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The physics governing the formation of extreme coherent events, i.e., the systemwide emergence of an
observable taking extraordinary values in a short time window, is a relevant yet elusive problem to a variety of
disciplines ranging from climate science to neuroscience. Despite their inherent differences, systems exhibiting
episodes of extreme coherence can be abstracted as a set of coupled nonlinear elements in a noisy and
networked environment. Here, we propose a model describing the generation of extreme coherence by exploring
theoretically and numerically the capacity of noise and network correlations to amplify a critical core of the
system and trigger an extreme event. Although we principally center our study in modeling bursting phenomena
in neuronal circuits, we extend our analysis to other systems such as algae blooms and infectious diseases. We
show that extreme events originate in a relatively small core of the system and that different cores may coexist.
We also show that the amplification mechanisms within a system are highly robust, so that the deletion of central
nodes leads to other nodes taking leadership.
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I. INTRODUCTION

The emergence of recurrent but rare events characterized
by a certain observable taking on utmost values compared
with the usual behavior can often be considered as an extreme
event. There are ample examples of this type of event in
nature [1–3], such as harmful algal blooms, where a species
usually present at low densities all of a sudden becomes
extremely abundant and dominant in a plankton commu-
nity [4,5]; the outbreak of an infectious disease, where the
number of infected individuals explodes over a very short
time [6]; neuronal avalanches in cortical tissue [7,8]; epileptic
seizures, in which a very intense and synchronous neuronal
activity pattern emerges in a patch of brain tissue [9]; or
rogue waves occurring in the ocean [10–12] or in laser sys-
tems [13–15].

Several mechanisms have been discovered regarding how
such extreme events could be created. They include “interior
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crises” [16–18], Pomeau-Manneville intermittency [19], the
quasiperiodicity route to chaos [20], or attractor hopping in
multistable systems [21,22]. For example, the various mecha-
nisms to create rogue waves [23,24] in the ocean are explained
in terms of Peregrine solitons [25], whereas some of the
studies on extreme events on networks employ excitable units
operating in an oscillatory mode on each node to demonstrate
the emergence of extreme events, either as stable dynam-
ics [16] or as part of unstable transient dynamics [26].

In the context of neuroscience, the capacity of neuronal
circuits to exhibit extreme events has been investigated in an
attempt to understand the mechanisms leading to epileptic
seizures [27] and the bursting phenomenon, in which the
whole neuronal network—or a large fraction of it—activates
coherently in a short time window, e.g., as occurs in neuronal
cultures [28–30]. It must be noted, however, that extreme
events could be viewed in a similar way as bursting episodes
in a neuronal network since they partly consist of bursts in the
whole neuron community, which are recurrent but still rare,
with very large interburst intervals (IBIs). As soon as they
become more frequent, or even almost periodic, they would
no longer fulfill the condition of rareness and could not be
considered extreme events.

Modeling scenarios for epilepsy and sudden bursting
extend from the microscale, in the form of detailed represen-
tations of neurons coupled through complex topologies, to the
macroscale, with the introduction of neural mass models or
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oscillators that represent brain regions coupled to one another
in a nonlinear way. Despite the importance of these models,
an aspect that has not been explored in detail is the role
of noise and connectivity correlations in triggering sudden
networkwide activity.

In this paper, we take a mesoscale approach to understand
the emergence of sudden bursting and analyze in detail the
activity amplification mechanisms, grounded on noise and
connectivity correlations, that occur in a small region of a
neuronal circuit that we term core. We derive the simplest
theoretical model able to capture burst initiation dynamics,
providing a deep insight into the necessary ingredients for
the emergence of extreme coherent events in a neuronlike
excitable system. Once a burst is generated, its spatiotemporal
structure and termination mechanisms strongly depend on
both the nature of the excitable system and the topological
details of the network in which it is embedded, effectively
shaping a completely different dynamic scenario. Thus, for
sake of clarity and simplicity, in this paper, we focus only on
burst initiation.

Firstly, we analyze analytically and numerically the condi-
tions that have to be met, in terms of noise and the topological
details of a network, for an avalanche of amplification to suc-
ceed and trigger a burst. Secondly, we explore the resilience
of burst initiation to a directed attack on neurons that exhibit
central characteristics. Thirdly, we investigate the role that
noise and topological amplification mechanisms play to trig-
ger extreme events in other natural systems that share the same
ingredients, i.e., inherently noisy nonlinear elements coupled
through a complex network.

II. FRAMEWORK: NOISE FOCUSING AND ACTIVITY
AMPLIFICATION MECHANISMS

The “noise focusing” framework is based on the con-
cept that random neuronal activations are amplified by both
metric correlations and noise [30]. Metric correlations are
topological features that emerge from the spatial embedding
of neurons and the finite length of axons and dendrites.
These features include local connectivity and high clustering
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FIG. 1. Dynamic amplification mechanisms and concept of core. (a) In the absence of amplification, a target neuron (blue) needs m0 � 13
inputs (black bars) in �t � 20 ms (yellow box) to activate. (b) Topological amplification arising from loops in the network (orange) increases
the number of inputs onto the neuron, facilitating quorum. (c) The presence of noise (red bars) further increases the effective number of inputs
onto the target neuron, which now satisfies the quorum condition. (d) Neuronal firing probability as a function of m/m0 for different noise
strengths λ�t , showing the substantial increase in firing probability for even weak noise amplification. Here, λ is the mean frequency of inputs
generated by synaptic noise. (e) Numerical realization of a neuronal network to illustrate the concept of core, which is the minimum ensemble
of neurons (typically N = NC � 85) in a network able to generate a burst. Color dots and lines are neurons and connections, respectively.
The diameter of the neurons and the strength of the color is proportional to their connectivity. Black lines show a cascade of activations
(avalanche), although not sufficiently strong to generate a burst. (f) Left, Numerical realization of a network with N = 2000 neurons, showing
three representative cores of radius rc = 300 μm. Connections are omitted for clarity. Right, Examples of avalanches in the network. Colors
depict independent spatiotemporal events.
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coefficients since physically close neurons are more likely
to connect and promote the existence of feedforward and
feedbackward loops [30–32]. Noise, on the other hand, orig-
inates from both fluctuations in the membrane potential and
the spontaneous release of neurotransmitters in the synaptic
boutons of presynaptic neurons [30].

Activity amplification is grounded on the nonlinear,
integrate-and-fire nature of neurons. In the noise focusing
framework, this central characteristic is formulated as the
need for quorum, i.e., the arrival of a sufficient number of
inputs into the membrane for it to pass the threshold and
activate [33]. As sketched in Fig. 1(a), a neuron is activated
whenever it receives at least m0 inputs from its neighbors in
a time window of �t = 20 ms [33–36]. Typically, m0 � 13
in neuronal cultures [33,35]. The existence of loops and re-
current activity, promoted by metric correlations [Fig. 1(b)],
raises overall neighboring activity and leads to a higher
cascade of neuronal activations. Similarly, noise adds new
activations to the train of spikes converging onto a neuron
[Fig. 1(c)], substantially increasing its probability of firing
[Fig. 1(d)].

Both amplification mechanisms, as delineated by Orlandi
et al. [30], suffice to activate a small but critical core of the net-
work of typically rc � 300 μm in radius and containing about
Nc ∼ 85 neurons [30] [Fig. 1(e)]. A core has to be understood
as any ensemble of neurons large enough to independently
generate an avalanche of activity (a cascade of concatenated
neuronal activations) and ignite the whole network, shaping
a network burst or extreme event. Multiple cores may there-
fore exist in large networks containing thousands of neurons
[Fig. 1(f)], thus increasing the probability for a burst to oc-
cur. Once a burst is initiated, its spatiotemporal propagation
depends on the connectivity details of the neuronal circuit,
ranging from fast circular fronts in homogeneous networks to
intricate spatiotemporal waves in heterogeneous or engineered
circuits [37].

III. THEORETICAL MODEL

In the following, we will consider a neuronal network
constituted by only excitatory neurons, which allows us to
obtain analytical solutions. The impact of inhibition in the
model is discussed later. We will also consider that, once a
given neuron has satisfied the quorum condition of m0 total
inputs in �t = 20 ms, it will activate and pass the signal to
its neighbors in the following time window of δt ∼ 2–3 ms.
This time delay captures the biophysical processes associated
with action potentials and the generation of postsynaptic cur-
rents and is important to derive realistic time scales for burst
initiation. Table I summarizes the parameters used by the
model and its predictions.

A. Single firing probability equation

The subquorum probability of firing is modeled as a Pois-
son shot process in the membrane potential, with spontaneous
“shot noise” mean frequency λ, in a time window �t , and
where m positive inputs from active neuron neighbors would
contribute as single, nonnoise shots [30,38]. Biologically, the

TABLE I. Summary of the parameters used and their values for
the theoretical model and numerical simulations. The last five values
are predictions of the model. Std = standard deviation, Prob. =
probability.

Notation Numerical value Description

BA/IA — Background/ignition avalanche
N ∼5 × 104 neurons Total neurons
Nc ≈85 neurons Total neurons in critical subset
rc ∼300 μm Radius of critical subset
k ≡ kin

Nc
∼30–40 neurons Average intra-Nc connectivity

�t 20 ms Time window for inputs
δt 2–3 ms Time step in avalanches
τrefrac ∼10 s Culture recovery time
ω0 ∼0.1 Hz/neuron Spontaneous activation rate
λ ≈300 Hz/neuron Shot noise rate
m0 13 Initial demand of inputs
n — Active neurons in Nc and �t
m — Inputs from active neighbors
μshot ≈7.5 〈min(m)〉 to fire
σshot ≈2.2 Std of min(m) to fire
μhyp (depends on n) 〈m〉 in Nc and �t
σhyp (depends on n) Std of m in Nc and �t
�n (depends on n) Single step mean increase in n
σ�n (depends on n) Single step std of increase in n
nth 4.7 ± 1.0 Threshold in n for BA/IA
p�t

subburst ≈3 × 10−6 Prob. of Nc activation in �t
p�t

burst ≈1.7 × 10−3 Prob. of culture burst in �t
〈IBI〉 ∼21 s Mean interburst interval
νburst ∼4.7 × 10−2 Culture bursting frequency

former shot noise corresponds to spontaneous miniature exci-
tatory postsynaptic currents (mEPSCs).

The probability q ≡ p(↑| m, m0, λ�t ) of a neuron to ac-
tivate (↑), with m inputs from neighbors in a time window
�t and a quorum m0, is thus the probability of spontaneously
receiving m0 − m (or more) total noise shot inputs, with an
average of λ�t . This can be expressed as

q = e−λ�t
∞∑

i=m0−m

(λ�t )i

i!
= 1 − P (m0 − m, λ�t ), (1)

where P is the regularized 	 function, m0 is the total demand
of inputs, and m is the effective number of active neighbors’
inputs in the time window �t .

The Poisson shot process can be approximated by a normal
distributed shot process with mean λ�t + 1

2 and standard de-
viation

√
λ�t . Equation (1) can then be written in a compact

manner as

q � 1 − 


[
(m0 − m) − (

λ�t + 1
2

)
√

λ�t

]
, (2)

where 
 is the standard normal cumulative distribution func-
tion. By introducing μshot ≡ m0 − (λ�t + 1

2 ) and σshot ≡√
λ�t , we obtain

q = 


(
m − μshot

σshot

)
, (3)
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which describes the probability that a neuron will fire in the
next time step δt upon receiving inputs from m active neigh-
bors within the previous time window �t .

B. Single neuron active inputs within the Nc core

Bursts initiate as a result of the topological amplifica-
tion of noise and neuronal activity, which ignites a critical
subset of size Nc neurons. Topologically, Nc can be approx-
imated as a random graph since its characteristic diameter
of 2rc = 600 μm is shorter than the average axonal length of
�1 mm [32].

We term avalanche as any cascade of activity involving
connected neurons and with <50 ms of time difference be-
tween activations. Larger times indicate the beginning of a
new avalanche. This definition is often referred to as “causal
avalanche,” in the sense that it is not sufficient for any two
neurons to activate within the same time bin; one has to drive
the other through an existing connection. Illustrative examples
of causal avalanches are shown in Figs. 1(e) and 1(f).

We denote by n the ensemble of spontaneously active neu-
rons on Nc in an initial time window �t = 20 ms. A burst will
occur whenever the activity-amplification mechanism leads to
n � Nc on the core network. Thus, there is initially a popu-
lation of Nc − n neurons that are inactive in the first �t time
window.

For a given neuron, its probability to fire will depend
on its connectivity k, which determines the probability r ≡
p(m | n, k, Nc ) to receive m inputs from n active neighbors
among all Nc − 1 possible neighbors. If the input connectivity
is fixed for all neurons in the core network as k ≡ kin

Nc
, the

total number of possible combinations of m active inputs is
then given by (

Nc − 1 − n

k − m

)
. (4)

Since neurons are distinguishable, all possible combina-
tions of m elements over n have to be considered, i.e.,

(n
m

)
, for

each combination in Eq. (4). The final normalized probability
distribution function r then reads

r =
(n

m

)(Nc−1−n
k−m

)
(Nc−1

k

) . (5)

This equation can be identified with the hypergeometric
distribution, where the number of successes corresponds to m,
in k draws without replacement, from a population of Nc − 1
that contains n objects with the desired feature. This facilitates
an analytical exploration of Eq. (5) by approximating the
hypergeometric function to a normal one with mean μhyp and
standard deviation σhyp given by

μhyp = n
k

Nc − 1
, (6)

σhyp =
√

1

Nc − 2
n
(

1 − n

Nc − 1

)
k

(
1 − k

Nc − 1

)
. (7)

The r distribution then reads

r = 1

σhyp
ϕ
(m − μhyp

σ

)
, (8)

where ϕ(x) is the standard normal density function with zero
mean and one standard deviation.

C. Probability of next-step activation

At this point, two central ingredients have been articulated.
On the one hand, Eq. (3) characterizes the probability of
activation of an arbitrary, inactive neuron when m of its input
neighbors are active in a time window of �t = 20 ms. On the
other hand, Eq. (8) describes the probability for a neuron to
be connected to m active input neighbors when there exist n
active neurons in a core Nc with average connectivity k.

The combination of both probabilities allows us to deter-
mine p ≡ p(↑| m0, λ�t, n, k, Nc ) the activation probability of
an arbitrary, inactive neuron depending directly on the initial
number of active neurons n in the subset Nc. This can be
expressed as the average dynamic correlations marginalized
over m, i.e.,

p =
n∑

m=0

qr, (9)

which from Eqs. (3) and (8) can be approximated to

p �
∫ n+ 1

2

1
2



(m−μshot

σ

)
ϕ
(m−μhyp

σhyp

)
σhyp

dm. (10)

By redefining x ≡ m−μhyp

σhyp
and dx ≡ dm

σhyp
, we obtain

p �
∫ 1

2 +n−μhyp
σhyp

1
2 −μhyp

σhyp


(a + bx)ϕ(x)dx, (11)

where a ≡ μhyp−μshot

σshot
and b ≡ σhyp

σshot
.

The argument of the last integral is like a Gaussian whose
main area falls within the integration limits, particularly for
n � 2. Thus, we can approximate the upper and lower integral
bounds of Eq. (11) by +∞ and −∞, respectively. Using
Ref. [39],∫ +∞

−∞

(a + bx)ϕ(x)dx = 


(
a√

1 + b2

)
, (12)

we finally get

p � 


⎡
⎣ μhyp(n) − μshot√

σhyp(n)2 + σ 2
shot

⎤
⎦ =

= 


⎧⎪⎪⎨
⎪⎪⎩

n k
Nc−1 − [

m0 − (
λ�t + 1

2

)]
√

n(1− n
Nc−1 )k(1− k

Nc−1 )

Nc−2 + λ�t

⎫⎪⎪⎬
⎪⎪⎭. (13)

This equation sets the probability that the number of inputs
for an arbitrary neuron is larger or equal to what it needs
to reach m0 threshold, with shot noise and network activity
already considered. Hence, Eq. (13) captures the probability
of activation of a neuron within Nc in a time window of
δt = 2–3 ms, provided that n neurons activated in the previous
�t = 20 ms window.
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D. Dynamical difference equation for the Nc core

To complete the description of the Nc core dynamics, an
evaluation of the inactivation rate of neurons is required. We
note that a moving time window �t would gradually lose
(or attenuate) the contribution of the oldest activations at an
average initial rate of n/�t . Thus, since our time step is set at
δt = 2–3 ms due to the time duration of action potentials, the
number of activations whose effect is lost at the next time step
is, on average, �n− = δtn/�t .

By using Eq. (13), and noting that the available number of
neurons to activate is Nc − n, the number of inactive neurons
that on average would become active at the next time step is
�n+ = p(n)(Nc − n). Both the activation and the inactivation
rates follow Poisson distributions, with their corresponding
means. The evolution of n is then governed by the difference
of two Poisson-distributed variables, whose resulting distri-
bution is the Skellam distribution, of mean �n+ − �n− and
standard deviation

√
�n+ + �n−. Therefore, the dynamical

first-order difference equation of the Nc core network is

nt+δt = nt + p(nt )(Nc − nt ) − δt

�t
nt , (14)

which explicitly reads

�n = 


⎧⎪⎪⎨
⎪⎪⎩

n k
Nc−1 − [

m0 − (
λ�t + 1

2

)]
√

n(1− n
Nc−1 )k(1− k

Nc−1 )

Nc−2 + λ�t

⎫⎪⎪⎬
⎪⎪⎭

× (Nc − n) − δt

�t
n, (15)

where �n ≡ nt+δt − nt is the forward finite difference of n at
time t , and where we dropped the subindex t for clarity.

E. Threshold for ignition avalanches

Equation (15) describes the capacity of n initially active
neurons to amplify activity and ignite the Nc core. An initial
ensemble n that is too small would lead to avalanches that
would die out [background avalanches (BA)] except for spon-
taneous activity, whereas an n sufficiently large would ensure
enough amplification for the entire core to light up and start a
burst [ignition avalanches (IA)]. The threshold value nth that
separates BA from IA can be viewed as an unstable equilib-
rium point, in the sense that any perturbation in n would drag
the system either toward BA or IA.

Figure 2(a) shows a representative numerical realization of
Eq. (15) with biophysically plausible parameter values that
provide nth � 5, as described later. Positive values for the
next-step increment �n indicate a growth in network activity,
whereas negative values depict a decrease in neuronal acti-
vations. A zero increment indicates an equilibrium state of
the system. A detail of the dynamical process is shown as a
cobweb plot in Fig. 2(b). A BA (red) swiftly vanishes at n � 4,
while an IA (green) keeps growing until it encompasses the
entire core. The steplike profile of the IAs indicates that the
number of new neurons participating in the avalanche process
quickly grows as amplification progresses.
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FIG. 2. Dynamic amplification process and avalanches. (a) The
thick blue line depicts the increment in the number of active neurons
�n in the following time step t + δt as a function of the num-
ber of active neurons n in current time step t . The blue shading
provides the upper and lower bounds for the Skellam distribution.
Inset: Detail of the neighborhood around the threshold value nth

(black dashed line) that separates background avalanches (BAs) from
ignition avalanches (IAs). (b) Cobweb plot illustrating the cascade of
neuronal activity within the Nc core, with example trajectories for a
BA (red) and an IA (green). Inset: Detail of the dynamic evolution in
the vicinity of the threshold region.

The amplification process can be viewed as a potential
in the context of classical mechanics. We term it increment
potential, and it is numerically calculated as − ∫ n

0 �ndn.
As shown in Fig. 3, and similarly to classical mechanics,

a minimum in the potential depicts a stable state, while a
maximum value indicates an unstable equilibrium. When no
bursting activity is present, critical Nc subsets dwell in the
leftmost, stable region of BAs. At some point, the dynamical
and topological amplification of noise increases the activity of
the network beyond the unstable equilibrium, enforcing an IA
and dragging the system to a stable bursting regime.

The evaluation of the threshold value nth introduced above
was carried out by determining those states that compensated
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FIG. 3. Increment potential. Illustrative approximate parallelism
to the potential concept in classical mechanics. Solid blue line shows
− ∫ n

0 �ndn derived numerically from the data of Fig. 2. The vertical
dashed black line shows the threshold value nth that separates back-
ground avalanches (BAs) and ignition avalanches (IAs). The vertical
green lines and arrows represent the dynamical evolution of the
system for the IA of Fig. 2. Inset: Detail of the unstable equilibrium
point at the vicinity of the threshold nth.

average activations and average attenuations, i.e., zero mean
rates or zero derivative states. Indeed, from Eq. (15), the
equilibrium states of n are solutions of the equation

p(n)(Nc − n) − n

�t
δt = 0, (16)

and by using Nc ∼ 85 neurons, k ∼ 30 input neurons over Nc,
m0 � 13, and δt = 3 ms, a family of solutions at equilibrium
neq can be determined, procuring neq = {0.28, 4.69, 73.9} ac-
tive neurons. The first solution is stable and corresponds to
background activity. The third solution is also stable and is
related to peak bursting activity, i.e., the presence of strong
activity in the network. The second solution is unstable and
corresponds to our solution of interest, i.e., the threshold nth

that separates BAs from IAs.
It is important to note that the third solution is kinetically

stable, meaning that it exists as far as the network is able
to maintain high levels of activity. Such a scenario holds
only at short time scales from a biophysical perspective since
sustained activity eventually leads to the depletion of neu-
rotransmitters and to a refractory period of no activity. For
simplicity, and since this paper focuses on initiation rather
than propagation of bursting activity, the theoretical model
does not consider this short-term depression mechanism. We
also note that peak bursting activity does not encompass the
isolated Nc core but neighboring regions as well and that high
levels of activity can trigger a burst in surrounding cores.
These multicore dynamic interactions go beyond the scope of
this paper and were already treated by Orlandi et al. [30].

An estimation of the uncertainty associated with the
solution of our interest nth ≡ neq � 4.7 can be carried
out by using the Skellam’s standard deviation, which
provides σ =

√
�n+

eq + �n−
eq =

√
2�n−

eq = √
2δtneq/�t . We

thus conclude that the threshold for the generation of IAs is

given by

nth � 4.7 ± 1.0. (17)

F. Whole-culture bursting: Ensemble
of N/Nc independent subnetworks

Real neuronal networks contain a number of neurons N that
is much larger than Nc. Thus, in the context of our model,
one could expect ∼N/Nc nonoverlapping cores able to gen-
erate bursting episodes that would propagate throughout the
entire network. We note that, from an analytical perspective,
the concept of core facilitates a partition of the network into
local and global connectivity scales. Since the local scale
is on the order of the diameter of the typical dendritic tree
(�600 μm) and shorter than the characteristic axonal length
(� 1 mm), any core can be effectively modeled as a random
graph, with all cores exhibiting an equivalent connectivity.
This approach greatly simplifies the analytical derivations.

Thus, if all cores exhibit similar characteristics, the proba-
bility of activation of an arbitrary core in �t can be calculated
as the probability of spontaneous occurrence of n � nth, with
n Poisson-distributed, i.e.,

p�t
subburst = 1 − P (nth, ω0�tNc), (18)

where P is, again, the regularized 	 function and ω0�tNc

the mean of the Poissonian process. We take ω0 = 0.1 Hz
as the characteristic neuronal spontaneous activation fre-
quency [30,40].

Since at least one core has to activate during a �t window
to observe a whole-network burst, the bursting probability in
�t is then given by

p�t
burst = 1 − (

1 − p�t
subburst

) N
Nc = 1 − [P (nth, ω0�tNc)]

N
Nc .

(19)

The average IBI, i.e., the time span between two consec-
utive bursting episodes, can be evaluated by considering the
recovery time τrec that has to elapse for cultures to burst again.
This recovery time is associated with burst termination and
depends on a number of factors, including short-term synaptic
depression (i.e., the gradual depletion of neurotransmitters),
action potential hyperpolarization, and the amount of inhibi-
tion in the network. For simplicity, and since burst termination
mechanisms are not included in the model, we use τrec = 10 s,
which is the minimum characteristic time scale for burst re-
covery observed in neuronal cultures similar to the modeled
ones [41]. The average IBI is then

〈IBI〉=τrec + �t

p�t
burst

=τrec+ �t

1 − [P (nth, ω0�tNc)]
N
Nc

∼ 21 s,

(20)

where we have taken N = 5 × 104 neurons as in typical exper-
imental preparations with neurons homogeneously distributed
over a flat surface [41]. The bursting frequency is then νbursts =
1/〈IBI〉 � 3 bursts/min.

We note that the uncertainty in the value of nth in Eq. (17)
provides an order of magnitude of unpredictability in the IBIs,
between ∼11 and ∼350 s. This broad range is consistent with
experimental observations, which reported IBIs in the range
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10–200 s [41–43] and that strongly depended on the develop-
mental stage of the neuronal networks and their biochemical
environment. Thus, the model can capture well the mecha-
nisms governing burst initiation and the time scales involved
but cannot precisely infer IBIs since they are highly sensitive
to the dynamical traits of the neurons and the topological
characteristics of the network.

IV. NUMERICAL RESULTS

We carried out numerical simulations of neuronal networks
to gain further insight on the mechanisms governing burst
initiation. Following Refs. [30,44], we considered spatial in
silico networks that were set on a two-dimensional surface,
with neurons homogeneously distributed and connecting to
one another following biologically realistic axonal growth
rules. The main ingredients of the network construction were

(i) Neuronal cell bodies with fixed diameter φs randomly
positioned over the surface.

(ii) A dendritic tree for each neuron, centered at its soma,
and extending a diameter φd � 600 μm given by a Gaussian
distribution with average μd and standard deviation σd .

(iii) An axon departing from the soma of each neuron
with a total length l given by a Rayleigh distribution with
standard deviation σl . Axons were laid out as concatenated
segments �l . The orientation of each segment followed a
Gaussian distribution with standard deviation σθ and centered
around the previous segment. The first segment was oriented
randomly relative to the soma.

(iV) A connection was established whenever the axon of
a neuron intersected the dendritic tree of another neuron and
according to a probability α = 0.1. This probability was inde-
pendent of the overlapping length between the axon and the
dendritic tree.

Examples of the generated networks are provided in
Figs. 1(e) and 1(f). This biologically realistic construction of
the in silico network shaped metric correlations in the form
of high-clustering coefficients and loops, which facilitated
activity amplification. However, at the spatial scales of the
dendritic tree (600 μm diameter) a neuron could effectively
connect with any other within the neighborhood [32,45].
Thus, connectivity at this scale can be viewed as a ran-
dom graph with small fluctuations inherited from metric
correlations.

The Izhikevich model [46] was used to simulate the be-
havior of the membrane potential of the neuron and synapses.
Following the implementation of Orlandi et al. [30], the gen-
eration of action potentials in a neuron was governed by its
membrane potential v j (t ) and a recovery current u j (t ), as

τc
dv j

dt
= k(v j − vr )(v j − vt ) − u j + I j + η,

τa
du j

dt
= b(v j − vr ) − u j, (21)

If v j � vp −→
{
v j ←− vc

u j ←− u j + d,

where τc is the leaky capacitance; vr and vt are the resting and
threshold potentials, respectively; I j is the synaptic current the
jth neuron received from the rest of the network; η is a noise

 

0

80
neuron

0

2000

0 30 60time (s)

IAs (network bursts)

neuron

N= 85, single core

N= 2000, multiple cores

BAs

FIG. 4. Spontaneous activity in simulated networks. The plots
show representative raster plots for a small network (N = 85 neurons,
top) and a large one (N = 2000, bottom). Blue dots are neuronal ac-
tivations. Systemwide coherent events are ignition avalanches (IAs,
yellow boxes) and shape network bursts. Correlated activations that
do not lead to a coherent event in the whole culture are background
avalanches (BAs, pink boxes).

term; τa is the main time scale of the inhibitory currents; and
b is related to the sensitivity of the neurons to subthreshold
fluctuations. Also, vp is the value of the membrane potential
at which a synaptic pulse is emitted; vc is the reset value of
the membrane potential after spike emission; and d accounts
for the adaptation and recovery of the neurons.

Finally, for the synaptic dynamics, we considered that the
generation of a synaptic pulse by the ith neuron at a time tm
induced a postsynaptic current in the jth neuron. Thus, the
total synaptic current received by the j neuron was given by

I j (t ) =
N∑

i=1

∑
tm<t

Ai jEi(t, tm),

Ei(t, tm) = gADi(tm) exp
(
− t − tm

τA

)
�(t − tm), (22)

dDi

dt
= 1 − Di

τD
− (1 − β )Diδ(t − tm),

where Ai j is the connectivity matrix of the network, and
Ei(t, tm) is the current induced by the ith neuron at a time t
as a result of the spike generated at time tm; gA and τA are the
strength and decay time of the synaptic current, respectively;
Di(t ) is the depression term that describes the efficacy of the
neuron presynaptic terminals [46,47]. It has a resting value
of 1 and relaxes exponentially with a decay time of τD. Also,
β is a coefficient related to the loss in efficiency that occurs
whenever a synaptic pulse is generated.

The in silico cultures were simulated along 1 h, and the
data were analyzed to quantify the spatiotemporal structure of
activity avalanches in the networks (see Fig. 4 for an example
of the time series of the bursts obtained in the simulations).
Table II summarizes the parameters used in the construction
of the numerical model.
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TABLE II. Values for the structural and dynamical parameters of
the in silico neuronal cultures. AMPA stands for α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid.

Culture parameters

Density ρ = 125 neurons/mm2

Morphology parameters
Diameter of the soma φs = 15 μm
Dendritic tree radius μd = 300 μm, σd = 40 μm
Axon length σl = 800 μm
Axon cutoff length lcutoff = 1500 μm
Segment length �l = 10 μm
Angle between segments σθ = 0.1 rad
Soma parameters
Resting membrane potential vr = −60 mV
Threshold membrane potential vt = −45 mV
Peak membrane potential vp = 35 mV
Reset membrane potential vc = −50 mV
Time scale of the inhibitory current τa = 50 ms
Leaky capacitance τc = 50 ms

k = 0.5 mV−1

Sensitivity to subthreshold fluctuations b = 0.5
Adaptation and recovery parameter d = 50 mV
Synapse parameters
Depression recovery time τD = 1000 ms
Depression decay β = 0.8
AMPA current strength gA = 50 mV
AMPA current decay time τA = 5 ms
Noise parameters
White noise strength gs = 300 mV2ms
White noise autocorrelation 〈η(t )η(t ′)〉 = 2gsδ(t − t ′)
Shot noise frequency λ = 0.01–0.05 ms−1

Shot noise strength (minis) gm = 10 mV
Shot noise decay time τm = τA

Simulation parameters
Algorithm Runge-Kutta second order
Time step δt = 0.01 ms
Termalization time tterm = 10 s
Integration time tint = 1 h
Simulation time tsim = tterm + tint

Typical run time Tex � 3 d

A. Dynamic amplification and avalanches

As a first exploration, we considered networks with the
same number of neurons as in a core, i.e., with N = Nc =
85. As shown in Fig. 5(a) for a representative network,
the dynamic profile (color dots and their statistical average)
was qualitatively similar to the one predicted by the model
[Fig. 2(a)]. A remarkable difference, however, was that the
simulated profile was much more symmetric in shape than the
theoretical one. This difference is grounded on two factors,
namely, the presence of recurrent activity and the existence
of burst-termination mechanisms. The former is associated
with metric correlations and translates into the high activity
levels observed by n � 30–50. The latter is associated with
neuronal hyperpolarization and synaptic depression and leads
to an abrupt decline of activity by n � 70–80.

We note that, to compute the dynamical profile in sim-
ulations, a rolling average with a time window w was
implemented on the original raster plots as a smoothing
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FIG. 5. Dynamic profile in representative simulated neuronal
networks. (a) An isolated network core with N = Nc = 85 neurons
placed on an area of φ = 600 μm in diameter. Each colored dot rep-
resents a step in an avalanche process, with the color scale indicating
its observed occurrence p. The orange curve represents the statistical
average of the data points 〈�n〉(n) = ∑

�n �np(�n|n). The inset
shows a detail of the avalanche process for low n and the determi-
nation of the threshold nth � 2 that separates background avalanches
(BAs) from ignition avalanches (IAs) (vertical gray line), obtained
as the intercept of the increasing orange curve and the abscissa axis.
(b) Equivalent analysis for cores integrated in a large network of
N = 2000 neurons. Two populations are considered, a first one with
Nc = 91 that leads burst formation (initiation core, color dots and
orange curve) and a second one with the same number of neurons
that does not initiate activity (nonintiation area, cyan curve). Both
curves are qualitatively similar since any generated burst propagates
throughout the entire network. In all panels, statistics is based on
about 5000 avalanches in 10-h-long simulations.

process. For this reason, the number of active neurons in Nc,
n, and the next-step increment �n are not limited to integers.
Additionally, a bin of width �nbin = 1/(2w + 1) was used to
compute the occurrence p(�n|n), which was defined as the
probability that a core with a given n increased its activity by
�n. This p(�n|n) was determined by counting the number
of events in which n → n + �n and normalizing by the total
observed �n,

∑
�n(n → n + �n).
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The simulations procured a threshold nth � 2 and a maxi-
mum next-step increment �nmax � 15, both smaller than the
model predictions (nth � 4.7 and �nmax � 43, respectively).
We ascribe these differences to the characteristics of the
Izhikevich model employed and the topology of the Nc core,
which may be more structured than the random graph assumed
by the model. These aspects are discussed later, but the good
qualitative agreement between model and simulations indi-
cates that the former, despite its approximations, captures well
the amplification mechanism and the presence of both BAs
and IAs.

As a second exploration, we simulated more realistic neu-
ronal networks of N = 2000 neurons placed on a circular area
of φ = 3 mm in diameter. We then inspected the dynamics
in the network and searched for the strongest initiator core,
i.e., the area where bursts initiated more frequently. A circular
area of radius rc = 300 μm, centered in this core, was next
set and its 91 containing neurons monitored in detail. As
shown in Fig. 5(b) (orange curve), the dynamical profile for
this integrated core is qualitatively similar to the isolated one,
indicating that a burst initiation area in a large network can
be effectively viewed as a neighborhood of highly interacting
neurons.

The same core radius of rc = 300 μm was used to com-
pare the simulations with the theoretical predictions. This
was considered valid because short-scale connectivity (within
the Nc core) approached a random graph. However, since
the numerical networks were generated as biologically real-
istic spatial graphs, the resulting cores exhibited variability
in their internal connectivity, spatial extent, and the way
they interconnected to one another. This variability favored
topological amplification within the core, i.e., enhanced the
capacity of the core to generate a burst, but also provided in-
tricate large-scale connectivity correlations that ultimately led
few initiation cores to dominate the dynamics. Indeed, of all
N/Nc = 2000/85 � 23 potential cores, only 3–5 concentrated
all bursts, shaping truly special initiation areas or focusing
points, as in Orlandi et al. [30].

In Fig. 5, a difference worth noting between the isolated
(N � Nc) and integrated (N � Nc) cores is the strong vari-
ability in avalanche occurrence for the latter, reflected by the
abundant color patterning in Fig. 5(b). We ascribe this differ-
ence to the strong dynamic interactions between the integrated
core and the rest of the network and with bursts or avalanches
originating in other cores crossing the monitored one.

To shed light on this aspect, we compared the dynamic
profiles of this integrated core with an area in the network that
did not initiate activity but contained the same 91 monitored
neurons. The resulting curve is shown in cyan in Fig. 5(b).
The curve shows a sharper increase than the core one (orange)
since any burst generated in the network, together with local
BAs, would contribute to activity in the monitored region.
Additionally, the threshold that separates BAs from IAs ap-
pears at lower n and changes sharply because many neurons
suddenly become active when a burst crosses the monitored
area. However, despite these differences, the core and noncore
dynamic profiles exhibit a similar trend, which indicates that
all neurons have a similar capacity for activity initiation and
propagation. Thus, although connectivity may be heteroge-
neous at a local scale, it is quite uniform at larger scales. This

is expected since neurons are distributed homogeneously and
all form connections with identical rules.

B. Occurrence and resilience of bursts in large networks

After exploring the dynamics of both isolated and inte-
grated cores, we proceeded to study the temporal occurrence
of bursting dynamics. We considered the scenario of more
realistic networks with N = 2000 neurons and determined
the characteristic IBI in the 1-h-long simulations, averaging
over 50 network realizations. We obtained 〈IBI〉 = 14 ± 8 s,
a value that is in agreement with the theoretical prediction of
Eq. (20).

To complete the results, as well as to better characterize the
parameters governing bursting formation, we studied the de-
pendence of IBIs on the number of neurons in the network and
the sensitivity of bursting phenomena to the loss of neurons.

1. Dependence of bursting on network size

The dependence of bursting occurrence on the number of
neurons N could be predicted through Eq. (20). Indeed, by
evaluating P (nth, ω0�tNc) for the values nth = 4.7 neurons,
ω0 = 0.1 Hz, �t = 20 ms, and Nc = 85 neurons, we observed
that P (nth, ω0�tNc) = 1 − δ with δ � 1, and therefore,

[P (nth, ω0�tNc)]
N

NC = (1 − δ)
N

NC ≈ 1 − N

Nc
δ, (23)

leading to

〈IBI〉 � τrec + �t

1 − P (nth, ω0�tNc)

Nc

N
, (24)

which indicates that 〈IBI〉 ∼ N−1.
To verify this scaling, we simulated networks with grad-

ually higher numbers of neurons N that covered about two
orders of magnitude, from N = 100 to 2000, and a total of
six population sizes. Bigger networks could not be explored
because of the prohibitive duration of the simulations.

Representative IBI distributions for the smallest and largest
networks are shown in Fig. 6(a). The smallest network shows
a large average IBI of about 〈IBI〉 − τrec � 90 s, whose dis-
tribution is markedly exponential. We ascribe this behavior to
the existence of a single initiation core in the network, and that
leads to a strong correlation between two consecutive bursts
since the capacity for a new burst to emerge strongly depends
on the full termination of the previous one. Conversely, the
biggest network exhibits a substantially smaller average IBI
of about 〈IBI〉 − τrec � 6 s and a characteristic Poissonian
distribution that is indicative of a random generation of bursts
across the network. Indeed, the presence of multiple cores
erases the correlation between burst initiation times, except
for the global constraint that a burst cannot occur at time
scales shorter than τrec.

The scaling of IBI on N−1 predicted by Eq. (24) is shown
in Fig. 6(b). Despite the strong variability among realiza-
tions, the data followed well a power law with exponent
−1.16 ± 0.21, compatible with the theoretical prediction. It
is important to note that the smallest networks (with N = 100
or 200 neurons) exhibited strong variations in the IBI. This
was caused, first, by the fact that these network contained one
or two cores and often were at the limit of showing bursting
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FIG. 6. Bursting statistics and dependence on network size.
(a) Interburst interval (IBI) distributions for a single numerical real-
ization of a small (left) and a large network (right). The former has an
exponential-like shape and large IBIs. The latter is Poissonian with
small IBIs. (b) Main plot: Power law dependence of 〈IBI〉 − τrec on
N . Statistics for each N are based on 25 network realizations (light
blue dots). Color boxes show the extent of the distribution. Thick and
thin horizontal lines within each box show, respectively, the mean
and standard deviation. The black line is a linear fit on a log-log
scale. The uncertainty in the fit indicates a statistical confidence level
of 95%. Inset: Fano factor F as a function of N , showing the tendency
toward a more regular bursting as the size of the system grows.

activity. This is clear, for instance, in the top raster plot of
Fig. 4, in which there is a long period of silence in the network.
Second, the capacity of these small networks to activate was
sensitive to their connectivity blueprint in a given realization,
combined with dynamics that was strongly affected by finite
size effects. The variability in the IBIs is captured by the Fano
factor F , computed as F = σ 2

IBI/μIBI, with σ 2
IBI the variance of

〈IBI〉 − τrec and μIBI its standard deviation. The dependence
of F on N is shown in the inset of Fig. 6(b), with F decreasing
by a factor of 10 from the smallest to the biggest networks.
This additional analysis emphasizes the strong increase in
bursting regularity as network size grows.

2. Resilience of burst initiation to the loss of neurons

Here, we considered networks with N = 2000 neurons and
applied consecutive rounds of directed attacks, defined as the
removal of all the neurons in the network that initiated >10%
of the IAs and, thus, played a central role in burst initia-

tion. After each round, the IBI of the damaged culture was
measured and the procedure repeated. The results for eight
different culture realizations and their average is shown in
Fig. 7(a). For clarity, the IBI in each attack round is scaled rel-
ative to the initial, unperturbed condition (IBI0). As a general
trend, the IBI of the networks gradually grew with the number
of attacks and increased by about two orders of magnitude
relative to the initial condition.

We note that the bursting phenomenon was maintained
despite the attack on neurons. This indicates that there is
always a sufficient amplification of activity, either by topology
or noise, for new neurons to take the leadership in avalanche
generation. Indeed, ∼30% of the neurons in the network were
removed after the third round of attack, but the remaining
ones were still capable of generating activity. As illustrated
in Fig. 7(b), the foci of initiation varied after each attack, re-
flecting the intricate interplay between connectivity, neuronal
activity, and noise that determines burst initiation areas, in
which both local (e.g., noise) and nonlocal (topology) amplifi-
cation mechanisms are central. We observed that ∼50% of the
neurons had to be removed to fully silence the network. This
reflects a strong resilience of bursting to network damage and
illustrates the difficulty to control or suppress it by just focal
damage.

V. DISCUSSION

The emergence of extreme events appears recurrently in
the dynamics of social and natural systems at different scales.
This ubiquity is grounded on the existence of microscopic
amplification mechanisms based on nonlinear elements cou-
pled and mediated by complex patterns of connectivity and
noise. Here, centering on the amplification of activity in neural
networks, we have presented a general framework whose main
ingredients can be used as a skeleton to model a variety of
extreme events that appear in complex systems.

Our framework was described in the context of neuronal
networks since they represent a prominent paradigm of the
importance of connectivity and noise in governing amplifi-
cation phenomena. We showed that the ignition of a core
of neurons as small as Nc � 85 neurons sufficed to initi-
ate a large-scale activity avalanche that extended throughout
the entire network. We used biologically realistic numerical
simulations of neuronal networks to validate the predictions
of the model. Simulations were in good agreement with
the theoretical behavior, mimicking neatly the dynamic pro-
file and portraying a clear threshold between BAs and IAs,
with the latter ultimately shaping a network burst. Simula-
tions, however, showed lower values of next-step increment
�n in the dynamic profile, typically by a factor of three,
and a lower threshold separating BAs from IAs of nsim

th � 2
(model, nmod

th � 4.7). We associate these differences to two
central aspects of the simulations, namely, a realistic dynamic
description for neurons and synapses and a nonrandom con-
struction of the network connectivity.

For the first aspect, simulations used the integrate-and-
fire Izhikevich model with short-term synaptic depression
to describe the behavior of firing neurons, which adds a
higher degree of biophysical accuracy than the theoretical
description. Among other features, the model considers the
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FIG. 7. Resilience of burst initiation. (a) Evolution of the average
interburst interval (IBI) for eight cultures (gray) with N = 2000
neurons for three progressive directed attacks on the most active
neurons. The attack consisted of the deletion of all neurons that
initiated >10% of the avalanches in a 1-h-long simulation. For each
realization, the IBI is scaled relative to the unperturbed initial con-
dition. On average (red), IBI increases with the degree of damage.
(b) Observed burst initiation points (black dots) and corresponding
probability density function of spatial burst initiation (blue-yellow
color pattern). The brighter the color, the higher the probability of
a burst to occur in a particular region of the network. The circular
black outlines show the areas that experienced the strongest deletion
of neurons upon attack. The position of the neurons is not shown for
clarity.

exponential decay of synaptic efficiency due to the depletion
of neurotransmitters, a characteristic that reduces the degree
of spiking bombardment among neurons and, thus, lowers
�n. For the second aspect, simulations considered a biolog-
ically realistic formation of neuronal circuits, with neurons
placed on a two-dimensional substrate and with distance-
dependent connectivity probability. These features shaped a
network with inherited spatial correlations that shaped loops
and heterogeneity in the connectivity. Only at the scales
of the dendritic tree, the connectivity approaches a random
graph [32,45], as Eq. (17) of the theoretical description as-
sumes. We argue that, in the simulations, the presence of
spatial correlations further facilitates activity amplification,
particularly at distances beyond the core itself, increasing the
probability to observe IAs and thus lowering nth.

The model and numerical simulations show that a network
connectivity given by a random graph is sufficient to ignite a
burst. This is because noise amplification provides the neces-
sary drive for activity to grow beyond BAs and activate the
entire network. Topological amplification only participated
in a minor way, as discussed above. However, the capacity
of topology to amplify activity and govern burst formation
is interesting for two reasons. First, because by shaping
specific connectivity blueprints, such as feedforward and feed-
backward loops, amplification can substantially increase and
become as important as noise [30]. Second, because by ap-
propriately tuning network connectivity, it is possible to shape
bursts with different sizes or rich spatiotemporal structure and
not only the extreme whole-network activation seen in our
study. Tuning network connectivity is a fascinating problem
that we explored both in experiments and simulations. In ex-
periments, cultures with rich dynamics were shaped as either
interconnected modules [48] or highly dense neuronal assem-
blies [49–51]. For simulations, we investigated the impact of
strong spatial heterogeneity in the distribution of neurons [49]
or the incorporation of specific geometries for connectivity
guidance [37].

The theoretical model that we introduced does not consider
inhibition, an important and intrinsic trait of neuronal circuits.
Its role, however, is complex. In the context of homogeneous
cultures, inhibition can be viewed as an effective reduction
of excitation [33,41], leading to a lower connectivity k and
thus a reduced capacity for the system to reach the threshold
for activating the core. In this context, inhibition should be
expected to reduce the number of bursting events observed
in the network. However, inhibition also acts as an additional
mechanism for burst termination, preventing the pools of
neurotransmitters from becoming totally depleted, thus facili-
tating a faster recovery time. Experimental evidence [30,41]
shows that, in the presence of inhibition, bursts do indeed
become weaker, and the IBI decreases by a factor of 2–5.

Regarding the distribution of avalanche sizes, the bursts
observed in our model recruit the whole system, i.e., all neu-
rons become active when an IA occurs (Fig. 4). This is due to
the lack of inhibition and the combination of a homogeneous
distribution of neurons with strong metric connectivity corre-
lations. This effect can be understood as a hybrid percolation
transition (HPT) akin to the quorum, bootstrap percolation,
or threshold models [36,52,53]. However, the novel inclusion
of noise within our study smooths out the sharp first-order
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transition of the HPT and gives rise instead to a characteristic
first-passage time, which in the context of our neuronal net-
work would correspond to the bursting time [38]. Moreover,
whereas the IAs extend to the entire network, the BAs do
not. One could expect a broad distribution of BA sizes, for
instance, in the form of a power-law, and that could indicate a
critical behavior. However, power-law-distributed BAs were
not observed in our system due to the presence of sponta-
neous activations, which cause a temporal superposition of
activity cascades and eventual merging of avalanches. This
superposition ultimately leads to a mixture of classical and
directed percolation behaviors with mixed exponents [54],
whose analysis is beyond the scope of this paper.

A remarkable aspect of our study is the robustness of burst
initiation, in which the deletion of central nodes alters but does
not suppress amplification mechanisms and burst formation.
The exploration of network behavior through targeted attack
indicates that the network must be severely damaged for burst-
ing behavior to disappear. From a neuroscience perspective,
this can be viewed as both positive and negative: positive
because such a resilience ensures that neuronal circuits will
always maintain structured collective activity despite moder-
ate physical damage or perturbations. Even if the IBI increases
upon insult, the capacity of the network to exhibit spontaneous
activity may be sufficient to turn on homeostatic response
mechanisms to damage and gradually return the network to
an optimal set point, as observed in experiments in neuronal
cultures [55,56]. It is negative because pathologically exces-
sive bursting may be difficult to control or fully suppress.
Additionally, in a more general complex system perspective,
the resilience of bursting may indicate that extreme events are
most likely impossible to eliminate and that efforts must be
put into understanding not only the major actors at play and
their interrelation, but also to predict as best as possible the
characteristic time scales of extreme events.

The proposed model can be linked to the general problem
of extreme events dynamics. Indeed, two different mecha-
nisms contribute to the behavior reported here. On the one
hand, the bursting behavior is due to the noise amplification
on a single or a few nodes in the network, and on the other
hand, heterogeneity in the connectivity determines the loca-
tion where the bursting activity starts in the network. Similar
dynamics can be observed in networks of excitable systems
performing relaxation oscillations when isolated [16,26].

Using FitzHugh–Nagumo or Morris-Lecar units on net-
works with different topologies, it has been shown that several
spatiotemporal patterns can occur which are comparable with
the findings reported here [16,26,57]. For low connectivity,
one can find small-amplitude oscillations leading to localized
patches of nodes that exhibit a synchronized excitation, which
dies out without propagation through the network. Compared
with the model studied here, this behavior can be interpreted
as the equivalent of a BA. When a certain critical number of
nodes forms a simultaneous excitation, this cluster of nodes
can initiate a synchronized excitation of a large part of the
whole network, called an extreme event in Ref. [16], and
which could be interpreted as an IA in the sense of this paper.

These two types of behavior (BAs and IAs) occur already
for a heterogeneous network with respect to the dynamics on
the nodes but with a homogeneous coupling topology, realized

as a fully coupled network. By considering heterogeneity in
the connectivity by employing a small-world topology, ad-
ditional traveling waves of excitation can be observed if the
coupling is close to homogeneous, i.e., only a few long-range
connections exist. For larger values of rewiring probability,
which further emphasizes the heterogeneity in the connectiv-
ity, an irregular switching process between small-amplitude
oscillations, traveling waves, and extreme events can occur.
For even larger rewiring probability, the whole FitzHugh–
Nagumo network shows permanent global oscillations, which
would be comparable with permanent bursting in the model
studied here. A further common property of our model and
FitzHugh–Nagumo’s is that, with increasing network size, the
mean time between bursts and extreme events, respectively,
decreases.

Similar findings have been reported in networks of pulse-
coupled oscillators [27,58] as well as networks of leaky
integrate-and-fire models [8,59]. In the first model sys-
tem [27], transient patterns of synchrony occur, comparable
with BAs for a large intermediate range of connectivity (more
precisely rewiring probability in a small-world network),
whereas large parts of the network synchronize for higher
connectivity, resembling IAs. In the second model [59], such
transient space-time patterns resulting from a learning mecha-
nism are observable only in a critical point between replay and
nonreplay dynamics. Again, this transient could be interpreted
as a neuronal avalanche resembling a BA. As in this paper,
the mechanism behind the formation of these avalanches in
the different variants of integrate-and-fire models lies in the
intricate interplay between noise and topology. The former is
introduced as heterogeneity in the nodes or random stimuli,
mimicking spontaneous activity of the neurons. The latter
is either described as a varying rewiring probability [27] or
realized as a result of a design of synaptic connections based
on a spike-timing-dependent plasticity rule [59], respectively.

Considering all those commonalities, we can formulate
the general properties a system should possess to show the
reported BAs and IAs: (i) the network should be able to
self-generate and self-terminate localized excitations for sev-
eral nodes due to their heterogeneity, which could be either
realized by a spread of frequencies of the isolated oscillatory
nodes or the noise impact on excitable units; (ii) when only a
small number of nodes is excited in a short time interval, only
BAs can be formed, whereas for IAs, the first excitation has
to comprise an overcritical number of nodes; and (iii) hetero-
geneity in the node dynamics, as well as in the connectivity
among the nodes, determines where the IA starts.

Based on these general properties, we can identify several
natural systems beyond neuroscience in which such dynam-
ics can be expected. Two are of particular interest in the
context of environment and health. The first one is the dy-
namics of harmful algal blooms (HABs) in the ocean. Blooms
of specific harmful or even toxic species can be described
in terms of an excitable system [5,60] in which such a
bloom can be triggered by fluctuations in temperature [61] or
predators controlling the growth of the community of vari-
ous phytoplankton species [5]. Different regions at the coast
characterized by different physical, chemical, and biological
properties—called hydrodynamic provinces [62]—are con-
nected by different ocean currents such that the dynamics can
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be described as a network whose connectivity is determined
by the hydrodynamic flows in the ocean. The propagation
of HABs along the flow patterns could be regarded as one
possible example for the formation of BAs and IAs [63].
The second one is the dynamics of transmissible diseases in
which sudden and explosive outbreaks occur as a product of
the spread of circulating pathogens [6,64]. These outbreaks,
sometimes called superspreading events [65], are the result of
the interconnection between humans forming social networks
of correlated and densely connected clusters combined with
the stochastic nature of the transmission of pathogens.

In conclusion, the model and phenomena reported here
can be viewed in a more general context in terms of extreme
events on networks. The necessary ingredients would be os-
cillatory dynamics on the nodes and a mutual coupling with
different topologies. The oscillatory dynamics on the nodes

could be either deterministic or stochastic, which would not
be perfectly oscillatory but, as demonstrated here, sufficient
to produce extreme events.
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