due to assump-
tions made when modelling the systems from our case
studies. To mitigate these threats, we used models and
nonfunctional requirements based on established case stud-
ies from the research literature [3, 32, 42].

17

1250 2500 5000 10000 20000 40000 80000

round budget

50

100

200

400

600

800

1000

1200
1400
1600

e
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

1250 2500 5000 10000 20000 40000 80000

round budget

50

100

200

400

600

800

1000

1200
1400
1600

e
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

(a) TAS (b) WebApp

Figure 12: [RQ3] Effect of varying the round budget on the VERACITY execution time (experiments carried out on a c5.2xlarge Windows
Server 2019 Amazon EC2 instance with 3.00GHz Intel(R) Xeon(R) Platinum 8124M CPU, and 16 GB of memory assuming unit component
testing costs cost1 = cost2 = . . . = costm = 1).

Internal validity threats may be caused by bias in es-
tablishing cause-effect relationships in our experiments.
To limit these threats, we assessed VERACITY for large
numbers of verification scenarios with randomly gener-
ated nonfunctional requirements bounds for each research
question and each case study: 378 verification scenarios
for research question RQ1, 378 verification scenarios for
RQ2, and 70 verification scenarios for RQ3. Furthermore,
as explained at the beginning of Section 6.2, we ensured
that these experiments included scenarios where the re-
quirements were satisfied, where they were violated, and
where some requirements were satisfied and others were
violated—both by a wide margin and by a narrow margin.
Finally, we enable replication by making all experimental
results available on our project’s website.

External validity threats may exist if the verification
of the nonfunctional requirements of other software sys-
tems cannot be expressed in the format from our prob-
lem definition in Section 4.1. We limited these threats
by ensuring that VERACITY supports the verification
of systems whose behaviour is modelled using paramet-
ric Markov chains encoded in the widely used modelling
language of the PRISM model checker [28], with non-
functional requirements specified in the established tem-
poral logic PCTL [24, 25, 26]. Parametric Markov models
are increasingly used to model software systems includ-
ing service-based systems [47], software product lines [48],
software controllers of cyber-physical systems [49], and
multi-tier software architectures [30]. Nevertheless, addi-
tional experiments are needed to establish the applicability
and feasibility of VERACITY in domains with character-
istics different from those used in our evaluation.

Another external validity threat may arise if the verifi-
cation of other software systems requires the use of larger

Markov models than those that we used to evaluate VE-
RACITY. To mitigate this threat, we used systems and
models proposed by other projects in established software
engineering venues [32, 42]. Additionally, we assessed the
level of this threat by comparing the size of these mod-
els to that of the discrete-time Markov chains (whether
parametric or not) from all the research papers:

• published within the past five full years (2016–2020)
in the Journal of Systems and Software and in all
the CORE20208 rank A* software engineering jour-
nals (i.e., IEEE Transactions on Software Engineer-
ing and ACM Transactions on Software Engineering
and Methodology) and conferences (i.e., the Interna-
tional Conference on Software Engineering and the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering);

• that mention the size of the DMTCs used for evalu-
ation, or provide these DTMCs or access to them on
a project website or in a project repository.

Across the eight papers that met these criteria [49, 50, 51,
52, 53, 54, 55, 56], models not larger than our TAS model
(i.e., 10 states) are used for evaluation in five papers, and
models smaller than or of the same size as our shopping
application model (i.e., 17 states) are used for evaluation in
all eight papers. While five papers also use models larger
than ours for evaluation, these are not models of software
systems with multiple components (to which VERACITY
is applicable) but models of algorithms, programs and log-
ical gates, or synthetic models that do not correspond to

8https://www.core.edu.au/conference-portal

18

an actual software system. This analysis (whose detailed
results are provided on our project’s website) shows that
abstraction allows many software engineering projects to
usefully exploit models of similar size to the models used
for evaluation in our paper. Nevertheless, larger models
are sometimes required, and therefore we carried out an
additional case study in which we applied VERACITY
to an 18-parameter, 41-state discrete-time Markov chain
modelling a larger component-based software system taken
from [30]. This case study, reported on our project web-
site https://www.cs.york.ac.uk/tasp/VERACITY, indi-
cates that VERACITY can also handle models with larger
numbers of parameters and states than those presented
earlier in this section.

7. Related work

Within the past decade, the study of uncertainty in
the modelling, analysis and verification of complex sys-
tems has attracted significant attention from the research
community. As such, the existence of different classes of
uncertainty is now widely recognised [57, 58, 19, 59], and
the research literature provides multiple definitions of un-
certainty. Most of these definitions classify uncertainties
depending on their: (i) level (ranging from determinism
to complete ignorance); (ii) nature (aleatory or epistemic);
and (iii) source (in the structure or parameters of models,
associated with changes in the operational environment or
with the dynamics in the availability of resources, or due
to changes in the user goals) [59, 60, 61, 19].

When dealing with the verification of performance, re-
liability, or other nonfunctional requirements, the term un-
certainty is often defined in terms of aleatory and epistemic
uncertainty. The aleatory variability of parameters and in-
dices is typically captured using stochastic modelling no-
tations, while the epistemic uncertainty, which refers to
the behavior of system portions that are intrinsically un-
known, requires ad-hoc methods.

The common goal of these methods is to introduce
analysis methodologies able to produce satisfactory re-
sults even in presence of such types of uncertainty. For
example, [62, 63, 64] propose methods that can be used
at design time, to identify software architectures, config-
urations or component compositions that satisfy a given
set of nonfunctional requirements. These approaches take
into account the epistemic uncertainty associated with the
parameters of models, and use probability distributions to
model this uncertainty. To this end, they obtain samples of
the uncertain parameter values, and evaluate the robust-
ness of a software system under uncertainty by running
Monte-Carlo simulations that use these empirical proba-
bility distributions.

More recently, [65] focuses on understanding the influ-
ence of configuration options on performance and proposes
an approach based on probabilistic programming that ex-
plicitly models uncertainty for option influences and pro-
vides both a scalar and a confidence interval for each pre-

diction of a configuration’s performance. A method that
uses mathematical formulas for incorporating and evaluat-
ing epistemic uncertainty of the input parameters of queue-
ing models is presented in [66]. A similar approach to the
study of uncertainty propagation in reliability models is
introduced in [67].

A different philosophy in dealing with uncertainty in-
volves the adoption of self-adaptation in software systems.
The number of studies that consider uncertainty in self-
adaptive systems has increased in recent years. A typical
example is the use of probabilistic run-time models, such as
Markov decision processes [68, 69] and parametric stochas-
tic models [70] to reason about uncertainty and change
when making adaptation decisions. The approaches in-
troduced in [71, 72] employ self-adaptation to cope with
uncertainty. The approach from [71] proposes a combina-
tion of adaptation and evolution of the software to make its
behavior resilient to uncertainty, which in turn entails that
the software system is sustainable, while [72] focuses on the
uncertainty surrounding the execution of cyber-physical
production systems. A different approach can be found
in [73], where a control-theoretic approach is adopted to
handle uncertainty in self-adaptive software systems. Fur-
thermore, the need for software systems to operate well un-
der the existing uncertainties is among the main waves that
have advanced the research on self-adaptive systems [74],
although a perpetual assurance of goal satisfaction in self-
adaptive systems is still an open research challenge [75].
Most of these results consider uncertainty in the decision-
making process and propose adaptation approaches that
guarantee the quality requirements under different and
(possibly) unknown types of changes.

Our work lies in the area of the reduction of paramet-
ric epistemic uncertainty and introduces an adaptive un-
certainty reduction heuristic for performance and depend-
ability software engineering. The proposed heuristic is in-
tegrated into a new iterative approach that exploits the
adoption of formal verification with confidence intervals.

One of the key aspects of the proposed approach con-
sists of the identification of the system component for
which additional data—to be obtained through testing—
are needed. The selection of components to be tested in
each iteration is based on a combination of factors that
include the sensitivity of the model to variations in the
parameters of different components, and the overheads of
unit-testing each of these components. Reducing the cost
of the (reliability) testing phase by selecting key compo-
nents to test is a topic that has been analysed in the lit-
erature. For example, [76] tackles the question “When to
stop testing” by focusing on reliability and discussing the
challenges and the potentials related to existing software
reliability models. Classical approaches in this domain are
based on operational profile [77], however operational pro-
file is often unknown and subject to changes. To overcome
this problem, [78] proposes an adapting testing schema
that iteratively learns from test execution results as they
become available, and, based on them, allocates test cases

19

to the most sensible parts. The assessment is then per-
formed adopting a second sampling strategy that provides
the interval estimate of the reliability computed during
testing. A different approach that focuses on the alloca-
tion of testing resources under uncertain conditions is pre-
sented in [79]. In this approach, a multi-objective debug-
aware and robust optimization problem under uncertainty
of data is used to evaluate of alternative trade-offs among
reliability, cost, and release time.

Compared to these approaches, VERACITY has the
major advantage that it uses formal quantitative verifica-
tion to compute confidence intervals for the relevant non-
functional properties of the system under verification. As
such, our approach mitigates the risk of generating inaccu-
rate single-point estimates for these properties. Further-
more, its use of Markov models makes VERACITY appli-
cable to multiple classes of systems for which such models
are extensively used, as detailed in Section 6.5.

8. Conclusion

We presented VERACITY, a tool-supported approach
for the efficient verification of nonfunctional requirements
under uncertainty. VERACITY operates by acquiring in-
formation about the components of the verified system
through testing them individually over a number of verifi-
cation rounds. A user-defined testing budget specifies the
amount of testing performed in each round, and the parti-
tion of this budget among system components is adapted
from one round to the next in order to complete the verifi-
cation process with a low overall testing cost. The heuristic
used to compute this adaptive partition considers factors
such as the sensitivity of the verified requirements to the
parameters associated with different components, and the
different cost (e.g., time, price or risk) of testing these
components. The evaluation of VERACITY in case stud-
ies from the areas of service-based systems and web ap-
plications showed that, on average, it significantly reduces
the overall testing cost required to complete the verifica-
tion process compared to uniformly partitioning the test-
ing budget across all system components.

In future work, we plan to expand the set of factors un-
derpinning our VERACITY round-budget partitioning, in
order to further improve its efficiency. One such additional
factor that we are considering is the level of epistemic un-
certainty associated with each component: in each round,
a larger fraction of the testing budget should be allocated
to components with higher levels of epistemic uncertainty,
i.e., to those for which fewer observations are already avail-
able. We envisage that augmenting our heuristic with this
factor will extend the applicability of VERACITY to ver-
ification scenarios in which observations about a subset of
the system components are already available at the begin-
ning of the verification process (e.g., from previous testing
of those components), and we plan to carry out additional
case studies to validate this hypothesis.

Another important direction of future research for our
project is to consider the scenarios in which (i) the imbal-
ance between the component testing costs is much higher
than the 1:5 ratio considered in our experiments so far;
and/or (ii) some of the parameters that the verified re-
quirements depend on are associated with the operational
profile of the system, i.e., with parameters whose epis-
temic uncertainty cannot be lowered by testing the com-
ponents of the system. For the second scenario, examples
of such parameters include the number of requests received
by a web server in one hour, and the probabilities of these
requests being of different types. To some extent, VE-
RACITY could handle this scenario by associating such
parameters with an “operational profile component” that
is assigned an infinite testing cost. Because this “compo-
nent” will never be tested, the verification problem may
be undecidable, in which case VERACITY will (correctly)
terminate with a ‘budget exhausted’ outcome. However,
this outcome will only be produced after significant test-
ing effort, some of which could be avoidable by noticing—
before using all the testing budget—that the operational
profile uncertainty renders the verification problem unde-
cidable. We plan to extend VERACITY with the ability
to report an ‘undecidable’ outcome (without exhausting
the testing budget) in this important verification scenario.

Last but not least, the verification problem tackled by
VERACITY can be generalised in multiple ways. For ex-
ample, cost can be considered a multi-dimensional entity
with separate elements for time, monetary cost, etc.; in
such a case, the budget would also be a tuple with these
elements. As another example, it may be of interest to use
different confidence levels α1, α2, . . . , αn for the n require-
ments from (4). To handle this variant of the problem, we
envisage that VERACITY will need to be augmented with
the ability to acquire more observations for the system
components with parameters that influence the require-
ments associated with high confidence levels than for the
other components. We plan to explore this hypothesis in
our future work.

Appendix A

Markov chain construction from UML activity diagrams.
A parametric discrete-time Markov chain (1) can be de-
rived from the UML activity diagram of a software system
by following the step-by-step process summarised below:

1. Construct the state set S consisting of a state for
each activity node from the UML activity diagram,
plus an initial state s0 and an “end” state send asso-
ciated with the initial and final nodes of the activ-
ity diagram, respectively. For each state s ∈ S, let
node(s) represent the activity diagram node corre-
sponding to state s.

2. Set P(s, s′) = 1.0 for every pair of states s, s′ ∈ S for
which the node reached immediately after node(s) in
the activity diagram (i.e., without traversing activity

20

diagram nodes associated with states from S\{s, s′})
is always node(s′).

3. Set P(send, send) = 1.0.

4. Associate an unknown transition probability P(s, s′)
with each pair of states s, s′ ∈ S for which node(s′)
can be reached from node(s) by traversing only de-
cision nodes from the activity diagram.

5. Set P(s, s′) = 0 for every other pair of states s, s′∈S.

6. Assemble the atomic proposition set

AP={start , end}∪{name(node(s)) |s∈S\{s0, send}}

where name(node(s)) is a unique name for the ac-
tivity node node(s).

7. Set L(node(s)) = name(node(s)) for every state s ∈
S \ {s0, send}, L(s0) = start , and L(send) = end .

Further details about this process are available in [33, 34].

Acknowledgements

This project has received funding from the Assuring
Autonomy International Programme, the UKRI project
EP/V026747/1 ‘Trustworthy Autonomous Systems Node
in Resilience’, and the ORCA-Hub PRF project ‘COVE’.

References

[1] D. Ameller, X. Franch, C. Gómez, S. Mart́ınez-Fernández,
J. Araujo, S. Biffl, J. Cabot, V. Cortellessa, D. Méndez,
A. Moreira, H. Muccini, A. Vallecillo, M. Wimmer, V. Ama-
ral, W. Bühm, H. Bruneliere, L. Burgueño, M. Goulão,
S. Teufl, L. Berardinelli, Dealing with non-functional require-
ments in model-driven development: A survey, IEEE Trans-
actions on Software Engineering (2019) 1–1.doi:10.1109/TSE.
2019.2904476.

[2] L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, Non-functional
requirements in software engineering, Vol. 5, Springer Science
& Business Media, 2012.

[3] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola,
G. Tamburrelli, Dynamic QoS management and optimization
in service-based systems, IEEE Transactions on Software Engi-
neering 37 (3) (2011) 387–409.

[4] S. Gallotti, C. Ghezzi, R. Mirandola, G. Tamburrelli, Quality
prediction of service compositions through probabilistic model
checking, in: International Conference on the Quality of Soft-
ware Architectures, Springer, 2008, pp. 119–134.

[5] I. Krka, L. Golubchik, N. Medvidovic, Probabilistic automata
for architecture-based reliability assessment, in: ICSE Work-
shop on Quantitative Stochastic Models in the Verification and
Design of Software Systems, 2010, pp. 17–24. doi:10.1145/

1808877.1808881.
[6] K. Johnson, R. Calinescu, S. Kikuchi, An incremental verifi-

cation framework for component-based software systems, in:
the 16th International ACM Sigsoft Symposium on Component-
Based Software Engineering, ACM, 2013, pp. 33–42.

[7] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Frances-
chinis, Modelling with generalized stochastic Petri nets, ACM
SIGMETRICS Performance Evaluation Review 26 (2) (1998) 2.
doi:10.1145/288197.581193.

[8] D. Perez-Palacin, R. Mirandola, J. Merseguer, QoS and en-
ergy management with Petri nets: A Self-adaptive framework,
Journal of Systems and Software 85 (12) (2012) 2796–2811.
doi:10.1016/j.jss.2012.04.077.

[9] A. Filieri, C. S. Pasareanu, W. Visser, Reliability analysis
in symbolic pathfinder, in: 35th International Conference on
Software Engineering (ICSE), IEEE, 2013, pp. 622–631. doi:

10.1109/ICSE.2013.6606608.
[10] R. Calinescu, K. Johnson, Y. Rafiq, Developing self-verifying

service-based systems, in: 28th IEEE/ACM International Con-
ference on Automated Software Engineering, IEEE, 2013, pp.
734–737. doi:10.1109/ASE.2013.6693145.

[11] R. Calinescu, C. Ghezzi, K. Johnson, M. Pezzé, Y. Rafiq,
G. Tamburrelli, Formal verification with confidence intervals to
establish quality of service properties of software systems, IEEE
Transactions on Reliability 65 (1) (2015) 107–125.

[12] C. Paterson, R. Calinescu, Observation-enhanced QoS analysis
of component-based systems, IEEE Transactions on Software
Engineering 46 (05) (2020) 526–548. doi:10.1109/TSE.2018.

2864159.
[13] A. K. Akobeng, Confidence intervals and p-values in clinical

decision making, Acta Pædiatrica 97 (8) (2008) 1004–1007.
[14] B. R. Kirkwood, J. A. Sterne, Essential medical statistics, John

Wiley & Sons, 2010.
[15] J. R. Benjamin, C. A. Cornell, Probability, statistics, and deci-

sion for civil engineers, Courier Corporation, 2014.
[16] J. M. Aughenbaugh, C. J. Paredis, The value of using impre-

cise probabilities in engineering design, Journal of Mechanical
Design 128 (4) (2006) 969–979.

[17] J.-B. du Prel, G. Hommel, B. Röhrig, M. Blettner, Confidence
interval or p-value? (part 4 of a series on evaluation of scien-
tific publications), Deutsches Ärzteblatt International 106 (19)
(2009) 335.

[18] M. J. Gardner, D. G. Altman, Confidence intervals rather than
P values: estimation rather than hypothesis testing, British
Medical Journal 292 (6522) (1986) 746–750. doi:10.1136/bmj.
292.6522.746.

[19] D. Perez-Palacin, R. Mirandola, Uncertainties in the model-
ing of self-adaptive systems: a taxonomy and an example of
availability evaluation, in: 5th ACM/SPEC International Con-
ference on Performance Engineering, ACM, 2014, pp. 3–14.
URL https://doi.org/10.1145/2568088.2568095

[20] R. Calinescu, K. Johnson, C. Paterson, FACT: A probabilistic
model checker for formal verification with confidence intervals,
in: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Springer, 2016, pp. 540–
546.

[21] E. Daka, G. Fraser, A survey on unit testing practices and
problems, in: 2014 IEEE 25th International Symposium on
Software Reliability Engineering, 2014, pp. 201–211. doi:

10.1109/ISSRE.2014.11.
[22] The European Mathematical Society, The Encyclopedia of

Mathematics (2020).
URL https://encyclopediaofmath.org/wiki/Rational_

function

[23] C. Daws, Symbolic and parametric model checking of discrete-
time Markov chains, in: International Colloquium on Theoret-
ical Aspects of Computing, 2005, pp. 280–294. doi:10.1007/

978-3-540-31862-0_21.
[24] S. Andova, H. Hermanns, J.-P. Katoen, Discrete-time rewards

model-checked, in: International Conference on Formal Model-
ing and Analysis of Timed Systems, Springer, 2004, pp. 88–104.
doi:10.1007/978-3-540-40903-8_8.

[25] F. Ciesinski, M. Größer, On probabilistic computation tree
logic, in: C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Ka-
toen, M. Siegle (Eds.), Validation of Stochastic Systems: A
Guide to Current Research, Springer, 2004, pp. 147–188. doi:

10.1007/978-3-540-24611-4_5.
[26] H. Hansson, B. Jonsson, A logic for reasoning about time and

reliability, Formal Aspects of Computing 6 (5) (1994) 512–535.
doi:10.1007/BF01211866.

[27] E. M. Hahn, H. Hermanns, B. Wachter, L. Zhang, PARAM:
A model checker for parametric markov models, in: Computer
Aided Verification, Springer, 2010, pp. 660–664. doi:10.1007/

978-3-642-14295-6_56.

21

[28] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Ver-
ification of probabilistic real-time systems, in: Computer
Aided Verification, Springer, 2011, pp. 585–591. doi:10.1007/

978-3-642-22110-1_47.
[29] C. Dehnert, S. Junges, J.-P. Katoen, M. Volk, A storm is com-

ing: A modern probabilistic model checker, in: 29th Interna-
tional Conference on Computer Aided Verification (CAV), 2017,
pp. 592–600. doi:10.1007/978-3-319-63390-9_31.

[30] R. Calinescu, C. A. Paterson, K. Johnson, Efficient parametric
model checking using domain knowledge, IEEE Transactions on
Software Engineering 47 (6) (2021) 1114–1133. doi:10.1109/

TSE.2019.2912958.
[31] X. Fang, R. Calinescu, S. Gerasimou, F. Alhwikem, Fast para-

metric model checking through model fragmentation, in: 43rd
IEEE/ACM International Conference on Software Engineering,
2021, pp. 835–846.

[32] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, P. Spoletini, Val-
idation of web service compositions, IET Software 1 (6) (2007)
219–232. doi:10.1049/iet-sen:20070027.

[33] R. Calinescu, Y. Rafiq, Using intelligent proxies to develop self-
adaptive service-based systems, in: 2013 International Sympo-
sium on Theoretical Aspects of Software Engineering, IEEE,
2013, pp. 131–134.

[34] C. Ghezzi, L. S. Pinto, P. Spoletini, G. Tamburrelli, Manag-
ing non-functional uncertainty via model-driven adaptivity, in:
2013 35th International Conference on Software Engineering
(ICSE), IEEE, 2013, pp. 33–42.

[35] Z. W. Birnbaum, On the importance of different components in
a multicomponent system, in: P. R. Krishnaiah (Ed.), Multi-
variate Analysis II, Academic Press, New York, 1969.

[36] R. E. Barlow, F. Proschan, Importance of system components
and fault tree events, Stochastic Processes and Their Applica-
tions 3 (2) (1975) 153–173.

[37] V. B. Kampenes, T. Dyb̊a, J. E. Hannay, D. I. Sjøberg, A sys-
tematic review of effect size in software engineering experiments,
Information and Software Technology 49 (11-12) (2007) 1073–
1086.

[38] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Br-
ereton, S. Charters, S. Gibbs, A. Pohthong, Robust statistical
methods for empirical software engineering, Empirical Software
Engineering 22 (2) (2017) 579–630.

[39] L. Madeyski, B. Kitchenham, Effect sizes and their variance for
ab/ba crossover design studies, Empirical Software Engineering
23 (4) (2018) 1982–2017.

[40] L. Madeyski, Test-driven development: An empirical evaluation
of agile practice, Springer Science & Business Media, 2009.

[41] R. J. Grissom, J. J. Kim, Effect sizes for research: A broad
practical approach., Lawrence Erlbaum Associates Publishers,
2005.

[42] A. Filieri, C. Ghezzi, G. Tamburrelli, A formal approach to
adaptive software: continuous assurance of non-functional re-
quirements, Formal Aspects of Computing 24 (2) (2012) 163–
186.

[43] A. Fabijan, P. Dmitriev, C. McFarland, L. Vermeer, H. Holm-
ström Olsson, J. Bosch, Experimentation growth: Evolving
trustworthy A/B testing capabilities in online software compa-
nies, Journal of Software: Evolution and Process 30 (12) (2018)
e2113.

[44] R. Kohavi, R. Longbotham, Online controlled experiments and
A/B testing, Encyclopedia of machine learning and data mining
7 (8) (2017) 922–929.

[45] D. Siroker, P. Koomen, A/B testing: The most powerful way to
turn clicks into customers, John Wiley & Sons, 2013.

[46] H. Muccini, M. Dias, D. J. Richardson, Software architecture-
based regression testing, Journal of Systems and Software
79 (10) (2006) 1379–1396, architecting Dependable Systems.
doi:https://doi.org/10.1016/j.jss.2006.02.059.
URL https://www.sciencedirect.com/science/article/pii/

S0164121206001361

[47] S. Gerasimou, R. Calinescu, G. Tamburrelli, Synthesis of prob-
abilistic models for quality-of-service software engineering, Au-
tomated Software Engineering 25 (4) (2018) 785–831.

[48] C. Ghezzi, A. M. Sharifloo, Model-based verification of quanti-
tative non-functional properties for software product lines, In-
formation and Software Technology 55 (3) (2013) 508–524.

[49] R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli,
T. Kelly, Engineering trustworthy self-adaptive software with
dynamic assurance cases, IEEE Transactions on Software Engi-
neering 44 (11) (2017) 1039–1069.

[50] G. Su, D. S. Rosenblum, G. Tamburrelli, Reliability of run-time
quality-of-service evaluation using parametric model checking,
in: 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), 2016, pp. 73–84.

[51] J. M. Franco, F. Correia, R. Barbosa, M. Zenha-Rela,
B. Schmerl, D. Garlan, Improving self-adaptation planning
through software architecture-based stochastic modeling, Jour-
nal of Systems and software 115 (2016) 42–60.

[52] Y. R. S. Llerena, M. Böhme, M. Brünink, G. Su, D. S. Rosen-
blum, Verifying the long-run behavior of probabilistic system
models in the presence of uncertainty, in: Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 587–597.

[53] X. Wang, J. Sun, Z. Chen, P. Zhang, J. Wang, Y. Lin, Towards
optimal concolic testing, in: Proceedings of the 40th Interna-
tional Conference on Software Engineering, 2018, pp. 291–302.

[54] H. Nakagawa, H. Toyama, T. Tsuchiya, Expression caching for
runtime verification based on parameterized probabilistic mod-
els, Journal of Systems and Software 156 (2019) 300–311.

[55] H. Afzal, M. R. Mufti, I. Awan, M. Yousaf, Performance analy-
sis of radio spectrum for cognitive radio wireless networks using
discrete time Markov chain, Journal of Systems and Software
151 (2019) 1–7.

[56] G. Su, Y. Feng, T. Chen, D. S. Rosenblum, Asymptotic per-
turbation bounds for probabilistic model checking with em-
pirically determined probability parameters, IEEE Transac-
tions on Software Engineering 42 (7) (2016) 623–639. doi:

10.1109/TSE.2015.2508444.
[57] A. J. Ramirez, A. C. Jensen, B. H. C. Cheng, A taxonomy of

uncertainty for dynamically adaptive systems, in: Proceedings
of the 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS ’12, IEEE
Press, Piscataway, NJ, USA, 2012, pp. 99–108.
URL http://dl.acm.org/citation.cfm?id=2666795.2666812

[58] H. Giese, N. Bencomo, L. Pasquale, A. J. Ramirez, P. Inverardi,
S. Wätzoldt, S. Clarke, Living with uncertainty in the age of
runtime models, in: N. Bencomo, R. France, B. H. C. Cheng,
U. Aßmann (Eds.), Models@run.time: Foundations, Applica-
tions, and Roadmaps, Springer International Publishing, Cham,
2014, pp. 47–100.

[59] W. Walker, P. Harremoes, J. Romans, J. van der Sluus, M. van
Asselt, P. Janssen, M. Krauss, Defining uncertainty. a concep-
tual basis for uncertainty management in model-based decision
support, Integrated Assessment 4 (1) (2003) 5–17.

[60] D. Garlan, Software engineering in an uncertain world, in: Fu-
ture of Software Engineering Research, ACM, 2010, pp. 125–
128.

[61] N. Esfahani, S. Malek, Uncertainty in self-adaptive soft-
ware systems, in: Software Engineering for Self-Adaptive
Systems II. Lecture Notes in Computer Science, vol 7475,
Springer, 2013, pp. 214–238. doi:https://doi.org/10.1007/

978-3-642-35813-5_9.
[62] C. Trubiani, I. Meedeniya, V. Cortellessa, A. Aleti, L. Grunske,

Model-based performance analysis of software architectures un-
der uncertainty, in: the 9th international ACM Sigsoft con-
ference on Quality of software architectures, ACM, 2013, pp.
69–78. doi:10.1145/2465478.2465487.

[63] I. Meedeniya, I. Moser, A. Aleti, L. Grunske, Architecture-based
reliability evaluation under uncertainty, in: the Joint ACM SIG-
SOFT Conference – QoSA and ACM SIGSOFT Symposium –
ISARCS on Quality of Software Architectures – QoSA and Ar-
chitecting Critical Systems – ISARCS, ACM, 2011, pp. 85–94.
doi:10.1145/2000259.2000275.

22

[64] I. Meedeniya, A. Aleti, L. Grunske, Architecture-driven relia-
bility optimization with uncertain model parameters, Journal
of Systems and Software 85 (10) (2012) 2340–2355.

[65] J. Dorn, S. Apel, N. Siegmund, Mastering uncertainty in per-
formance estimations of configurable software systems, in: 2020
35th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), 2020, pp. 684–696.

[66] F. Antonelli, V. Cortellessa, M. Gribaudo, R. Pinciroli, K. S.
Trivedi, C. Trubiani, Analytical modeling of performance in-
dices under epistemic uncertainty applied to cloud computing
systems, Future Generation Computer Systems 102 (2020) 746
– 761. doi:https://doi.org/10.1016/j.future.2019.09.006.

[67] K. Mishra, K. S. Trivedi, Closed-form approach for epis-
temic uncertainty propagation in analytic models, in: T. Dohi,
T. Nakagawa (Eds.), Stochastic Reliability and Maintenance
Modeling: Essays in Honor of Professor Shunji Osaki on his
70th Birthday, Springer London, London, 2013, pp. 315–332.
doi:10.1007/978-1-4471-4971-2_14.

[68] R. Calinescu, M. Autili, J. Cámara, A. Di Marco, S. Gerasi-
mou, P. Inverardi, A. Perucci, N. Jansen, J.-P. Katoen,
M. Kwiatkowska, O. J. Mengshoel, R. Spalazzese, M. Tivoli,
Synthesis and verification of self-aware computing systems, in:
S. Kounev, J. O. Kephart, A. Milenkoski, X. Zhu (Eds.), Self-
Aware Computing Systems, Springer, 2017, pp. 337–373.

[69] G. A. Moreno, J. Camara, D. Garlan, B. Schmerl, Proactive self-
adaptation under uncertainty: A probabilistic model checking
approach, in: Foundations of Software Engineering, ACM, 2015,
pp. 1–12.

[70] R. Calinescu, M. Ceska, S. Gerasimou, M. Kwiatkowska,
N. Paoletti, Efficient synthesis of robust models for stochastic
systems, Journal of Systems and Software 143 (2018) 140–158.

[71] D. Weyns, M. Caporuscio, B. Vogel, A. Kurti, Design for sus-
tainability = runtime adaptation ∪ evolution, in: the 2015 Eu-
ropean Conference on Software Architecture Workshops, ACM,

2015, pp. 62:1–62:7. doi:10.1145/2797433.2797497.
[72] A. Musil, J. Musil, D. Weyns, T. Bures, H. Muccini, M. Sharaf,

Patterns for self-adaptation in cyber-physical systems, in:
Multi-disciplinary engineering for cyber-physical production
systems, Springer, 2017, pp. 331–368.

[73] S. Shevtsov, D. Weyns, M. Maggio, SimCA*: A control-
theoretic approach to handle uncertainty in self-adaptive sys-
tems with guarantees, ACM Transactions on Autonomous and
Adaptive Systems 13 (4) (2019) 1–34. doi:10.1145/3328730.

[74] D. Weyns, Software engineering of self-adaptive systems: an
organised tour and future challenges, Chapter in Handbook of
Software Engineering (2017).

[75] D. Weyns, N. Bencomo, R. Calinescu, J. Camara, C. Ghezzi,
V. Grassi, L. Grunske, P. Inverardi, J.-M. Jezequel, S. Malek,
et al., Perpetual assurances for self-adaptive systems, in: Soft-
ware Engineering for Self-Adaptive Systems III. Assurances,
Springer, 2017, pp. 31–63.

[76] M. Garg, R. Lai, S. J. Huang, When to stop testing: a
study from the perspective of software reliability models, IET
Software 5 (2011) 263–273(10).
URL https://digital-library.theiet.org/content/

journals/10.1049/iet-sen.2010.0007

[77] J. D. Musa, The operational profile, in: S. Özekici (Ed.), Reli-
ability and Maintenance of Complex Systems, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1996, pp. 333–344.

[78] D. Cotroneo, R. Pietrantuono, S. Russo, RELAI testing: A
technique to assess and improve software reliability, IEEE
Trans. Software Eng. 42 (5) (2016) 452–475. doi:10.1109/TSE.
2015.2491931.

[79] R. Pietrantuono, P. Potena, A. Pecchia, D. Rodŕıguez, S. Russo,
L. F. Sanz, Multiobjective testing resource allocation under un-
certainty, IEEE Trans. Evol. Comput. 22 (3) (2018) 347–362.
doi:10.1109/TEVC.2017.2691060.

23

	Introduction
	Preliminaries
	Parametric Markov chains
	Probabilistic computation tree logic
	Formal verification with confidence intervals

	Motivating example
	The VERACITY verification approach
	Problem definition
	VERACITY verification process
	Adaptive uncertainty reduction heuristic
	Desiderata
	Algorithm

	Implementation
	Evaluation
	Online shopping web application
	Research question RQ1
	Research question RQ2
	Research question RQ3
	Threats to validity

	Related work
	Conclusion

