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Theory of Rotational Processes in Perpendicular
Media and Application to Anisotropy Measurement

Hong J. Zhou, Ganping Ju, Roy W. Chantrell, and Dieter Weller

Abstract—Numerical and analytical calculations of rotational
process in perpendicular recording media are presented. The work
supports recent experimental studies that suggest that the mea-
surement of rotational magnetization processes can be used to de-
termine the value of the anisotropy constant. An expression for
the rotational magnetization for a noninteracting system is derived
taking into account the dispersion of and the easy-axis orien-
tation. The calculations show that the experiments determine the
mean value of , essentially independent of the angular disper-
sion. A numerical (Monte-Carlo based) micromagnetic model is
used to study the effects of magnetostatic and exchange interac-
tions at nonzero temperatures. It is shown that for small values of
KV/kT, irreversible magnetization processes take place, which pre-
cludes the use of the rotational magnetization method to determine

values. This effect is enhanced by the presence of the magneto-
static interaction. However, the presence of exchange interactions
is found to enforce coherent rotation in small fields, reducing the ir-
reversible processes and allowing the determination of . Under
these circumstances, it is shown that the exchange does not signif-
icantly affect the value of , and that a well-defined demagne-
tization correction of 4 is appropriate. Finally, a comparison
with experimental data gives good agreement for multilayer and
granular media and shows the role of domain formation on the ro-
tational magnetization process.

Index Terms—Anisotropy, micromagnetics, perpendicular
media, rotational magnetization.

I. INTRODUCTION

P
ERPENDICULAR recording is now a main candidate

to extend magnetic recording to densities of 1 Tb. In

order to achieve these densities, careful control over material

properties is required. One of the most important parameters

to determine is the anisotropy field of the medium. However,

in perpendicular media the presence of the demagnetizing

field is a considerable complication. Hard-axis hysteresis loop

measured with longitudinal (in-plane) Kerr effect has typically

been applied to determine the anisotropy field. However, the

demagnetization correction is unknown due to the complicated

and undefined domain patterns that form due to irreversible

switching at higher fields. Assuming a demagnetization field

of in the hard-axis method overestimates the anisotropy

field. The same concern also exists in full torque magnetometer

method, where the demagnetization factor may vary at different

field angles. Even though a single domain state is maintained

at a 45 method, it still relies on the extrapolation to infinite

field. In addition, it can be only applied to characterize samples
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without a soft underlayer (SUL). A concern that arises from

the overestimation of is that this leads to incorrectly low

ratios of short-time coercivity over the anisotropy field

. These are normally ascribed to the presence of incoherent

rotation mechanisms.

In a previous paper [1], we have shown that it is possible

to use the response of a perpendicular medium to an in-plane

field to determine the anisotropy field with a consistent cor-

rection of for demagnetization. The rotational method

was originally proposed and applied to measure the anisotropy

field of rare-earth/transition metal magnetooptical alloys [2],

and was later applied to Co–Pd (111) wedges [3] and Co–Pd

(Pt) multilayer structures [4]. In [1], a magnetooptical rotational

method was used to determine the anisotropy field of perpendic-

ular media. The dependence of the perpendicular magnetization

component on the in-plane field was measured.

When the in-plane field was sufficiently small, the medium was

found to remain in a single domain state, with a well-defined de-

magnetization field of . Moreover, the presence of an SUL

does not affect the measurement of perpendicular magnetiza-

tion even when the optical penetration depth is larger than the

total thickness of recording layer and seedlayer, because there

is no out-of-plane magnetization from the SUL when the ex-

ternal field is applied in the plane. Measurements showed that

it was possible to determine the anisotropy field of perpendic-

ular media with well-defined demagnetization correction. The

ratio was also measured and found to decrease with in-

creasing intergranular exchange, in good agreement with micro-

magnetic results. It was found to drop from about 0.8 for weakly

coupled media to 0.5 for strongly coupled media. However, the

success of the technique is predicated upon the absence of ir-

reversible magnetization processes, and the theoretical analysis

takes no account of interactions and also does not consider dis-

persions of the easy-axis orientation or of .

Here, we consider the effect of dispersions of angle and on

the estimate of . The conclusion is that the rotation measure-

ment gives the mean value of and that for the degree of an-

gular dispersion normally involved in perpendicular media, the

effect of the angular dispersion is small. Typically, for a material

with a 5 angular dispersion, the value of will be overes-

timated by roughly 100 Oe. However, further corrections must

be applied for other degrees of texture, for example, a system

with a three-dimensional (3-D) random texture is described by

a quadratic relationship with a different factor. We also give the

results of a computational model that gives quantitative esti-

mates of the effect of intergranular magnetostatic and exchange

interactions, and allows a close comparison between theory and

experiment.

0018-9464/03$17.00 © 2003 IEEE
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Fig. 1. Coordinate system for the calculation. (a) shows the global coordinate
system indicating the initial direction of magnetization and the in-plane dc field
direction. (b) shows the rotated coordinate system in which the calculation is
carried out. Not shown in (b) for clarity is the direction of the magnetic moment,
which has polar coordinates (� ; � ).

II. ANALYTICAL MODEL

The global coordinate system is shown in Fig. 1(a). The

system is initially in the saturation remanence state along

the axis, with the in-plane dc probe field being applied along

the axis. Each grain has an easy-axis direction that is given by

polar coordinates . We assume that the orientational tex-

ture is symmetric about the axis with a Gaussian distribution

of and a uniform distribution of . It is easiest to carry out

the calculation in a coordinate system based on the easy-axis

direction, which is the equilibrium direction in the absence of

an applied field. Thus, the new coordinate system has along

the easy axis, and we take the axis to be in the plane defined

by the easy axis and the initial magnetization direction. In

this coordinate system, the in-plane dc field (normalized with

respect to can be characterized by a component and

an in-plane component , which makes an angle with the

axis. The energy can then be written as

(1)

where are the polar coordinates of the magnetic mo-

ment. Differentiation with respect to and setting the result

to zero leads to the condition . Differentiation with re-

spect to and using the condition gives the following

equation to be solved for the equilibrium orientation :

(2)

To first order in small quantities, this leads to the result

(3)

The magnetization relative to the original direction of the mag-

netization is

(4)

The second term on the right-hand side of (4) vanishes by sym-

metry on integration over , and using (3) gives

(5)

In order to determine the dc field components in the rotated co-

ordinate system, we use the Euler rotation matrix for a rotation

of the polar coordinate, which leads to the following expression

for :

(6)

On substituting (6) into (5) and integrating over with the

appropriate weight function of for the uniform angular

distribution, we have that

(7)

The change of magnetization produced by the rotation of the

magnetization from the initial equilibrium direction is

(8)

Taking into account the dispersion in and , we have that

(9)

where is the distribution of with , with

the median value. Taking the distribution as lognormal

having a standard deviation

gives

and, therefore, (9) becomes

(10)

The integral over can be written in terms of the error function,

which is useful for numerical evaluation, but we can also use
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Fig. 2. Effect of the parameter dispersion on the apparent value of H .
Symbols: numerical calculations. Solid lines: analytical expressions.

the fact that is very small for a perpendicular medium. This

means that we can replace the upper limit of the integration by

infinity, leading to the closed-form solution

(11)

and using the relationship between the mean and the me-

dian for the longnormal distribution (LND)

(12)

Finally, given that is small

(13)

For an angular dispersion of 5 , leading to a correc-

tion to of less than 1%. However, the texture is otherwise

important.

Numerical calculations support the weak dependence on .

The introduction of a 5 dispersion of orientation produced an

increase in the apparent of 109 Oe for a material with a real

of 11 429 Oe, an increase of 0.95%.

Numerical calculations support the weak dependence on .

The introduction of a 5 dispersion of orientation produced an

increase in the apparent of 109 Oe for a material with a real

of 11 429 Oe, an increase of 0.95%.

Fig. 2 demonstrates the effect of the parameter dispersion.

This shows the apparent value determined from the ro-

tation measurement as a function of the dispersion of the

value. The median value is Oe, and the two

sets of data refer to a fully aligned system and one with an

angular dispersion of 5 . Solid lines are a fit to the expres-

sion , which relates the mean to the

median for the LND. For the case of a fully aligned system,

Oe, which agrees well with the expected value of

. For the system with , Oe, which is

essentially in exact agreement with (7).

III. COMPUTATIONAL MODEL

The model uses Monte-Carlo (M-C) techniques to simulate

the long-term slow dynamic behavior, and is described in detail

by Chantrell et al. [5]. The physical microstructure of the model

is generated using a Voronoi construction, which produces a

physically realistic picture of the film, including grain size dis-

persion and some microstructural disorder. A lognormal distri-

bution for diameters and anisotropy fields was used. In order

to avoid problems concerning demagnetizing fields, a periodic

boundary condition was used.

Interactions are taken into account by calculating the total

field acting on a particle as the total of the external field

and the dipolar and exchange field produced by the neighboring

particles. The magnetostatic term is evaluated by a direct sum-

mation and the exchange term is represented by a factor ,

which characterizes the exchange field relative to the anisotropy

field.

The equilibrium orientations of the magnetic moment are

found using the Stoner–Wohlfarth [6] model. However, this

model may give two equilibrium positions if the total field

acting on the particle is smaller than the critical field. In this

case, the actual equilibrium position is chosen to be the one

that is closer to the previous equilibrium position of the grain,

but thermally activated transitions between the two positions

are allowed. To do that, one calculates the transition probability

(14)

where is the measuring time and is the relaxation time that

has the expression

(15)

where is the height of the total energy barrier for reversal,

and Hz is the frequency factor. The expression for

the free energy of a particle is

(16)

where is the anisotropy constant, is the angle between the

particle’s easy axis and magnetic moment V, and

is the saturation magnetization of the material. This probability

is compared to a random number between 0 and 1. If

the transition is not allowed, otherwise, the transition is allowed.

It can be shown using a master equation approach [7] that the

probability for the moment to go to one of the two positions is

(17)

where , and represents the total energy of the grain

in the th orientation, so that the system will have a Boltzmann

distribution of energies. Essentially, the use of (17) ensures that

any superparamagnetic particles have zero remanence and co-

ercivity. All these steps are used for every particle several times

so that the system reaches the thermal equilibrium state.
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Fig. 3. M versus in-plane field at a temperature of 5 K for a system with
magnetostatic interactions only.

TABLE I
H VALUES (CORRECTED FOR DEMAGNETIZATION WITH A DEMAGNETIZING

FACTOR OF 4�) FOR SYSTEMS WITH VARIABLE EXCHANGE AND

MAGNETOSTATIC INTERACTIONS AT T = 5 K AND T = 300 K

IV. RESULTS

We have used the computational model to study the effects of

interactions on the rotational magnetization process We are par-

ticularly concerned with the onset of irreversible processes since

this marks the point at which the rotational magnetization be-

comes nonquadratic in the field and cannot be used to determine

the value of . For these calculations, we include the shape

anisotropy of the particles. In this case ( emu/cm

and an aspect ratio of 2 : 1), this increases to 12 365 Oe.

Consider first calculations for a low temperature ( K) and

magnetostatic interactions only.

Fig. 3 shows versus in-plane field at a temperature of 5 K

for a system with magnetostatic interactions only. It can be seen

that the quadratic behavior is preserved in this case. The value of

(corrected for demagnetization with a 4 demagnetization

factor, giving a field of 4398 Oe) is 13 026 Oe, which is slightly

larger than the expected value of 12 365 Oe, suggesting that the

rotation method gives a reasonable estimate of in this case.

However, the applicability of the method depends crucially on

the absence of an irreversible component of the magnetization,

which itself depends on interactions and also the temperature.

We have carried out a series of calculations for interacting and

noninteracting systems at temperatures of 5 K and 300 K, the

results being summarized in Table I.

The results obtained give a consistent value of except for

the exchange decoupled system at room temperature. For the

parameters chosen, the mean value of KV/kT at room tempera-

ture was 58, which gives rise to a strong irreversible component

of the magnetization as shown in Fig. 4.

Here, the nucleation field is positive because of the reduction

in coercivity due to the increase in temperature. This leads to

Fig. 4. Magnetization as a function of in-plane field for a medium with
magnetostatic interactions only at a temperature of 300 K. Arrows show the
direction of field change.

Fig. 5. Rotational magnetization as a function of in-plane field for a medium
with strong exchange coupling (C = 0:1) at T = 300 K.

irreversible behavior and breakdown of the theory of the rota-

tional process; hence, no value of can be estimated from

the data. Interestingly, this tendency is overcome by the intro-

duction of exchange coupling, as shown in Fig. 5.

The effect of the exchange coupling is to remove the irre-

versible behavior present in the case of the exchange decoupled

system, leading to a reasonable value of after correction

with a demagnetization factor of 4 . The effect of the exchange

coupling on the determined value of is shown in Fig. 6. It

can be seen that for the particular medium considered, there is a

slight increase in the effective value of with exchange cou-

pling, but the magnitude of the change is rather small, and for

realistic values of , the exchange coupling does not appar-

ently have a significant effect on the effective value of . The

effect of interactions can be seen more prominently in the ro-

tational magnetization loop extended to large fields. It is found

that the form of the loop depends strongly on the type of mate-

rial and the strength of the intergranular exchange coupling. As

examples, we consider the experimental data given in [1], which
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Fig. 6. Effective value of H as a function of C for a perfectly aligned
medium with a diameter dispersion � = 0:03, and � = 0:1. The value
of KV=kT = 95.

were representative of the behavior of granular and multilayer

(ML) materials. In particular, the ML showed a strong deviation

from quadratic behavior at around 9 kOe, which was accompa-

nied by the formation of a pronounced domain structure.

Fig. 7 shows the calculated rotational magnetization curve for

a simulated multilayer medium. The parameters for the calcu-

lation are grain diameter 12 nm, film thickness 17 nm,

erg/cm , and emu/cm . The dispersions of

size, angle, and are rather narrow ( , , and

, respectively). The grains are also strongly exchange

coupled, with the parameter . The calculations shown

in Fig. 6 are qualitatively similar to the data for the ML mate-

rial given in [1] and have a similar value of kOe

(corrected for a demagnetization factor of 4 ) in comparison

with the experimental value of 19.1 kOe [1]. This value of

is also close to the value of 20.3 kOe expected for a noninter-

acting system, indicating that again the rotational method gives

a reasonable value of even for a system with magnetostatic

and exchange interactions. As before, the effect of exchange is

to stabilize the magnetization in small fields, leading to an ex-

tended range over which quadratic behavior is observed. This

is demonstrated in Fig. 6 by the inclusion of data calculated for

an exchange decoupled system. The value of calculated for

the exchange decoupled system is the same as that calculated

in the presence of exchange coupling. The effect of exchange

coupling, in addition to giving rise to the extended range of

quadratic behavior, is also to give a rather more rapid change of

the magnetization in large fields. In agreement with experiment,

we find this to be associated with the formation of a quasi-do-

main structure due to the intergranular exchange interactions.

Fig. 8 shows a grayscale representation of the perpendicular

magnetization component in a field of 10 kOe, which corre-

sponds to a magnetization .

Fig. 9 shows the domain structure for the ML medium close

to zero magnetization in an in-plane field of 15 kOe. There is an

extended stripe-domain-like structure, which is in good agree-

ment with the experimental data. We have also carried out a

comparison with the rotational magnetization curve measured

Fig. 7. Rotational magnetization curve for a simulated multilayer medium.
Calculations are given for an exchange decoupled system and a medium with
C = 0:03.

Fig. 8. Domain structure for the exchange coupled ML in a field of 10 kOe
corresponding to a magnetization M = 0:5. Dimensions are in units of the
median particle diameter.

Fig. 9. Domain structure for the exchange coupled ML in a field of 15 kOe
corresponding to a magnetization M = 0:05. Dimensions are in units of the
median particle diameter.

for a granular medium. A good qualitative fit to the experiments,

shown in Fig. 10, was found for nm, nm,

e6 erg/cm , and emu/cm . The parameter disper-

sion values are rather larger than for the ML medium, specifi-

cally , , and . The grains are also

less strongly exchange coupled, with a value of .
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Fig. 10. Rotational magnetization curve for a medium with parameters
consistent with a granular medium.

The combination of weak exchange coupling and large param-

eter dispersion leads to a nucleation dominated reversal, which

is consistent with the magnetic force microscopy images given

in [1].

V. CONCLUSION

We have carried out a theoretical and computational anal-

ysis of rotation processes in perpendicular media. It is found

that thermally activated processes can lead to irreversible mag-

netization changes in small fields, which can be exacerbated

by the presence of magnetostatic interactions. The introduction

of exchange coupling forces coherent rotation onto the system

and reduces the irreversible magnetic behavior, leading to esti-

mates of that are weakly dependent on the exchange. The

computational model has been qualitatively fitted to rotational

magnetization curves for multilayer and granular media. The

fits give reasonable values for the material parameters and also

predict domain structures that are consistent with experimental

data. The form of the curves are dependent on the dispersion

in materials properties in addition to the exchange coupling,

and this suggests that the rotational magnetization curve is a

useful source of information for the determination of materials

parameters.
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