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Mixed-weight Neural Bagging for Detecting m
6
A

Modifications in SARS-CoV-2 RNA Sequencing
Ruhan Liu, Liang Ou, Jun Qi,Member,IEEE , Bin Sheng,Member,IEEE , Huating Li, Ping Li,Member,IEEE ,

Pei Hao, Xiaokang Yang, Member,IEEE , Guangtao Xue,Member,IEEE , Jinman Kim,Member,IEEE , Ping

Zhang,Senior Member,IEEE , Po Yang,Senior Member,IEEE , and David Dagan Feng,Life Fellow,IEEE

Abstract— It has had a big influence in the aftermath
of the Corona Virus Disease 2019 (COVID-19) outbreak,
which was caused by the Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2) virus. Recent research
has established that a ribonucleic acid (RNA) modification
called m6A is connected with viral infections and that it
has a strong correlation with the structure and function
of several essential proteins. It is critical to have a thor-
ough understanding of RNA modification from the stand-
point of viral diseases—however, simple approaches for
discovering RNA alterations within the transcriptome are
lacking. In addition, nanopore single-molecule direct RNA
sequencing (DRS) also provides better data support for
RNA modification detection, which directly detects the orig-
inal samples and preserves the potential m

6
A signature

compared to second-generation sequencing. We present a
methodology for precisely identifying m6A alterations that
incorporates both extracted features from direct RNA se-
quencing data and raw current and quality data. To discover
m6A alterations, we present a multi-model fusion method
called mixed-weight neural bagging (MWNB). Model devel-
opment was accomplished through the use of modified
and unmodified m6A synthetic sequences. Our Bagging-
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LightGBM model achieves the highest classification accu-
racy of 97.85%, precision of 98.37%, and AUC of 0.9968.
Additionally, we apply the suggested model to the COVID-19
dataset; the experiment results revealed a strong associa-
tion with biomedical experiments. Our strategy enables the
prediction of m6A alterations using sequencing data and
the identification of m6A modifications on the COVID-19.

Index Terms—m
6
A RNA modifictions, ensemble learn-

ing, COVID-19, SARS-COV-2

I. INTRODUCTION

THE Corona Virus Disease 2019 (COVID-19) outbreak

has spread throughout the world, claiming a large number

of lives and affecting global economic and social stability

[1]. Vaccine development and anti-infection strategies have

emerged as critical components of the global response to this

pandemic [2]. Due to our limited understanding of the Severe

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),

there are currently no specific drugs available for the treatment

of SARS-CoV-2. Thus, understanding the genetic information

of SARS-CoV-2 enables us to analyze the virus’s characteris-

tics and aid in developing and implementing measures.

It is critical to establish a link between RNA modification

and protein expression because the structure and state of

proteins have a significant impact on gene expression. Ad-

ditionally, locating RNA modification sites can be extremely

beneficial for analyzing the relationship between RNA modifi-

cations and protein expression. SARS-CoV-2 is an enveloped

virus with a 30 kb single-stranded RNA genome found in

COVID-19 [3]. SARS-CoV-2, Severe Acute Respiratory Syn-

drome Coronavirus (SARS-CoV), and Middle East Respira-

tory Syndrome Coronavirus (MERS-CoV) all belong to the

β coronavirus genus and share approximately 80% and 50%
homology, respectively. The global outbreak of COVID-19

demonstrates SARS-CoV-2’s ability to cross species barriers

and spread between humans [4]. Theoretically, SARS-CoV-2

has the potential to mutate, with the mutation occurring due

to changes in protein structure and properties. Additionally,

changes in the structure and properties of proteins can be

reflected by changes in the m6A modification status. As a

result, it is critical for research to understand the location

and magnitude of m6A modifications. Additionally, Kim’s

Cell article [4] predicted possible base modification sites in

the SARS-CoV 2 transcriptome. The disclosure of relevant
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information about RNA modification has enormous biological

significance and provides potential resources for understanding

how coronaviruses appear to regulate themselves.

RNA modifications are modifications to the chemical struc-

ture of RNA. RNA modifications have been implicated in the

life cycles of numerous viruses and the cellular response to

viral infection in recent studies [5], [6]. N6-methyladenosine

(m6A) is the most abundant mRNA modification, accounting

for more than 170 different types of RNA modifications [7].

For several decades, m6A has been identified on a variety

of virus-encoded transcripts. Numerous studies examining the

function of m6A in viral-host interactions have identified

distinct roles, implying widespread regulatory control over

viral life cycles [8]. As a result, elucidating the location

and magnitude of m6A modifications contributes to our un-

derstanding of the regulatory mechanisms that govern viral

replication. It is advantageous for vaccine development and

anti-infection strategy development in the era of the COVID-

19 pneumonia pandemic.

While some experimental methods have been adapted for

m6A detection, some limitations remain. There are frequently

issues with resolution and immune specificity [7], and the

procedure is frequently unsatisfactory in terms of cost and pre-

cision [9]. As a result, the field of m6A modification detection

in RNA is a high-value one. In addition, compared to second-

generation sequencing that requires polymerase chain reaction

(PCR) which is an amplification technique that loses m6A

modification information, DRS directly detects the original

samples and preserves the underlying m6A signature. In DRS,

nanopores are used to move uniformly from the beginning to

the end of the RNA sequence in a sliding window of base

length five, and the current value at each moment determines

by the composition of the five nucleotides inside the slide

window. The capacity of quarantine nanopore single-molecule

direct RNA sequencing (DRS) to detect base modification in

RNA is demonstrated [10]. DRS has been shown to record

traces of base modification in the form of electrical signals.

The following section provides an overview of the currently

used DRS-based RNA m6A detection method. The method

for extracting features is based on Basecall-Error, a hypothesis

testing technique that was first described in [5]. While these

methods produce results, they have limitations in terms of

robustness and generalizability to larger datasets, and this type

of method is highly dependent on the reliability of the control

sample [11]. Additionally, these methods’ performance is

entirely dependent on the sensitivity of potential modification

types to features. The type of modification [12] is unknown.

Machine learning techniques have been enormously suc-

cessful in biomedical engineering [13]–[17]. Many classical

machine learning algorithms perform exceptionally well at

detecting base modification. For instance, Hidden Markov

Models (HMM) [18] and Support Vector Machines (SVM)

[19] have been used to identify specific base modifications

in DNA and RNA in some previous work. However, certain

issues impair their ability to generalize. To begin, DRS is

a novel technique, and the samples obtained in vivo are

heterogeneous. As a result, despite the higher accuracy of DRS

compared to previous generation sequencing technologies,

accurately labeling them is challenging, and suitable training

samples are scarce. Due to a lack of training data, the deep

learning model performance is insufficient.

Therefore, it is critical to investigate a more effective

method for handling this novel data. In this study, we propose

an ensemble learning framework for m6A detection using

DRS data. We obtain features from raw sequencing data,

including current and quality data, as well as extracted and

screened mapping base features, according to DRS data. The

raw data features and mapping features are then fed into

the proposed integrated learning model (Mixed-weight neural

bagging) to obtain m6A prediction results. Additionally, we

compare the performance of the model we introduced to that of

state-of-the-art methods. All methods employ parameter tuning

techniques to produce the best models. Finally, we use our

model to predict m6A base modification in the most recent

COVID-19 data set and obtain illuminating results for gene

mutation problems. We make the following contributions to

our work:

1) We propose a pipeline for detecting m6A modifications

using DRS that includes an end-to-end processing flow

based on a well-trained mixed-weight neural bagging

(MWNB) model. The MWNB model achieves superior

performance by providing dedicated feature extraction

modules for both raw and mapped features. When

compared to current state-of-the-art m6A RNA detection

methods, the accuracy is approximately increased by 8

%.

2) We investigate the MWNB model’s optimal param-

eters. Additionally, we compare the performance of

the MWNB model, which utilizes both raw data and

extracted features, to that of the best models that utilize

only raw data or only extracted features. For raw data,

models such as LSTM, RNN, and GRU are compared.

For extracted features, we compare SVM, Decision Tree

(DT), Extra Tree (ET), LightGBM, and random forest

(RF).

3) In all models, we tune parameters using the grid search

algorithm. To compare models, the best performance of

each is used. Additionally, metrics such as accuracy,

precision, specificity, sensitivity, F1-score, G mean1, G

mean2, and AUC are considered during the evaluation

process. To determine the possible m6A positions on

the SARS-CoV-2 transcription, we applied our model to

the DRS data of a SARS-CoV-2 sample and determined

the location of the potential gene mutation.

The remainder of the paper is divided into the following

sections. In Section II, we introduce the nanopore sequencing

technology and discuss related work on identifying RNA

modifications. Then, in Section III, we detail the methodology

for detecting m6A modification using our MWNB model.

Section IV presents our experimental results and comparison

for MWNB with other state-of-the-art methods on the DRS

and COVID-19 datasets. We discuss the shortcomings of our

framework and future work direction in Section V. Finally, in

Section VI, we conclude the paper in Section VI.
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II. RELATED WORK

The nanopore RNA sequencing process preserves the mod-

ification of m6A and faithfully records the disturbance of the

m6A molecule to the background current in the form of an

electrical signal [20]. Several studies confirmed the difference

in electrical signals between m6A and normal adenylate in

theory and in practice [18] . Smith et al. accurately performed

direct RNA-seq on two samples with high degree m6A and

low degree m6A, respectively [19]. Their work indicated

that they observed alternation of current signals and base

calling error near the location of m6A. As a result, it has a

certain research foundation for determining the base position

by comparing the differences in electrical signals. Thus, we

introduce related works in m6A modification detection by

following three parts. To begin, a novel sequencing tech-

nology, nanopore sequencing, is introduced. Following that,

we demonstrate one of the most frequently used statistical

methods: statistical hypothesis testing, which has evolved

into one of the primary algorithms for detecting RNA m6A
modifications using nanopore technology [12]. Additionally,

we demonstrate several novel machine learning techniques that

have been applied in this field.

A. Nanopore sequencing technology

The detection and identification of RNA sequences in living

organisms is a challenging and significant research topic.

Nanopore single-molecule direct RNA sequencing (DRS) is

a promising and advanced technology for solving this prob-

lem. The basic principle of DRS is as follows. When RNA

sequences pass sequentially through a nanopore which is a

protein-electron coupler, different sequences will excite differ-

ent current patterns. The relationship between these patterns

and corresponding sequences have been studied in current

researches. In recent studies, observed current signals can be

fed into machine learning models to obtain predicted RNA

canonical base sequences, when do not considering RNA

modifications [22]. However, in real organisms, in addition

to the canonical base, there are also some chemical groups

that are modified base, such as m6A. Therefore, the existing

recognition models will have large generalization errors and

poor performance capabilities when modified bases are present

in the sequences.

B. Statistics methods for base modification detection

Several previous studies demonstrated statistical methods

for detecting base modifications using direct sequencing with

promising results [24]. Stoiber M H et al. [11] used the

Mann–Whitney U test to detect m5C on DNA/RNA, which

is also a modification, and m6A on DNA in all sequence

contexts without requiring unmodified samples in addition

to de novo detection. When m5C occurs and when it does

not, the electrical signal characteristic distribution of m5C
is significantly different, even more so than the distribution

of m6A [25]. Liu et al. [12] used the Kolmogorov–Smirnov

test to demonstrate that NanoMod outperformed Tombo at

detecting m5C in E. coli. The statistics-based modification

detection method has a number of advantages, including low

computational resource consumption and a wide detection

range [26]. Nonetheless, its flaws remain insurmountable. To

ensure precision, a completely clean sample must be prepared

(free of any modification). [5] must be performed using the

same sequencing experiments and data pre-processing steps

as in the experimental sample. Without a doubt, this will

significantly increase the difficulty and cost of the preliminary

sample preparation stage, particularly for some highly valu-

able biological samples. Additionally, statistical methods lack

improvement space; it is difficult to improve the performance

of statistical methods at the algorithm level.

C. Machine learning approaches in modification

detection

Researchers gradually shifted their focus with the devel-

opment of machine learning algorithms and their widespread

application in bioinformatics. They attempted to implement

RNA modification detection using machine learning tech-

niques [27]–[29]. Garalde et al. developed a tool called the

Nanopolish that uses the HMM (hidden Markov model) to

accurately call m5C on DNA in the CpG context. SignalAlign

[?] also a modification detection tool because it is based on

the HMM with the hierarchical Dirichlet process. Rand et al.

used SignalAlign to identify m5C and m6A sequences in

E. coli DNA. The mCaller, which doubles as a modification

detector, detected m6A on DNA using four machine learning

classifiers (neural network, random forest, logistic regression,

and naive Bayes classifiers). Mclntyre et al. [20] demonstrated

that the most accurate predictor (84%) used the mCaller

with the neural network. Prior research has concentrated on

DNA base modification, particularly m5C. Due to structural

similarity and the difficulty of obtaining accurate data sets,

the m6A modification in RNA has not been investigated

previously. Huanle Liu et al. recently constructed a labeled

dataset using in vitro transcription of m6A and adenosine,

respectively. Additionally, the SVM classifier they proposed

produced acceptable results (90% accuracy). However, novel

machine algorithms in this area should be investigated to

improve the solution to this problem.

III. PROPOSED METHOD

The purpose of this work is to develop a practical model for

identifying m6A RNA modifications using nanopore single-

molecule direct RNA sequencing (DRS). We combine the

extracted feature classification model (Bagging-LightGBM)

and the raw sequencing classification model (Bagging-LSTM)

using a weight bagging strategy implemented by the neural

network. The combined model, dubbed Mixed-Weight Neural

Bagging (MWNB), is used to assess m6A RNA modifications

via DRS. The following sections introduce the MWNB model,

which is divided into three sections: capturing various features

from DRS, pre-processing and selecting features, and the

MWNB classifier methodology.

The proposed method, which serves as a framework for

m6A modification recognition in RNA sequencing, requires

that the first step extract base features from RNA sequences.
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Fig. 1. A overview of the framework for analyzing m6A RNA modifications using RNA sequencing. The framework is divided into three sections:
gaining raw sequencing data and extracting features (Part A), classifying the data using Mixed-Weight Neural Bagging (Part B), and obtaining the
prediction results (Part C) (Part C). In Part A, critical features such as base current intensity, base quality, mismatches frequency, delete frequency,
and insert frequency are introduced. In Part B, the mixed-weight bagging network (MWBN) is proposed for detecting m6A RNA modifications in
five-base DRS fragments. Additionally, Part C details the procedure for obtaining prediction results.

This step introduces the features that are used and defines

their meaning. The following step is to identify appropriate

base features, thereby improving classification performance

and minimizing information loss. We demonstrate how we

handle extracted feature measurements and how we select

essential features. Following that, four distinct types of fea-

tures are employed based on their biological significance and

experimental results. We illustrate the Bagging-LightGBM

classifier used to discover the relationship between features

and m6A modifications in the third section. We introduce the

Bagging-LSTM model in the fourth section, which is used

to classify m6A modifications based on direct sequencing.

Finally, we demonstrate how to fuse the Bagging-LightGBM

feature extraction algorithm with the Bagging-LSTM raw

sequencing algorithm to obtain fused results.

Additionally, in the classifier design, a sequence handled

model: LSTM is utilized in our DRS data. To optimize the

result, we use the grid search algorithm to optimize the

parameters of the LSTM to improve classification accuracy.

Also, for extracted features, LightGBM [30] is applied. We

used the grid search algorithm to optimize the parameters of

the LightGBM. Then, to improve model ability, we proposed

a fusion model to integrate multiple LightGBM [30] models

and LSTM models by weight bagging strategy to identify m6A

modification. The weight bagging strategy is implemented by

a neural network to obtain the voting results. Based on the

above fusion model: MWNB, not only is better performance

obtained, but also the best performance technology for current

problems can be determined. Finally, we used our model on

the COVID-19 data set and displayed the potential m6A sites

in SARS-CoV 2 RNA sequencing. Fig 1 shows the complete

work of the framework.

A. Feature extraction

The downloaded compressed DRS data is decompressed

using the NCBI-recommended ”FastQ-dump” software and

mapped to the complete synthetic sequences using the ”Min-

imap2” software with the ”-ax map-ont” pre-settings option.

”Samtools” software was used to sort and index the mapped

readings. We acquire the raw data of quality and current after

the sorting operation. We next extracted each position’s char-

acteristics in reference using two independent Epinano scripts

(https://github.com/enovoa/EpiNano). The fea-

ture table was constructed using a sliding window with a

length of five bases and a step of one base, as well as the

feature of the next location, which included base quality, base

current, mismatches frequency, insert frequency, and delete

frequency. We exhibit the features we derived from the RNA

sequence and explain each feature’s meaning in Table I.

B. Feature pre-processing and selecting

We get five related features after feature extraction: C, Q,

Mis, Ins, and Del. The choice of features has a significant

impact on classification accuracy and is a necessary step before

clustering or classification. According to earlier research [19],

the five characteristics of bases listed above are primarily

associated with whether or not m6A modification takes place.

The duration of sliding windows also has an impact on

the accuracy of forecasting m6A RNA modifications. We

determined the sliding window length of the base, which is five

bases, based on [19], and deleted the fragments picked from

the sliding window that did not fit the standards by referring

to the [19] base matching rules.

Following the previous feature selection, we list all of

the features used in creating our model. First, we took the

mean, median, and standard deviation values of based quality

and base current intensity as feature values to represent the
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Fig. 2. The architecture of the Bagging-LightGBM model is depicted in the model structure image. LightGBM [30] models are used as basic
learners in the Bagging-LightGBM model, and they are trained using different subsets of the training set. They employed the same testing set for
model evaluation. The Bagging-LightGBM model produces numerous predictions about whether m6A will emerge.

TABLE I

WE RETRIEVED FEATURES FROM THE RNA SEQUENCE’S RAW DATA. C

AND Q INDICATE THE BASE CURRENT FEATURE AND BASE QUALITY

FEATURE, RESPECTIVELY, CONTAINING THE MEAN, MEDIAN, AND

STANDARD DEVIATION OF FIVE BASES (C=c1,c2,c3,c4,c5, AND

ci=c − meani, c − mediani, c − stdi, Q=q1 ,q2 ,q3 ,q4 ,q5 , AND

qi=q − meani , q − mediani , q − stdi). THE PROBABILITY OF

MISMATCHES, INSERT, AND DELETE ARE MIS, INS, AND DEL.

(MIS=mis1 ,mis2 ,mis3 ,mis4 ,mis5 , INS

=ins1 ,ins2 ,ins3 ,ins4 ,ins5 , DEL = del1 ,del2 ,del3 ,del4 ,del5).

Feature Abs Description

Base current C

Per-base estimates
of current intensity emitted by

the sequencing machines.

Base quality Q
Per-base estimates

of quality emitted by
the sequencing machines.

Mismatches frequency Mis

A base of the database
which is different from the

query base called “mismatch”.

Mis = num of mismatch
total num of base

Insert frequency Ins

A base of the database is not be
mapped a base corresponding to

the query sequence called “insert”.

Ins = num of insert
total num of base

Delete frequency Del

A base of the query sequence
is not mapped a base of database

called “delete”.

Del = num of delete
total num of base

fundamental information of base pieces. Furthermore, the

frequency of mismatches, insert, and delete in each base from

the base fragment is considered expanded information. Table

I lists all of the features we ended up using in our model.

C. Bagging-LightGBM feature classification

We used the light gradient boosting machine (LightGBM)

as the base classifier for predicting m6A RNA modifications

utilizing attributes of base fragments. LightGBM [30] is

a unique Gradient Boosting Decision Tree (GBDT)-based

approach. Through iteration, GBDT builds weak decision tree

classifiers, each of which is trained based on the residual

error of the previous round of classifiers and continuously

improves the accuracy of the final classifier by lowering

the deviation. LightGBM provides the advantages of faster

training efficiency, higher accuracy, and the ability to analyze

massive amounts of data when compared to GBDT.

For training dataset X = {(xi, yi|xi ∈ Rk, yi ∈ R, k =
15, |X| = n}, where x = {x1, x2, ..., xi, ..., xn} is the input

feature set, k is the dimension of input features and y =
{y1, y2, ..., yi, ..., yn} is the corresponding label. The input

features of Bagging-LightGBM include mismatch frequency,

delete frequency, and insert frequency. The goal of LightGBM

algorithm in training base learner is to optimize a loss function

L. Considering F (x) as an estimated function, the optimiza-

tion goal is given as:

G = argFminEx,y[L(y, ǫ)] (1)

where ǫ is the initial constant function value of the algorithm.

After training base classifier, the boosting process is used

to improve the model performance. From iteration M =
{1, 2, ..., j, ...,m}, the pseudo residuals or gradient is gj =
{g1j , g2j , ..., gij , ..., gnj} in each iteration, and the modified

dataset called MX = {mX1,mX1, ...,mXj , ...,mXm} in

each iteration. The formula of gij and mXj is:

gij = −
∂L(yi, Fj−1(xi))

∂Fj−1(xi)

mXj = {(xi, gij)|i = 1, 2, ..., n}

(2)

where Fj(x) = Fj−1(x) + ǫ · hj(x).
The ǫ is updated iteratively according to ǫ =

argǫmin
∑i=n

n L(yi, Fj−1(xi)+ǫ ·hj(xi)). hj(x) is the fitted

decision tree model using modified dataset mXj to train.

The decision tree model is the base learner in LightGBM

algorithm.

We apply the bagging approach to bootstrap additional

model integration. Bagging, also known as bootstrap ag-

gregation, is a type of integrated learning model (Fig. 2).



6 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. XX, XXXX 2021

Fig. 3. The model architecture figure shows the architecture of the MWNB model. A. Figure shows the structure of a dual LSTM model for
detecting m6A RNA alterations. The architecture plot of the Bagging-LSTM model. B. In the bagging model, the training set is chosen at random
and divided into many subsets that are used to train various dual LSTM models and make predictions. C. The attention neural model structure for
features classification.

Algorithm 1 Bagging-LightGBM classifier

Require:

1: Given trainning dataset, X = {(xi, yi|xi ∈ Rk, yi ∈
R, |X| = n}.

2: Base LightGBM classifier, Φ.

3: The number of sub-sampling, K.

Ensure: Aggregation of K sub-sampling

4: for each i = 1 : K do

5: bootstrap sample in X to obtain modified training

dataset trainX and validation dataset valX .

6: train the ith expert (classifier Φ) in trainX and valX .

7: end for

8: The predictions P = {p1, p2, ..., pK} is obtained by K

expert models.

9: return P

The fact that it may be used with other classification and

regression methods to improve accuracy and stability is its

most major advantage. This method divides the training set

into different training subsets, trains the sub-models with

the training subsets, and ultimately integrates the sub-models

to obtain comprehensive prediction results. To examine the

hyperparameters in our job, we utilize the LightGBM model

listed below as the basic learner. The number of base learners,

the sample ratio when the base learner is trained, the feature

ratio during training, whether to extract samples and replace

them, and whether to extract features and replace them are

among the parameters. Algorithm 1 illustrates the bagging

classifier.

D. Bagging-LSTM raw data classification

In the previous section, we introduced the Bagging-

LightGBM model, which uses extracted characteristics to

categorize m6A RNA modifications. The current intensity

and quality are sequence data, according to DRS data. RNN

models, such as RNN, LSTM, and GRU, have exceptional

sequence classification performance. To categorize the fea-

ture obtained using direct sequencing data, we propose the

Bagging-LSTM models.

LSTM network is an elegant solution to capture the informa-

tion forward and backward. This model can access complete,

sequential information about all context information after each

time step in a given sequence. In this study, We propose a

dual LSTM model to classify the m6A modifications based on

the raw current intensity and quality signals. The architecture

of the dual LSTM model can be seen in Fig. 3. In the dual

LSTM, at each time step t, hidden state is hct for current

intensity and is hqt for quality. The input current intensity

data is xct at the time step t, and the input quality data is xqt.

The hidden state at the previous time step t− 1 is hct−1 and

hqt−1 for current intensity and quality. Also, in the LSTM cell

for current intensity and quality, the input gate is ict and iqt

in time step t, the forget gate is fct and fqt, the output gate is

oct and oqt, and the memory cell is cct and cqt, respectively.

The following updating equations are given as follows:

ict = σ
(

W (ic) · [hct−1, xct] + b(ic)
)

fct = σ
(

W (fc) · [hct−1, xct] + b(fc)
)

oct = σ
(

W (oc) · [hct−1, xct] + b(oc)
)

cct = fct × cct−1 + ict × tanh
(

W (cc) · [hct−1, xct] + b(cc)
)

hct = oct × tanh (cct)
(3)

Where W (ic) ∈ Rω×d, W (fc) ∈ Rω×d, W (oc) ∈ Rω×d,

W (cc) ∈ Rω×d are the weight matrices for different gates for

input current intensity xct and hidden state is hct−1 for time

step t− 1 and hct for time step t. Here × is the element-wise

multiplication, σ(·) and the tanh(·) and are the element-wise

activation function. The LSTM handling quality data is used
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the same structure as the current intensity LSTM. The details

is as follows:

iqt = σ
(

W (iq) · [hqt−1, xqt] + b(iq)
)

fqt = σ
(

W (fq) · [hqt−1, xqt] + b(fq)
)

oqt = σ
(

W (oq) · [hqt−1, xqt] + b(oq)
)

cqt = fqt × cqt−1 + iqt × tanh
(

W (cq) · [hqt−1, xqt] + b(cq)
)

hqt = oqt × tanh (cqt)
(4)

Further, we use the same bagging strategy to generate the

predictions of Bagging-LSTM. The final prediction is L =
{l1, l2, ..., lM}. M is the number of base learner (dual LSTM).

E. Mixed-Weight Neural Bagging(MWNB)

Bagging is an easy-to-use strategy that has a high rate of

success in reducing generalization errors. The model averaging

technique is used in the classic bagging approach to increase

the model’s accuracy and stability. We propose a neural

network to learn the weights of different weak learners’ output

in order to get a better fitting effect in this challenge. The

procedure is depicted in Fig. 3 C.

Two attention branches are included in ANM to supplement

the characteristics recovered by Bagging-LSTM and Bagging-

LightGBM, and to provide a prediction of the presence of m6A

modifications. With reference to [31], component A of Fig. 3

C constructs the self augmentation part of the features, and

Fig. 3 C constructs the self augmentation part of the features.

Part B of Fig. 3 C eliminates the [32] recommended attentional

enhancement module and learns the significance coefficients

of the features through the complete concatenation layer to

better uncover the ultimate relationship between the features

and the classification results.

IV. EXPERIMENTS

The experimental results are listed in this section. We begin

by describing the dataset’s basic information before moving

on to the implementation details. Third, evaluation metrics and

model evaluation measurement are briefly explored. Following

that, we describe the impact of parameter selection on model

performance and introduce parameter adjustment and feature

selection in all models. We also show how models perform in

different classifiers with different settings. Finally, we apply

our best model to the recognition of m6A modifications

in COVID-19 data.

A. Dataset

We used two data sets in this study: one from Epinano [19],

and the other from Kim et al. [3] for the original SARS-CoV-2

data. African green monkey kidney cells (vero cells) infected

with the COVID-19 were used as the source sample. They

go through the same sequencing technique and upstream pre-

treatment process as the training set after mRNA purification

and extraction. The signal value at a given time is defined by

around four bases (A, T, C, G), and all about 1024 bases are

organized and combined to generate a signal pattern in the

nanopore sequencing process. To cover as many scenarios as

feasible, Liu et al. [19] created a sequence master comprising

all signal patterns and employed synthetic substrates with and

without N6-methyladenosine in 2019. There are two readings

in our data collection that contain m6A and two reads that do

not contain m6A. We classified it into 19,806 positive samples

and 19,964 negative samples based on early data.

B. Implemental Details

In this segmentation task, we use two datasets to train,

validate and test the model. The two datasets are the Epinano

dataset [19] and the original data [3] of the novel coronavirus

provided by Kim et al. The Epinano dataset is used for

training, validating and testing the model, while the COVID-

19 dataset is used for validation only.

To improve the validity of the data, we performed feature

extraction and data preprocessing with reference to Section

III A and Section III B. Specifically, for each base, we

extracted three features (mismatch frequency, insert frequency,

and delete frequency) and two features (base current, base

quality) from the raw data by the mapping tool. The two

features extracted for the raw data will extract the mean,

median, and variance for each base, respectively. Therefore,

in our 5-base fragment, all feature inputs for each fragment

include mismatch frequency, insert frequency, delete frequency

in 5 dimensions, and base current and base quality in 15

dimensions. Thus, features of the 5-based fragment have 45

dimensions in total.

In model training, other state-of-the-art comparison experi-

mental models are trained using the feature extraction methods

mentioned above. In the training of the MWNB model, the

features extracted from the original data are input to Bagging-

LSTM for feature extraction, and the mapped features are

input to Bagging-LightGBM for feature extraction. The final

extracted bagging features are used in the attention neural

model to discriminate whether m6A modifications occur. All

experiments were implemented on an Intel XeonE5-2630 v4

@ 2.20GHzz CPU and NVIDIA GeForce RTX 2080 Ti

ArchLinux. All models are implemented in Scikit-learn and

Pytorch.

In tuning the parameters, we use the leave-one-out 5-fold

cross-validation to develop and evaluate the model ability.

First, we randomly split the dataset into six folds, and each fold

contains an almost equal number of samples. The data in the

test set is one of the six-folds, and the training and validation

sets are the remaining five folds. In the training process, four

folds are used, and the fifth fold uses for testing. The process

is repeated five times, picking the different folds for testing

each time, and the other four folds are used in training. The

data in the test set is one of the six-folds, and the training and

validation sets are the remaining five folds.

C. Evaluation metrics

To assess the performance of models, we use 6 metrics:

Accuracy (acc), precision (pre), sensitivity (se), specificity

(sp), F1-score, G mean1, and G mean2. The accuracy is

Accuracy = (TP+TN )
(P+N) , and precision is Precision =

TP

(TP+FP ) . Sensitivity and specificity is Sensitivity =
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TABLE II

AVERAGE CLASSIFICATION PERFORMANCE OF LEAVE-ONE-OUT 5-FOLD CROSS-VALIDATION OF ALL MACHINE LEARNING METHODS IN OUR m6A

MODIFICATION TASK. THE PERFORMANCE OF MODELS IS SHOWN IN TESTING DATASET AND 5-FOLD CROSS VALIDATION DATASET.

Model acc (%) pre (%) sp (%) se (%) F1-score (%) G mean1 (%) G mean2(%) AUC

Testing dataset

MWNB (Ours) 97.85 98.37 97.20 98.41 98.39 98.39 97.80 0.997

SVM (linear) 79.63 82.69 75.24 84.07 83.37 83.38 79.53 0.871
SVM (rbf) 77.68 79.88 74.34 81.06 80.46 80.47 77.63 0.873

SVM (poly) 78.19 75.31 84.22 72.09 73.66 73.68 77.92 0.859
SVM (sigmoid) 73.28 73.25 73.67 72.90 73.07 73.07 73.28 0.806

DT [33] 81.64 82.52 79.93 83.32 82.92 82.92 81.61 0.816
RF [34] 91.15 93.95 87.82 94.43 94.19 94.19 91.07 0.970
ET [35] 94.44 96.65 91.99 96.86 96.75 96.75 94.39 0.989

RNN 87.33 94.47 95.44 79.1 86.10 86.44 86.89 0.950
GRU 89.34 90.22 90.59 88.07 89.13 89.14 89.32 0.951

LSTM 91.79 95.61 87.48 96.04 95.82 95.82 91.66 0.977
[19] 90 - - - - - - 0.944
[34] 78.58 - 79.65 - - - - -

Leave-one-out 5-fold cross validation dataset

MWNB (Ours) 97.89 ± 0.15 98.23 ± 0.18 98.25 ± 0.18 97.52 ± 0.30 97.87 ± 0.17 97.87 ± 0.17 97.88 ± 0.15 0.997 ± 0.0004

SVM (linear) 79.08±0.32 80.77±0.34 80.95±0.28 77.21±0.42 78.95±0.37 78.97±0.37 79.06±0.34 0.837±0.0012
SVM (rbf) 77.54±0.17 79.97±0.19 80.27±0.18 74.80±0.34 77.31±0.22 77.35±0.22 77.49±0.18 0.830±0.0010

SVM (poly) 78.38±0.29 80.46±0.24 80.70±0.19 76.04±0.48 78.20±0.35 78.23±0.35 78.34±0.31 0.834±0.0012
SVM (sigmoid) 73.55±0.15 75.59±0.35 75.81±0.29 71.27±0.41 73.38±0.37 73.40±0.37 73.51±0.34 0.785±0.0015

DT [33] 81.27±0.34 82.22±0.21 83.29±0.17 80.23±0.60 81.21±0.38 81.22±0.38 81.26±0.35 0.844±0.0009
RF [34] 91.88±0.17 94.34±0.28 94.68±0.29 89.06±0.27 91.62±0.19 91.66±0.19 91.83±0.17 0.976±0.0009
ET [35] 94.35±0.08 96.37±0.18 96.55±0.20 92.13±0.25 94.21±0.12 94.23±0.12 94.32±0.09 0.984±0.0007

RNN 87.63±0.22 90.04±0.25 90.34±0.22 84.91±0.39 87.40±0.28 87.44±0.28 87.58±0.24 0.931±0.0010
GRU 89.16±0.10 91.16±0.13 91.35±0.16 86.96±0.26 89.01±0.14 89.04±0.14 89.13±0.11 0.936±0.0008

LSTM 90.08±0.29 91.57±0.35 91.70±0.32 88.44±0.37 89.98±0.33 89.99±0.33 90.06±0.30 0.940±0.0011

Fig. 4. The best-performing models’ ROC chart. The ROC curve of SVM [19] with several kernels, such as linear, poly, rbf, and sigmoid, is shown
on the left. The ROC chart of Decision Tree (DT) [33], Random Forest (RF) [34], and Extremely Random Trees (ET) [35] is shown in the middle
figure, while the ROC of RNN, LSTM, and GRU models is shown in the right figure.

TP

(TP+FN ) and Specificity = TN

(TN+TP ) relatively. In above

equations, TP represents the prediction result of the model

is a positive example (P), but in fact the judgment result is

right (T), TN stands for the prediction result of the model

is a negative example (N), but in fact the judgment result is

right (T), FP represents the prediction result of the model is a

positive example (P), but in fact the judgment result is wrong

(F), FN is the prediction result of the model is a negative

example (N), but in fact the judgment result is wrong (F). Also,

F1score, Gmean1, and Gmean2 are calculated in evaluation

of models:

F1score = 2×
Precision× Sensitivity

(Precision+ Sensitivity)
(5)

Gmean1 =
√

Sensitivity × Precision (6)

Gmean2 =
√

Sensitivity × Specificity (7)

A basic evaluation metric for assessing classification perfor-

mance is the receiver operator characteristic curve (ROC).The

area under ROC (AUC) also can show the model performance.

The calculation formula of AUC is as follows:

AUC =

∑

insi∈positiveclass rankinsi −
M×(M+1)

2

M ×N
(8)

where rankinsi represents the number of the i-th sample.

(Probability scores are ranked from small to large, ranked in

the rank position), M is the number of positive samples, and

N is the number of negative samples.
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D. Comparison results of MWNB with other models

The features from raw sequencing data and extracted

mapping features are both used as input features in our

MWNB model. The m6A RNA modification categorization

findings are obtained using two models (Bagging-LightGBM

for features from raw sequencing and Bagging-LSTM for

extracted mapping features). Because of the peculiarities of

our MWNB model, we first compare it against classic machine

learning models. Traditional machine learning models do not

choose a more appropriate feature extraction approach for the

difference of features, which is the most significant distinction

between our MWNB model and them. We also compare our

MWNB model to a strategy based on ensemble learning to

make more comprehensive comparisons. Additionally, deep

learning-based methods also compare to our MWNB model

as well.

Fig. 5. The AUC figure shows the performance of LightGBM, Bagging-
DT, Bagging-LightGBM, and our MWNB.

Firstly, we compare our MWBN to classic machine-learning

models. The evaluation metrics for all the best models pro-

duced through parameter tuning (Section IV.D) are shown in

Table II. The results of the above-mentioned model training

and exploration of the optimal model indicate that: simple ma-

chine learning models such as DT have the advantage of being

fast to train and easily interpretable; however, the classification

accuracy obtained is insufficient; the SVM model’s training

time is lengthy. While the model is sophisticated, the precision

gained in this study is also insufficient. For the two types

of models discussed above, the model classification accuracy

attained on this task is approximately 80%. We employ two

ensemble learning models: RF and ET, both of which perform

well on this challenge. These approaches achieve accuracy of

approximately 91% to 94%. We estimate the AUC of each best

model and provided their ROC graphs in Fig. 4. As illustrated

in Fig 4, all ensemble learning methods (RF, ET) achieved an

AUC value greater than 0.95.

In addition to comparing our MWNB model to regularly

used classical machine learning methods, we compared it

Fig. 6. The AUC figure shows the performance of Bagging-LSTM,
Bagging-GRU, and Bagging-RNN.

TABLE III

AVERAGE CLASSIFICATION PERFORMANCE OF LEAVE-ONE-OUT 5-FOLD

CROSS-VALIDATION OF LIGHTGBM [30], BAGGING-DT [36],

BAGGING-LIGHTGBM, AND OUR MWNB MODELS.THE RESULTS SHOW

MODELS’ PERFORMANCE IN TESTING DATASET.

Model acc (%) pre (%) sp (%) se (%)

LightGBM [30] 94.25 97.56 97.77 90.67
Bagging-DT [36] 93.38 95.39 91.06 95.67

Bagging-LightGBM 96.02 97.68 97.80 94.21
MWNB (Ours) 97.85 98.37 97.20 98.41

to the unique ensemble learning model. The table below

compares our proposed MWNB model to its base learner

LightGBM, Bagging-DT, and Bagging-LightGBM models.

The AUC of these models is depicted in Fig. 5. The best

AUC for these models is 0.9968, which our MWNB model

achieves.

Additionally, we compare the performance of our MWNB

models to that of deep learning models that employ only raw

sequence data. In our dataset, we use LSTM, GRU, and RNN.

Additionally, these models outperform DT and SVM in terms

of performance. Additionally, the RNN and upgraded RNN

(GRU and LSTM) models have AUC values greater than 0.95.

LSTM, GRU, and RNN performance details are provided in

Fig. 4 and Table II. Additionally, we integrated these models

using the bagging technique. The performance of Bagging-

LSTM, Bagging-GRU, and Bagging-RNN is illustrated in

TABLE IV

AVERAGE CLASSIFICATION PERFORMANCE OF LEAVE-ONE-OUT 5-FOLD

CROSS-VALIDATION OF BAGGING-LSTM, BAGGING-RNN, AND

BAGGING-GRU. THE RESULTS SHOW MODELS’ PERFORMANCE IN

TESTING DATASET.

Model acc (%) pre (%) sp (%) se (%)

Bagging-LSTM 94.77 96.63 92.70 96.81
Bagging-RNN 92.58 95.75 89.00 96.11
Bagging-GRU 93.86 94.62 92.92 94.80
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Fig. 7. Accuracy for different paramters in the Bagging-LightGBM model of testing dataset. The orange bar shows the result that the number of
base learner is 50, and the blue bar illustrate accuracy which the number of base learner is 100 obtain in different sample ratio and various feature
ratio.

Fig. 8. Average classification performance of SVM’s leave-one-out 5-fold cross validation with different penalty coefficient parameter C in 5-fold
cross validation datasets (Kernal: Linear, RBF, and Poly).

Table IV and Fig. 6. The best AUC value for these models

is 0.9887, which was obtained using Bagging-LSTM.

As a result, the most randomized MWNB approach pro-

duces the best outcomes. The LightGBM model has been

adjusted and enhanced in numerous ways as an enhancement

to the gradient boosting decision tree (GBDT). It offers the

advantages of being more efficient in training, having a better

degree of accuracy, and processing enormous amounts of data.

By fusing many LightGBM models together using the bagging

approach, we may further enhance the model’s generalization

and accuracy. Additionally, the LSTM excels in extracting

sequence relationships. The Bagging-LSTM model is used in

our MWNB to extract critical information from raw sequenc-

ing data. Finally, we merge the Bagging-LSTM and Bagging-

LightGBM models using the attention neural network. In

our assignment, our MWNB model performs optimally. Our

MWNB model obtains the best performance in our task. The

MWNB’s accuracy is 97.85%, precision is 98.37%, sensitivity

is 97.20%, and specificity is 98.41%. The AUC value, which

is the highest, is 0.997 obtained by the MWNB method.

E. Parameters tunning

The initial step of the experiment is to determine the

proper parameter values for Bagging-LightGBM. To begin,

we require a parameter option for the base LightGBM learner.

LightGBM has a plethora of parameters that must be selected.

The following diagram illustrates the procedures involved in

selecting appropriate parameters:

1) We begin by setting the starting parameters. The grid

search method determines the learning rate and the

number of iterations. The learning rate is between 0.01

and 0.5, and the number of iterations is between 100

and 2000;

2) Then, we investigate the optimal number of leaves

between 100 and 500;

3) Finally, the parameters for regularization λL1 and λL2

are established. The range of lambdaL1 and λL2 is

approximately 1e-5 to 1.0.

The best model achieves an accuracy of 96.55% when the

LightGBM parameters are selected. The best model has a

learning rate of 0.1, a total of 1400 iterations, a total of 350

leaves, a λL1 of 1e-3, and a λL2 of 1e-3. Fig. 7 illustrates the

accuracy, precision, sensitivity, and specificity of LightGBM

over a range of iterations and leaf counts.

Second, we employ the same method (grid search) to

investigate other bagging parameters. Five parameters must

be determined throughout the bagging process. The following

diagram illustrates the procedures involved in selecting appro-

priate parameters:

1) The total number of basic learners to be integrated

is predetermined. The examined range of base learner

numbers is 50 to 200;

2) The sample extraction ratio and feature extraction ratio

are next investigated. Both are between 0.5 and 1.0;

3) Finally, we determine the sampling procedure for the

sample subset and the feature subset.
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Fig. 9. Accuracy for different paramters in the Bagging-LightGBM model. The orange bar shows the result that the number of base learner is 50,
and the blue bar illustrate accuracy which the number of base learner is 100 obtain in different sample ratio and various feature ratio.

The best model achieves an accuracy of 96.02% when the

Bagging-LightGBM parameters are chosen. The best bagging

model’s base learner is LightGBM. We chose 100 base learners

for parameter selection, a sample extraction ratio of 1.0, and a

feature extraction ratio of 0.6. Additionally, we employ non-

replacement sampling to create sample subsets and replace-

ment sampling to create feature subsets. Fig. 7 displays the

accuracy of LightGBM over a range of iterations and leaf

counts.

We also employ the grid search technique to identify

the parameters of Bagging-LSTM in the second round of

parameter tuning. To begin, we experiment with varying the

number of concealed cells N : from 10 to 200. Additionally,

we experiment with various batch sizes (4 to 64) and learning

rates (1e-5 to 1e-1). The optimal LSTM parameters are as

follows: N=50, batch size=16, learning rate=0.001. We use

the same method in Bagging as we do in Bagging-LightGBM.

The most accurate Bagging-LSTM model achieves a precision

of 94.77%. We chose a base learner count of 20, a sample

extraction ratio of 0.8, and a feature extraction ratio of 0.5 for

parameter selection. Additionally, we employ non-replacement

sampling to create sample subsets and replacement sampling

to create feature subsets. Additionally, we investigated the

attention neural network’s parameters using the best Bagging-

LightGBM and Bagging-LSTM. We experiment with various

batch sizes (4 to 64) and learning rates (0.00001 to 0.1). The

optimal model is defined by the following hyperparameters:

batch size = 16, learning rate = 0.001.

We also employ the grid search technique in the three

parts of parameter tuning to identify parameters for other

comparable classification methods, such as SVM, DT, ET,

and RF. We can attain a maximum average classification

accuracy of 79.63% using the SVM with a linear kernel after

running five-fold cross-validation. The Fig. 8 illustrates the

model performance for each fold in linear, rbf, and poly kernel

function when the penalty coefficient parameter C is varied.

The Fig. 9 A illustrates the average classification per-

formance of 5-fold cross-validation for DTs with varying

maximum depths. The experimental findings demonstrate that

when the decision tree’s maximum depth is 200, the ideal

classification accuracy rate of 81.64% and precision rate of

82.52% are reached. Fig. 9 B displays the average classifica-

tion performance for various maximal feature counts and sub-

tree counts. When a maximum of ten features are utilized and

a maximum of 500 subtrees are employed, the ideal accuracy

TABLE V

THE CLASSIFICATION PERFORMANCE IN DIFFERENT FEATURE

SELECTION USING IN MWNB MODEL.

features Accuracy Precision Specificity Sensitivity
% % % %

Q 92.70 94.14 90.88 94.48
Mis 89.97 93.28 85.90 93.95
Ins 52.81 71.87 7.44 97.15
Del 85.86 89.57 80.81 90.80

Q&Mis 97.31 97.33 97.23 97.39
Q&Ins 93.38 94.62 91.81 94.90
Q&Del 97.03 96.97 97.03 97.04

Mis&Ins 91.90 94.80 88.46 95.26
Mis&Del 96.83 97.18 96.39 97.27
Ins&Del 89.13 91.96 85.49 92.70

Q&Mis&Ins 97.41 97.42 97.35 97.48
Q&Mis&Del 97.17 97.08 97.20 97.14
Q&Ins&Del 97.17 97.14 97.13 97.21

Mis&Ins&Del 97.11 97.63 96.50 97.71
Q&Mis&

97.85 98.37 97.20 98.41
Ins&Del

is obtained: 91.15 % of the average classification accuracy rate

and 93.95 % of the average classification precision rate. Fig. 9

C plots the average classification performance of 5-fold cross-

validation with varying maximum feature counts and subtree

counts for ET. On ET, the highest accuracy is obtained when

the maximum number of features is 15 and the number of

subtrees is 1000: 94.44% average classification accuracy rate,

96.65% average classification precision rate.

When we used the Bagging approach, we started with the

DT base model, which is a simple and fast classifier. When the

number of base learners is 500, the proportion of samples used

for each training of the base learner is 80%, the proportion of

features used for each training of the base learner is 50%, the

samples are drawn without replacement, and the features are

drawn with replacement, the best accuracy is 93.38%, and the

best precision rate is 95.39%.

F. Feature Selection

We compare the results of various feature selections for

each model. When only current intensity features are used

to create models, the best model performance is 85.71%
accuracy. When just quality features are used to create models,

the best performance is an accuracy rate of 84.31%. When two

types of feature development models are used, the optimum

model performance is 94.77% accuracy. To help you determine

the optimal strategy to pick features, we show the impacts
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Fig. 10. Schematic diagram of the SARS-CoV-2 Genome. At the top of the picture is the genome’s axis (1-29903) of SARS-CoV-2. The bars in
the middle represent the different genes of the genome anchored in the corresponding regions. The lower part of the image is the predicted density
map of m6A sites. The higher part(like “peak”) means that the m6A predicted sites are densely distributed.

of several selection measures in Table V. Table V compares

the classification performance of the Bagging model when

different base feature combinations are used. We examined

16 different feature selection combinations (Table V). When

MWNB performances are compared, it is clear that combining

all features produces the best classification effect. It achieves

the highest accuracy of 97.85% when compared to other

combinations.

G. Bagging-LightGBM Model used in COVID-19

To assess our model’s performance with respect to m6A
modifications inside certain sequence motifs (RRACH). We

performed m6A prediction on SARS-CoV-2 RNA data, identi-

fied several locations with high confidence, and then examined

their possible biological importance, which will aid future

research on COVID-19 focused medication development and

infection process. Further research will be required to enable

single-read detection of RNA modifications and to extend our

findings to other RNA alterations.

We studied SARS-CoV-2 DRS data from Korea using the

same upstream procedure as previously described. Thus, we

used the Korean vero-infected (host and SARS-CoV-2) dataset

to demonstrate our female’s ability to detect m6A alteration.

65.4% (Fig. 10) of readings were mapped to SARS-CoV-2,

indicating that Kim’s sample is dependable and reproducible.

We observed a modification score draft with noise that was

distributed uniformly across the genome. To minimize false

positives, we selected a probability threshold of m6A to verify

the results’ accuracy. The other major peaks suggested the

presence of a significant amount of m6A. The majority of

the high probability loci were discovered to be located in the

ORF1b region of the genome. ORF1b encodes a nonstructural

protein (nsp) that is required for viral transcription, replication,

and inhibition of host immune response and gene expression.

Antiviral therapy aims to inhibit RNA-dependent RNA poly-

merase [37]. Our findings imply that the nonstructural protein

mRNA of NCV is highly methylated. It could be connected

to RNA stability and amino acid sequence mutations. The

inclusion of a synthetic inhibitor of m6A reduces the in-

fluenza virus’ replication [38]. The model results aid in our

understanding of the SARS-life CoV-2’s activities at a deeper

level, which will aid in the development of targeted antiviral

medications.

V. DISCUSSION

This work presented a machine learning-based method to

recognize patterns of m6A in nanopore direct RNA sequenc-

ing. Features derived from the raw-signals and their mapping

information were utilized as the model input. Ion channels

disturbed by m6A modification was recorded as nanopore

raw signals(“squiggle”) to determine the links between the

difference in current value and different bases in nanopores.

Several classifiers were utilized, namely: SVM, RF, ensemble

learning (RF, ET, and Bagging) and our MWNB to classify

the m6A and normal base based on different features of

the positions while mapping the reads to reference sequence.

Based on the machine learning techniques and the extracted

derivative features, an Integrated framework was developed

to detect m6A modification based on features produced by

sequencing patterns. The MWNB model proposed in this paper

is a generalized framework for classification detection by

targeted feature extraction (Bagging-LightGBM for mapping

features and Bagging-LSTM for signal statistical features) to

perform signal difference classification of sequencing data.

The model is not only applicable to the detection of m6A

modifications in RNA sequencing but from the modeling

perspective, our model can be directly used in the detection

of other modifications with only simple migration.

There is an artificial sequence [19] of about 10kb length was

used in this project. Generally, The features used are not the

original electrical signal but after base calling and sequence

alignment for each site statistic. This finding is consistent with

previous studies in which m6A had a significant effect on

the base quality and alignment results. Huanle Liu et al. [19]

conducted a study that verified that these features could be

used to accurately classify a given site into “m6A-modified” or

“unmodified”. Wongsurawat et al. [5] also found a systematic

“base call error” difference between modified samples and

unmodified samples. Based on this discovery, they developed

software called “eligos”. The original electrical signals of

nanopore direct RNA sequencing and the characteristics de-

rived from the downstream analysis have been widely studied
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[26] as an indicator of changes in the detection of chemical

modification of bases. Previous studies have confirmed that

the base quality [24] (the correct probability given by the base

interpretation model) is used as a reverse modification index.

This discovery [5], [24] has been verified by laboratory

experiments based on immunoprecipitation. It has been proved

that with the decrease of base quality, the probability of base

interpretation error increases, and the chemical structure of

the corresponding base is different from that of the normal

base, which may be due to chemical modification. Therefore,

according to the existing literature, the original current value

is considered the basic index to judge the nanopore base

sequence. Based on this basis, base quality and alignment

results are considered the specific expression of each site’s

methylation degree. In order to further optimize the per-

formance of our model, we limit the motif of the input

site to adapt to the context sequence of m6A in the real

environment. Many studies have confirmed that in different

biological samples, the modification of m6A often follows the

same motif, which may be related to the relationship between

m6A related proteins.

In addition to the novelty and advantages of this proposal,

there are also some disadvantages. In limitations from the

data set, our model training does not use real-life mRNA for

sequencing, and we use artificial sequences for feature extrac-

tion, affecting model prediction behavior. These samples in the

dataset are mixed in the laboratory environment and cannot

obtain the real label. Moreover, the location of m6A cannot

be accurately identified due to technical limitations. There is

also no experimental verification of the predicted m6A specific

locations in the SARS-CoV-2 data. Furthermore, considering

the model’s limitations, our MWNB model uses a complex

ensemble learning approach to separate feature extraction

and final prediction, making the workflow more complex.

In addition, we propose feature extraction approaches for

different features specific to the features’ nature, making the

model more complex.

Although our model has achieved good detection results,

some erroneous predictions still exist, which may be due to the

limitations mentioned above of the data and model. First, our

dataset was synthesized artificially using in vitro transcription

techniques, while the actual predictions used for the model are

naturally occurring in the organism. Although the chemical

structures of the two are identical in terms of currently avail-

able theories, there may be potential systematic differences.

Moreover, the current sampling rate for nanopore sequencing

is not high enough, with the number of samples obtained

per base ranging between 8-9 discrete current observations

[39]. Such low-dimensional data are challenging to distinguish

between the occurring and non-occurring m6A modifications.

Also, compared to the multi-electrode, multi-channel nature

of EEG and ECG techniques, nanopore sequencing has only

one channel [40], and the number of features in the data itself

is too low. We hope that in the near future Oxford Nanopore

UK will provide the resolution and sampling accuracy of the

device to provide higher dimensional feature information for

improving the performance of the model.

In our future work, we will further improve our modification

detection framework in two ways. First, from the data side,

we will use RNA/DNA sequencing data and corresponding

modification labels in real scenarios to validate our model’s

performance further. In addition, from the footing of model

improvement, we will consider end-to-end learning to simplify

the complexity of model training and achieve better feature

extraction by some feature extraction and enhancement means,

including attention mechanism in the context of end-to-end

network learning.

VI. CONCLUSIONS

This article proposes a Bagging-LightGBM model for m6A

modification detection. In the proposed Bagging-LightGBM,

we combine speed-up LightGBM models and Bagging strategy

to form a fusion model. The Bagging-LightGBM model is

trained and tested on artificially synthesized sequences, which

obtains the best performance of 97.85% of accuracy. We

used state-of-art machine-learning models such as SVM, DT,

RF, ET, and Bagging in our dataset to compare our model

ability. To ensure models’ performance, we use the same

grid search algorithm and 5-fold cross-validation on other

state-of-art models and our Bagging-LightGBM. Our Bagging-

LightGBM model outperforms other methods. More impor-

tantly, we applied the optimal m6A modification detection

model (Bagging-LightGBM) to the SARS-COV-2 sequencing

data to obtain the possible m6A modification site information

on SARS-COV-2. The prediction results will help us to find

possible location of gene mutation.
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