
This is a repository copy of Low-code development and model-driven engineering:Two
sides of the same coin?.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/183381/

Version: Published Version

Article:

Di Ruscio, Davide, Kolovos, Dimitris orcid.org/0000-0002-1724-6563, de Lara, Juan et al.
(3 more authors) (2022) Low-code development and model-driven engineering:Two sides
of the same coin? Software and Systems Modeling. pp. 437-446. ISSN 1619-1366

https://doi.org/10.1007/s10270-021-00970-2

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Software and Systems Modeling

https://doi.org/10.1007/s10270-021-00970-2

EXPERT VOICE

Low-code development andmodel-driven engineering: Two sides of
the same coin?

Davide Di Ruscio1 · Dimitris Kolovos2 · Juan de Lara3 · Alfonso Pierantonio1 ·Massimo Tisi4 ·Manuel Wimmer5

Received: 2 September 2021 / Revised: 8 December 2021 / Accepted: 9 December 2021

© The Author(s) 2022

Abstract

The last few years have witnessed a significant growth of so-called low-code development platforms (LCDPs) both in gaining

traction on the market and attracting interest from academia. LCDPs are advertised as visual development platforms, typically

running on the cloud, reducing the need for manual coding and also targeting non-professional programmers. Since LCDPs

share many of the goals and features of model-driven engineering approaches, it is a common point of debate whether low-

code is just a new buzzword for model-driven technologies, or whether the two terms refer to genuinely distinct approaches.

To contribute to this discussion, in this expert-voice paper, we compare and contrast low-code and model-driven approaches,

identifying their differences and commonalities, analysing their strong and weak points, and proposing directions for cross-

pollination.

Keywords Low-code development · No-code development · Model-driven engineering

1 Introduction

Low-code development platforms (LCDPs) are on the rise,

with an increasing number of cloud vendors, such as Google,

Microsoft, and Amazon, offering solutions for developing

and operating complex software applications with little or no

Communicated by Bernhard Rumpe.

B Davide Di Ruscio
davide.diruscio@univaq.it

Dimitris Kolovos
dimitris.kolovos@york.ac.uk

Juan de Lara
juan.delara@uam.es

Alfonso Pierantonio
alfonso.pierantonio@univaq.it

Massimo Tisi
massimo.tisi@imt-atlantique.fr

Manuel Wimmer
manuel.wimmer@jku.at

1 Università degli Studi dell’Aquila, L’Aquila, Italy

2 University of York, York, UK

3 Universidad Autónoma de Madrid, Madrid, Spain

4 IMT Atlantique, LS2N (UMR CNRS 6004), Nantes, France

5 Johannes Kepler University Linz, Linz, Austria

code. The main aims of LCDPs are to reduce the development

and maintenance effort required to deliver and operate cer-

tain types of applications and to enable digital-savvy citizen

developers who lack or have limited programming expe-

rience to contribute to the software development process

directly.

As model-driven engineering (MDE) [3] has similar aims,

there is an ongoing debate on how low-code software devel-

opment is different from model-driven engineering and to

what extent work carried out in the field of MDE is directly

transferable to LCDPs [6]. In this paper, we aim at clarifying

the commonalities and differences between both approaches.

We argue that while the two approaches share similar high-

level aspirations, there are also differences, for instance, not

all model-driven techniques aim at reducing the amount of

code needed to implement software solutions, and not all

low-code approaches are model-driven.

The rest of the paper is organised as follows. In Sect. 2, we

summarise the history of the low-code movement we have

seen so far as a discussion basis for the subsequent sections.

In Sect. 3, we provide an overview of typical low-code devel-

opment processes and tools that LCDPs offer. In Sect. 4, we

contrast and compare the principles and practices of low-

code development and MDE. In Sect. 5, we discuss possible

reasons behind the increasing adoption of LCDPs. In Sect. 6,

we identify lessons that the two communities can learn from

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00970-2&domain=pdf
http://orcid.org/0000-0002-5077-6793

D. Di Ruscio

each other. Finally, Sect. 7 summarises and concludes the

paper.

2 The history of low-code development

Since the exact meaning and industrial relevance of low-code

development is controversial, we believe it is important to

start the paper by presenting the original definitions of the

term and the main events of its history.

The past decades have been marked by several indus-

try trends aiming at reducing the amount of hand-crafted

code required to produce software such as 4GLs and CASE

tools in the 1980s [28], Rapid Application Development in

the 1990s [29], End-User Development in the 2000s [26],

and MDE in the last two decades [54]. The first use of

the term low-code can be traced back to the market anal-

ysis firm Forrester in 2014 [43] (cf. Fig. 1), where low-code

development platforms (LCDPs) were defined as “platforms

that enable rapid delivery of business applications with a

minimum of hand-coding and minimal upfront investment

in setup, training, and deployment”. It is interesting to

note that this report identified the LCDP segment as spe-

cific to the production of business applications, such as

software for enterprise resource planning, customer rela-

tionship management, business process management, and

other productivity-enhancing applications. In 2016, Forrester

detailed the successful application domains for LCDPs in

four specific application scenarios, i.e. database, request-

handling, process, and mobile-first [49].

The definition has evolved, and in 2017, Forrester pro-

vided a more detailed version, characterizing LCDPs as

“products and/or cloud services for application development

that employ visual, declarative techniques instead of pro-

gramming and are available to customers at low- or no-cost

in money and training time to begin, with costs rising in pro-

portion of the business value of the platforms” [45]. The focus

here is on visual interfaces and declarative techniques, with

Forrester especially emphasizing visual WYSIWYG devel-

opment and model-driven development [17]. The focus on

the platform is highlighted as a key differentiating aspect

of these solutions with respect to the previous generation of

declarative tools: LCDPs are platforms first, with features for

application deployment and life-cycle management, as well

as platform management [50].

Gartner identified a similar segment in 2016, called

low-code application platform (LCAP) [58]. In particular,

they introduced enterprise LCAPs, which aim at produc-

ing enterprise-class applications requiring high performance,

scalability, high availability, disaster recovery, security,

SLAs, resource use tracking, technical support from the

provider, and API access to and from local and cloud ser-

vices.

Fig. 1 Major events in low-code history

The year 2017 noted the start of a series of acquisitions for

LCDP vendors [46]. Appian started an initial public offering

in May 2017, and in 2018 its market valuation nearly reached

$2 billion. In July 2018, OutSystems received investments of

$360 million. In August 2018, Siemens announced the acqui-

sition of Mendix for $730 million [46]. In 2017, Forrester

estimated a global market size for LCDPs of $3.8 billion.

Forrester also periodically surveys developers about LCDP

usage1: In 2018, 23% of developers reported using low-code

platforms, and another 22% planned to do so within a year

[48]. In 2019, 37% of developers were using or planning to

use low-code products [32].

In 2021, most large cloud providers offer LCDPs within

their cloud-based solutions. Microsoft was among the first

to embrace the trend by releasing its Power Apps LCDP

in November 2016. In January 2020, Google acquired the

LCDP provider AppSheet and made it its flagship low-

code solution. In June 2020, Amazon released Honeycode, a

LCDP for web, and mobile application development.

No-code development platform (NCDP) is a related term

used for platforms that eliminate the need for programming

using visual languages, graphical user interfaces, and config-

uration. While the term is widely used in marketing, market

analysis firms currently oppose using it to identify a clear

market segment [47]. For the context of this paper, we con-

sider NCDP and LCDP interchangeably, and consequently,

hereafter, we use the term LCDP only.

1 The survey included more than 3 thousand developers in Australia,
Canada, China, France, Germany, India, the UK, and the USA. Devel-
opers participated with small material incentives.

123

Low-code development and model-driven engineering

Fig. 2 Top-level features of LCDPs (refinement of [51])

3 Overview of low-code development
platforms

In this section, we present an overview of the most significant

LCDPs by considering the typical steps that are performed

when using them and by relying on a refined taxonomy orig-

inally presented in [51].

LCDPs support the development of applications that can

be web-only or also native for the target deployment envi-

ronments. Thus, they can natively support both desktop

and mobile devices and integrate with existing workflows

developed with popular Software-as-a-Service (SaaS) appli-

cations, including Zapier, Amazon AppFlow, and Trello to

mention just a few. Appian [2] is among the most long-lived

LCDP, whereas Amazon Honeycode [1] and Google App-

Sheet [15] are among the most recent approaches.

Particular characteristics that distinguish existing LCDPs

pertain to the user experience of advanced Graphical

user interfaces (see Fig. 2) providing tools and wid-

gets to enable citizen developers to conceive the desired

applications. Drag-and-drop facilities, advanced reporting

features, decision engines for modelling complex logic, and

form builders are just examples of functionalities provided

in the front end of LCDPs. Moreover, LCDPs can give

the users someLive collaborative development

support to help developers that are geographically dis-

tributed and who want to work on the same applications

collaboratively. Another distinguishing aspect of existing

LCDPs is related to the Supported application

domain intended to be the primary focus of interest. For

instance, the main focus of Node-RED [34] is supporting the

development of IoT applications. Other platforms support

the development of chatbots [40], whereas the majority of

existing LCDPs aim at being general-purpose supporting the

development of any data-intensive application.

LCDPs can provide users with pre-defined artefacts,

which can be used as starting points. This is reflected by

Fig. 3 A simple domain model specified in Mendix (from [51])

the Reusability support feature shown in Fig. 2.

For instance, Salesforce App Cloud [52] includes the exten-

sive AppExchange marketplace [53] consisting of pre-built

applications and components, reusable objects and elements,

drag-and-drop process builder, and inbuilt Kanban boards. As

discussed in [51], realizing software systems with LCDPs

encompasses several tool-supported steps, which are sum-

marised in the following.

Domain modelling In this phase, users are provided with

modelling constructs to represent concepts and rela-

tionships underpinning the application being developed.

Figure 3 shows a simple domain model specified with

the Mendix platform to describe training courses. In par-

ticular, a training Course is defined in terms of its

title, description, duration, and price. The data entity

ScheduledCourse defines when a given course is

scheduled in terms of start and end dates. Moreover,

to schedule a course, it is necessary to specify its

Trainer and the Location where it is held. The

Registration entity is for defining registrations of

Trainees that want to attend ScheduledCourses

Pre-built templates can be exploited as starting point

when defining domain models, and interactive applica-

tion analytics are provided out-of-the-box. Other tools

follow a similar approach. For example, Codebots [7]

uses UML to specify domain models that are consumed

to automatically generate target artefacts, including com-

plete REST APIs, client libraries, Swagger API doc-

umentation, and a JSON Schema definition for each

domain object.

User interface definition Users define data forms and pages

to create, edit, and visualize data that the application

under development will manage. Figure 4 shows a form-

based screen in Microsoft Power Apps. According to

the given specification, the modelled application consists

of three different screens and one of them is being

defined as shown in Fig. 4. The screen under definition

consists of different fields (vertically aligned) that are

123

D. Di Ruscio

Fig. 4 User interface definition with Microsoft PowerApps [31]

selected from a SharePoint document as shown on the

right-hand side of Fig. 4.

Business logic specification Users define the control and

data flows of the system under development through intu-

itive Business logic specification

mechanisms. Graphical workflows and textual busi-

ness rules are examples of business logic specifications

that typically use one or more API call(s). Figure 5 shows

a simple Node-RED workflow, which retrieves the most

recent quakes from an online service and represents the

retrieved data in a CSV file before performing further

manipulations. Node-RED implements a programming

model that permits developing event-based applications,

which can be specified by a wide range of node types

available in an extensible palette. Workflow specification

is also prominent in Kissflow [24], which mainly focuses

on workflow automation for small businesses.

Integration with external services LCDPs typically pro-

videInteroperability support with external

services and data sources to use services or

consume data provided by third-party systems, e.g. using

dedicated APIs. LCDPs can consume services provided

by external providers such as Dropbox, Zapier, Office

365, and Google Drive. Thus, users might connect or

integrate such services to build forms or to compile data

reports. For instance, Fig. 6 shows the page in Zoho Cre-

ator [62] to configure the connection with Google Drive.

Application generation and deployment The next step of

the process consists of generating and deploying the mod-

elled application by means of provided Application

Fig. 5 Business logic specification with Node-RED [35]

Fig. 6 Configuring the Google Drive connector in Zoho Creator [63]

build mechanisms. Several execution environments

can be supported, as for instance, in the case of zAppDev

[61], which provides users with different code generation

facilities. Once the desired system has been specified and

built, a dedicated Deployment support is available

to deploy the system in private or public environments.

Deployments are typically done on cloud infrastructures

with a few clicks, as shown in Fig. 7. In particular, Out-

System [37] provides developers with quick mechanisms

to publish developed applications, connect different ser-

vices, and create real-time dashboards.

Application maintenance The last step of the process is

monitoring and maintaining the developed system by

means of dedicated features, e.g. to react in case of

unforeseen requirements that need to be addressed or fix

issues that might occur during the operation of the system

(cf. Monitoring support in Fig. 2).

4 Low-code vs. model-driven engineering

Having discussed the main features of LCDPs, we compare

them with MDE processes and technologies in this section.

MDE [3] encompasses software paradigms emphasiz-

ing the use of models as first-class artefacts during the

development lifecycle. Hence, in MDE, models are used to

specify, test, simulate, verify, modernize, maintain, under-

stand, and generate code for the system, among many other

activities. Still, not every MDE process ends with code gen-

123

Low-code development and model-driven engineering

Fig. 7 Application deployment with OutSystem [38]

model-driven
engineering

low-code
software development

low-code
application platforms

1 4 5 2 3

Fig. 8 Venn diagram showing commonalities and differences between
model-driven approaches, low-code application platforms, and low-
code software development

eration but actively uses models. The goal of MDE is to

increase productivity by automating different steps in soft-

ware development employing models while augmenting the

overall quality [19,23]. For this purpose, MDE processes

often rely on Domain-Specific Languages (DSLs), specially

tailored for the domain at hand. Using domain-specific mod-

els makes descriptions more intentional and includes less

accidental details than code written using general-purpose

programming languages. Hence, those models become eas-

ier to create, verify, and maintain than the corresponding

low-level code.

In their turn, LCDPs promote the construction of appli-

cations using forms and graphical editors with little or no

hand-crafted code. Since some of their target users are

citizen developers, one of their key points is to reduce acci-

dental complexity regarding the installation and operation

of both the development environments and the developed

applications. This way, they typically provide cloud-based

development environments and manage the lifecycle of the

designed applications (e.g. hosting, resource allocation and

provisioning, usage analytics, etc.). Therefore, low-code

development shares some of the goals of MDE, but there

are some differences, too.

Figure 8 schematically illustrates the commonalities and

differences between low-code and MDE approaches using

a Venn diagram. The diagram represents the approaches

following MDE, low-code development, and development

based on low-code platforms in terms of sets. This leads to

5 regions of interest (marked as 1–5 in the figure). This way,

approaches termed “model-driven” by our community fall

under regions 1, 2, and 3; with an overlap under 2 and 3 with

low-code platforms and low-code development approaches.

Instead, regions 4 and 5 are exclusively low-code, while

region 1 is exclusively model-driven. The regions can be

described as follows:

1. This region contains the model-driven approaches that

use models as machine-processable artefacts but do not

aim at reducing the amount of code required to imple-

ment the system. Instead, they focus on automating

tasks like simulation, formal verification, software opti-

mization, or reverse engineering. Examples of works

in this category include the work of Cortellessa et al.

[9] on analysing and refactoring UML design models

for optimizing their performance; or reverse engineer-

ing tools like Modisco [5], which extracts models from

code.

2. These are the approaches that use models as machine-

processable artefacts and aim to reduce the amount of code

required to implement a system (e.g. via code generation

or interpretation) but without offering deployment or life-

cycle management capabilities for the produced system.

Examples of this class of approaches are JHipster [20] and

its JDL [21] domain-specific language, Google Protocol

Buffers [16], or the OlivaNova model execution system

[39].

3. This region contains the platforms that use models to

facilitate the development of software applications with

reduced code and offer built-in deployment and lifecy-

cle management facilities for the produced application.

Examples include the Codebots [7] and Judo [22] low-

code platforms, both of which are based on technologies

of the Eclipse Modelling ecosystem [56].

4. This region and the next one contain approaches that

cannot be considered model-driven. In particular, region

4 contains the platforms that facilitate the develop-

ment of software applications with reduced code. Such

approaches offer built-in deployment and lifecycle man-

agement facilities for the produced application. How-

ever, they do not use models that conform to explic-

itly defined languages/metamodels (e.g. they use data

stored in a relational database or schema-less XML/JSON

documents).

5. These approaches aim to reduce the amount of code

required to implement a system without offering deploy-

ment or lifecycle management capabilities for the pro-

duced system, and—like region 4—without using models

that conform to explicitly defined languages/metamodels.

Examples of this type of approach include database-

schema-driven generators like Phreeze [41] and one-off

generators such as those provided by Ruby on Rails [44].

123

D. Di Ruscio

Next, we elaborate on other aspects that differentiate

model-based and low-code approaches, based on Fig. 8:

Platform Low-code application platforms (regions 3 and 4

in the figure) are mostly cloud-based: they can be used

from the web browser and host the defined applications.

This frees the user from both installing the development

platform itself and from deploying the defined applica-

tions. This approach simplifies the adoption of low-code

by newcomers. While MDE solutions can be cloud-based

(falling in region 3) [8], this is not the norm today. Instead,

many solutions are based on the desktop, for example,

those using the Eclipse Modelling Framework (EMF)

[56], or meta-modelling tools like MetaEdit+ [30]. These

approaches would fall under region 2—and may be con-

sidered low-code development approaches—if their aim

is automating application development, otherwise they

would fall in region 1. Please note that not all low-code

software development approaches are cloud-based; in

particular, those in regions 2 and 5 are not.

Users LCDPs mainly target end-users, so-called citizen

developers. Therefore low-code platforms tend to be easy

to use for people with a non-technical background. This

means that frequently (but not always), users of tools in

regions 3–4 are citizen developers and non-professional

programmers. For example, while low-code platforms

like OutSystems target citizen developers, others like

Judo target teams of business analysts, software archi-

tects, and programmers.

In their turn, MDE solutions can target end-users, but

many of them are directed to professional software

developers since they are expected to be used within

development processes. Therefore, typically, users of

approaches in regions 1 and 2 have a more technical back-

ground.

Domains As mentioned in Sect. 2, the first wave of low-

code targeted business applications. Recently, we are

witnessing proposals for low-code tools in other domains,

like IoT/event-driven applications (e.g. Node-RED [34]),

chatbots (e.g. Google’s Dialogflow [10], Amazon’s Lex

[25], IBM’s Watson Assistant [59]), or Machine Learn-

ing (e.g. Google’s AutoML [14] or RapidMiner [42]).

MDE solutions (in regions 1–3 of the figure) can target

those domains but frequently also target more technical

areas, which require specialized engineers. These include

domains like automotive [11], power engineering [13],

or cyber-physical systems [33] in general, among many

others.

5 Low-code development: why now?

In terms of their core ambition to expedite the delivery of soft-

ware systems, LCDPs are not very dissimilar to previously

tried approaches like 4GLs, CASE tools, etc., as already men-

tioned in Sect. 2. Essentially, they provide an environment for

specifying the structure and behaviour of a software system

at a high level of abstraction. Such an environment shields

developers from low-level concerns (e.g. specific databases,

object-relational mappers, services, messaging, and security

middleware). They then generate executable code that real-

izes the specified software system. Given the broad consensus

that 4GLs and CASE tools were not wildly successful, why

should low-code environments fare any better? There are

multiple reasons why this may be the case, which we analyse

next.

Cloud-based deployment Beyond generating code, mod-

ern LCDPs can also deploy the produced software sys-

tems on scalable cloud-based infrastructures and make

them instantly available to users globally through web-

based interfaces. This can dramatically shorten the time

and effort required to release applications (and updates)

to users and increase the appeal for LCDPs as a medium

for rapid application development and delivery.

Digital native workforce Computer literacy has improved

dramatically over the last 40 years. The basics of com-

puter programming are taught in many countries as part

of compulsory education, and the new generations of

domain experts (e.g. accountants, medicinal practition-

ers, construction engineers) are digital natives. As a

consequence, while most domain experts would require

substantial training to master some part of the complex-

ity of a CASE tool released 40 years ago, a growing

number of contemporary domain experts have substantial

experience with working with computers and non-trivial

software, and arguably require a lot less training to use a

LCDPs to implement bespoke applications.

Zero setup The fact that many LCDPs are cloud-based and

do not require installation of bespoke software signifi-

cantly lowers the entry barrier for new users, who can

evaluate such platforms and even develop and deliver

small-scale applications at no cost from the familiar envi-

ronment of their web browser.

Developer shortfall As software is becoming pervasive

in all aspects of human activity, the demand for soft-

ware developers has outgrown the supply of suitably

skilled professionals, and the gap is constantly widen-

ing [4]. Moreover, highly skilled software developers

are attracted to intellectually demanding (and financially

rewarding) software systems instead of run-of-the-mill

applications. This creates a growing gap for business

123

Low-code development and model-driven engineering

applications that would be more effective than shared

spreadsheets but are too expensive to implement and

maintain manually.

Training facilities The media through which users learn

have also changed considerably recently. A couple of

decades ago, the primary learning media for application

development environments were books written by tech-

nology experts. This landscape has changed dramatically

with the growth of the web and, particularly, video shar-

ing services such as YouTube, making it easier to deliver

up-to-date training material aimed at different audiences.

This enables citizen developers to develop and share their

own training material (e.g. walk-throughs, screencasts)

rather than acting as passive consumers.

6 What MDE can learn from low-code and
vice versa

Based on the previously presented insights in low-code

development and MDE, we will now discuss what the two

approaches can learn from each other to tackle critical chal-

lenges for their future developments.

Generic vs. specific platforms Many LCDPs attempt to

cover a wide range of applications through an ever-

growing library of highly configurable components. In

the MDE community, it is widely accepted that in many

cases, smaller domain-specific languages can be more

beneficial for engagement with domain experts and auto-

mated reasoning and processing than large and complex

all-encompassing languages such as UML. An open

question is if the current generation of domain-agnostic

LCDPs will increasingly struggle as they keep growing in

complexity. This can give rise to domain-specific LCDPs

in the future, which will target specific classes of sys-

tems and citizen developers. Here an opportunity is about

reusing the rich technological infrastructure offered by

MDE for building domain-specific platforms. Interest-

ingly, while MDE is often referred to as an essential

building block of low-code in the Forrester and Gartner

reports, there is little evidence that existing LCDPs use

technologies (predominately Eclipse-based) commonly

used in the MDE community. Thus, it seems to be an

opportunity to speed up the development of LCDPs with

MDE technologies if the latter are ready to run on the

web/cloud and can deal with the requirements of typical

LCDP users.

Opening up web/cloud-based platforms A lesson that the

MDE community can learn from the success of LCDPs

is that web-based interfaces can significantly improve

uptake and engagement with domain experts. A transition

of core MDE technologies is underway with frameworks

such as Xtext [60] and Sirius [55] providing web-based

counterparts. However, significant effort is still required

to realise the vision of zero-installation web-based MDE

workbenches. Some efforts already started to reuse open-

source technologies for building up LCDPs [36]. As

there is currently already a trend to migrate MDE tech-

nologies to the web/cloud, there may be an opportunity

to develop the next generation of LCDPs with existing

MDE technologies such as metamodelling frameworks

for language engineering, code generators for produc-

ing the final applications, etc. [57]. This may be further

supported by current initiatives for building open-source

cloud platforms such as GAIAX [12], which is especially

important for long-living software systems.

Counteracting vendor lock-in Since the introduction of

CASE tools, one of the major concerns is the poten-

tial for vendor lock-in, i.e. application development and

deployment are bound to a particular technology. While

this may not be considered as a potential problem in the

short term, it can become critical in the long term. For

instance, consider migrating projects from CASE tools

to MDE tools or projects developed with Rapid Appli-

cation Development (RAD) approaches to modern cloud

platforms. In the context of low-code such issues may

also occur, e.g. an LCDP that produces applications that

only work with a specific cloud provider’s technology

stack (cf. cloud vendor lock-in). Nevertheless, there are

even more important aspects related to the development

artefacts. First of all, is an export of the development

artefacts possible, and if it is, how can these artefacts be

reused, imported, and interpreted in other platforms? The

MDE community has invested substantial effort in this

respect by providing dedicated standards for modelling

languages (e.g. UML, BPMN), and even meta-modelling

languages (e.g. MOF, Ecore), model exchange standards

(e.g. XMI and HUTN), etc. It has to be explored if these

approaches may also be reused for LCDPs or if other

means are needed to prevent vendor lock-in.

Fostering ecosystems Providing an LCDP is the first step,

but then an ecosystem for this platform is required to

ensure the continuous growth of a healthy user base. This

may be even more important for LCDPs as professional

developers as well as citizen developers may be targeted.

Thus, the availability of documentation, support, consul-

tancy, reusable components, etc., is of major importance.

In MDE, such an ecosystem was triggered by Eclipse, i.e.

a large and active ecosystem around the Eclipse Mod-

elling Framework was established from the industrial

and academic sides. It has to be further explored how

such ecosystems will develop for LCDPs, as most cur-

rent platforms are single vendor efforts. This issue also

concerns the academic area, where scientific community

123

D. Di Ruscio

efforts are required to stimulate research on topics related

to low-code [57]. For instance, a current example is the

low-code workshop [27] hosted with the MODELS con-

ference since 2020, which provides a forum to discuss

low-code development and MDE.

Managing software evolution Notably, one of the most

crucial stages of the software lifecycle is the maintenance

of a software product after its release. Providing support

to such activities requires the ability to grow in function-

ality and size without unwanted side effects satisfying

new requirements emerging from the routine usage of

the product. Managing software evolution processes in

LCDPs is an interesting line of research since these plat-

forms are managed and allow cloud-based monitoring

of the developed applications. Consequently, the plat-

form provider should offer as much support for evolution

as possible. However, this may involve many different

aspects. Considering the application level, we may need

support for model/data co-evolution, e.g. the data model

is changing and there are already running instances of

the application in usage. Evolution also applies on the

language level, which has been extensively researched

in MDE, and is often referred to metamodel/model

co-evolution [18]. Here, the problem applies both to

low-code and MDE approaches. Low-code will only

be successful if applications developed with low-code

approaches can evolve for a longer time in combination

with the LCDPs themselves.

7 Summary

This paper compared and positioned the relatively new

low-code movement against the established model-driven

engineering discipline. We summarised the history of low-

code so far, provided an overview of typical low-code

development processes and the tools that LCDPs offer to

support them, and contrasted and compared the principles

and practices of low-code and model-driven engineering.

While low-code and model-driven engineering both aspire

to improve software development by raising abstraction and

hiding implementation-level details, we argue that the two

practices are not identical. Indeed, not all model-driven

approaches aim at reducing the amount of code needed

to implement software solutions, and not all low-code

approaches are model-driven. However, being close con-

ceptually creates substantial potential for applying existing

knowledge and cross-pollination between the two disci-

plines.

Acknowledgements This work has received funding from the Low-
comote project under European Union’s Horizon 2020 research and
innovation program under the Marie Skłodowska-Curie grant agree-

ment no. 813884. The work has also been partially funded by the Spanish
Ministry of Science (RTI2018-095255-B-I00) and the R&D programme
of Madrid (P2018/TCS-4314).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Amazon Honeycode. https://www.honeycode.aws/. Accessed Sept
2021

2. Appian. https://appian.com/. Accessed Sept 2021
3. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software

Engineering in Practice. Synthesis Lectures on Software Engineer-
ing, 2nd edn. Morgan & Claypool Publishers, San Rafael (2017)

4. Breaux, T., Moritz, J.: The 2021 software developer shortage is
coming. Commun. ACM 64(7), 39–41 (2021)

5. Brunelière, H., Cabot, J., Dupé, G., Madiot, F.: Modisco: a model
driven reverse engineering framework. Inf. Softw. Technol. 56(8),
1012–1032 (2014)

6. Cabot, J.: Positioning of the low-code movement within the field
of model-driven engineering. In: Guerra, E., Iovino, L. (eds.)
MODELS ’20: ACM/IEEE 23rd International Conference on
Model Driven Engineering Languages and Systems, Virtual Event,
Canada, 18–23 October, 2020, Companion Proceedings, pp. 76:1–
76:3. ACM (2020)

7. Codebots. https://codebots.com/. Accessed Sept 2021
8. Corley, J., Syriani, E., Ergin, H.: Evaluating the cloud architecture

of AToMPM. In: Proceedings of MODELSWARD, pp. 339–346.
SciTePress (2016)

9. Cortellessa, V., Eramo, R., Tucci, M.: From software architecture
to analysis models and back: model-driven refactoring aimed at
availability improvement. Inf. Softw. Technol. 127, 106362 (2020)

10. Dialogflow. https://dialogflow.com/. Accessed Sept 2021
11. Drave, I., Hillemacher, S., Greifenberg, T., Kriebel, S., Kusmenko,

E., Markthaler, M., Orth, P., Salman, K.S., Richenhagen, J., Rumpe,
B., Schulze, C., von Wenckstern, M., Wortmann, A.: SMArDT
modeling for automotive software testing. Softw. Pract. Exp. 49(2),
301–328 (2019)

12. GAIAX. https://www.data-infrastructure.eu/GAIAX/Navigation/
EN/Home/home.html. Accessed Sept (2021)

13. Gómez, A., Mendialdua, X., Barmpis, K., Bergmann, G., Cabot,
J., Carlos, X.D., Debreceni, C., Garmendia, A., Kolovos, D.S., de
Lara, J.: Scalable modeling technologies in the wild: an experience
report on wind turbines control applications development. Softw.
Syst. Model. 19(5), 1229–1261 (2020)

14. Google. AutoML. https://cloud.google.com/automl/. Accessed
Sept 2021

15. Google AppSheet. https://www.appsheet.com/. Accessed Sept
2021

16. Google’s protocol buffers. https://developers.google.com/
protocol-buffers. Accessed Sept 2021

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.honeycode.aws/
https://appian.com/
https://codebots.com/
https://dialogflow.com/
https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html
https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html
https://cloud.google.com/automl/
https://www.appsheet.com/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

Low-code development and model-driven engineering

17. Hammond, J.: The Forrester Wave: Mobile Low-Code Develop-
ment Platforms, Q1 2017. Forrester Research, Cambridge (2016)

18. Hebig, R., Khelladi, D.E., Bendraou, R.: Approaches to co-
evolution of metamodels and models: a survey. IEEE Trans. Softw.
Eng. 43(5), 396–414 (2017)

19. Hutchinson, J.E., Whittle, J., Rouncefield, M.: Model-driven engi-
neering practices in industry: social, organizational and managerial
factors that lead to success or failure. Sci. Comput. Program. 89,
144–161 (2014)

20. JHipster. https://www.jhipster.tech. Accessed Sept 2021
21. JHipster’s JDL DSL. https://www.jhipster.tech/jdl. Access Sept

2021
22. Judo. https://judo.codes. Accessed Sept 2021
23. Kelly, S., Tolvanen, J.: Domain-Specific Modeling—Enabling Full

Code Generation. Wiley, Hoboken (2008)
24. Kissflow. https://kissflow.com/workflow/process/. Accessed Sept

(2021)
25. Lex. https://aws.amazon.com/en/lex/. Accessed Sept 2021
26. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-User Devel-

opment: An Emerging Paradigm, pp. 1–8. Springer, Dordrecht
(2006)

27. LowCode Workshop at MODELS. https://lowcode-workshop.
github.io/. Accessed Sept 2021

28. Martin, J.: Application Development Without Programmers. Pren-
tice Hall PTR, Hoboken (1982)

29. Martin, J.: Rapid Appl. Dev. Macmillan Publishing Co. Inc, New
York (1991)

30. MetaEdit+ by Metacase. https://www.metacase.com/products.
html. Accessed Sept 2021

31. Microsoft Power Apps. https://docs.microsoft.com/en-us/
powerapps/maker/canvas-apps/working-with-forms. Accessed
Sept 2021

32. Mines, C.: Predictions 2020: More Changes for Software Devel-
opment. Forrester Research, Cambridge (2020)

33. Mohamed, M.A., Kardas, G., Challenger, M.: Model-driven engi-
neering tools and languages for cyber-physical systems. A system-
atic literature review. IEEE Access 9, 48605–48630 (2021)

34. Node-RED. https://nodered.org/. Accessed 2021
35. Node-RED (workflows). https://nodered.org/docs/tutorials/

second-flow. Accessed Sept 2021
36. OSBP. https://www.eclipse.org/osbp/. Accessed Sept 2021
37. Outsystems. https://www.outsystems.com/. Accessed Sept 2021
38. Outsystems (deploying an application). https://success.outsystems.

com/Documentation/11/Managing_the_Applications_Lifecycle/
Deploy_Applications/Deploy_an_Application. Accessed Sept
2021

39. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-method
approach for information systems modeling: from object-oriented
conceptual modeling to automated programming. Inf. Syst. 26(7),
507–534 (2001)

40. Pérez-Soler, S., Juarez-Puerta, S., Guerra, E., de Lara, J.: Choosing
a chatbot development tool. IEEE Softw. 38(4), 94–103 (2021)

41. Phreeze. http://www.phreeze.com. Accessed Sept 2021
42. RapidMiner. https://rapidminer.com/. Accessed Sept 2021
43. Richardson, C., Rymer, J.: New Development Platforms Emerge

for Customer-Facing Applications. Forrester Research, Cambridge
(2014)

44. Ruby, S., Copeland, D., Thomas, D.: Agile Web Develop-
ment with Rails 6. The Pragmatic Programmers, 2019. See
also https://guides.rubyonrails.org/command_line.html#bin-rails-
generate. Accessed Sept 2021

45. Rymer, J.: The Forrester Wave: Low-Code Development Platforms
For AD&D Pros, Q4 2017. Forrester Research, Cambridge (2016)

46. Rymer, J.: Siemens Snaps Up Mendix; Low-Code Platforms Enter
New Phase. Forrester Research, Cambridge (2018)

47. Rymer, J., Koplowitz, R.: Now Tech: Rapid App Delivery, Q1 2019.
Forrester Research, Cambridge (2019)

48. Rymer, J., Koplowitz, R.: The Forrester Wave: Low-Code Devel-
opment Platforms For AD&D Professionals, Q1 2019. Forrester
Research, Cambridge (2019)

49. Rymer, J., Richardson, C.: The Forrester Wave: Low-Code Devel-
opment Platforms, Q2 2016. Forrester Research, Cambridge (2016)

50. Rymer, J., Richardson, C.: Vendor Landscape: The Fractured.
Fertile Terrain of Low-Code Application Platforms. Forrester
Research, Cambridge (2016)

51. Sahay, A., Indamutsa, A., Ruscio, D.D., Pierantonio, A.: Support-
ing the understanding and comparison of low-code development
platforms. In: Proceedings of 46th Euromicro Conference on Soft-
ware Engineering and Advanced Applications SEAA, pp. 171–178.
IEEE (2020)

52. Salesforce. https://developer.salesforce.com/. Accessed Sept 2021
53. Salesforce (AppExchange marketplace). https://appexchange.

salesforce.com/. Last Accessed Sept 2021
54. Schmidt, D.: Guest editor’s introduction: model-driven engineer-

ing. Computer 39, 25–31 (2006)
55. Sirius. https://www.eclipse.org/sirius/. Accessed Sept 2021
56. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:

Eclipse Modeling Framework, 2nd edn. Addison-Wesley Profes-
sional (2008). see also https://www.eclipse.org/modeling/

57. Tisi, M., Mottu, J., Kolovos, D.S., de Lara, J., Guerra, E., Rus-
cio, D.D., Pierantonio, A., Wimmer, M.: Lowcomote: training
the next generation of experts in scalable low-code engineering
platforms. In: STAF 2019 Co-Located Events Joint Proceedings,
volume 2405 of CEUR Workshop Proceedings, pp. 73–78. CEUR-
WS.org (2019)

58. Vincent, P., Iijima, K., Driver, M., Jason, W., Natis, Y.: Magic
Quadrant for Enterprise Low-Code Application Platforms. Gartner
(2016)

59. Watson. https://www.ibm.com/cloud/watson-assistant/. Accessed
Sept 2021

60. Xtext. https://www.eclipse.org/Xtext/. Accessed Sept 2021
61. zAppDev. https://zappdev.com/. Accessed in Sept 2021
62. Zoho Creator. https://www.zoho.com/creator/. Accessed Sept

2021
63. Zoho Creator (third-party integration). https://www.zoho.com/

developer/help/extensions/connectors.html. Accessed Sept 2021

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Davide Di Ruscio is an Asso-
ciate Professor at the Università
degli Studi dell’Aquila (Italy). His
main research interests are related
to several aspects of Software
Engineering, Open-Source Soft-
ware, Model-Driven Engineering
and Recommender Systems. He
has published more than 170
papers in various journals, con-
ferences, and workshops on such
topics. He is in the editorial board
of the International Journal on
Software and Systems Modeling
(SoSyM), of IEEE Software, of

the Journal of Object Technology, and of the IET Software journal.
Contact him at davide.diruscio@univaq.it or visit http://people.disim.
univaq.it/diruscio/.

123

https://www.jhipster.tech
https://www.jhipster.tech/jdl
https://judo.codes
https://kissflow.com/workflow/process/
https://aws.amazon.com/en/lex/
https://lowcode-workshop.github.io/
https://lowcode-workshop.github.io/
https://www.metacase.com/products.html
https://www.metacase.com/products.html
https://docs.microsoft.com/en-us/powerapps/maker/canvas-apps/working-with-forms
https://docs.microsoft.com/en-us/powerapps/maker/canvas-apps/working-with-forms
https://nodered.org/
https://nodered.org/docs/tutorials/second-flow
https://nodered.org/docs/tutorials/second-flow
https://www.eclipse.org/osbp/
https://www.outsystems.com/
https://success.outsystems.com/Documentation/11/Managing_the_Applications_Lifecycle/Deploy_Applications/Deploy_an_Application
https://success.outsystems.com/Documentation/11/Managing_the_Applications_Lifecycle/Deploy_Applications/Deploy_an_Application
https://success.outsystems.com/Documentation/11/Managing_the_Applications_Lifecycle/Deploy_Applications/Deploy_an_Application
http://www.phreeze.com
https://rapidminer.com/
https://guides.rubyonrails.org/command_line.html#bin-rails-generate
https://guides.rubyonrails.org/command_line.html#bin-rails-generate
https://developer.salesforce.com/
https://appexchange.salesforce.com/
https://appexchange.salesforce.com/
https://www.eclipse.org/sirius/
https://www.eclipse.org/modeling/
https://www.ibm.com/cloud/watson-assistant/
https://www.eclipse.org/Xtext/
https://zappdev.com/
https://www.zoho.com/creator/
https://www.zoho.com/developer/help/extensions/connectors.html
https://www.zoho.com/developer/help/extensions/connectors.html
http://people.disim.univaq.it/diruscio/
http://people.disim.univaq.it/diruscio/

D. Di Ruscio

Dimitris Kolovos is a Professor
of Software Engineering in the
Department of Computer Science
at the University of York, where
he researches and teaches auto-
mated and model-driven software
engineering. He is also an Eclipse
Foundation committer, leading the
development of the open-source
Epsilon model-driven software
engineering platform, and an edi-
tor of the Software and Systems
Modelling journal. He has
co-authored more than 150 peer-
reviewed papers, and his research

has been supported by the European Commission, UK’s Engineering
and Physical Sciences Research Council (EPSRC), InnovateUK, and
by companies such as Rolls-Royce and IBM.

Juan de Lara is full professor at
the computer science department
of the Universidad Autónoma de
Madrid. Together with Esther
Guerra, he leads the modelling
and software engineering research
group. His research interests are
in model-driven engineering and
automated software development.
Contact him at juan.delara@
uam.es, or visit http://arantxa.ii.
uam.es/~jlara/.

Alfonso Pierantonio is full pro-
fessor at the Università degli Studi
dell’Aquila (Italy). His interests
are in software engineering,
model-driven engineering,
and language engineering with spe-
cial attention to co-evolution tech-
niques, consistency management,
and bidirectionality. He has pub-
lished more than 160 articles in
scientific journals and conferences
and has been on the organizing
committee of several international
conferences, including MoDELS
and STAF. Alfonso is Editor-in-

Chief of the Journal of Object Technology and in the editorial and
advisory board of Software and System Modeling, and Science of
Computer Programming. He has been PC Chair of ECMFA 2018,
General Chair of STAF 2015, and is a Steering Committee mem-
ber of the ACM/IEEE MoDELS. He is a co-principal investiga-
tor of several research and industrial projects. You can contact the
author at alfonso.pierantonio@univaq.it or visit http://disim.univaq.it/
AlfonsoPierantonio

Massimo Tisi is an associate
professor in the Department of
Computer Science of the Institut
Mines-Telecom Atlantique (IMT
Atlantique, Nantes, France), and
deputy leader of the NaoMod
team, LS2N (UMR CNRS 6004).
Since 2019 he coordinates the
Lowcomote Marie Curie European
Training Network. He has been
visiting researcher at McGill Uni-
versity and the National Institute
of Informatics (NII) in Japan and
post-doctoral fellow at Inria. He
received his PhD degree in Infor-

mation Engineering at Politecnico di Milano (Italy), where he was a
member of the Database and Web Technologies group. His research
interests revolve around software and system modeling, domain-
specific languages, and applied logic. He contributes to the design of
the ATL model-transformation language and investigates the applica-
tion of deductive verification techniques to model-driven engineering.

Manuel Wimmer is full professor
leading the Institute of Business
Informatics—Software Engineer-
ing at the Johannes Kepler Uni-
versity Linz, and he is the head
of the Christian Doppler Labo-
ratory CDL-MINT. His research
interests comprise foundations of
model engineering techniques as
well as their application in
domains such as tool interoper-
ability, legacy modeling tool mod-
ernization, model versioning and
evolution, and industrial engineer-
ing. For more information, please

visit https://www.se.jku.at/manuel-wimmer.

123

http://arantxa.ii.uam.es/~jlara/
http://arantxa.ii.uam.es/~jlara/
http://disim.univaq.it/AlfonsoPierantonio
http://disim.univaq.it/AlfonsoPierantonio
https://www.se.jku.at/manuel-wimmer

	Low-code development and model-driven engineering: Two sides of the same coin?
	Abstract
	1 Introduction
	2 The history of low-code development
	3 Overview of low-code development platforms
	4 Low-code vs. model-driven engineering
	5 Low-code development: why now?
	6 What MDE can learn from low-code and vice versa
	7 Summary
	Acknowledgements
	References

