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Abstract

Timing verification of multi-core systems is complicated by contention for shared 

hardware resources between co-running tasks on different cores. This paper intro-

duces the Multi-core Resource Stress and Sensitivity (MRSS) task model that char-

acterizes how much stress each task places on resources and how much it is sensi-

tive to such resource stress. This model facilitates a separation of concerns, thus 

retaining the advantages of the traditional two-step approach to timing verification 

(i.e. timing analysis followed by schedulability analysis). Response time analysis is 

derived for the MRSS task model, providing efficient context-dependent and context 

independent schedulability tests for both fixed priority preemptive and fixed prior-

ity non-preemptive scheduling. Dominance relations are derived between the tests, 

along with complexity results, and proofs of optimal priority assignment policies. 

The MRSS task model is underpinned by a proof-of-concept industrial case study. 

The problem of task allocation is considered in the context of the MRSS task model, 

with Simulated Annealing shown to provide an effective solution.
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1  Extended version

This paper builds upon and extends the ECRTS 2021 paper Schedulability Analy-

sis for Multi-core Systems Accounting for Resource Stress and Sensitivity (Davis 

et al. 2021). Section 4.5 derives complexity results for the various schedulability 

tests. Section 8 considers the issues involved in allocating tasks to cores in a way 

that optimizes system schedulability and robustness under the MRSS task model. 

The difficulties of task assignment are highlighted via a worked example, based 

on data from the industrial case study. Simulated Annealing is then proposed as a 

potential solution, and its effectiveness demonstrated via experimental evaluation.

2 Introduction

2.1  Background

The survey published by Akesson et  al. (2020, 2021), shows that about 80% of 

industry practitioners developing real-time systems are using multi-core proces-

sors, about twice the number that are using single-cores. On a single-core proces-

sor, when a task executes without interruption or pre-emption it has exclusive 

access to the hardware resources that it needs. The execution time of the task 

therefore depends only on its own behavior and the initial state of the hardware. 

This is in marked contrast to what happens when a task executes on one core 

of a multi-core processor. Multi-core processors are typically designed to pro-

vide high average-case performance at low cost, with hardware resources shared 

between cores. These shared hardware resources typically include, the intercon-

nect, caches, and main memory, as well as other platform specific components. 

As a consequence, the execution time of a task running on one core of a multi-

core system can be extended by interference due to contention for shared hard-

ware resources emanating from co-running tasks on the other cores.

This problem of cross-core contention and interference has led to timing veri-

fication of multi-core systems becoming a hot topic of real-time systems research 

in the decade to 2020. The survey published by  Maiza et  al. (2019) classifies 

approximately 120 research papers in this area. Much of this research relies on 

detailed information about shared hardware resources and the policies used to 

arbitrate access to them. This information is then used to derive analytical bounds 

on the maximum interference possible due to contending tasks running on the 

other cores. In practice, however, there can be substantial difficulties in obtaining 

and using such detailed low-level information, since it is not typically disclosed 

by hardware vendors. This is because the complex resource arbitration policies 
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and low-level hardware design features employed comprise valuable intellectual 

property. Further, even if such information is available, then the overall behav-

ior can be so complex as to preclude a static analysis that provides meaningful 

bounds, as opposed to substantial overestimates.

The predominant industry practice is to use measurement-based timing analysis 

techniques to estimate worst-case execution times1 (WCETs). However, the sim-

ple extension of measurement-based techniques to multi-core systems cannot pro-

vide an adequate solution that bounds the impact of cross-core interference. This 

is because cross-core interference is highly dependent on the timing of accesses to 

shared hardware resources by both the task under analysis and its co-runners. In 

practice, it is not possible to choose the worst-case combination of behavior (inputs, 

paths, and timing) for co-running tasks that will result in the maximum interfer-

ence occurring (Nowotsch and Paulitsch 2012). A potential solution to this problem, 

which is being taken up commercially (Rapita Systems 2019), is to employ a more 

nuanced measurement-based approach using micro-benchmarks (Radojkovic et  al. 

2012; Fernández et al. 2012; Nowotsch and Paulitsch 2012; Iorga et al. 2020). These 

micro-benchmarks sustain a high level of resource accesses, ameliorating the timing 

alignment issues inherent in the naive approach discussed above. Micro-benchmarks 

can be used to characterize tasks in terms of the interference that they can cause, or 

be subject to, due to contention over a particular shared hardware resource.

The timing verification of single-core systems has traditionally been solved via a 

two-step approach (Maiza et al. 2019). First context-independent WCET estimates 

are obtained, either via static or measurement-based timing analysis. Second, these 

estimates are used as parameter values in a task model, with schedulability analysis 

employed to determine if all of the tasks can meet their timing constraints when 

executed under a specific scheduling policy. This separation of concerns between 

timing analysis and schedulability analysis brings many benefits; however, its effec-

tiveness is greatly diminished in multi-core systems due to the fact that execution 

times heavily depend on co-runner behavior and the cross-core interference that they 

bring. Inflating individual task execution time estimates to account for the maximum 

amount of context-independent interference that could potentially occur during the 

time interval in which each task executes can result in gross over-estimates that 

are not viable in practice (Kim et al. 2017). Rather, research (Altmeyer et al. 2015; 

Davis et al. 2018) has shown that it is more effective to consider contention over the 

longer time frame of task response times.

2.2  Contribution and organization

In Sect. 3, we introduce the Multi-core Resource Stress and Sensitivity (MRSS) task 

model that characterizes how much each task stresses shared hardware resources 

and how much each task is sensitive to such resource stress. The MRSS task model 

provides a simple interface and a separation of concerns between timing analysis 

1 About 66% of the industry practitioners surveyed by Akesson et al. (2020, 2021) used some form of 

measurement-based timing analysis, whereas only about 33% used some form of static timing analysis.
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and schedulability analysis, thus retaining the advantages of the traditional two-

step approach to overall timing verification. The MRSS task model relies on timing 

analysis, either measurement-based or static, to provide task parameter values char-

acterizing stand-alone (i.e. no contention) WCETs, resource stresses, and resource 

sensitivities. Thus, it provides the information needed by schedulability analysis to 

integrate cross-core interference into the computation of bounds on task response 

times, and hence determine the schedulability of tasks running on multi-core sys-

tems. The MRSS task model is generic and versatile. It supports different types of 

interference that occur via cross-core contention for shared hardware resources, as 

follows: 

 (i) Limited interference where contention for the resource is ameliorated by paral-

lelism in the hardware. Here, the interference is sub-additive, i.e. less than the 

time that the co-running task on another core spends accessing the resource.

 (ii) Direct interference where the bandwidth of the resource is shared between 

contending cores, for example with a Round-Robin bus. Here, the interference 

is additive, directly matching the time that co-running tasks spend accessing 

the resource.

 (iii) Indirect interference where contention causes additional interference, over 

and above the bandwidth consumed by co-running tasks (i.e. a super-additive 

effect), due to changes in the state of the resource that cause further delays to 

subsequent accesses. An example of indirect interference occurs with main 

memory (DRAM) (Hassan 2018) when interleaved accesses target different 

rows, resulting in additional row close and row open operations that increase 

memory access latency.

The MRSS task model is not however a panacea, it cannot support unbounded inter-

ference where task execution is disproportionately impacted by contending accesses. 

This includes cases where contenders can effectively lock a resource for an extended 

or unbounded amount of time. Further, it cannot support dependent interference 

where contention can change the information stored in a resource in such a way that 

it needs to be obtained from elsewhere, potentially creating additional (dependent) 

interference via another shared resource. Problems of cache thrashing  (Radojko-

vic et  al. 2012), cache coherence  (Fuchsen 2010), and cache miss status handling 

registers  (Valsan et  al. 2016) can all cause unbounded and/or dependent interfer-

ence. These issues need to be eliminated from systems aimed at providing real-time 

predictability.

Section  4 introduces schedulability analysis for the MRSS task model, consid-

ering task sets scheduled according to partitioned fixed priority preemptive sched-

uling (pFPPS) and partitioned fixed priority non-preemptive scheduling (pFPNS) 

policies.2 Two types of schedulability test are derived: (i) context-dependent tests 

that make use of information about the co-running tasks on the other cores, and (ii) 

context-independent tests that use only information about the tasks running on the 

2 The most commonly used real-time scheduling polices in industry practice (Akesson et al. 2020, 2021).
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same core. The latter are less precise, but fully composable, meaning that if the tasks 

on one core are changed, then only those tasks need have their schedulability re-

assessed; task schedulability on the other cores is unaffected. Composability is an 

important issue for industry, particularly when different companies or departments 

are responsible for the sub-systems running on different cores. The section ends by 

deriving the dominance relations between the schedulability tests, and assessing 

their complexity.

In systems that use fixed priority scheduling, appropriate priority assignment is a 

crucial aspect of achieving a schedulable system (Davis et al. 2016). Section 5 inves-

tigates optimal priority assignment, proving that Deadline Monotonic  (Leung and 

Whitehead 1982) priority ordering is optimal for both the context-independent and 

the simpler context-dependent schedulability tests for pFPPS. Similarly, Audsley’s 

optimal priority assignment algorithm (Audsley 2001) is proven to be applicable and 

optimal for the equivalent tests for pFPNS. The more complex and precise context-

dependent tests are proven incompatible with Audsley’s algorithm (Audsley 2001).

Section 6, provides a systematic evaluation of the effectiveness of the schedula-

bility tests derived in Sect. 4. The results of this evaluation follow the dominance 

relationships demonstrated earlier, indicating the superiority of the more complex 

context-dependent schedulability tests, while also highlighting the additional con-

tention that adding further cores brings.

Section  7 presents the findings from a case study examining 24 tasks from a 

Rolls-Royce aero-engine control system. These tasks were assessed using meas-

urement-based timing analysis to obtain broad-brush estimates of their stand-alone 

WCETs, as well as characterizing their resource stress and resource sensitivity 

parameters. The purpose of the case study was not to try to determine definitive 

values for these parameters, in itself a challenging research problem, but rather to 

obtain proof-of-concept data to act as an exemplar underpinning the MRSS task 

model and its analysis.

Section 8 considers the issues involved in allocating tasks to cores in a way that 

optimizes system schedulability and robustness under the MRSS task model. The 

difficulties of task assignment are highlighted via a worked example, based on data 

from the industrial case study. This example shows that overall interference can 

typically be reduced by partitioning tasks such that those with high resource stress 

and sensitivity are assigned to a subset of the available cores, while those with low 

resource stress and sensitivity are assigned to the remaining cores. However, mini-

mizing interference does not necessarily optimize schedulability and robustness. 

Simulated Annealing is proposed as a potential solution, and its effectiveness dem-

onstrated via experimental evaluation.

Section 9 concludes with a summary and directions for future work.

2.3  Related work

Prior publications that relate to the research presented in this paper include work on 

micro-benchmarks (Radojkovic et  al. 2012; Fernández et  al. 2012; Nowotsch and 

Paulitsch 2012; Iorga et al. 2020; Rapita Systems 2019) that can be used to stress 
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resources in multi-core systems, and work on the integration of interference effects 

into schedulability analysis. Many of the latter papers are summarized in Sect. 4 of 

the survey by Maiza et al. (2019). Unlike the analysis presented in this paper, which 

uses a generic task model that is applicable to many different types of interference 

and a variety of different shared hardware resources, most of these prior works focus 

on the details of one or more specific hardware resources. They require detailed 

information about the resource arbitration policy used, the number of resource 

accesses made by each task, and in some cases the timing of those accesses. By con-

trast, this paper takes a more abstract, but nonetheless valid view, that interference 

can be modeled in terms of its execution time impact via resource sensitivity and 

resource stress parameters for each task. This approach requires less detail about the 

resource behavior, and is more amenable to practical use, since it can still be used 

when full details of shared resource behavior are not available from the hardware 

vendor.

Early work on the integration of interference effects into schedulability analysis 

by Schliecker and Ernst (2010) used arrival curves to model the resource accesses of 

each task, and hence how resource access delays due to contention impact upon task 

response times. Schliecker’s work focused on contention over the memory bus. Fur-

ther work in this area by Schranzhofer et al. (2010), Pellizzoni et al. (2010), Gian-

nopoulou et  al. (2012), and Lampka et  al. (2014) used the superblock model that 

divides each task into a sequence of blocks and uses information about the number 

of resource accesses within different phases of these blocks.

Dasari et  al. (2011) used a request function to model the maximum number of 

resource accesses from each task in a given time interval, and integrated this request 

function into response time analysis. Kim et al. (2016) and Yun et al. (2015) pro-

vided a detailed analysis of contention caused by DRAM accesses, accounting for 

access scheduling and variations in latencies due to differing states e.g.  open and 

closed rows. The delays due to contention were then integrated into response time 

analysis.

Altmeyer et al. (2015); Davis et al. (2018) introduced a multi-core response time 

analysis framework, aimed at combining the demands that tasks place on difference 

types of resources (e.g. CPU, memory bus, and DRAM) with the resource supply 

provided by those hardware resources. The resulting explicit interference was then 

integrated directly into response time analysis. Rihani et  al. (2016) built on this 

framework, using it to analyze complex bus arbitration policies on a many-core 

processor.

Huang et al. (2016) and Cheng et al. (2017) leveraged the symmetry between pro-

cessing and resource access, viewing tasks as executing and then suspending execu-

tion while accessing a shared resource. Using this suspension model in the sched-

ulability analysis, they obtained results that were broadly comparable to those of 

Altmeyer et al. (2015).

Paolieri et al. (2011) proposed using a WCET-matrix and WCET-sensitivity val-

ues to characterize the variation in task execution times in different execution envi-

ronments (e.g. with different numbers of contending cores, and different cache parti-

tion sizes). This information was then used to determine efficient task partitioning 

and task allocation strategies.
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Andersson et  al. (2018) presented a schedulability test where tasks have differ-

ent execution times dependent on their co-runners. Here, tasks are represented by 

a sequence of segments, each of which has execution requirements and co-runner 

slowdown factors with respect to sets of other segments that could execute in paral-

lel with it. The schedulability test involves solving a linear program to bound the 

longest response time given the possible ways in which different segments could 

execute in parallel and the slowdown in execution that this would entail. The method 

has significant scalability issues that effectively limit the total number of tasks it can 

handle to approximately 32 tasks on a 4 core system (i.e. 8 tasks per core).

2.4  Inspiration

The research presented in this paper was inspired by the desire to combine a practi-

cal approach to characterizing contention via micro-benchmarks and measurement-

based techniques with a generic form of schedulability analysis that can be applied 

to a wide range of homogeneous multi-core systems with different types of shared 

hardware resources. The aim being to provide an effective form of timing verifica-

tion that, while retaining the traditional two-step approach, is able to avoid undue 

pessimism by accounting for interference over long time intervals equating to task 

response times rather than short time intervals equating to task execution times. 

With industry practice in mind, the schedulability analysis derived includes context-

dependent (non-composable), context-independent (fully composable), and partially 

composable schedulability tests. The overall method enables task timing behavior 

on multi-cores to be assessed without necessitating recourse to detailed information 

about the hardware behavior, something that most chip vendors do not make pub-

licly available.

3  System model and assumptions

We assume a multi-core system with m homogeneous cores that executes tasks 

under either partitioned fixed priority preemptive (pFPPS) or partitioned fixed prior-

ity non-preemptive (pFPNS) scheduling. With partitioning, tasks are assigned to a 

specific core and do not migrate. The tasks are assumed to be independent, but may 

access a set of shared hardware resources r ∈ H, thus causing interference on the 

execution of tasks on other cores via cross-core contention. We omit from consid-

eration the effects of resource contention between tasks on the same core, since they 

are executed sequentially rather than in parallel. We assume that appropriate tech-

niques are used to avoid substantial preemption effects when preemptive scheduling 

is employed, for example cache partitioning can be used to eliminate cache-related 

preemption delays. The costs of scheduling decisions and any context switching are 

assumed to be subsumed into the task execution times.

Each task �
i
 is characterised by: the minimum inter-arrival time or period 

between releases of its jobs, T
i
 , its relative deadline, D

i
 , and its WCET, C

i
 , when 
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executing stand-alone, i.e. with no co-runners. All task deadlines are assumed to be 

constrained i.e. D
i
≤ T

i
.

Further aspects of the model are based on the concept of resource sensitive con-

tenders and resource stressing contenders. A resource stressing contender maxi-

mizes the stress on a resource r by repeatedly making accesses to it that cause the 

most contention. Hence, running a resource stressing contender in parallel with a 

task creates the maximum increase in execution time for the task due to conten-

tion over resource r from any single co-runner. A resource sensitive contender 

for a resource r, suffers the maximum possible interference by repeatedly making 

accesses to the resource that suffer from the most contention. Hence, running a 

resource sensitive contender in parallel with a task creates the maximum increase in 

execution time for any single co-running contender due to contention over resource r 

from the task. Note, resource stressing and resource sensitive contenders for a given 

resource are not necessarily one and the same.

Each task is further characterised by its resource sensitivity Xr

i
 and resource stress 

Y
r

i
 for each shared hardware resource r ∈ H . X

r

i
 captures the increase in execution 

time of task �
i
 (from C

i
 to C

i
+ X

r

i
 ) when it is executed in parallel with a resource 

stressing contender for resource r. Thus Xr

i
 models how much task �

i
 behaves like a 

resource sensitive contender. Similarly, Yr

i
 captures the increase in execution time of 

a resource sensitive contender (from C to C + Y
r

i
 ) for resource r, when it is executed 

in parallel with task �
i
 . Hence Yr

i
 models how much task �

i
 behaves like a resource 

stressing contender. With this model, the execution time of a task �
i
 running on 

one core, subject to interference via shared hardware resource r from task �
k
 run-

ning in parallel on another core, is increased by at most min(Xr

i
, Y

r

k
) i.e. from C

i
 to 

C
i
+ min(Xr

i
, Y

r

k
).

The notation �
x
 is used to denote the set of tasks that execute on the same core 

(with index x) as the task of interest �
i
 . Similarly, �

y
 is used to denote the set of tasks 

that execute on some other core (with index y).

Each task �
i
 is assumed to have a unique priority. hp(i) (resp. lp(i)) is used to 

denote the set of tasks with higher (resp. lower) priority than task �
i
 . Similarly, 

hep(i) (resp. lep(i)) is used to denote the set of tasks with higher (resp. lower) than 

or equal priority to task �
i
.

The schedulability tests introduced in this paper are named using the following 

convention: Cp Sched-m-X, where C indicates a contention-based test for p parti-

tioned scheduling, using scheduling policy Sched, which is either FPPS or FPNS. 

The test is applicable to systems with m cores, and makes use of information X, 

which is either D or R meaning the deadlines or the response times of the tasks on 

other cores, or fc meaning fully composable, i.e. the test does not rely on any infor-

mation about the tasks running on the other cores.

The MRSS task model assumes that the resource sensitivity X
r

i
 and resource 

stress Yr

i
 parameters for each task �

i
 are provided by timing analysis. Obtaining pre-

cise bounds for these parameters is a challenging timing analysis problem that is 

beyond the scope of this paper; nevertheless, below we give a brief overview of how 

such values could be estimated using either measurement-based or static timing 

analysis techniques.
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Using measurement-based timing analysis techniques, the resource sensitivity 

X
r

i
 can be obtained by capturing the maximum difference between the execution 

time of task �
i
 when it runs in parallel with a resource stressing contender, and 

the corresponding execution time when it runs stand-alone, assuming that the 

same inputs and initial state are used in each case. Similarly, the resource stress 

Y
r

i
 can be obtained by capturing the maximum difference between the execution 

time of a resource sensitive contender when it runs in parallel with task �
i
 , and 

the corresponding execution time of the contender when it runs stand-alone. As 

with measurement-based WCET estimation, such an approach needs to explore 

a representative set of inputs and initial states in order to obtain valid estimates. 

Further, resource stressing and resource sensitive contenders need to be carefully 

designed to meet their requirements in terms of creating/suffering the maximum 

amount of interference via contention over the resource (Iorga et al. 2020).

Bounds on resource sensitivity and resource stress can also be obtained via 

static timing analysis. Static analysis first needs to compute an upper bound 

on the maximum number of accesses A
r

i
 that task �

i
 can make to the resource. 

The resource sensitivity Xr

i
 can then be computed by determining the maximum 

increase in the execution time of task �
i
 assuming that A

r

i
 accesses are made in 

contention with an arbitrary number of accesses emanating from one other core. 

Similarly, the resource stress Yr

i
 equates to the maximum increase in the execu-

tion time of any arbitrary resource sensitive contender, due to contention over the 

resource caused by Ar

i
 accesses emanating from one other core.

The schedulability analysis presented in Sect.  4 assumes that the total inter-

ference occurring via multiple different resources can be upper bounded by the 

sum of the interference occurring via each of those resources individually. This 

assumption can reasonably be expected to hold provided that the resource con-

tention is independent. In other words, that contention over one resource does 

not create additional contention over another resource. An example that breaks 

this assumption occurs with a cache that is shared between cores. In this case, 

cache thrashing  (Radojkovic et  al. 2012) can result in additional accesses to 

main memory, and hence further contention and interference over that disparate 

resource. Cache partitioning (per core) would be an effective way of addressing 

this issue (Altmeyer et al. 2014, 2016), thus improving timing predictability.

The analysis also assumes that the total interference occurring due to co-run-

ning tasks on multiple other cores can be upper bounded by the sum of the inter-

ference occurring due to co-running tasks on each of those cores individually. 

This assumption can reasonably be expected to hold provided that there are no 

discontinuities in the amount of interference that can occur that can be triggered 

by co-running tasks on multiple cores, but not by co-runners on just one core. 

An example that breaks this assumption occurs with cache miss status handling 

registers (MSHR)  (Valsan et  al. 2016). In this case, contention from tasks on 

multiple cores can exhaust all of the available MSHRs, resulting in substantial 

blocking delays. Depending on the local memory level parallelism, utilizing all 

of the MSHRs is typically not possible with just one contending core. Increasing 

the number of MSHRs, or reducing the local memory level parallelism such that 

contention from all m cores cannot exhaust the set of MSHRs, are effective ways 
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of addressing this problem (Valsan et al. 2016) and hence restoring timing pre-

dictability. To validate the use of the analysis given in Sect. 4, each of the above 

assumptions needs to be assessed for the hardware architecture considered.

4  Schedulability analysis

In this section, we introduce schedulability tests for the MRSS task model, 

assuming partitioned fixed priority preemptive scheduling (pFPPS) (Sect.  4.1), 

and partitioned fixed priority non-preemptive scheduling (pFPNS) (Section 4.2). 

In Sect. 4.3 we consider composability and derive context-independent schedula-

bility tests for both pFPPS and pFPNS. The dominance relationships between the 

various tests are derived in Sect. 4.4.

First, we give a simple example. Consider four tasks executing on two cores 

under partitioned fixed priority preemptive scheduling, with all four tasks access-

ing the same shared hardware resource r. Tasks �
1
 and �

2
 execute on core 1 and 

tasks �
3
 and �

4
 execute on core 2. The stand-alone worst-case execution times 

C
i
 of the tasks are 100, 200, 150, and 150, their resource sensitivity values X

r

i
 

are 16, 12, 10, and 10, and their resource stress values Yr

i
 are 24, 12, 10, and 5 

respectively. Further, the periods and deadlines of the tasks are much larger than 

their execution times. Considering the higher priority task �
1
 on core 1. During 

the response time of a single job of task �
1
 , it could be subject to interference due 

to cross-core contention from one job of each of tasks �
3
 and �

4
 executing on core 

2. This interference is bounded by the minimum of the resource sensitivity of the 

job of task �
1
 , Xr

1
= 16 , and the total resource stress due to one job of each of tasks 

�
3
 and �

4
 , Yr

3
+ Y

r

4
= 10 + 5 = 15 . Hence the worst-case response time of task �

1
 is 

bounded by R1 = 100 + min(16, 15) = 115 . Considering the lower priority task �
2
 

on core 1. During the response time of a single job of task �
2
 , one job of �

1
 and one 

job of �
2
 can execute on core 1. These jobs could be subject to interference due to 

cross-core contention from one job of each of tasks �
3
 and �

4
 executing on core 2. 

This interference is bounded by the minimum of the total resource sensitivity of 

the jobs of tasks �
1
 and �

2
 , Xr

1
+ X

r

2
= 16 + 12 = 28 , and the total resource stress 

due to the jobs of tasks �
3
 and �

4
 , Yr

3
+ Y

r

4
= 10 + 5 = 15 . Hence the worst-case 

response time of task �
2
 is bounded by R2 = 100 + 200 + min(28, 15) = 315 . Simi-

lar analysis for tasks �
3
 and �

4
 on core 2 yields bounds on their worst-case response 

times of R3 = 150 + min(10, 36) = 160 and R4 = 150 + 150 + min(20, 36) = 320 . 

Note that this instructive example, and the detailed schedulability analysis 

given below, makes no assumptions about exactly when jobs execute within the 

response times considered, nor any assumptions about when within those time 

intervals cross-core resource contention can actually occur. Rather bounds on 

worst-case response times are derived using only the task timing parameters: 

stand-alone worst-case execution times, resource stress and sensitivity values, 

periods and deadlines.
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4.1  pFPPS schedulability analysis

In the absence of any interference via shared hardware resources, the worst-case 

response time of task �
i
 under pFPPS is given via standard response time analy-

sis (Joseph and Pandya 1986; Audsley et al. 1993):

Adding cross-core interference considering each resource r ∈ H , we may compute 

the worst-case response time as follows:

where I
r

i
(R

i
) is an upper bound on the interference that may occur within the 

response time of task �
i
 , via shared hardware resource r, due to tasks executing on 

the other cores.

The interference term I
r

i
(R

i
) depends on: (i) the total resource sensitivity for 

resource r, denoted by Sr

i
(R

i
, x) , for the tasks executing on the same core x as task �

i
 

within its response time R
i
 ; and (ii) the total resource stress on resource r, denoted 

by Er
i
(Ri, y) , that can be produced by tasks executing on each of the other cores y 

within an interval of length R
i
 . The total resource sensitivity Sr

i
(R

i
, x) is computed 

based on the jobs that may execute within the worst-case response time of task �
i
 , 

hence with reference to (1) we have:

The total resource stress Er
i
(Ri, y) due to tasks that execute on another core y in the 

interval R
i
 can be upper bounded as follows. Here, unlike in (3), the worst-case does 

not occur when these tasks are released synchronously, but rather when the resource 

contention occurs as late as possible for one job of a task, and then as early as pos-

sible for subsequent jobs. Further, tasks of any priority can cause interference when 

executing on other cores. Thus we have:

The analysis in (4) does not make any assumptions about how long task �j needs to 

execute in order to cause an increase in execution time of up to Yr
j
 in a task running 

on another core. In particular, there is no assumption that task �j needs to run for at 

least Yr
j
 , since Yr

j
 is a measure of the maximum increase in execution time of another 

task due to contention from task �j , not a measure of the time for which task �j needs 

to execute to cause that contention.

(1)Ri = Ci +
∑

j∈�x∧j∈��(i)

⌈

Ri

Tj

⌉

Cj

(2)Ri = Ci +
∑

j∈�x∧j∈��(i)

⌈

Ri

Tj

⌉

Cj +
∑

r∈H

Ir
i
(Ri)

(3)Sr
i
(Ri, x) = Xr

i
+

∑

j∈�x∧j∈��(i)

⌈

Ri

Tj

⌉

Xr
j

(4)Er
i
(Ri, y) =

∑

j∈�y

⌈

Ri + Dj

Tj

⌉

Yr
j
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Assuming that the execution causing contention can occur instantaneously, as is 

done in (4), is potentially pessimistic; however, it ensures that the analysis is sound even 

when there is considerable asymmetry in the (small) execution time required to stress 

a resource and the (large) increase in execution time of another task, which is sensitive 

to that resource stress. Since Xr

k
 represents the maximum sensitivity of a task �

k
 when 

subject to continuous interference via resource r from a maximally resource stressing 

contender on one single other core, the maximum interference from other cores that 

can impact the response time of task �
i
 via resource r can be upper bounded by:

This is the case, since the maximum interference due to contention from each core 

y cannot exceed the total resource stress Er
i
(Ri, y) emanating from that core within a 

time R
i
.

We refer to the schedulability test given by (2), (3), (4), and (5) as the CpFPPS-m-D 

test, since this test uses information about the deadlines of the tasks running on other 

cores.

A more precise analysis may be obtained by substituting Rj for Dj in (4) as follows, 

since a schedulable job of task �j cannot execute beyond its worst-case response time.

Using this formulation, the response times of the tasks become interdependent. 

This problem can be solved via fixed point iteration. Here, an outer iteration starts 

with R
i
= C

i
 , Rj = Cj etc.  for all tasks in the system, and repeatedly computes the 

response times for all tasks on all cores. This is done using the Rj values in the right 

hand side of (6) from the previous round, until all response times either converge 

(i.e. are unchanged from the previous round) or one of them exceeds the associated 

deadline. Since Er
i
(Ri, y) in (6) is a monotonically non-decreasing function of each 

Rj , then on each round, each Rj value can only increase or remain the same, it can-

not decrease. Thus, the outer fixed point iteration is guaranteed to either converge 

giving the set of schedulable R
i
≤ D

i
 for all tasks in the system, or to result in some 

R
i
> D

i
 , in which case that task and the system as a whole is unschedulable. We 

refer to the schedulability test given by (2), (3), (5), and (6) as the CpFPPS-m-R 

test, since it uses information about the response times of the tasks running on the 

other cores.

4.2  pFPNS schedulability analysis

In the absence of any cross-core contention and interference via shared hardware 

resources, the worst-case response time of task �
i
 under pFPNS can be upper bounded 

via a sufficient response time analysis (Davis et al. 2007):

(5)
Ir
i
(Ri) =

∑

∀y≠x

min(Er
i
(Ri, y), Sr

i
(Ri, x))

(6)Er
i
(Ri, y) =

∑

j∈�y

⌈

Ri + Rj

Tj

⌉

Yr
j
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Here, we have reformulated the sufficient analysis for FPNS (Davis et al. 2007) into 

a single equation. The changes involve compacting the blocking term ( max() ), and 

bringing the execution time C
i
 of the task under analysis into the equation. To com-

pensate for the latter, the time interval in which higher priority tasks can execute is 

changed to (R
i
− C

i
) . This excludes the time at the end of the interval when task �

i
 is 

executing non-preemptively. We also use a ⌊ ⌋ + 1 formulation rather than ⌈ ⌉ to avoid 

the need for a term equal to the time unit granularity.

Similar to the case for pFPPS in (2), adding cross-core interference considering 

each resource r ∈ H , we may compute an upper bound on the worst-case response 

time as follows:

where I
r

i
(R

i
) is an upper bound on the interference that may occur within the 

response time of task �
i
 , via shared hardware resource r, due to tasks executing on 

other cores. Here, we make the sound, but potentially pessimistic, assumption that 

even though the execution time of task �
i
 may be increased to more than C

i
 due to 

contention, only during the final C
i
 time units of the task’s response time are other 

tasks on core x precluded from executing (i.e. we continue to use (R
i
− C

i
) in the 

⌊ ⌋ function). Further, we use R
i
 in the final term, since cross-core contention still 

occurs during non-preemptive execution.

The interference term I
r

i
(R

i
) depends on: (i) the total resource sensitivity for 

resource r, denoted by Sr

i
(R

i
, x) , for the tasks executing on the same core x as task �

i
 

within its response time R
i
 ; and (ii) the total resource stress on resource r, denoted 

by Er
i
(Ri, y) , that can be produced by tasks executing on each of the other cores y 

within an interval of length R
i
 . The total resource sensitivity Sr

i
(R

i
, x) is computed 

based on the jobs that may execute within the worst-case response time of task �
i
 , 

hence with reference to (7) we have:

The two equations (4) and (6) for the total resource stress Er
i
(Ri, y) due to tasks that 

execute on another core y in the interval R
i
 depend only on the tasks parameters and 

response times, but not the scheduling policy per se. Thus by redefining Sr

i
(R

i
, x) 

according to (9) for the non-preemptive case, we obtain the following pFPNS sched-

ulability tests for the MRSS task model.

The CpFPNS-m-D test given by (8), (9), (4), and (5) makes use of the deadlines 

of the tasks running on the other cores.

The CpFPNS-m-R test given by (8), (9), (6), and (5) makes use of the response 

times of the tasks running on the other cores.

(7)Ri = max
k∈�x∧k∈���(i)

(Ck) +
∑

j∈�x∧j∈��(i)

(⌊

Ri − Ci

Tj

⌋

+ 1

)

Cj + Ci

(8)Ri = max
k∈�x∧k∈���(i)

(Ck) +
∑

j∈�x∧j∈��(i)

(⌊

Ri − Ci

Tj

⌋

+ 1

)

Cj + Ci +
∑

r∈H

Ir
i
(Ri)

(9)Sr
i
(Ri, x) = max

k∈�x∧k∈���(i)
(Xr

k
) +

∑

j∈�x∧j∈��(i)

(⌊

Ri − Ci

Tj

⌋

+ 1

)

Xr
j
+ Xr

i
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4.3  Composability

The schedulability analyses derived in Sects. 4.1 and 4.2 make use of information 

about the resource contention due to tasks executing on other cores. In other words, 

these analyses requires that the resource stress ( Yr
j
 ) values are known for all tasks 

executing on the other cores, as well as their other parameters i.e. Tj , Dj , Rj . While 

this results in tighter response time bounds, it also means that the analyses are not 

fully composable, since the schedulability of the tasks running on one core depend 

on the parameters of the tasks running on the other cores. A fully composable analy-

sis can, however, be obtained by redefining (5) as follows:

This equates to assuming a worst-case scenario of resource stressing contenders 

for each resource r running on every core. This may be pessimistic on two counts: 

Firstly, the resource stressing contenders may cause significantly more interference 

than the tasks actually running on the other cores, and secondly, with more than one 

resource it may not be possible to maximally stress all resources simultaneously.

Using (10) results in fully composable context-independent schedulability tests. 

These tests are able to check the schedulability of task sets on each of the m cores in 

a system, without needing to know any of the parameters of the tasks on the other 

cores. We refer to the schedulability test given by (2), (3), and (10) as the CpFPPS-

m-fc test. Similarly, we refer to the schedulability test given by (8), (9), and (10) as 

the CpFPNS-m-fc test.

Finally, an intermediate partially composable analysis can be provided if resource 

access regulation mechanisms (Yun et  al. 2013) or budgets are employed to limit 

the amount of contention emanating from each core. Let Fr
i
(t, y) be the maximum 

increase in execution time of a resource sensitive contender on another core that can 

occur due to contention over resource r caused by a resource stressing contender 

running on core y for a time period of t, subject to resource regulation. Partially 

composable analysis can be obtained by redefining (5) as follows:

Note, this analysis only holds if the resource regulation on each core y does not actu-

ally limit the accesses to each resource r made by tasks on that core over any time 

interval. Provided that is guaranteed, no actual runtime enforcement is necessary, 

the budget function Fr
i
(t, y) simply acts as an intermediate value that permits a sepa-

ration of concerns and composition. Stated otherwise, the budget function Fr
i
(t, y) 

becomes a requirement that any set of tasks assigned to core y must guarantee not to 

exceed. This guarantee is relied upon by the schedulability analysis for tasks execut-

ing on the other cores. Hence, the analysis is partially composable, the tasks on core 

y may be changed or modified provided that the rely-guarantee is respected.

(10)
Ir
i
(Ri) =

∑

∀y≠x

Sr
i
(Ri, x) = (m − 1) ⋅ Sr

i
(Ri, x)

(11)
Ir
i
(Ri) =

∑

∀y≠x

min(Fr
i
(Ri, y), Sr

i
(Ri, x))
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4.4  Dominance relations

A schedulability test S is said to dominate another test Z for a given task model 

and scheduling algorithm, if every task set that is deemed schedulable according to 

test Z is also deemed schedulable by test S, and there exists some task sets that are 

schedulable according to test S, but not according to test Z.

Comparing the definitions of Er
i
(Ri, y) given by (6) for the CpFPPS-m-R and 

CpFPNS-m-R tests and by (4) for the CpFPPS-m-D and CpFPNS-m-D tests, it is 

evident that each of the former tests deems schedulable all task sets that are schedu-

lable according to the corresponding latter test. This is the case, since in any schedu-

lable system, the response time of a task is no greater than its deadline ( Rj ≤ Dj ), 

and hence the Er
i
(Ri, y) term for the former tests, given by (6), is less then or equal 

to the equivalent term, given by (4), for the latter tests. Further, it is easy to see that 

there exist task sets that are schedulable according to each of the former tests, but 

not according to the corresponding latter test due to a larger contention contribution 

emanating from the larger Er
i
(Ri, y) term. Hence the CpFPPS-m-R test dominates 

the CpFPPS-m-D test, and the CpFPNS-m-R test dominates the CpFPNS-m-D 

test.

Comparing the definitions of I
r

i
(R

i
) given by (5) for the CpFPPS-m-D and 

CpFPNS-m-D tests and by (10) for the CpFPPS-m-fc and CpFPNS-m-fc tests, it 

is evident that the former tests deems schedulable all task sets that are schedula-

ble according to the corresponding latter test. Further, it is easy to see that there 

exist task sets that are schedulable according to the each of the former tests, but 

not according to the corresponding latter test due to a larger contention contribution 

emanating from the larger Ir

i
(R

i
) term. Hence the CpFPPS-m-D test dominates the 

CpFPPS-m-fc test, and the CpFPNS-m-D test dominates the CpFPNS-m-fc test.

As dominance is transitive, we have: CpFPPS-m-R → CpFPPS-m-D → 

CpFPPS-m-fc and CpFPNS-m -R → CpFPNS-m-D → CpFPNS-m-fc where S → Z 

indicates that test S dominates test Z.

Finally, comparing a system of m cores to one with m + 1 cores, where in each 

case the first m cores execute exactly the same sets of tasks, and the m + 1 core sys-

tem has extra tasks that execute on core m + 1 , then there is a dominance relation-

ship between the systems as analysed by any of the schedulability tests. In other 

words, adding a core and the contention that it brings cannot improve schedulability 

for the tasks running on the existing cores, but may make their schedulability worse. 

Schedulability for m cores thus dominates that for m + 1 cores with added tasks: Cp 

Sched-m-X → Cp Sched-(m + 1)-X

4.5  Complexity

The standard response time analysis (Joseph and Pandya 1986; Audsley et al. 1993) 

for FPPS on a single-core processor, given by (1), has pseudo-polynomial com-

plexity of O(n2
D

max) , where n is the number of tasks and Dmax is the longest dead-

line of any task in the system. This can be seen by observing that there are n tasks 

for which response times need to be determined, and on each fixed-point iteration 
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there is a summation over at most n tasks. Further, on each fixed-point iteration the 

response time can either increase by at least 1, or remain the same, in which case 

iteration terminates. Since iteration also terminates when the deadline is exceeded, 

the maximum number of iterations is bounded by Dmax . Hence the overall complex-

ity of the test is O(n2
D

max) . The sufficient response time test for FPNS (Davis et al. 

2007) similarly has pseudo-polynomial complexity of O(n2
D

max) . Considering parti-

tioned scheduling on multi-core systems, with m cores, at most n tasks per core, and 

no cross-core contention or interference, these tests have O(mn
2
D

max) complexity.

The schedulability tests for the MRSS task model are derived from the above 

tests; however, they also consider cross-core contention and interference over |H| 

shared hardware resources.

The CpFPPS-m-fc and CpFPNS-m-fc tests have pseudo-polynomial complexity 

of O(m|H|n2
D

max) . This can be seen by observing that there are at most mn tasks 

for which response times need to be determined, and on each fixed-point iteration 

of (2) or (8) the interference term involves a nested summation over |H| resources, 

no summation over m cores – see (10), and lastly summation over n tasks within the 

expression for Sr

i
(R

i
, x) . Finally, the maximum number of fixed point iterations is 

again bounded by Dmax.

The CpFPPS-m-D and CpFPNS-m-D tests have pseudo-polynomial complexity 

of O(m2|H|n2
D

max) . This can be seen by observing that there are at most mn tasks 

for which response times need to be determined, and on each fixed-point iteration 

of (2) or (8) the interference term involves a nested summation over |H| resources, 

m cores, and lastly over n tasks within the expressions for Er
i
(Ri, y) and Sr

i
(R

i
, x) . 

Finally, the maximum number of fixed point iterations is again bounded by Dmax.

The CpFPPS-m-R and CpFPNS-m-R tests were described in Sects. 4.1 and 4.2 

as requiring nested fixed point iterations to compute the interdependent response 

times. The efficiency of these tests can however be improved by considering the 

monotonicity of the expressions on the right hand side of each of the equations with 

respect to the values of both R
i
 and Rj . This means that the tests can be implemented 

via an outer loop that performs fixed point iteration, combined with a simple inner 

loop that iterates over all of the tasks in the system. Below, we describe this imple-

mentation in more detail, followed by the complexity of the CpFPPS-m-R and 

CpFPNS-m-R tests.

In an efficient implementation of the CpFPPS-m -R test (resp.  CpFPNS-m-R 

test), the outer loop iteration starts with R
i
= C

i
 , Rj = Cj etc. for all tasks. The inner 

loop iterates over all tasks, for each task it computes an updated response time by 

evaluating (2) (resp. (8)) just once using the R
i
 and Rj values from the previous outer 

loop iteration. Due to the right hand sides of (2), (3), (5), and (6) (resp.  (8), (9), 

(5), and (6)) being monotonically non-decreasing functions of R
i
 and Rj , then on 

each outer loop iteration, the response time value for each task can only increase 

or remain the same, it cannot decrease. Hence, the outer loop fixed point iteration 

is guaranteed to terminate, either due to convergence (i.e.  all response times are 

unchanged from the previous iteration) indicating a schedulable system, or because 

the response time of at least one task has exceeded its deadline.

Observe that on each iteration of the outer loop, the response time of at least 

one task must increase by at least 1, otherwise the response times have converged 
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and the test terminates. The maximum number of outer loop iterations is therefore 

upper bounded by mnD
max . The inner loop evaluates (2) (resp. (8)) once for each of 

at most mn tasks, with each such evaluation requiring O(m|H|n) operations. It fol-

lows that the CpFPPS-m-R test and the CpFPNS-m-R test have pseudo-polynomial 

complexity of O(m3|H|n3
D

max).

Comparing the complexity of the tests for the MRSS task model to those for par-

titioned fixed priority scheduling with no contention, we observe that: (i) the com-

plexity of the CpFPPS-m-fc and CpFPNS-m-fc tests is higher by a factor of |H|, (ii) 

the complexity of the CpFPPS-m-D and CpFPNS-m-D tests is higher by a factor 

of m|H|, and (iii) the complexity of the CpFPPS-m-R and CpFPNS-m-R tests is 

higher by a factor of m2|H|n . Given the high performance of the standard response 

time tests for fixed priority scheduling (Davis et al. 2008), in practice, all of the tests 

for the MRSS task model scale well to realistic system sizes.

5  Priority assignment

To maximize schedulability it is necessary to assign task priorities in an optimal 

way (Davis et al. 2016). This section considers optimal priority assignment for the 

schedulability tests introduced in Sect. 4.

5.1  pFPPS priority assignment

Leung and Whitehead (1982) showed that Deadline Monotonic Priority Ordering 

(DMPO) is optimal for constrained-deadline task sets with parameters (C,  D,  T) 

under fixed priority preemptive scheduling. We observe that this result also holds for 

constrained-deadline MRSS task sets compliant with model described in Sect. 3 and 

analysed according to the CpFPPS-m-fc test introduced in Sect. 4.3. This is because 

that formulation can be re-arranged to match the basic response time analysis (1), 

with the execution time of each task �
k
 increased by 

∑

r∈H
(m − 1)Xr

k
.

DMPO is also optimal for constrained-deadline MRSS task sets analysed accord-

ing to the CpFPPS-m-D test, introduced in Sect.  4.1. Proof is given below using 

the standard apparatus for proving the optimality of such priority orderings, as 

described in Sect. IV of the review by Davis et  al. (2016). This proof technique 

is applicable in cases where task priorities can be defined directly from fixed task 

parameters, for example periods and deadlines. To show that a priority assignment 

policy P (i.e. DMPO) is optimal, it suffices to prove that any task set that is schedu-

lable according to the schedulability test considered using some priority assignment 

policy Q is also schedulable using priority ordering P. Proof is obtained by trans-

forming priority ordering Q into priority ordering P, while ensuring that no tasks 

become unschedulable during the transformation. The proof proceeds by induction.

Theorem 1 Deadline Monotonic Priority Ordering is optimal for constrained-dead-

line MRSS task sets compliant with the model described in Sect.  3 and analysed 

according to the CpFPPS-m -D test introduced in Sect. 4.1.
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Proof Base case: The task set is schedulable with priority order Q = Qk , where k is 

the iteration count.

Inductive step: We select a pair of tasks that are at adjacent priorities i and j 

where j = i + 1 in priority ordering Qk , but out of Deadline Monotonic relative pri-

ority order. Let these tasks be �
A
 and �

B
 , with �

A
 having the higher priority in Qk . 

Note that D
A
> D

B
 as the tasks are out of Deadline Monotonic relative order. Let i 

be the priority of task �
A
 in Qk and j be the priority of task �

B
 . We need to prove that 

all of the tasks remain schedulable with priority order Qk−1 , which switches the pri-

orities of these two tasks. There are four groups of tasks to consider:

hp(i): tasks in this set have higher priorities than both �
A
 and �

B
 in both Qk and 

Qk−1 . Since the schedulability of these tasks is unaffected by the relative priority 

ordering of �
A
 and �

B
 , they remain schedulable in Qk−1.

�
A
 : Let w = R

B
 be the response time of task �

B
 in priority order Qk . Since task �

B
 is 

schedulable in Qk , we have w = R
B
≤ D

B
< D

A
≤ T

A
 , hence in (2), the contribution 

from �
A
 within the response time of �

B
 is exactly one job (i.e. C

A
 ), and there is also 

a contribution of C
B
 from task �

B
 itself. Considering interference, the total resource 

sensitivity Sr

B
(w, x) given by (3) depends only on the value w and fixed parameters of 

the set of tasks with priorities higher than or equal to task �
B
 in Qk that is �

A
 , �

B
 , and 

hp(i). Further, the total resource stress Er
B
(w, y) due to tasks executing on some other 

core y depends only on the value of w and the fixed parameters of the tasks execut-

ing on that core. It follows that the interference term Ir

B
(w) given by (5) and used in 

(2) depends only on the value of w and the fixed parameters of the set of tasks �
A
 , �

B
 , 

and hp(i), as well as the fixed parameters of the tasks executing on all other cores. 

Now consider the response time of task �
A
 under priority order Qk+1 . This response 

time is R
A
= w , as there is exactly the same contribution from tasks �

A
 , �

B
 and all 

the higher priority tasks, and further the interference due to resource contention is 

the same, in other words Ir

B
(w) for Qk equates to Ir

A
(w) for Qk+1 , since the value of w 

is the same, and the set of tasks that this term is dependent upon is unchanged ( �
A
 , 

�
B
 , and hp(i) on core x, and all of the tasks on the other cores). Since w < D

A
 , task �

A
 

remains schedulable.

�
B
 : as the priority of �

B
 has increased its response time is no greater in Qk+1 than 

in Qk . This is the case because the only change to the response time calculation for 

�
B
 is the removal of the contribution from task �

A
 , and also the removal of its contri-

bution to the total resource sensitivity, and hence from the interference term Ir

B
(w) . 

Thus �
B
 remains schedulable.

lp(j) : tasks in this set have lower priorities than tasks �
A
 and �

B
 in both Qk and 

Qk+1 . Since the schedulability of these tasks is unaffected by the relative priority 

ordering of tasks �
A
 and �

B
 , they remain schedulable.

All tasks therefore remain schedulable in Qk+1.

At most k = n(n − 1)∕2 steps are required to transform priority ordering Q into P 

without any loss of schedulability   ◻

Next, we consider optimal priority assignment with respect to the CpFPPS-

m -R test introduced in Sect.  4.1. Davis and Burns (2011) proved that it is 

both sufficient and necessary to show that a schedulability test meets three 
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simple conditions in order for Audsley’s Optimal Priority Assignment (OPA) 

algorithm (Audsley 2001) to be applicable.

Condition 1: The schedulability of a task according to the test must be inde-

pendent of the relative priority order of higher priority tasks.

Condition 2: The schedulability of a task according to the test must be inde-

pendent of the relative priority order of lower priority tasks.

Condition 3: The schedulability of a task according to the test must not get worse 

if the task is moved up one place in the priority order (i.e. its priority is swapped 

with that of the task immediately above it in the priority order).

Theorem 2 The CpFPPS-m-R test, given in Sect. 4.1, is not compatible with Aud-

sey’s Optimal Priority Assignment (OPA) algorithm (Audsley 2001), and hence that 

algorithm cannot be used to obtain an optimal priority assignment with respect to 

the test.

Proof To prove non-compatibility, it suffices to show that any one of the three con-

ditions set out by Davis and Burns (2011) and listed above is broken by the test. In 

this case, we show that Condition 1 does not hold. According to the CpFPPS-m-R 

test, the schedulability of a task �
i
 on core x can depend on the response time of task 

�j on a different core y via Er
j
(Ri, y) given by (6). In turn, the response time of task �j 

can depend on the response time of some higher priority task �
k
 on the same core x 

as task �
i
 via Er

k
(Rj, x) also given by (6). Since the response time of task �

k
 depends 

on its relative priority order among those tasks with higher priority than task �
i
 , 

Condition 1 does not hold and therefore the CpFPPS-m-R test is not compatible 

with Audsley’s OPA algorithm   ◻

Although the CpFPPS-m-R test is not compatible with Audsley’s OPA algo-

rithm, the form of the test, with its dependence on the response times of other tasks, 

means that a back-tracking search, as proposed by Davis and Burns (2010), could 

potentially be used to obtain a schedulable priority assignment without having to 

explore all possible priority orderings. The same applies to the CpFPNS-m-R test 

discussed in Sect. 5.2.

5.2  pFPNS priority assignment

George et al. (1996) showed that Deadline Monotonic Priority Ordering (DMPO) is 

not optimal for constrained-deadline task sets with parameters (C, D, T) under fixed 

priority non-preemptive scheduling, and proved that Audsley’s algorithm (Audsley 

2001) is able to provide an optimal priority ordering in this case. We observe that 

this result also holds for constrained-deadline MRSS task sets compliant with the 

model described in Sect. 3 and analysed according to the CpFPNS-m-fc test intro-

duced in Sect. 4.3. This is the case because the formulation can be re-arranged to 
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match the basic response time analysis (7), with the execution time of each task �
k
 

increased by (m − 1)Xr

k
 . Audsley’s algorithm  (Audsley 2001) is also optimal with 

respect to the CpFPNS-m-D test, as proved below.

Theorem 3 Audsley’s algorithm (Audsley 2001) is optimal for constrained-deadline 

MRSS task sets compliant with the model described in Sect. 3 and analysed accord-

ing to the CpFPNS-m-D test introduced in Sect. 4.2.

Proof It suffices to show that the schedulability test meets the three conditions, 

given by Davis and Burns (2011) and set out in Sect. 5.1. With respect to Condition 

1 and Condition 2, inspection of (8) shows that the first two terms are dependent 

on the set of lower and equal priority tasks lep(i) and the set of higher priority tasks 

hp(i) respectively, but do not depend on the relative priority order of the tasks within 

those sets. Considering the fourth term in (8), Ir

i
(t) is given by (5). In the definition 

of Ir

i
(t) , the total resource sensitivity Sr

i
(t, x) is given by (9), which is dependent on 

the set of tasks lep(i) and the set of tasks hp(i), but does not depend on the relative 

priority order of the tasks within those sets. Finally, the total resource contention 

Er
i
(t, y) given by (4) has no dependence on the relative priority order of the tasks in 

the sets hp(i) and lep(i) (or lp(i)), thus Condition 1 and Condition 2 hold.

With respect to Condition 3, moving task �
i
 up one place in the priority order 

is equivalent to moving another task �
h
 that also executes on core x from the set 

hp(i) to the set lep(i). Considering (8), such a change may increase the first term 

by no more than C
h
 , but is guaranteed to also reduce the second term by at least 

C
h
 . Further, with respect to the total resource sensitivity Sr

i
(t, x) , given by (9), such 

a change may increase the first term by no more than Xr

h
 , but is guaranteed to also 

reduce the second term by at least Xr

h
 . There is no change to the total resource stress 

Er
i
(t, y) given by (4). Hence the schedulability of task �

i
 cannot get worse if the task 

is moved up one place in the priority order   ◻

Finally, we note that the CpFPNS-m-R test is not compatible with Audsley’s 

OPA algorithm, since it breaks Condition 1, as proven below.

Theorem 4 The CpFPNS-m-R test given in Sect. 4.1, is not compatible with Aud-

sey’s Optimal Priority Assignment (OPA) algorithm (Audsley 2001), and hence that 

algorithm cannot be used to obtain an optimal priority assignment with respect to 

the test.

Proof Proof follows via exactly the same argument as given in the proof of The-

orem  2 in Sect.  5.1, by replacing the words “CpFPPS-m-R test” with the words 

“CpFPNS-m-R test”   ◻



1 3

Real-Time Systems 

6  Evaluation

In this section, we present an empirical evaluation of the schedulability tests 

introduced in Sect.  4 for MRSS task sets executing on a multi-core system, 

assuming a single hardware resource shared between all cores. (Note, multiple 

shared hardware resources resulting in the same total interference would have 

the same impact on schedulability, due to the summation terms in (2) and (8)). 

Experiments were performed for 1, 2, 3, and 4 cores,3 with the single core case 

considered for comparison purposes.

6.1  Task set parameter generation

The task set parameters used in our experiments were generated as follows:

– Task utilizations ( U
i
= C

i
∕T

i
 ) were generated using the Dirichlet-Rescale (DRS) 

algorithm  (Griffin et  al. 2020b) (open source Python software  (Griffin et  al. 

2020a)) providing an unbiased distribution of utilization values that sum to the 

total utilization U required.

– Task periods T
i
 were generated according to a log-uniform distribution (Ember-

son et al. 2010) with a factor of 100 difference between the minimum and maxi-

mum possible period. This represents a spread of task periods from 10 ms to 1 

s, as found in many real-time applications. (When considering non-preemptive 

scheduling, a factor of 10 difference was used, otherwise most task sets would 

not be schedulable).

– Task deadlines D
i
 were set equal to their periods T

i
.

– The stand-alone execution time of each task was given by: C
i
= U

i
⋅ T

i
.

– Task resource sensitivity values Xr

i
 were determined as follows. The DRS algo-

rithm was used to generate task resource sensitivity utilization values Vr

i
 , such 

that the total resource sensitivity utilization was SF (the Sensitivity Factor, 

default SF = 0.25 ) times the total task utilization (i.e. 
∑

∀i
V

r

i
= U ⋅ SF ), and 

each individual task resource sensitivity utilization was upper bounded by the 

corresponding task utilization (i.e. Vr

i
≤ U

i
 ). Each task resource sensitivity value 

was then given by Xr

i
= V

r

i
⋅ T

i
.

– Task resource stress values Yr

i
 were set to a fixed proportion of the corresponding 

resource sensitivity value Yr

i
= X

r

i
⋅ RF , where RF is the Stress Factor, default 

RF = 0.5.

The default value for the Sensitivity Factor ( SF = 0.25 ) was set to approximately 

twice the average value (13.6%) obtained for the tasks in the proof of concept indus-

try case study described in Sect. 7. This is justified since the case study considers a 

single shared hardware resource, whereas in practice contention would likely occur 

3 The analysis scales to more than 4 cores; however, we limited consideration to this range, since 4 cores 

represents a typical cluster size beyond which sharing hardware resources can become a significant per-

formance bottleneck.
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via multiple shared hardware resources, resulting in higher levels of interference. 

The default value for the Stress Factor ( RF = 0.5 ) was set within the range found in 

the case study (0.23 to 1.58). Further, specific experiments were also used to evalu-

ate performance over a wide range of values for these parameters.

6.2  Experiments

The experiments considered systems with 1, 2, 3, and 4 cores, with a different task 

set (generated according to the same parameters) assigned to each core. The per core 

task set utilization U (shown on x-axis of the graphs) was varied from 0.05 to 0.95. 

For each utilization value examined, 1000 task sets were generated for each core 

considered, (100 in the case of experiments using the weighted schedulability meas-

ure (Bastoni et al. 2010)). The default cardinality of the task sets on each core was 

n = 10.

In the experiments, a system was deemed schedulable if and only if the different 

task sets assigned to each of its m cores were schedulable, i.e. if all m ⋅ n tasks in the 

system were schedulable. With a single core, there is no cross-core resource con-

tention and hence no interference, and so task set schedulability can be determined 

via standard response time analysis. With multiple cores, contention and the result-

ing interference was modelled as described in Sect. 3. The experiments investigated 

the performance of the following schedulability tests for partitioned fixed priority 

preemptive and non-preemptive scheduling:

– No-CpFPPS-m: The exact analysis of pFPPS (Joseph and Pandya 1986; Audsley 

et al. 1993) with no contention, recapped in Sect. 4.1, and given by (1).

– CpFPPS-m-R: The response time based analysis of pFPPS with contention, 

introduced in Sect. 4.1, and given by (2), (3), (5), and (6).

– CpFPPS-m-D: The deadline based analysis of pFPPS with contention, intro-

duced in Sect. 4.1, and given by (2), (3), (4), and (5).

– CpFPPS-m-fc: The fully composable analysis of pFPPS with contention, intro-

duced in Sect. 4.3, and given by (2), (3), and (10).

– No-CpFPNS-m: The sufficient analysis of pFPNS  (Davis et  al. 2007) with no 

contention, recapped in Sect. 4.2, and given by (7)).

– CpFPNS-m-R: The response time based analysis of pFPNS with contention, 

introduced in Sect. 4.2, and given by (8), (9), (6), and (5).

– CpFPNS-m-D: The deadline based analysis of pFPNS with contention, intro-

duced in Sect. 4.2, and given by (8), (9), (4), and (5).

– CpFPNS-m-fc: The fully composable analysis of pFPNS with contention, intro-

duced in Sect. 4.3, and given by (8), (9), and (10).

For consistency of comparison, Deadline Monotonic Priority Ordering 

(DMPO) (Leung and Whitehead 1982) was used to assign priorities to tasks on the 

individual cores. As shown in Sect.  5, DMPO is optimal with respect to the No-

CpFPPS-m, CpFPPS-m-fc, and CpFPPS-m-D tests, but only a heuristic policy 



1 3

Real-Time Systems 

with respect to the CpFPPS-m -R test and the tests for fixed priority non-preemp-

tive scheduling.

Note, the results for the fully composable analyses (tests CpFPPS-m-fc and 

CpFPNS-m -fc) equate to the performance obtained via the use of resource sensitiv-

ity information only, as outlined in prior works (Radojkovic et al. 2012; Fernández 

et al. 2012; Nowotsch and Paulitsch 2012; Iorga et al. 2020).

6.3  Results

In the first experiment, we compared the performance of the various schedula-

bility tests, assuming 1, 2, 3, and 4 cores, using the default parameters given in 

Sect. 6.1. The Success Ratio, i.e.  the percentage of systems generated that were 

deemed schedulable, is shown for each of the pFPPS schedulability tests in Fig. 1, 

and for the pFPNS schedulability tests in Fig.  2. The dominance relationships 

between the tests, discussed in Sect. 4.4, are evidenced by the lines on the graphs. 

Note, schedulability depends on the number of cores even when contention is not 

taken into account. This is because for an m-core system the task sets on all m 

cores have to be schedulable for the system to be deemed schedulable.

Observe, that the performance advantage that the context-independent tests 

have over their context-dependent counterparts is more pronounced with pFPPS 

than with pFPNS. The reason for this is that the increased response times due to 

the blocking factor with pFPNS mean that the critical task(s) (those that become 

unschedulable as utilization is increased) are much more likely to be medium or 
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Fig. 1  pFPPS: success ratio: varying task set utilization
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high priority tasks than is the case with pFPPS. For higher priority tasks, the bal-

ance between total resource sensitivity Sr

i
(R

i
, x) and total resource stress Er

i
(Ri, y) 

tends towards the latter being larger, since Er
i
(Ri, y) includes a contribution from 

all of the tasks on core y, while Sr

i
(R

i
, x) only includes a contribution from a single 

lower priority (blocking) task in the case of pFPNS, and no lower priority tasks 

at all in the case of pFPPS. When Er
i
(Ri, y) exceeds Sr

i
(R

i
, x) then the performance 

of the context-independent tests is reduced to that of their context-dependent 

counterparts.

In the second set of experiments, we used the weighted schedulability meas-

ure  (Bastoni et  al. 2010) to assess schedulability test performance, while varying 

an additional parameter. In these experiments, the other parameters were set to their 

default values given in Sect. 6.1. In all of the weighted schedulability experiments 

the relative performance of the different tests follows the pattern illustrated in the 

first experiment, as dictated by the dominance relationships.

The results of varying the Sensitivity Factor SF from 0.05 to 0.5 in steps of 0.05, 

are shown in Fig. 3 for pFPPS, and Fig. 4 for pFPNS. Recall that the Sensitivity Fac-

tor determines the ratio of the total resource sensitivity utilization to the total task 

utilization. As expected, increasing the Sensitivity Factor and hence the amount of 

interference that tasks can be subject to due to cross-core contention for resources 

results in a rapid decline in the weighted schedulability measure for all of the tests 

that take into account contention.

The results of varying the Stress Factor RF from 0 to 1.2 in steps of 0.1 are 

shown in Fig. 5 for pFPPS, and Fig. 6 for pFPNS. Recall that the Stress Factor deter-

mines the ratio of the resource stress for each task to its resource sensitivity. Here, 
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Fig. 2  pFPNS: success ratio: varying task set utilization
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it is interesting to note that interference effectively saturates once the Stress Factor 

reaches 1.0. By then, the total resource stress Er
i
(t, y) , given by (4) or (6), emanating 
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Fig. 3  pFPPS: weighted schedulability: varying sensitivity factor (SF)
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from each additional core y in a time interval t tends to exceed the total resource sen-

sitivity Sr

i
(t, x) , given by (3), for core x in that same time interval. Hence, for pFPPS 
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Fig. 5  pFPPS: weighted schedulability: varying stress factor (RF)
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Fig. 6  pFPNS: weighted schedulability: varying stress factor (RF)
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the CpFPPS-m -R and CpFPPS-m -D tests reduce to exactly the same performance 

as the CpFPPS-m-fc test. Similarly, for pFPNS the CpFPNS-m -R and CpFPNS-m 

-D tests reduce to exactly the same performance as the CpFPNS-m -fc test. This is 

because the min(Er
i
(t, y), Sr

i
(t, x)) term in (5) ceases to reduce the value in the sum-

mation below Sr

i
(t, x) . At the other extreme a Stress Factor RF of zero means that 

Er
i
(t, y) = 0 whether computed via (4) or (6).

For pFPPS, the CpFPPS-m-R and CpFPPS-m-D tests therefore have the same 

performance as the no contention No-CpFPPS-m test, and similarly for pFPNS 

the CpFPNS-m-R and CpFPNS-m-D tests have the same performance as the No-

CpFPNS-m test. Between the two extremes, the smaller values of Er
i
(t, y) given by 

(6) as opposed to (4) mean that the CpFPPS-m-R test outperforms the CpFPPS-

m-D test, and similarly the CpFPNS-m-R test outperforms the CpFPNS-m -D test.

The results of varying the cardinality of task sets running on each core from 2 

to 32 in steps of 2 are shown in Fig.  7 for pFPPS, and Fig.  8 for pFPNS. In the 

preemptive case, task set cardinality typically has only a limited effect on schedu-

lability test performance; however, in the non-preemptive case (Fig. 8), larger task 

sets equate to smaller execution times for each task and hence smaller blocking fac-

tors. Thus schedulability improves with increasing cardinality for all of the pFPNS 

schedulability tests. In the preemptive case (Fig. 7) the gap between the CpFPPS-

m-R and CpFPPS-m-D tests and the CpFPPS-m-fc test increases with larger num-

bers of tasks. This is due to changes in the shape of the total resource stress function 

Er
i
(t, y) , which typically consists of many small steps when there are a large number 

of tasks, and fewer larger steps when there are a smaller number of tasks. As the 

function Er
i
(t, y) is above the same gradient line in both cases, this difference acts to 
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Fig. 8  pFPNS: weighted schedulability: varying number of tasks in each task set
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Fig. 9  pFPPS: weighted schedulability: varying range of task periods
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improve schedulability for the CpFPPS-m-R and CpFPPS-m-D tests at higher task 

set cardinality. The same effect is also evident in Fig. 7 for the pFPNS schedulability 

tests.

The effects of varying the range of task periods (ratio of the max/min possible 

task period) from 100.5
≈ 3 to 104

= 10, 000 are shown in Fig.  9 for pFPPS, and 

Fig.  10 for pFPNS. As expected, increasing the range of task periods results in a 

gradual improvement in pFPPS schedulability test performance, a well-known effect 

with fixed priority preemptive scheduling. In contrast, with non-preemptive schedul-

ing, once the range of task periods exceeds 100 (i.e. r = 2 ), hardly any task sets are 

schedulable. This happens because tasks with short periods (and deadlines) cannot 

tolerate being blocked by tasks with long periods and commensurate large execution 

times.

Finally, the results of varying task deadlines from 25% to 100% of the task’s 

period are shown in Fig. 11 for pFPPS, and Fig. 12 for pFPNS. As expected, schedu-

lability improves for all approaches as task deadlines are increased. Further, the per-

formance advantage of the CpFPPS-m-R test over the CpFPPS-m-D test increases 

with increasing deadlines. This occurs because larger deadlines provide a more pes-

simistic approximation of response times for schedulable tasks, impacting the total 

resource stress as assumed by the CpFPPS-m-D test.
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Fig. 10  pFPNS: weighted schedulability: varying range of task periods
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Fig. 11  pFPPS: weighted schedulability: Varying ratio of deadlines to periods
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7  Case study

In this section, we present a preliminary case study that investigates the resource 

stress and resource sensitivity of tasks from a real-time industrial application. 

The purpose of this case study is not to try to determine definitive values for task 

WCETs, resource sensitivities and resource stresses, in itself a challenging research 

problem that is beyond the scope of this work. Rather our aim is to obtain proof-

of-concept data to act as an exemplar underpinning the MRSS task model and its 

accompanying schedulability analysis.

The case study focuses on a set of 24 tasks from a Rolls-Royce aero engine con-

trol system or FADEC (Full Authority Digital Engine Controller). The industrial 

software was developed in SPARK-Ada and has been verified according to DO-

178C standards (level A). The software was provided in an anonymized object code 

format, derived from that used in the case studies reported by Law and Bate (2016) 

and Lesage et al. (2018). The tasks have object code libraries ranging in size from 

300 KBytes to 40 MBytes, including compiled in data structures, but not including 

any framework or Linux additions. The software was originally designed to run on 

a Rolls-Royce specific packaged processor that integrates a single core, memory, 

I/O, and tracing interfaces; however, for research purposes, it was ported to run on a 

Raspberry Pi 3B+ (Lesage et al. 2018), along with a framework that facilitates tak-

ing timing measurements (Bate et al. 2020).

The Raspberry Pi 3B+ uses a Broadcom BCM2837 System-on-Chip with a quad-

core ARM Cortex-A53 processor. It has a 16 KByte L1 data cache, 16 KByte L1 

instruction cache, 512 KByte L2 shared cache, and 1 GByte of DDR2-DRAM. The 

L2 cache was, as is the default, configured for use as local memory for the GPU,4 

and so was not available to the four CPUs. The experimental hardware set-up 

involved a cluster of Raspberry Pi 3B+s, configured to run at a clock frequency of 

600 MHz, so as to eliminate any possible disruption due to thermal throttling. The 

cluster was powered by specialized power rails to ensure a stable supply voltage and 

frequency. The Pi 3B+s used the Raspberry Pi OS Lite (updated on 01/25/2021) 

and the Linux Kernel 5.10.11-v7+. The isolcpus Linux option was used to mini-

mize activity on the two cores used for the experiments. Timing measurements were 

obtained using a nanosecond clock, and cross-referenced against a 600 MHz cycle 

counter. Prior to each run of a task, the L1 data and L1 instruction caches were 

flushed. Given that the L2 cache was not accessible to the CPUs, the case study 

focussed on the key shared hardware resource, main memory (DDR2-DRAM).

7.1  Case study experiments

For each of the 24 tasks, we considered 10,000 randomly selected traces of execu-

tion. When a task was called for a specific trace, each of its input parameters was set 

to a random value based on the type (float, integer, or boolean) and the range of val-

ues permitted. The inputs were thus randomized, but nevertheless reproducible via 

4 The case study software does not use the GPU.
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the trace number, which controlled the random seed used. In the following, for brev-

ity we use trace to mean a task with a specific set of input parameters corresponding 

to the trace number.

In Experiment A.1, for each trace we obtained the stand-alone execution time, 

the resource sensitivity, and the resource stress as measured against each of the 

three contenders described below. These values were obtained by: (i) running the 

trace stand alone, (ii) running the trace in parallel with the contender, (iii) run-

ning the contender stand alone. In (i) and (ii) the execution time of the trace was 

recorded. In addition, in (ii) the number of times L that the contender looped 

while the trace was running was recorded, along with the execution time of the 

contender for that number of loops. Finally, in (iii) the stand-alone execution time 

of the contender was recorded for L loops. The loop count L thus enabled com-

parable measurements to be made irrespective of the trace execution times. The 

stand-alone execution time of the trace came directly from (i), while the resource 

sensitivity (per contender) for the trace was given by the difference between the 

trace execution times in (i) and (ii), and the resource stress for the trace by the 

difference in the contender’s execution times in (ii) and (iii).

We repeated the runs for each trace 9 times to ensure consistency. Post pro-

cessing of the raw timing data was used to eliminate anomalies caused by the 

kernel scheduler tick and the clock synchronization interrupt, neither of which 

could be disabled. The cycle counter was configured to pause when the scheduler 

was running, and so we were able to detect and eliminate anomalies due to the 

scheduler by comparing nanosecond clock and cycle counter readings. Measure-

ment noise caused by the clock synchronization interrupt was more difficult to 

detect; however, we were able to filter out these anomalies by taking the median 

value for the 9 repeated runs for each trace, and by using the 95th percentile value 

(over the 10,000 traces) as the reference “maximum” increase in execution time 

for each task and contender.

Three contenders were used that cause contention by repeatedly accessing main 

memory. The contenders both stress the resource and are sensitive to contention. 

The three contenders have a similar structure, they differ only in the instruction pat-

terns used: Read-Read (RR), Read-Write (RW), and Write-Write (WW). The read 

and write operations both compile down to a single instruction. Each contender 

loop body included 100 memory access instructions, ensuring that the loop over-

head, i.e. checking when the contender should stop, was small in comparison to the 

loop body. Hence each contender achieved close to the maximum possible load in 

terms of instructions that access memory and cause contention. The addresses used 

were such that the accesses had to go to memory, rather than being satisfied by the 

L1 cache. A handshaking protocol was used between task and contender to ensure 

that the contender started before and finished after the task. Further, dummy loops 

with no memory accesses were added before and after each task, to ensure that the 

experimental framework did not cause extra interference on the contender when it 

was running but the task was not.

Figure 13 shows the results of Experiment A.1, for 24 tasks from the Rolls-Royce 

aero-engine application, giving their maximum resource sensitivity and maximum 

resource stress normalized to the task’s maximum stand-alone execution time. 
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Note, the tasks appear in the figure ordered by their maximum stand-alone execu-

tion time, largest first. The RW contender was responsible for the maximum increase 

in task execution time (resource sensitivity) in all 24 cases. However, in terms of 

which contender suffered the maximum increase in execution time due to the task 

(i.e. resource stress), this was the RR contender in 2 cases, the RW contender in 3 

cases, and the WW contender in 19 cases.

Running a contender in parallel with a task increased the task’s execution time 

by between 3.8% and 15.0% compared to stand-alone execution, thus characterizing 

the tasks’ resource sensitivity. Further, the contender’s execution time increased by 

between 1.5% and 19.3% of the task’s stand-alone execution time, thus character-

izing the tasks’ resource stress. The ratio of resource stress to resource sensitivity 

for each task varied from 0.23 to 1.58. Some negative correlation can be observed 

between the stand-alone execution time and the percentage resource sensitivity and 

resource stress, with longer running tasks often having lower percentage values for 

these metrics. This is to be expected, since longer tasks typically spend more of 

their execution time in loops, running code that is cached, and therefore causes less 

resource contention.

As well as running tasks (traces) in parallel with the synthetic contenders, we also 

conducted Experiment A.2, running pairs of tasks in parallel on different cores. For 

each pair of tasks, we ran 10,000 pairs of their traces in parallel, with the inputs 

randomly selected as described previously. Figure 14 shows the maximum increase 

in execution time for each (victim) task due to cross-core contention from the task 

it was paired with. (The tasks were sorted by stand-alone execution time and then 

paired 1-2, 3-4, 5-6 and so on). The values shown are the maximum over the 10,000 

pairs of traces, and are normalized to the stand-alone execution time of the victim 

task. Also shown is the bound computed from the minimum of (i) the resource sen-

sitivity for the victim task and (ii) the resource stress for the task it was paired with, 

both obtained via Experiment A.1 using the synthetic contenders. The maximum 

measured increase in execution time is no greater than the computed bound. On 

average it is approx. 69% of the bound, and varies between 26% and 99%.
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engine control systems normalized to the task’s estimated stand-alone WCET
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This preliminary case study underpins the MRSS task model, illustrating the rel-

evance of using both resource sensitivity and resource stress to characterize cross-

core contention, and thus bound interference.

8  Task allocation

Task allocation for partitioned scheduling on a multi-core processor is an NP-hard 

problem that corresponds to bin-packing  (Garey and Johnson 1979). Practical 

approaches to task allocation can therefore be divided into two main categories: (i) 

heuristic methods  (Oh and Son 1995; López et  al. 2004; Fisher et  al. 2006), and 

(ii) search-based techniques such as Simulated Annealing (Kirkpatrick et al. 1983; 

Tindell et al. 1992; Natale and Stankovic 1995), Genetic Algorithms (Monnier et al. 

1998; Oh and Wu 2004), and Particle Swarm Optimization (Kennedy and Eberhart 

1995; Salman et al. 2002).

The heuristic methods operate according to a greedy algorithm. Each heuristic 

consists of two policies. The first policy determines the order of cores for trial allo-

cation of a selected task to a core. For example, First-Fit selects cores in index order, 

Best-Fit selects cores in order of their remaining capacity,5 smallest first, and Worst-

Fit selects cores in order of their remaining capacity, largest first. The second policy 

dictates how the tasks are ordered for allocation to cores, for example by Decreasing 

Utilization, Decreasing Density etc. The greedy algorithm iterates through the tasks 

once in the predetermined order (e.g. Decreasing Utilization). For each task, a trial 

allocation is checked for each core in turn in the order prescribed (e.g. First-Fit). If 

the trial allocation forms a schedulable system along with the previously allocated 

tasks, then the allocation for that task is confirmed and the process moves on to 

the next task, otherwise the trial allocation of the task moves on to the next core. 

If all cores have been tried for a given task and none of the trial allocations suc-

ceeded, then the overall allocation fails; there is no back-tracking. Note, there is an 

5 Capacity is usually taken to mean utilization, but other measures are also possible.
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assumption implicit in the way in which the greedy algorithm directs the allocation. 

This assumption is that the schedulability test used to analyse the tasks allocated to 

one core does not depend on the sets of tasks allocated to other cores.

The context-independent schedulability tests (CpFPPS-m-fc and CpFPNS-m -fc 

derived in Sect. 4.3) for the MRSS task model do not depend on the sets of tasks 

on other cores. These tests reduce to the standard response time analysis for fixed 

priority preemptive and non-preemptive scheduling with the task execution times 

increased to take account of the maximum interference due to contention (i.e. C
k
 

is increased by 
∑

r∈H
(m − 1)Xr

k
 ). Hence, when these tests are used, prior heuristic 

approaches to task allocation developed for partitioned fixed priority scheduling are 

directly applicable.

The context-dependent schedulability tests (i.e. the CpFPPS-m -R and CpFPPS-

m -D tests derived in Sect. 4.1 for pFPPS, and the CpFPNS-m -R and CpFPNS-m 

-D tests derived in Sect. 4.2 for pFPNS) depend on the sets of tasks on the other 

cores. This challenges the use of simple heuristic approaches to task allocation, 

since the performance of the greedy algorithm breaks down when the assumption of 

no dependence is broken.

For example, consider a four core system where, according to the schedulability 

test used, allocating tasks to the second and subsequent cores impinges on the sched-

ulability of the tasks previously allocated to the first core. In this case, the First-Fit 

and Best-Fit heuristics will allocate tasks to the first core, making use of nearly all 

of its capacity, then, as trial allocations proceed to the second core, the tasks on 

the first core will likely become unschedulable. This happens due to account being 

taken in the schedulability test of the additional cross-core contention and interfer-

ence emanating from the second core, and hence the overall allocation will fail. The 

Worst-Fit policy may perform somewhat better in this respect; however, the alloca-

tion will still be misdirected, as an unchanging set of tasks on one core can become 

unschedulable due to the allocation of tasks to another core. In general, a partial 

allocation of tasks to one core can be obtained that is not in itself viable under any 

possible allocation of the remaining tasks to the other cores. Note, prior research has 

shown that Worst-Fit performs poorly for the task allocation problem, with López 

et al. (2004) showing that Worst-Fit achieves the lowest overall utilization bound for 

any reasonable6 greedy allocation algorithm.

Further, the allocation difficulties caused by dependencies on the set of tasks on 

other cores cannot be solved by assuming that all tasks that remain unallocated will 

be allocated to some other core where they can cause contention and interference, 

since this would reduce performance to that obtained with the context-independent 

schedulability tests. For these reasons, a greedy approach to allocation is not viable 

with the context-dependent schedulability tests. More general search-based opti-

mization techniques such as Simulated Annealing, Genetic Algorithms, or Particle 

Swarm Optimization are required instead.7

6 A reasonable allocation algorithm is one that only fails once there is no core on which a task can be 

successful allocated.
7 Alternative techniques such as Mixed-Integer Linear Programming (MILP) may also be viable, but are 

not explored further here.
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8.1  Guidelines for allocation

Notwithstanding the difficulties in applying existing heuristics, it is possible to 

deduce some guidelines or rules-of-thumb for task allocation via thought experi-

ments. Assume that the task set to be allocated is made up of two subsets of tasks V 

and W. Subset V comprises tasks that access shared hardware resources and hence 

potentially suffer cross-core contention and interference, while subset W comprises 

tasks that do not access shared hardware resources. Recall that the interference term 

I
r

i
(R

i
) in the context-dependent schedulability tests depends on: (i) the total resource 

sensitivity for resource r, denoted by Sr

i
(R

i
, x) , for the tasks executing on the same 

core x as the task �
i
 under analysis, within its response time R

i
 ; and (ii) the total 

resource stresses on resource r, denoted by Er
i
(Ri, y) , that can be produced by tasks 

executing on each of the other cores y, within a time interval of length R
i
 . The inter-

ference term is given by (5), repeated below for convenience.

The min(…) function in (12) implies that the interference considered due to con-

tention can be reduced by allocations that unbalance the values of Er
i
(Ri, y) and 

S
r

i
(R

i
, x) . For example, allocating only tasks from subset W to some core y reduces 

Er
i
(Ri, y) to zero, and hence the contribution to Ir

i
(R

i
) from that core to zero. Further, 

allocating as many tasks as possible from subset V with high resource sensitivity and 

high resource stress to the same core x will increase the total resource sensitivity 

S
r

i
(R

i
, x) for that core, and reduce the total resource stress for other cores, decreasing 

the value returned by the min(…) function. A potentially useful guideline for task 

allocation is therefore to aim for an allocation where tasks from the subset V are 

packed into a small number of cores. In particular, it is useful to place those tasks 

with high resource sensitivity and high resource stress (as compared to their execu-

tion times) together on the same core. Taken to extremes, allocating all of the tasks 

in subset V to one core, and all of the tasks in subset W to other cores would elimi-

nate all cross-core contention and interference.

We illustrate the possibilities and difficulties of task allocation using a practical 

example based on data for 6 tasks (listed in Table 1) from the industrial case study 

described in Sect. 7. Note all times are given in nanoseconds.

(12)
Ir
i
(Ri) =

∑

∀y≠x

min(Er
i
(Ri, y), Sr

i
(Ri, x))

Table 1  Case study task 

parameters in nanoseconds
Task ID Stand-alone Sensitivity Stress

1 224,844 8646 11,250

2 211,406 12,760 3308

4 127,709 7917 10,000

5 126,927 9114 12,787

6 122,448 11,094 3281

7 116,511 8489 12,475
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For the purposes of this example, we assume a system with two cores, and that all 

tasks are released at the same time, and must complete within a deadline of 0.5 ms 

(i.e. 500,000 ns). The periods of all tasks are assumed to be much longer than this 

deadline, and thus the total resource sensitivity S
r

i
(R

i
, x) and total resource stress 

Er
i
(Ri, y) over the longest task response times can be found by simply summing the 

resource sensitivity and resource stress values for the tasks allocated to each of the 

cores. Table 2 gives these values, along with the sum of the stand-alone execution 

times for the tasks allocated to each core, for 7 possible allocations labelled A to G. 

These allocations are the only plausible ones, i.e the only ones that could meet the 

deadlines even if cross-core contention and interference were ignored.

Table 3 gives the results for the seven different allocations, including the total 

interference that the tasks on each core suffer as a result of cross-core conten-

tion, the total execution time of the tasks allocated to each core including inter-

ference (i.e.  the response time of the lowest priority task), and the sum of the 

interference on both cores. The results in Table  3 assume a context-dependent 

analysis, using both resource sensitivity and resource stress values. Allocation A 

is not schedulable despite minimizing the total interference over both cores by 

Table 2  Basic parameters for various allocations

Alloc. Core 1 Core 2

Tasks Stand-alone Sensitivity Stress Tasks Stand-alone Sensitivity Stress

A 1,2 436,250 21,406 14,558 4,5,6,7 493,595 36,614 38,543

B 1,4,5 479,480 25,677 34,037 2,6,7 450,365 32,343 19,064

C 1,4,6 475,001 27,657 24,531 2,5,7 454,844 30,363 28,570

D 1,4,7 469,064 25,052 33,725 2,5,6 460,781 32,968 19,376

E 1,5,6 474,219 28,854 27,318 2,4,7 455,626 29,166 25,783

F 1,5,7 468,282 26,249 36,512 2,4,6 461,563 31,771 16,589

G 1,6,7 463,803 28,229 27,006 2,4,5 466,042 29,791 26,095

Table 3  Computed results for various allocations (context-dependent analysis)

Note: Allocations to a core that are unschedulable have their total load shown in italics, while the most 

robust allocation has the load on each core shown in bold

Alloc. Core 1 Core 2 Both Cores

Tasks Interference Total ET Tasks Interference Total ET Interference

A 1,2 21,406 457,656 4,5,6,7 14,558 508,153 35,964

B 1,4,5 19,064 498,544 2,6,7 32,343 482,708 51,407

C 1,4,6 27,657 502,658 2,5,7 24,531 479,375 52,188

D 1,4,7 19,376 488,440 2,5,6 32,968 493,749 52,344

E 1,5,6 25,783 500,002 2,4,7 27,318 482,944 53,101

F 1,5,7 16,589 484,871 2,4,6 31,771 493,334 48,360

G 1,6,7 26,095 489,898 2,4,5 27,006 493,048 53,101
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keeping the resource sensitivity and resource stress of the tasks on Core 1 low 

(see Table  2). This is because once interference is taken into account the load 

on Core 2 becomes too large (508,153  ns). Similarly, allocations C and E are 

also unschedulable, due to too high a load on Core 1 once interference is taken 

into account. The most promising allocations are F and G. Allocation F provides 

the lowest sum of interference over both cores (48,360 ns) of all the schedulable 

allocations, by minimizing the resource stress due to the tasks on Core 2 (see 

Table 2). Allocation G has a substantially higher sum of interference over both 

cores (53,101 ns), but balances the task load across the two cores better, maxi-

mizing the headroom for any overruns, and is therefore arguably the most robust 

task allocation. This simple example illustrates the difficulties of the task alloca-

tion problem and the requirement, typical of real systems, to consider multiple 

criteria such as both schedulability and robustness (Davis and Burns 2007).

Table 4 provides directly comparable results to Table 3, but this time using con-

text-independent analysis. Here, only resource sensitivity values are used, and con-

tention from the other core is not bounded by the resource stress values. This means 

that the total interference for both cores is constant at 58,020 ns, almost 10,000 ns 

higher than allocation F in Table 3. Here, allocation D is the most robust, allowing 

the greatest headroom for overruns; however, this headroom is reduced by more than 

1000 ns, compared with the results of context-dependent analysis, shown in Table 3.

The discussion and examples given above highlight the difficulties involved in 

task allocation for partitioned multi-core systems under the MRSS task model. In 

particular, when the schedulability of a task allocated to one core is dependent on 

the tasks allocated to other cores (i.e.  context-dependent schedulability tests are 

used) then the use of a greedy algorithm and commonly applied heuristics are no 

longer viable. In this case, it is clear that highly effective solutions to the task alloca-

tion problem will only be possible via search-based techniques, such as Simulated 

Annealing or Genetic Algorithms.

Table 4  Computed results for various allocations (context-independent analysis)

Note: Allocations to a core that are unschedulable have their total load shown in italics, while the most 

robust allocation has the load on each core shown in bold

Alloc. Core 1 Core 2 Both cores

Tasks Interference Total ET Tasks Interference Total ET Interference

A 1,2 21,406 457,656 4,5,6,7 36,614 530,209 58,020

B 1,4,5 25,677 505,157 2,6,7 32,343 482,708 58,020

C 1,4,6 27,657 502,658 2,5,7 30,363 485,207 58,020

D 1,4,7 25,052 494,116 2,5,6 32,968 493,749 58,020

E 1,5,6 28,854 503,073 2,4,7 29,166 484,792 58,020

F 1,5,7 26,249 494,531 2,4,6 31,771 493,334 58,020

G 1,6,7 28,229 492,032 2,4,5 29,791 495,833 58,020
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8.2  Task allocation using simulated annealing

Given the lack of effective heuristics for task allocation for partitioned multi-core 

systems when cross-core contention and interference is taken into account, we 

developed an implementation of Simulated Annealing aimed at solving the prob-

lem. Simulated Annealing (Kirkpatrick et al. 1983) is a general-purpose probabilis-

tic search-based technique that can be used to solve optimization problems. Specifi-

cally, Simulated Annealing is a meta-heuristic search, which seeks to approximate 

global optimization within a large search space for a given optimization problem. It 

is typically used when the search space is discrete; as is the case with task allocation 

considered here.

Pseudo code for the Simulated Annealing algorithm is shown in Listing 

1. Simulated Annealing relies on two key functions, a Cost_Function that 

determines the quality of each possible solution, and a Modify_Function that 

makes a randomly chosen, but valid modification to the current solution, in order 

to create a new solution that is close to it.

For Simulated Annealing to be effective, it is important that the Cost_Func-

tion provides a smooth and continuous metric, indicative of solution quality, 

that can drive the search towards an optimal solution. In the context of task allo-

cation, we use the processor speed scaling factor F (Punnekkat et al. 1997). For 

a given allocation of tasks to cores, the Cost_Function determines the small-

est value of F such that the execution times, resource sensitivities, and resource 

Listing 1 Simulated annealing
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stresses of all tasks can be scaled by a factor of 1/F (alternatively, the periods and 

deadlines can be scaled by a factor of F) and the system just remains schedulable. 

This metric optimizes both schedulability and robustness, since F takes its small-

est value for the task allocation that can tolerate the processor running at the low-

est possible speed.

The processor speed scaling factor provides a continuous metric, that is at or 

below 1.0 for schedulable task allocations, and above that value for unschedulable 

allocations. The value of F is calculated via a binary search, in conjunction with an 

appropriate schedulability test. As a starting point, the binary search requires mini-

mum and maximum bounds. These can be determined as follows: (i) the minimum 

bound is such that the scaled deadline for one of the tasks is reduced to its execution 

time, (ii) the maximum bound is such that the execution times of all tasks (inflated 

due to resource sensitivities) fit within the smallest scaled deadline of any task. Any 

value of F smaller than the minimum bound is guaranteed to result in an unschedu-

lable system, whereas a value of F equal to the maximum bound is guaranteed to 

result in a schedulable system, given that the deadlines are constrained ( D
i
≤ T

i
).

It is essential that the Modify_Function is able to span the search space, oth-

erwise the algorithm may be unable to ever find the optimal solution. In the case 

of the task allocation problem, it must be possible, via repeated application of the 

Modify_Function to move from any valid task allocation to any other one. Our 

implementation of the Modify_Function makes one of two possible changes to 

an existing allocation: (i) it selects a task at random and changes its allocated core 

to a randomly selected different core, (ii) it selects two different tasks at random 

that are allocated to different cores, and swaps their allocation around.8 The single 

task modification is randomly selected 20% of the time, with swapping selected the 

remaining 80% of the time.

The Simulated Annealing algorithm (see Listing 1) operates via two nested loops. 

The outer loop (lines 8–24) represents a series of reducing temperatures, used in the 

choices that the algorithm makes. In the experiments, the initial temperature 

was set to 1.0, and the final min_temperature to 0.01. Further, the cooling_

factor (line 23) was set to 0.95499, which results in 100 iterations of the outer 

loop. The inner loop (lines 9–22) iterates 50 times at each temperature. Thus the 

algorithm explores 5000 allocations in all, starting from an initial allocation of tasks 

to cores. In the experiments, the initial allocation was taken directly from the system 

generation, with an equal number of tasks, with equal total utilization, assigned to 

each core.

Simulated Annealing explores the search space by making modifications to an 

existing allocation via the Modify_Function (line 10), and then determining the 

quality of the new allocation formed via the Cost_Function (line 11). If the new 

allocation is an improvement on the best allocation seen so far then it is saved (lines 

12–15). The signature behavior of the algorithm is embodied in lines 16-20. If the 

new allocation is an improvement on the current one (line 16), then it becomes the 

8 In the unlikely event that all tasks are allocated to the same core, then a null swap is performed that 

does not modify the allocation.
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current allocation, which the algorithm will continue searching from (lines 18–19). 

If the new allocation does not represent an improvement (line 17), then there is still 

a chance that it will be accepted, and hence built upon. The probability of accept-

ance depends on how much worse the allocation has become, and the current tem-

perature. Initially, when the temperature is high, new allocations can be accepted 

that are substantially worst than the current allocation. This helps to avoid the search 

becoming stuck in a local optimum. As the temperature decreases, only smaller neg-

ative steps are likely to be accepted, until at very low temperatures, the algorithm 

effectively behaves like a hill-climbing search, only accepting improved allocations.

8.3  Simulated annealing experiments

We explored the improvements in task allocation that can be achieved using Simu-

lated Annealing by revisiting the first experiment discussed in Sect. 6.3 (illustrated 

by Figs. 1 and 2). Recall that in that experiment we compared the performance of 

the various schedulability tests for partitioned fixed priority preemptive and non-

preemptive scheduling taking into account cross-core contention and interference 

via the Success Ratio metric, i.e.  the percentage of systems generated that were 

deemed schedulable. We repeated the experiment, this time comparing the perfor-

mance of the default initial assignment of tasks to cores, with that obtained via Sim-

ulated Annealing starting from the initial assignment. Since Simulated Annealing 

involves many trial allocations, we reduced the number of systems generated per 

utilization level from 1000 to 100. This was done to ensure that the overall runtime 

remained manageable.9 Task sets were generated with parameters as described in 

Sect. 6.1. Each system comprised nm tasks, with a different set of n tasks, with total 

utilization U, initially allocated to each of the m cores. By default n = 10 , hence 

each 2 core system had 20 tasks in total, and each 4 core system 40 tasks in total. 

Deadline Monotonic priority ordering was used throughout, since this was shown, 

in Sect. 5.1, to be optimal for the simpler schedulability tests used in the preemp-

tive case, and is also an effective heuristic in the non-preemptive case (Davis et al. 

2016).

The Simulated Annealing algorithm started from the initial allocation and was 

able to re-allocate tasks to different cores in order to improve overall system schedu-

lability. For a system to be schedulable, the task set on each of its cores had to be 

schedulable accounting for cross-core contention and interference. While the initial 

allocation comprised task sets of equal utilization on each core, this was not neces-

sarily the case with the final allocation obtained via Simulated Annealing.

We compared the effectiveness of the task allocations generated by Simulated 

Annealing for three schedulability tests for each of pFPPS and pFPNS:

9 The Simulated Annealing algorithm was configured to iterate 5000 times. On each iteration the sched-

ulability test was run approximately 10 times to determine the processor speed scaling factor via binary 

search. Hence, to analyse 100 systems requires approximately 5000000 schedulability tests.
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• CpFPPS-m -R: The context-dependent response time based analysis of pFPPS 

with contention, introduced in Sect. 4.1, and given by (2), (3), (5), and (6).
• CpFPPS-m -D: The context-dependent deadline based analysis of pFPPS with 

contention, introduced in Sect. 4.1, and given by (2), (3), (4), and (5).
• CpFPPS-m-fc: The context-independent fully composable analysis of pFPPS 

with contention, introduced in Sect. 4.3, and given by (2), (3), and (10).
• CpFPNS-m -R: context-dependent response time based analysis of pFPNS with 

contention, introduced in Sect. 4.2, and given by (8), (9), (6), and (5).
• CpFPNS-m -D: The context-dependent deadline based analysis of pFPNS with 

contention, introduced in Sect. 4.2, and given by (8), (9), (4), and (5).
• CpFPNS-m -fc: The context-independent fully composable analysis of pFPNS 

with contention, introduced in Sect. 4.3, and given by (8), (9), and (10).

Figure  15 for pFPPS and Fig.  16 for pFPNS illustrate the effectiveness of the 

allocations produced by Simulated Annealing for 2 cores and for 4 cores, respec-

tively. (The results for 3 cores were similar and were omitted to avoid cluttering the 

graphs). In the preemptive case, the results for Simulated Annealing are labelled 

CpFPPS-m-SA-R, CpFPPS-m-SA-D, and CpFPPS-m-SA-fc respectively, and are 

compared to the baseline allocation, labelled CpFPPS-m-R, CpFPPS-m-D, and 

CpFPPS-m-fc. Similarly, for the non-preemptive case, the results for Simulated 

Annealing are labelled CpFPNS-m-SA-R, CpFPNS-m-SA-D, and CpFPNS-m-SA-

fc respectively, and are compared to the baseline allocation, labelled CpFPNS-m-R, 

CpFPNS-m-D, and CpFPNS-m-fc.

Fig. 15  pFPPS: task allocation: schedulable systems Simulated Annealing vs. baseline for 2 and 4 cores, 

context-independent and context-dependent schedulability tests (Color figure online)



1 3

Real-Time Systems 

The different schedulability tests, number of cores, and baseline/Simulated 

Annealing are coded into the line types and colors as follows: the response time 

and deadline based context-dependent tests are shown as solid and dashed lines 

respectively, with the fully composable context-independent test shown as dot-

ted lines. The results for 4 cores are in green for the baseline and in turquoise for 

Simulated Annealing. Similarly, the results for 2 cores are in red for the baseline 

and in orange for Simulated Annealing.

Figure 15 for pFPPS and Fig. 16 for pFPNS show that Simulated Annealing is 

able to improve schedulability, compared to the baseline, for each of the sched-

ulability tests and numbers of cores considered. These results are further high-

lighted in Fig. 17 for pFPPS and Fig. 18 for pFPNS. These figures show the num-

ber of systems that were not schedulable with the baseline allocation, but where 

Simulated Annealing was able to find a schedulable allocation, as a percentage 

of all systems considered. Observe that the improvement obtained is much larger 

for the context-dependent schedulability tests (solid and dashed lines), than it is 

for the context-independent schedulability tests (dotted lines). This is because the 

context-dependent schedulability tests take account of both the resource sensi-

tivity of the tasks on the same core as the task under analysis, and the resource 

stress due to the tasks on other cores. By doing so, these tests provide an oppor-

tunity for the Simulated Annealing algorithm to allocate the tasks in a way that 

reduces the amount of cross-core contention and interference considered. This 

tends to results in allocations where the resource sensitivity and resource stress is 

high on some cores and low on others, subject of course to the system remaining 

schedulable.

Fig. 16  pFPNS: task allocation: schedulable systems Simulated Annealing vs. baseline for 2 and 4 cores, 

context-independent and context-dependent schedulability tests (Color figure online)
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Although there are dominance relations between the tests as described in 

Sect. 4.4, the random process enacted by Simulated Annealing, and the fact that it 

is not guaranteed to find the optimal solution means that dominance between the 

allocations generated is not guaranteed. Thus, in Figs.  15 and 16, the results for 

CpFPPS-m-SA-D (e.g.  dashed orange lines) can sometimes slightly exceed those 

for CpFPPS-m-SA-R (e.g. solid orange lines) due to statistical variation.

The number of additional systems that were found schedulable using the alloca-

tions determined by Simulated Annealing are listed in Table 5, both as a number 

out of 4000 systems in total, and as a percentage. Observe that the gains obtained 

by using Simulated Annealing are larger for the context-dependent tests for systems 

with 4 cores than for systems with 2 cores. This is because the larger systems pre-

sent more opportunities for task allocations that reduce the interference between 

the cores. Further, the improvements are considerably higher for non-preemptive 

scheduling (pFPNS), than for preemptive scheduling (pFPPS). This is because with 

non-preemptive scheduling, schedulability is sensitive not only to cross-core inter-

ference, but also to the distribution of the periods and deadlines of the tasks allo-

cated to each core. Allocating tasks that have similar deadlines to the same core can 

greatly improve schedulability, since with non-preemptive scheduling the execution 

time of each task must fit within the shortest deadline of the other tasks on the same 

core. Appropriate allocation of tasks to cores can thus be effective in addressing the 

blocking problem with non-preemptive scheduling. In determining task allocations 

for pFPNS, Simulated Annealing is effectively balancing two factors: (i) blocking 

effects, and (ii) cross-core interference, with the combination leading to substan-

tially improved schedulability, as illustrated in Figs. 16 and 18.

Fig. 17  pFPPS: task allocation: increase in schedulable systems Simulated Annealing vs. baseline for 2 

and 4 cores, context-independent and context-dependent schedulability tests
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The effects of task allocation using Simulated Annealing can be observed by 

examining the total resource sensitivity utilization ( 
∑

�
i
∈�

x

X
r

i
∕T

i
 ) for each core, in 

the case of two cores. Figures 19 and 20 show the total resource sensitivity utiliza-

tion for the task sets on each of the two cores, as a frequency distribution for 1000 

different systems. The task sets on each core had an initial execution time utiliza-

tion of 0.5. Since the default Sensitivity Factor of SF = 0.25 was used, the baseline 

(red bar) indicates that both cores had an initial total resource sensitivity utiliza-

tion of 0.125. Note, the red bar extends to 1.0, and is cut off in both figures. Fig-

ure 19 shows the results for pFPPS. The green and orange frequency distributions 

are for Simulated Annealing combined with the context-dependent schedulability 

tests, i.e. CpFPPS-2-SA-R and CpFPPS-2-SA-D respectively. Observe that these 

distributions are bi-modal, with the vast majority of the best allocations a substantial 

Fig. 18  pFPNS: task allocation: increase in schedulable systems Simulated Annealing vs. baseline for 2 

and 4 cores, context-independent and context-dependent schedulability tests

Table 5  Number of additional 

schedulable systems found using 

Simulated Annealing for task 

allocation

Test pFPPS pFPNS

2 cores -fc 145 3.6% 662 16.6%

-D 422 10.6% 876 21.9%

-R 380 9.5% 845 21.1%

4 cores -fc 106 2.7% 624 15.6%

-D 474 11.9% 946 23.7%

-R 448 11.2% 912 22.8%



 Real-Time Systems

1 3

distance away from being balanced in terms of the total resource sensitivity utiliza-

tion on each core. Note, since the total resource sensitivity utilization across both 

Fig. 20  pFPNS: frequency distribution of the total resource sensitivity utilization on 2 cores: simulated 

Annealing with context-independent and context-dependent tests vs. baseline (Color figure online)

Fig. 19  pFPPS: frequency distribution of the total resource sensitivity utilization on 2 cores: simulated 

annealing with context-independent and context-dependent tests vs. baseline (Color figure online)
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cores remains constant, each distribution is symmetrical about the baseline. The 

blue frequency distribution is for Simulated Annealing combined with the context-

independent schedulability test, i.e. CpFPPS-2-SA-fc. With this test, the cross-core 

contention and interference that a task is assumed to be subject to does not depend 

on the tasks allocated to other cores. As a consequence, there is no selection pres-

sure to place tasks with high resource sensitivity and high resource stress on one 

core and others with low resource sensitivity and low resource stress on the other 

core. Hence, this distribution resembles a normal distribution, with the best alloca-

tions far more balanced in terms of the total resource sensitivity utilization on each 

core.

Figure 20 shows similar results for pFPNS. The green and orange frequency distri-

butions are for Simulated Annealing combined with the context-dependent schedula-

bility tests, i.e. CpFPNS-2-SA-R and CpFPNS-2-SA-D respectively. These distribu-

tions are again bi-modal, with the majority of the best allocations a substantial distance 

away from being balanced in terms of the total resource sensitivity utilization on each 

core. Compared with the preemptive case, however, there is more variation and the two 

modes are less well defined. The blue frequency distribution is for Simulated Anneal-

ing combined with the context-independent schedulability test, i.e. CpFNPS-2-SA-fc. 

With this test, the cross-core contention and interference that a task is assumed to be 

subject to does not depend on the tasks allocated to other cores. Thus, similar to the 

preemptive case, this distribution resembles a normal distribution, with the best allo-

cations far more balanced in terms of the total resource sensitivity utilization on each 

core.

8.4  Summary

In this section we argued that commonly applied heuristic methods of task allocation 

based on a greedy assignment algorithm, for example First-Fit, Decreasing Utilization, 

are not viable in the context of the MRSS task model, since the schedulability of a task 

allocated to one core is typically dependent on the tasks allocated to other cores. We 

showed that Simulated Annealing is highly effective at finding schedulable task alloca-

tions when used in conjunction with the context-independent and context-dependent 

schedulability tests introduced for the MRSS task model. Further, the improvement 

over a simple baseline allocation is substantially increased when context-dependent 

schedulability tests are employed. This is because such tests take into account both the 

resource sensitivity of the tasks on the same core as the task under analysis, and the 

resource stress due to tasks on other cores. By doing so, they provide an opportunity 

for the allocation algorithm to assign tasks to cores in a way that reduces cross-core 

contention and interference, and hence improves schedulability. This tends to result in 

allocations where the resource sensitivity and resource stress of tasks is high on some 

cores and low on others.

Our focus here has been on task allocation assuming a single shared hardware 

resource; however, in practice the problem is further complicated by different groups of 

tasks accessing different shared hardware resources, with different resource sensitivi-

ties and different resource stresses. It is clear that in general highly effective solutions to 
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the task allocation problem will only be possible via search-based techniques, such as 

Simulated Annealing or Genetic Algorithms, with a carefully designed fitness function 

that optimizes both schedulability and other important criteria such as robustness and 

extensibility.

9  Conclusions

The main contributions of this paper are (i) the Multi-core Resource Stress and 

Sensitivity (MRSS) task model, underpinned by an industrial case-study; (ii) 

schedulability analyses for the MRSS task model, and their evaluation; and (iii) 

compatible task allocation strategies, based on Simulated Annealing.

The MRSS task model:

– Characterizes how much each task stresses shared hardware resources and 

how much it is sensitive to such resource stress.

– Provides a simple yet effective interface between timing analysis and schedu-

lability analysis, facilitating a separation of concerns that retains the advan-

tages of the traditional two-step approach to timing verification.

– Caters for a variety of different shared hardware resources in a way that is both 

generic and versatile.

The accompanying schedulability analyses:

– Provide efficient context-dependent and context independent schedulabil-

ity tests for both fixed priority preemptive and fixed priority non-preemptive 

scheduling.

– Exhibit dominance relationships illustrating the trade-off between context 

independence and schedulability test effectiveness, and complexity results 

showing the opposite trade-off between context independence and schedulabil-

ity test efficiency.

– Were proven compatible or incompatible with efficient optimal priority assign-

ment algorithms.

– Were subject to a systematic evaluation illustrating their effectiveness across a 

wide range of parameter values.

Further, a preliminary case study explores the resource stress and resource sensi-

tivity of 24 tasks from a Rolls-Royce aero-engine control system. This industrial 

case study provides an underpinning proof-of-concept for the MRSS task model. 

Finally, a consideration of task allocation shows that commonly used heuristics 

and greedy assignment algorithms are no longer viable when task schedulabil-

ity depends on cross-core contention, and hence the allocation of tasks to other 

cores. Instead, Simulated Annealing, with an appropriate cost-function, can pro-

vide an effective method of task allocation that optimizes both schedulability and 

robustness, under the MRSS task model.
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