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Abstract

The last few years have witnessed a significant growth of so-called low-code development platforms (LCDPs) both in gaining

traction on the market and attracting interest from academia. LCDPs are advertised as visual development platforms, typically

running on the cloud, reducing the need for manual coding and also targeting non-professional programmers. Since LCDPs

share many of the goals and features of model-driven engineering approaches, it is a common point of debate whether low-

code is just a new buzzword for model-driven technologies, or whether the two terms refer to genuinely distinct approaches.

To contribute to this discussion, in this expert-voice paper, we compare and contrast low-code and model-driven approaches,

identifying their differences and commonalities, analysing their strong and weak points, and proposing directions for cross-

pollination.

Keywords Low-code development · No-code development · Model-driven engineering

1 Introduction

Low-code development platforms (LCDPs) are on the rise,

with an increasing number of cloud vendors, such as Google,

Microsoft, and Amazon, offering solutions for developing

and operating complex software applications with little or no
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code. The main aims of LCDPs are to reduce the development

and maintenance effort required to deliver and operate cer-

tain types of applications and to enable digital-savvy citizen

developers who lack or have limited programming expe-

rience to contribute to the software development process

directly.

As model-driven engineering (MDE) [3] has similar aims,

there is an ongoing debate on how low-code software devel-

opment is different from model-driven engineering and to

what extent work carried out in the field of MDE is directly

transferable to LCDPs [6]. In this paper, we aim at clarifying

the commonalities and differences between both approaches.

We argue that while the two approaches share similar high-

level aspirations, there are also differences, for instance, not

all model-driven techniques aim at reducing the amount of

code needed to implement software solutions, and not all

low-code approaches are model-driven.

The rest of the paper is organised as follows. In Sect. 2, we

summarise the history of the low-code movement we have

seen so far as a discussion basis for the subsequent sections.

In Sect. 3, we provide an overview of typical low-code devel-

opment processes and tools that LCDPs offer. In Sect. 4, we

contrast and compare the principles and practices of low-

code development and MDE. In Sect. 5, we discuss possible

reasons behind the increasing adoption of LCDPs. In Sect. 6,

we identify lessons that the two communities can learn from
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each other. Finally, Sect. 7 summarises and concludes the

paper.

2 The history of low-code development

Since the exact meaning and industrial relevance of low-code

development is controversial, we believe it is important to

start the paper by presenting the original definitions of the

term and the main events of its history.

The past decades have been marked by several indus-

try trends aiming at reducing the amount of hand-crafted

code required to produce software such as 4GLs and CASE

tools in the 1980s [28], Rapid Application Development in

the 1990s [29], End-User Development in the 2000s [26],

and MDE in the last two decades [54]. The first use of

the term low-code can be traced back to the market anal-

ysis firm Forrester in 2014 [43] (cf. Fig. 1), where low-code

development platforms (LCDPs) were defined as “platforms

that enable rapid delivery of business applications with a

minimum of hand-coding and minimal upfront investment

in setup, training, and deployment”. It is interesting to

note that this report identified the LCDP segment as spe-

cific to the production of business applications, such as

software for enterprise resource planning, customer rela-

tionship management, business process management, and

other productivity-enhancing applications. In 2016, Forrester

detailed the successful application domains for LCDPs in

four specific application scenarios, i.e. database, request-

handling, process, and mobile-first [49].

The definition has evolved, and in 2017, Forrester pro-

vided a more detailed version, characterizing LCDPs as

“products and/or cloud services for application development

that employ visual, declarative techniques instead of pro-

gramming and are available to customers at low- or no-cost

in money and training time to begin, with costs rising in pro-

portion of the business value of the platforms” [45]. The focus

here is on visual interfaces and declarative techniques, with

Forrester especially emphasizing visual WYSIWYG devel-

opment and model-driven development [17]. The focus on

the platform is highlighted as a key differentiating aspect

of these solutions with respect to the previous generation of

declarative tools: LCDPs are platforms first, with features for

application deployment and life-cycle management, as well

as platform management [50].

Gartner identified a similar segment in 2016, called

low-code application platform (LCAP) [58]. In particular,

they introduced enterprise LCAPs, which aim at produc-

ing enterprise-class applications requiring high performance,

scalability, high availability, disaster recovery, security,

SLAs, resource use tracking, technical support from the

provider, and API access to and from local and cloud ser-

vices.

Fig. 1 Major events in low-code history

The year 2017 noted the start of a series of acquisitions for

LCDP vendors [46]. Appian started an initial public offering

in May 2017, and in 2018 its market valuation nearly reached

$2 billion. In July 2018, OutSystems received investments of

$360 million. In August 2018, Siemens announced the acqui-

sition of Mendix for $730 million [46]. In 2017, Forrester

estimated a global market size for LCDPs of $3.8 billion.

Forrester also periodically surveys developers about LCDP

usage1: In 2018, 23% of developers reported using low-code

platforms, and another 22% planned to do so within a year

[48]. In 2019, 37% of developers were using or planning to

use low-code products [32].

In 2021, most large cloud providers offer LCDPs within

their cloud-based solutions. Microsoft was among the first

to embrace the trend by releasing its Power Apps LCDP

in November 2016. In January 2020, Google acquired the

LCDP provider AppSheet and made it its flagship low-

code solution. In June 2020, Amazon released Honeycode, a

LCDP for web, and mobile application development.

No-code development platform (NCDP) is a related term

used for platforms that eliminate the need for programming

using visual languages, graphical user interfaces, and config-

uration. While the term is widely used in marketing, market

analysis firms currently oppose using it to identify a clear

market segment [47]. For the context of this paper, we con-

sider NCDP and LCDP interchangeably, and consequently,

hereafter, we use the term LCDP only.

1 The survey included more than 3 thousand developers in Australia,
Canada, China, France, Germany, India, the UK, and the USA. Devel-
opers participated with small material incentives.
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Fig. 2 Top-level features of LCDPs (refinement of [51])

3 Overview of low-code development
platforms

In this section, we present an overview of the most significant

LCDPs by considering the typical steps that are performed

when using them and by relying on a refined taxonomy orig-

inally presented in [51].

LCDPs support the development of applications that can

be web-only or also native for the target deployment envi-

ronments. Thus, they can natively support both desktop

and mobile devices and integrate with existing workflows

developed with popular Software-as-a-Service (SaaS) appli-

cations, including Zapier, Amazon AppFlow, and Trello to

mention just a few. Appian [2] is among the most long-lived

LCDP, whereas Amazon Honeycode [1] and Google App-

Sheet [15] are among the most recent approaches.

Particular characteristics that distinguish existing LCDPs

pertain to the user experience of advanced Graphical

user interfaces (see Fig. 2) providing tools and wid-

gets to enable citizen developers to conceive the desired

applications. Drag-and-drop facilities, advanced reporting

features, decision engines for modelling complex logic, and

form builders are just examples of functionalities provided

in the front end of LCDPs. Moreover, LCDPs can give

the users someLive collaborative development

support to help developers that are geographically dis-

tributed and who want to work on the same applications

collaboratively. Another distinguishing aspect of existing

LCDPs is related to the Supported application

domain intended to be the primary focus of interest. For

instance, the main focus of Node-RED [34] is supporting the

development of IoT applications. Other platforms support

the development of chatbots [40], whereas the majority of

existing LCDPs aim at being general-purpose supporting the

development of any data-intensive application.

LCDPs can provide users with pre-defined artefacts,

which can be used as starting points. This is reflected by

Fig. 3 A simple domain model specified in Mendix (from [51])

the Reusability support feature shown in Fig. 2.

For instance, Salesforce App Cloud [52] includes the exten-

sive AppExchange marketplace [53] consisting of pre-built

applications and components, reusable objects and elements,

drag-and-drop process builder, and inbuilt Kanban boards. As

discussed in [51], realizing software systems with LCDPs

encompasses several tool-supported steps, which are sum-

marised in the following.

Domain modelling In this phase, users are provided with

modelling constructs to represent concepts and rela-

tionships underpinning the application being developed.

Figure 3 shows a simple domain model specified with

the Mendix platform to describe training courses. In par-

ticular, a training Course is defined in terms of its

title, description, duration, and price. The data entity

ScheduledCourse defines when a given course is

scheduled in terms of start and end dates. Moreover,

to schedule a course, it is necessary to specify its

Trainer and the Location where it is held. The

Registration entity is for defining registrations of

Trainees that want to attend ScheduledCourses

Pre-built templates can be exploited as starting point

when defining domain models, and interactive applica-

tion analytics are provided out-of-the-box. Other tools

follow a similar approach. For example, Codebots [7]

uses UML to specify domain models that are consumed

to automatically generate target artefacts, including com-

plete REST APIs, client libraries, Swagger API doc-

umentation, and a JSON Schema definition for each

domain object.

User interface definition Users define data forms and pages

to create, edit, and visualize data that the application

under development will manage. Figure 4 shows a form-

based screen in Microsoft Power Apps. According to

the given specification, the modelled application consists

of three different screens and one of them is being

defined as shown in Fig. 4. The screen under definition

consists of different fields (vertically aligned) that are
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Fig. 4 User interface definition with Microsoft PowerApps [31]

selected from a SharePoint document as shown on the

right-hand side of Fig. 4.

Business logic specification Users define the control and

data flows of the system under development through intu-

itive Business logic specification

mechanisms. Graphical workflows and textual busi-

ness rules are examples of business logic specifications

that typically use one or more API call(s). Figure 5 shows

a simple Node-RED workflow, which retrieves the most

recent quakes from an online service and represents the

retrieved data in a CSV file before performing further

manipulations. Node-RED implements a programming

model that permits developing event-based applications,

which can be specified by a wide range of node types

available in an extensible palette. Workflow specification

is also prominent in Kissflow [24], which mainly focuses

on workflow automation for small businesses.

Integration with external services LCDPs typically pro-

videInteroperability support with external

services and data sources to use services or

consume data provided by third-party systems, e.g. using

dedicated APIs. LCDPs can consume services provided

by external providers such as Dropbox, Zapier, Office

365, and Google Drive. Thus, users might connect or

integrate such services to build forms or to compile data

reports. For instance, Fig. 6 shows the page in Zoho Cre-

ator [62] to configure the connection with Google Drive.

Application generation and deployment The next step of

the process consists of generating and deploying the mod-

elled application by means of provided Application

Fig. 5 Business logic specification with Node-RED [35]

Fig. 6 Configuring the Google Drive connector in Zoho Creator [63]

build mechanisms. Several execution environments

can be supported, as for instance, in the case of zAppDev

[61], which provides users with different code generation

facilities. Once the desired system has been specified and

built, a dedicated Deployment support is available

to deploy the system in private or public environments.

Deployments are typically done on cloud infrastructures

with a few clicks, as shown in Fig. 7. In particular, Out-

System [37] provides developers with quick mechanisms

to publish developed applications, connect different ser-

vices, and create real-time dashboards.

Application maintenance The last step of the process is

monitoring and maintaining the developed system by

means of dedicated features, e.g. to react in case of

unforeseen requirements that need to be addressed or fix

issues that might occur during the operation of the system

(cf. Monitoring support in Fig. 2).

4 Low-code vs. model-driven engineering

Having discussed the main features of LCDPs, we compare

them with MDE processes and technologies in this section.

MDE [3] encompasses software paradigms emphasiz-

ing the use of models as first-class artefacts during the

development lifecycle. Hence, in MDE, models are used to

specify, test, simulate, verify, modernize, maintain, under-

stand, and generate code for the system, among many other

activities. Still, not every MDE process ends with code gen-
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Fig. 7 Application deployment with OutSystem [38]

model-driven 
engineering 

low-code 
software development 

low-code  
application platforms 

1 4 5 2 3 

Fig. 8 Venn diagram showing commonalities and differences between
model-driven approaches, low-code application platforms, and low-
code software development

eration but actively uses models. The goal of MDE is to

increase productivity by automating different steps in soft-

ware development employing models while augmenting the

overall quality [19,23]. For this purpose, MDE processes

often rely on Domain-Specific Languages (DSLs), specially

tailored for the domain at hand. Using domain-specific mod-

els makes descriptions more intentional and includes less

accidental details than code written using general-purpose

programming languages. Hence, those models become eas-

ier to create, verify, and maintain than the corresponding

low-level code.

In their turn, LCDPs promote the construction of appli-

cations using forms and graphical editors with little or no

hand-crafted code. Since some of their target users are

citizen developers, one of their key points is to reduce acci-

dental complexity regarding the installation and operation

of both the development environments and the developed

applications. This way, they typically provide cloud-based

development environments and manage the lifecycle of the

designed applications (e.g. hosting, resource allocation and

provisioning, usage analytics, etc.). Therefore, low-code

development shares some of the goals of MDE, but there

are some differences, too.

Figure 8 schematically illustrates the commonalities and

differences between low-code and MDE approaches using

a Venn diagram. The diagram represents the approaches

following MDE, low-code development, and development

based on low-code platforms in terms of sets. This leads to

5 regions of interest (marked as 1–5 in the figure). This way,

approaches termed “model-driven” by our community fall

under regions 1, 2, and 3; with an overlap under 2 and 3 with

low-code platforms and low-code development approaches.

Instead, regions 4 and 5 are exclusively low-code, while

region 1 is exclusively model-driven. The regions can be

described as follows:

1. This region contains the model-driven approaches that

use models as machine-processable artefacts but do not

aim at reducing the amount of code required to imple-

ment the system. Instead, they focus on automating

tasks like simulation, formal verification, software opti-

mization, or reverse engineering. Examples of works

in this category include the work of Cortellessa et al.

[9] on analysing and refactoring UML design models

for optimizing their performance; or reverse engineer-

ing tools like Modisco [5], which extracts models from

code.

2. These are the approaches that use models as machine-

processable artefacts and aim to reduce the amount of code

required to implement a system (e.g. via code generation

or interpretation) but without offering deployment or life-

cycle management capabilities for the produced system.

Examples of this class of approaches are JHipster [20] and

its JDL [21] domain-specific language, Google Protocol

Buffers [16], or the OlivaNova model execution system

[39].

3. This region contains the platforms that use models to

facilitate the development of software applications with

reduced code and offer built-in deployment and lifecy-

cle management facilities for the produced application.

Examples include the Codebots [7] and Judo [22] low-

code platforms, both of which are based on technologies

of the Eclipse Modelling ecosystem [56].

4. This region and the next one contain approaches that

cannot be considered model-driven. In particular, region

4 contains the platforms that facilitate the develop-

ment of software applications with reduced code. Such

approaches offer built-in deployment and lifecycle man-

agement facilities for the produced application. How-

ever, they do not use models that conform to explic-

itly defined languages/metamodels (e.g. they use data

stored in a relational database or schema-less XML/JSON

documents).

5. These approaches aim to reduce the amount of code

required to implement a system without offering deploy-

ment or lifecycle management capabilities for the pro-

duced system, and—like region 4—without using models

that conform to explicitly defined languages/metamodels.

Examples of this type of approach include database-

schema-driven generators like Phreeze [41] and one-off

generators such as those provided by Ruby on Rails [44].
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Next, we elaborate on other aspects that differentiate

model-based and low-code approaches, based on Fig. 8:

Platform Low-code application platforms (regions 3 and 4

in the figure) are mostly cloud-based: they can be used

from the web browser and host the defined applications.

This frees the user from both installing the development

platform itself and from deploying the defined applica-

tions. This approach simplifies the adoption of low-code

by newcomers. While MDE solutions can be cloud-based

(falling in region 3) [8], this is not the norm today. Instead,

many solutions are based on the desktop, for example,

those using the Eclipse Modelling Framework (EMF)

[56], or meta-modelling tools like MetaEdit+ [30]. These

approaches would fall under region 2—and may be con-

sidered low-code development approaches—if their aim

is automating application development, otherwise they

would fall in region 1. Please note that not all low-code

software development approaches are cloud-based; in

particular, those in regions 2 and 5 are not.

Users LCDPs mainly target end-users, so-called citizen

developers. Therefore low-code platforms tend to be easy

to use for people with a non-technical background. This

means that frequently (but not always), users of tools in

regions 3–4 are citizen developers and non-professional

programmers. For example, while low-code platforms

like OutSystems target citizen developers, others like

Judo target teams of business analysts, software archi-

tects, and programmers.

In their turn, MDE solutions can target end-users, but

many of them are directed to professional software

developers since they are expected to be used within

development processes. Therefore, typically, users of

approaches in regions 1 and 2 have a more technical back-

ground.

Domains As mentioned in Sect. 2, the first wave of low-

code targeted business applications. Recently, we are

witnessing proposals for low-code tools in other domains,

like IoT/event-driven applications (e.g. Node-RED [34]),

chatbots (e.g. Google’s Dialogflow [10], Amazon’s Lex

[25], IBM’s Watson Assistant [59]), or Machine Learn-

ing (e.g. Google’s AutoML [14] or RapidMiner [42]).

MDE solutions (in regions 1–3 of the figure) can target

those domains but frequently also target more technical

areas, which require specialized engineers. These include

domains like automotive [11], power engineering [13],

or cyber-physical systems [33] in general, among many

others.

5 Low-code development: why now?

In terms of their core ambition to expedite the delivery of soft-

ware systems, LCDPs are not very dissimilar to previously

tried approaches like 4GLs, CASE tools, etc., as already men-

tioned in Sect. 2. Essentially, they provide an environment for

specifying the structure and behaviour of a software system

at a high level of abstraction. Such an environment shields

developers from low-level concerns (e.g. specific databases,

object-relational mappers, services, messaging, and security

middleware). They then generate executable code that real-

izes the specified software system. Given the broad consensus

that 4GLs and CASE tools were not wildly successful, why

should low-code environments fare any better? There are

multiple reasons why this may be the case, which we analyse

next.

Cloud-based deployment Beyond generating code, mod-

ern LCDPs can also deploy the produced software sys-

tems on scalable cloud-based infrastructures and make

them instantly available to users globally through web-

based interfaces. This can dramatically shorten the time

and effort required to release applications (and updates)

to users and increase the appeal for LCDPs as a medium

for rapid application development and delivery.

Digital native workforce Computer literacy has improved

dramatically over the last 40 years. The basics of com-

puter programming are taught in many countries as part

of compulsory education, and the new generations of

domain experts (e.g. accountants, medicinal practition-

ers, construction engineers) are digital natives. As a

consequence, while most domain experts would require

substantial training to master some part of the complex-

ity of a CASE tool released 40 years ago, a growing

number of contemporary domain experts have substantial

experience with working with computers and non-trivial

software, and arguably require a lot less training to use a

LCDPs to implement bespoke applications.

Zero setup The fact that many LCDPs are cloud-based and

do not require installation of bespoke software signifi-

cantly lowers the entry barrier for new users, who can

evaluate such platforms and even develop and deliver

small-scale applications at no cost from the familiar envi-

ronment of their web browser.

Developer shortfall As software is becoming pervasive

in all aspects of human activity, the demand for soft-

ware developers has outgrown the supply of suitably

skilled professionals, and the gap is constantly widen-

ing [4]. Moreover, highly skilled software developers

are attracted to intellectually demanding (and financially

rewarding) software systems instead of run-of-the-mill

applications. This creates a growing gap for business
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applications that would be more effective than shared

spreadsheets but are too expensive to implement and

maintain manually.

Training facilities The media through which users learn

have also changed considerably recently. A couple of

decades ago, the primary learning media for application

development environments were books written by tech-

nology experts. This landscape has changed dramatically

with the growth of the web and, particularly, video shar-

ing services such as YouTube, making it easier to deliver

up-to-date training material aimed at different audiences.

This enables citizen developers to develop and share their

own training material (e.g. walk-throughs, screencasts)

rather than acting as passive consumers.

6 What MDE can learn from low-code and
vice versa

Based on the previously presented insights in low-code

development and MDE, we will now discuss what the two

approaches can learn from each other to tackle critical chal-

lenges for their future developments.

Generic vs. specific platforms Many LCDPs attempt to

cover a wide range of applications through an ever-

growing library of highly configurable components. In

the MDE community, it is widely accepted that in many

cases, smaller domain-specific languages can be more

beneficial for engagement with domain experts and auto-

mated reasoning and processing than large and complex

all-encompassing languages such as UML. An open

question is if the current generation of domain-agnostic

LCDPs will increasingly struggle as they keep growing in

complexity. This can give rise to domain-specific LCDPs

in the future, which will target specific classes of sys-

tems and citizen developers. Here an opportunity is about

reusing the rich technological infrastructure offered by

MDE for building domain-specific platforms. Interest-

ingly, while MDE is often referred to as an essential

building block of low-code in the Forrester and Gartner

reports, there is little evidence that existing LCDPs use

technologies (predominately Eclipse-based) commonly

used in the MDE community. Thus, it seems to be an

opportunity to speed up the development of LCDPs with

MDE technologies if the latter are ready to run on the

web/cloud and can deal with the requirements of typical

LCDP users.

Opening up web/cloud-based platforms A lesson that the

MDE community can learn from the success of LCDPs

is that web-based interfaces can significantly improve

uptake and engagement with domain experts. A transition

of core MDE technologies is underway with frameworks

such as Xtext [60] and Sirius [55] providing web-based

counterparts. However, significant effort is still required

to realise the vision of zero-installation web-based MDE

workbenches. Some efforts already started to reuse open-

source technologies for building up LCDPs [36]. As

there is currently already a trend to migrate MDE tech-

nologies to the web/cloud, there may be an opportunity

to develop the next generation of LCDPs with existing

MDE technologies such as metamodelling frameworks

for language engineering, code generators for produc-

ing the final applications, etc. [57]. This may be further

supported by current initiatives for building open-source

cloud platforms such as GAIAX [12], which is especially

important for long-living software systems.

Counteracting vendor lock-in Since the introduction of

CASE tools, one of the major concerns is the poten-

tial for vendor lock-in, i.e. application development and

deployment are bound to a particular technology. While

this may not be considered as a potential problem in the

short term, it can become critical in the long term. For

instance, consider migrating projects from CASE tools

to MDE tools or projects developed with Rapid Appli-

cation Development (RAD) approaches to modern cloud

platforms. In the context of low-code such issues may

also occur, e.g. an LCDP that produces applications that

only work with a specific cloud provider’s technology

stack (cf. cloud vendor lock-in). Nevertheless, there are

even more important aspects related to the development

artefacts. First of all, is an export of the development

artefacts possible, and if it is, how can these artefacts be

reused, imported, and interpreted in other platforms? The

MDE community has invested substantial effort in this

respect by providing dedicated standards for modelling

languages (e.g. UML, BPMN), and even meta-modelling

languages (e.g. MOF, Ecore), model exchange standards

(e.g. XMI and HUTN), etc. It has to be explored if these

approaches may also be reused for LCDPs or if other

means are needed to prevent vendor lock-in.

Fostering ecosystems Providing an LCDP is the first step,

but then an ecosystem for this platform is required to

ensure the continuous growth of a healthy user base. This

may be even more important for LCDPs as professional

developers as well as citizen developers may be targeted.

Thus, the availability of documentation, support, consul-

tancy, reusable components, etc., is of major importance.

In MDE, such an ecosystem was triggered by Eclipse, i.e.

a large and active ecosystem around the Eclipse Mod-

elling Framework was established from the industrial

and academic sides. It has to be further explored how

such ecosystems will develop for LCDPs, as most cur-

rent platforms are single vendor efforts. This issue also

concerns the academic area, where scientific community
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efforts are required to stimulate research on topics related

to low-code [57]. For instance, a current example is the

low-code workshop [27] hosted with the MODELS con-

ference since 2020, which provides a forum to discuss

low-code development and MDE.

Managing software evolution Notably, one of the most

crucial stages of the software lifecycle is the maintenance

of a software product after its release. Providing support

to such activities requires the ability to grow in function-

ality and size without unwanted side effects satisfying

new requirements emerging from the routine usage of

the product. Managing software evolution processes in

LCDPs is an interesting line of research since these plat-

forms are managed and allow cloud-based monitoring

of the developed applications. Consequently, the plat-

form provider should offer as much support for evolution

as possible. However, this may involve many different

aspects. Considering the application level, we may need

support for model/data co-evolution, e.g. the data model

is changing and there are already running instances of

the application in usage. Evolution also applies on the

language level, which has been extensively researched

in MDE, and is often referred to metamodel/model

co-evolution [18]. Here, the problem applies both to

low-code and MDE approaches. Low-code will only

be successful if applications developed with low-code

approaches can evolve for a longer time in combination

with the LCDPs themselves.

7 Summary

This paper compared and positioned the relatively new

low-code movement against the established model-driven

engineering discipline. We summarised the history of low-

code so far, provided an overview of typical low-code

development processes and the tools that LCDPs offer to

support them, and contrasted and compared the principles

and practices of low-code and model-driven engineering.

While low-code and model-driven engineering both aspire

to improve software development by raising abstraction and

hiding implementation-level details, we argue that the two

practices are not identical. Indeed, not all model-driven

approaches aim at reducing the amount of code needed

to implement software solutions, and not all low-code

approaches are model-driven. However, being close con-

ceptually creates substantial potential for applying existing

knowledge and cross-pollination between the two disci-

plines.
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