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1. Introduction

The first observations of auroral kilometric radiation (AKR) were probably those by Benediktov et al. (1965, 1968) 

on the Elektron-2 satellite. Although observations were made only at the highest part of the AKR spectrum 

(725 kHz), the observed emissions were clearly terrestrial with pronounced fluctuations in intensity observed at 

orbital distances less than 30,000 km from the Earth. They also showed a latitudinal variation with a minimum at 

the equator. Dunckel et al. (1970) observed AKR using the VLF receiver on the OGO 1 spacecraft. They referred 

to it as "high-pass” noise as the spectrum extended above the upper frequency range of the receiver. The noise 

was observed from a lower cutoff usually between 40 and 100 kHz, but sometimes as low as 20 kHz, mainly on 

the night side, and associated with magnetic storms. The source of the noise was not identified although it was 

suggested that it may be generated close to the Earth, as this could account for the approximate magnitude of the 

cutoff frequency.

The landmark paper by Gurnett (1974) described the first comprehensive study on the properties of AKR, then 

referred to as Terrestrial Kilometric Radiation, and its connection to substorms. The observations were made us-

ing radio wave experiments comprising 3 axis electric and magnetic antennae and filter bank spectrum analyzers 

onboard the Imp 6 and Imp 8 spacecraft. This basic instrumentation nevertheless allowed the main characteristics 

of AKR to be established.

The measured intensity of the radiation was modulated by the rotation of the antenna, with a deep minimum when 

the antenna null was aligned with the Earth. This indicated that the source had a small extent (<6° when viewed 
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from 32RE) and was within 3RE of the Earth. Furthermore, the variation of the power flux was observed to follow 

the inverse square law, as expected for a compact source close to the Earth. The radiation was detected by both 

electric and magnetic loop antennae, with the ratio of the electric and magnetic field power spectral densities 

close to that expected for an electromagnetic wave in free space.

The occurrence of AKR showed a distinct low-latitude cutoff varying from about 40° magnetic latitude at 3.0RE 

to about 10° magnetic latitude at 10.0RE. These results suggested that the AKR source must be at low altitude in 

the high-latitude region of the magnetosphere, with the cutoff resulting from absorption in the high density plas-

masphere. AKR occurred in storms lasting from half an hour to several hours, closely related with discrete auroral 

arcs. The intensity of the radiation strongly depended on the magnetic local time and latitude of the spacecraft. At 

its most intense, the radiated power in the frequency range 50–500 kHz was estimated to be about 108 W.

Kurth et al. (1975) used direction finding observations on the Hawkeye 1 and Imp 8 spacecraft to determine that 

the AKR source was at altitudes between 1 and 2RE, in the evening sector (centered around 22 MLT). By averag-

ing over AKR events lasting 1 hr or more the uncertainty in the measured direction was reduced to ±1° or less, 

which at a spacecraft distance of 23–46RE, gives a source location uncertainty of 0.4–0.8RE (2,500–5,000 km).

The cyclotron maser instability (CMI) was proposed as the generation mechanism by Melrose (1976) and Wu 

and Lee (1979). The emission is excited by the CMI perpendicular to the magnetic field in deep density cavities 

associated with the auroral acceleration region. The waves are subsequently refracted by density structures into a 

beam closely aligned with the plane that is tangent to the magnetic field in the source region.

Gallagher and Gurnett (1979) used the Hawkeye 1 and Imp 6 spacecraft to determine the time averaged source 

location of AKR. Intense sources are found in both hemispheres near 65° invariant latitude, 22 to 24 MLT and 

near 2.5RE.

AKR has a complex frequency-time structure first reported by Gurnett et al. (1979) from observations by the 

ISEE-1 and ISEE-2 plasma wave instruments. They suggested this frequency time structure may be due to the 

sources ascending or descending on the magnetic field lines, with emission occurring at the electron cyclotron 

frequency at the source location.

The first interferometric measurements of AKR were reported by Baumback et al. (1986) providing information 

about the generation mechanism and source size, rather than source location. Electric field waveforms measured 

in a narrow bandwidth at 125 and 250 kHz by the ISEE 1 and ISEE 2 spacecraft were cross-correlated. The space-

craft separation, on a line perpendicular to the source, varied from 20 to 3,868 km, while the source — spacecraft 

distance was mostly greater than 10RE. Correlations exceeding 80% were observed even for the longest baselines. 

The authors argue that this shows the radiation must be coherent and that the source cannot be more than about 

20 km in diameter.

Huff et al. (1988) determined the direction of arrival of strong AKR bursts received on the DE-1 spacecraft. By 

measuring the relative phase of the waves on two orthogonal electric field antennae as a function of the spacecraft 

spin, and assuming the waves are circularly polarized, both the azimuth and elevation can be determined to high 

precision. By further assuming emission occurs at the electron cyclotron frequency, they observed that the source 

locations were on field lines that mapped to features on auroral images taken by the same spacecraft.

Louarn et al. (1990) made the first in situ measurements in the AKR source region using a comprehensive set of 

wave and particle experiments on the Viking spacecraft. AKR source crossings are clearly observed as shown by 

a frequency minimum in the emission spectrum extending down to the electron cyclotron frequency (fce), together 

with an intensity enhancement. It is reported that detailed analysis of the electron distribution function supports 

a process where a trapped electron population, produced by a parallel electric field, drives the CMI and allows 

emission to occur over the observed AKR spectrum.

Knowledge of the AKR source region was further advanced by Ergun et al. (2000) using FAST spacecraft obser-

vations. They confirm the CMI as the generation mechanism with the important modification that AKR results 

from an unstable "horseshoe” electron distribution rather than a loss cone distribution. The instability results 

from electron acceleration by an electric field parallel to a dipole magnetic field. The electric field creates a 

density cavity within which the electrons have an energy from acceleration of a few keV and leads to a relativistic 
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correction to the electron cyclotron frequency (fcr = fce/γ). This allows the generation of radiation at frequencies 

just below the local fce, as observed.

In this review paper of Cluster AKR results after 20 years in orbit, we first describe the spacecraft and instrumen-

tation that made the observations. We then review the observations in three parts, the determination of source 

locations and angular beaming, investigations of the frequency/time structure of striated and pulsating AKR, and 

finally observations in the source region and on the ground.

2. The Cluster Spacecraft and Wideband Data Experiment

The four Cluster spacecraft were launched in two pairs in July and August 2000, into elliptical polar orbits with 

apogee up to 22RE. During AKR observations the separation between the spacecraft have varied from 2,000 km 

to more than 12,000 km. The spacecraft are spin stabilized at 15 RPM, and each spacecraft includes a pair of wire 

boom electric field antennae orientated in the spacecraft spin plane, measuring 88 m from tip to tip. Only one of 

these may be connected to the receiver at any time. However, as the orientation of the antenna changes with the 

spacecraft spin, some information on the polarization of the observed waves can be inferred.

The Wideband Data (WBD) experiment (Gurnett et al., 1997) makes high-resolution waveform measurements of 

a single field component up to 577 kHz. Frequencies above 77 kHz are handled in a frequency translation mode 

whereby a selected band is down-converted to baseband. The receiver provides three translation bands of 125, 

250, and 500 kHz which are normally used in sequence to allow a wide frequency coverage. An automatic gain 

control system is used with an 8 bit analog to digital converter to provide a dynamic range greater than 100 dB. 

Data may be acquired in several sampling modes including a wide band (77 kHz) duty cycled mode or narrow 

band (9.5 or 4.2 kHz) continuously sampled mode. Telemetry may be acquired in real-time at 220 kbit s−1 or via 

the spacecraft solid state recorder at 73 kbit s−1. In either mode a timing accuracy of around 20 μs is achievable.

A key reason for including WBD experiments on all Cluster spacecraft is to allow the location of remote sources 

to be determined by interferometry. An experiment to test this capability is described by Cummer et al. (2003). 

Rather than a natural radio wave source, the Radio Plasma Imager (RPI) experiment on the Image spacecraft is 

used as a transmitter. The experiment was performed on April 23, 2002, between 04:20 and 04:45 UTC. During 

this interval the Image — Cluster propagation distance varied from 3.6 to 2.7RE. The transmissions, with a power 

of ∼6 W, were received on all Cluster spacecraft throughout this time. Although the narrow bandwidth of the 

transmissions meant that the differential time delay technique ultimately used for determining AKR source loca-

tions could not be applied, the experiment did prove useful for Faraday rotation measurements.

3. AKR Source Locations and Angular Beaming

The first major Cluster AKR observations are described by Mutel et al. (2003). A novel technique is used which 

can determine individual AKR source locations with exceptional spatial and temporal resolution. These obser-

vations are made in a remote sensing mode where the spacecraft are located at a distance of around 10RE above 

the polar cap. Along most of the path the wave frequency is much greater than the local plasma frequency so the 

AKR propagates to the spacecraft as a free space electro-magnetic wave.

The technique is based on the measurement of differential time delays from at least 3 locations in space. The 

time delays are determined by cross-correlating AKR burst waveforms observed on pairs of spacecraft. Although 

similar to the technique of Very Long Baseline Interferometry, only the differential time delays are used and not 

the interferometer phases (Mutel et al., 2004). The AKR waveforms are divided into frequency/time windows 

of typically 1 kHz bandwidth and 0.3 s duration, and cross-correlations performed for all such windows falling 

within an observation. Normally the cross-correlation function will contain one significant peak, with the time 

delay of the peak being the differential delay (Figure 1, reproduced from Mutel et al., 2003, figure 6). The uncer-

tainty of this measurement is determined by the reciprocal of the AKR burst bandwidth and is typically around 

0.3 ms. For a baseline in the range 5,000–10,000 km perpendicular to the source – spacecraft line, and a line of 

sight 6–12RE between the spacecraft and the AKR emission, the position uncertainties perpendicular to the line of 

sight are 380–1,400 km at the location of the source. Even using four spacecraft, the uncertainty along the line of 

sight is large, so the altitude is determined by assuming that the frequency of the emission is equal to the electron 
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Figure 1. “Cross-correlation functions of Wideband Data waveforms received from all four cluster spacecraft on July 10, 2002 starting at 0846:53.04 UT. The 

waveforms were filtered in the time and frequency domain using windows of 300 ms and 1 kHz (506–507 kHz), respectively.” Reprinted from Mutel et al. (2003), 

figure 6.
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cyclotron frequency at the source location. When the estimated position is traced down the magnetic field line to 

100 km altitude, the uncertainty is reduced by a factor of 2–3.

The source location algorithm is applied to all data windows which provide valid cross-correlation delays. The 

expected time delays at the spacecraft locations are computed from every point in a 3 dimensional grid centered 

on the Earth. All grid points where the expected and measured time delays agree to within the measurement un-

certainty are included in the set of allowed positions. The positions are further constrained by keeping only those 

within one cell spacing of the surface where the electron cyclotron frequency is equal to the observed frequency. 

Finally, the centroid of the set of positions is taken as the position of that burst. Only a small proportion of data 

windows, typically a few percent, result in valid solutions. It is suggested this may be due to multiple AKR sourc-

es often illuminating the spacecraft at the same time.

The algorithm assumes propagation in a straight line from the source to each spacecraft. It is accepted that 

there are two situations where this may not be correct. First, there is a propagation distance of maybe 500 km 

upward from the generation region until the plasma density is low enough for free propagation to occur. This is 

not allowed for, so the source locations determined are for the region where free propagation begins. Second, 

the propagation may be subject to significant refraction due to the high density plasma in the plasmasphere. It is 

concluded that these propagation effects are not important for the observations reported in the paper, but could in 

principle be significant for low latitude paths (λm < 30°) at the lowest frequency (125 kHz).

The source locations of more than 1,700 AKR bursts are reported over six series of observations. As expected, the 

AKR sources are located on magnetic field lines connected to the night time auroral oval. In the north, burst loca-

tions tend to lie within the evening sector, while in the south they range from magnetic midnight to early morning.

Maps of the AKR source footprint locations for each epoch are shown in Figure  2 (reproduced from Mutel 

et al., 2003, figure 8). The footprints are distributed over an area measuring 1,000–2,000 km, much greater than 

the measurement uncertainty, but a small part of the auroral oval. At the time it was suggested that only this frac-

tion had conditions suitable for AKR generation though later work concluded that AKR may be generated over a 

large part of the oval, but only a fraction of sources are observable from a given location in space due to beaming.

Mutel et al. (2008) made the first direct determination of the beam direction of individual AKR bursts. They use 

the tangent plane beaming model illustrated in Figure 3a (reprinted from Mutel et al., 2008), where the waves are 

generated perpendicular to the magnetic field by a "horseshoe” electron distribution in density cavities associated 

with the auroral acceleration region (Pritchett et al., 2002), and then refracted outward by density gradients in a 

beam aligned close to the magnetic field direction. In Figure 3b the calculated refraction angle versus horizontal 

distance at three frequencies is shown, using an approximate long-term average electron density profile.

The authors use the differential time delay technique of Mutel et al. (2003) to determine the source locations of 

more than 12,000 AKR bursts. For each burst, the coordinates of each spacecraft are then calculated in a 3-dimen-

sional coordinate system centered on the source. In this system, x is parallel to the magnetic field direction, z at 

right angles to x in the magnetic meridian plane, and y completing a right handed set (Figure 3a). The "latitude” 

and "longitude” are then defined by analogy with standard geographic coordinates where the coordinate system 

xy plane is the equatorial plane, and z the polar axis. The distribution of spacecraft locations in this coordinate 

system is a measure of the beam width of the individual AKR bursts. This distribution is centered around 0° lat-

itude, with more than 98% within ±20°. The distribution is around twice as wide in longitude with most within 

40° of the origin. Note that this determination of the beaming pattern includes spacecraft locations with any 

detectable signal and may be somewhat wider than the half power beam width.

The implication for AKR generation mechanisms is nicely illustrated in Figure  4 (reprinted from Mutel 

et al., 2008). This compares visibility maps for the tangent plane beaming model and hollow cone models (Cal-

vert, 1981). The visibility maps show all AKR source locations which could theoretically illuminate the four 

Cluster spacecraft if the emission is beamed according to each model. The tangent plane model has a width of 

30° while the hollow cone models have opening angles of 20° and 40°. The AKR source locations determined 

from differential time delays (black x's and squares) fall almost entirely on the tangent plane beaming visibility 
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Figure 2.
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map (yellow), and clearly do not fit either of the hollow cone models. This beaming pattern implies that only a 

fraction of active AKR sources can be observed from a given remote location. It also allows a re-interpretation 

of previous Cluster studies of AKR source locations (Mutel et al., 2003) which are now understood to be only a 

fraction of the possibly active source locations.

Figure 2. “Auroral kilometric radiation burst positions observed at each epoch as a function of corrected geomagnetic coordinates. A statistical auroral oval (gray) is 

superposed for reference, based on the model of Feldstein and Starkov (1967) for a moderate Kp index. Each cross is the centroid of solutions for an individual AKR 

burst at 125–135 KHz band (red crosses), 250–260 KHz band (green crosses), and 500–510 KHz band (blue crosses). Epoch labels are (a) July 10, 2002 (Southern 

Hemisphere), (b) July 17, 2002 (Southern Hemisphere), (c) August 19, 2002 (Southern Hemisphere), (d) November 9, 2002 (Northern Hemisphere), (e) December 29, 

2002 (Northern Hemisphere), and (f) January 22, 2003 (Northern Hemisphere).” Reprinted from Mutel et al. (2003), figure 8.

Figure 3. “(a) Geometry of the tangent plane beaming model. The tangent plane cavity, shown in blue, is tangent to a 

circle of constant latitude at the source. The green lines are escaping ray paths, the black line is the magnetic field, and the 

yellow arrows are the xyz coordinates system described in the text. (b) Refraction angle versus horizontal distance for rays at 

125 kHz (red), 250 kHz (green), and 500 kHz (blue) initially perpendicular to the magnetic field. Ray paths are shown in the 

lower right inset.” Reprinted from Mutel et al. (2008), figure 1.
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4. Striated and Pulsating AKR

As first reported by Gurnett et al. (1979), AKR has a complex frequency-time structure. Often this has the form 

of emissions of narrow bandwidth and slowly drifting frequency that appear fairly random (see for example 

Figure 5 above 180 kHz). Less commonly, striated emissions with rapidly changing frequency (below 180 kHz 

in Figure 5) or pulsating emissions are observed. The following works interpret these striations or pulsations as 

modulation of the CMI by a disturbance (ion solitary structures, electromagnetic ion-cyclotron (EMIC) wave or 

Alfvén wave) propagating through the generation region, with the frequency drift determined by the velocity of 

the disturbance.

Mutel et al.  (2006) studied 651 individual striated AKR bursts observed by Cluster during 2002–2005. They 

report striated AKR to be a rare phenomenon with an occurrence of around 0.2% in the 125–135 kHz band, and 

less than 0.01% in the 500–510 kHz band. This compares to an occurrence of around 30% for non-striated AKR.

The frequency drift is typically in the range −2 kHz s−1–−8 kHz s−1. Assuming emission occurs at the electron 

cyclotron frequency at the source, this may be interpreted as the source moving upwards along the magnetic 

field line at 75–300 km s−1. Striated AKR has an unusually narrow bandwidth, typically around 20 Hz, when 

detrended by a signal of constant negative slope. Using this bandwidth the authors estimate the source extent in 

the magnetic field direction to be 0.76 km, and state: “This is considerably smaller than the lateral extent of the 

AKR source region and indicates the trigger for SAKR must have a dimension along the magnetic field of order 

1 km”. Further, by comparing the observed intensity on multiple spacecraft, the beam width (full width and half 

power) of individual bursts is estimated to be around 5° in the 125 kHz band.

Figure 4. “Comparison of visibility maps for tangent plane beaming model (0°–45° longitude, 0° ± 15° latitude, yellow) 

with 20° wide hollow cone models (opening angles 20° (red) and 40° (green)) for the 4-spacecraft Cluster array on October 

10, 2005 at 07:11 UT. The locations of auroral kilometric radiation burst source determined from differential delay solutions 

are shown as black x's (125 kHz), and squares (250 kHz).” Reprinted from Mutel et al. (2008), figure 4.
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The observed frequency slope, bandwidth and angular beam size are all reported to be consistent with triggering 

of the emission by ion solitary structures moving upward along the field line. Ion solitary structures are regions 

of localized ion density depletion associated with upward going ion beams. The authors suggest that a passing ion 

solitary structure may perturb the horseshoe electron distribution function driving the CMI resulting in a strong 

enhancement of the growth rate, and hence AKR emission at the structure 

location.

If striated AKR bursts are indeed stimulated by ion solitary structures, then 

these observations provide a new technique to study these structures. The 

45 kHz frequency range of the striated AKR bursts in Figure 5 imply that 

the associated ion solitary structures propagate upward for 1,100 km, with a 

lifetime of around 5 s, characteristics that could not be measured in situ with 

a single spacecraft.

Menietti et  al.  (2006) suggest striated AKR may be stimulated by upward 

traveling EMIC waves. An event was studied during an approximate con-

junction between the Cluster and Polar spacecraft. In-situ particle data near 

the top of the AKR source region (fce = 50 kHz) was obtained by Polar about 

20 min before Cluster wave observations at higher altitude above this region. 

Modeling of EMIC wave generation by the particle distribution observed by 

Polar suggest it is possible that such waves stimulated the observed striated 

AKR. However, as this was not a perfect conjunction, the EMIC waves could 

not be observed directly.

Hanasz et al. (2008) used the Cluster WBD experiment to study an unusual 

phenomenon where AKR is observed to pulsate at Pc1 frequencies (1–4 Hz). 

Just 15 events were found over 5 years of observations, with all but one of 

them occurring on May 16, 2005, between 13:25 and 14:50 UTC, in the re-

covery phase following a strong magnetic storm. The paper studies the sepa-

rate event shown in Figure 6 (from Hanasz et al., 2008, figure 1), observed on 

June 22, 2003 at 18:46 UTC. This event was chosen for its unusual regularity 

and measurable frequency drifts. The other events were at higher frequencies 

Figure 5. “Striated auroral kilometric radiation (AKR) bursts observed on Cluster spacecraft SC2 on January 15, 2005 

from 1,445:26 to. 1,446:15 UT. Individual burst trails extend from 180 to 135 kHz, corresponding to an altitude range from 

7,000–8,100 km. The yellow line is a calculated trail for a constant velocity source moving upward at 300 kms−1. Note that 

the SAKR bursts appear to originate at or near an intense, slowly drifting AKR source at ∼7,000 km.” Reprinted from Mutel 

et al. (2006), figure 4.

Figure 6. “High resolution FFT (2,180 points) frequency time spectrogram of 

auroral kilometric radiation pulsating at the Pc1 frequency, obtained from the 

SC4 Cluster satellite on June 22, 2003 18h45m55s UT. Overlaid are stacked 

intensity profiles in logarithmic scale, averaged over 1 kHz equivalent to a 

bandwidth of 10 successive frequency steps of the FFT spectrogram (obtained 

from 2,180 data points). The nearly vertical lines associated with selected 

pulses are quadratic regressions through maxima of pulse intensity. Position 

of the satellite: distance from the Earth 12 Earth's radii, magnetic local time 

(MLT) 6.9 hr, magnetic latitude −71.5°.” Reprinted from Hanasz et al. (2008), 

figure 1.
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with frequency drifts too fast to measure. The AKR pulses have rapidly increasing frequencies, which correspond 

to downward motion of the source at velocities (3,000–15,000 km/s) matching the calculated velocity of Alfvén 

waves in the auroral cavity.

The authors suggest that the AKR pulsations may be caused by EMIC waves generated in either the equatorial 

magnetosphere or the auroral cavity which are then converted to Alfvén waves. In any case, it is assumed that 

Alfvén waves at the pulsation frequency are present at altitudes of 11,500–13,500 km within the auroral cavity. 

They state: “These waves can periodically accelerate electrons on auroral field lines to energies of several keV 

and modify the “shell” electron distribution in the converging magnetic field, which is needed for generation of 

pulsating AKR through the electron CMI.”

It is suggested that the rarity of AKR pulsations at Pc1 frequencies may be explained given that Pc1 pulsations 

mainly occur on the dayside while AKR occurs mainly on the nightside. However there is some overlap between 

Pc1 geomagnetic pulsations in the afternoon sector and AKR occurrence in the evening sector. The source lo-

cation of the event subject to this case study is not known, being observed by a single spacecraft at high latitude 

with visibility of the whole auroral oval.

Pottelette and Pickett (2007) and Pottelette et al. (2014) studied the relationship between AKR fine structure and 

phase space holes. Although using mainly FAST data, they use one Cluster event from the May 16, 2005 interval 

identified by Hanasz et al. (2008) above. This remarkable event shows both pulsations and striations at the same 

time. Pulsations are observed at frequencies above a boundary f* at about 70 kHz, with striations below. Pottelette 

and Pickett (2007) state: “These observations can be interpreted as the result of a local acceleration by a pulsing 

parallel electric field layer located at a quasi-steady altitude of ∼11,000 km for which the value of the electron 

cyclotron frequency is f*.” Above this layer (at fce < 70 kHz) the slope of the AKR striations corresponds to a 

speed of 210 km/s which is typical for upward propagating ion holes. Downstream of this layer (at fce > 70 kHz) 

electron holes propagating earthward at high speed drive the pulsations.

For these Cluster studies of AKR modulation, no direct simultaneous measurements of the associated distur-

bances have been made. This is not surprising as AKR is normally observed in a remote sensing mode where 

the spacecraft are at a considerable distance from the AKR source and not even on the same field line, while 

conjunctions with other missions or ground stations are rare. However, Uozumi et al. (2011) reported a temporal 

correlation between Pi2 pulsations (∼1 min period) observed on the ground and the AKR power observed on the 

Polar spacecraft.

5. Observations in the Source Region and at Ground Level

By 2009, evolution of the Cluster orbit to lower perigee heights allowed observations within the auroral acceler-

ation region (the AKR source region). Mutel et al. (2011) report the first multi-spacecraft observations of AKR 

in the auroral acceleration region allowing the identification of the wave modes and plasma parameters. To help 

understanding of these results we briefly review wave propagation in a cold, magnetized plasma. There are four 

modes that can propagate, the LO and W (ordinary) and RX and Z (extraordinary) modes. The low densities in 

this region preferentially support wave growth in the extraordinary modes though the LO mode is sometimes 

observed (Hanasz et al., 2003). At frequencies below the upper hybrid resonance (fuhr) waves propagate in the Z 

mode. Above fuhr is a small gap below the RX mode low frequency cutoff, frx, where neither mode propagates. 

Both fuhr and frx depend on the magnetic field and electron density, such that frx > fuhr > fce. The Z mode is normally 

trapped in the plasma, since waves propagating upwards will encounter the fuhr cutoff before reaching free space, 

hence it can only be observed in-situ below the fuhr level.

Cluster observations of waves in the Z and RX modes are reported. Results from 12 December 2009 are shown 

in Figure 7 (adapted from Mutel et al. (2011), figure 3). The gap between the RX mode (above) and Z mode (be-

low) are clearly visible on the C3 and C4 spectra. These spacecraft are in similar orbits with C3 approximately 

3 min behind. The electron cyclotron frequency derived from the spacecraft magnetometer is shown as a dashed 

line, with fuhr defining the Z mode upper cutoff just above. Electron density measurements indicate the spacecraft 

entered a rather broad density cavity at around 04:30 until 04:45 UTC. Even within this cavity the density is 

relatively high, around 20 cm−3, leading to an fpe/fce ratio of 0.13.
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The authors compare the observed cutoff frequencies fuhr and frx with estimates derived from local measurements 

of the magnetic field and electron density. Overall there is good agreement, though on short timescales there are 

some differences, particularly for the RX mode. They suggest this could be due to a less distinct RX mode cut off 

frequency in the observations or a warm plasma correction to the theory.

The growth rates of the Z and RX modes and hence the relative intensities of the observed waves depend on the 

ratio fpe/fce (Mutel et al., 2011 use the symbol β to describe this ratio, which is not the same as the commonly 

defined plasma beta, the ratio of the plasma pressure to the magnetic pressure.). The authors report that the sim-

ilar observed intensities of the two modes and relatively high fpe/fce ratio are consistent with a model where the Z 

mode is generated at the source in preference to one involving mode-conversion at cavity boundaries, such as that 

by Pritchett et al. (2002). This is an important result when considering possible mechanisms allowing AKR to be 

Figure 7. Cluster Wideband Data spectrograms observed at spacecraft C2 — C4 on December 12, 2009 from 04:25 to 04:35 UTC. The RX-Z mode gap is marked by 

dotted lines. This is most visible on C3 and C4 spectra, which are similar but offset by 3 min according to the orbits. The dashed lines mark the local electron cyclotron 

frequency at each spacecraft determined by the magnetometer. The spacecraft positions as RE, magnetic local time and L value are marked. The color scale is power 

spectral density in V2m−2Hz−1. Adapted from Mutel et al. (2011), figure 3, with permission of Austrian Academy of Sciences Press.
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observed at low altitudes or on the ground. This situation contrasts with Viking observations reported by Louarn 

et al. (1990) with a density of 0.7 cm−3, an fpe/fce ratio of 0.04 and little if any Z mode waves observed.

It should be noted however that the intensities of both Z and RX modes observed by Mutel et al. (2011) are rather 

low at around 3 × 10−16 V2m−2Hz−1.This compares to AKR source region intensities of 5 × 10−7 V2m−2Hz−1 or 

more from FAST observations reported by Ergun et al. (2000), and an average spectral power of 10−8 V2m−2Hz−1 

quoted by Mutel et al. (2007). It suggests that in this case growth rates for both modes were substantially lower 

than typical for AKR sources. This may again be due to the higher plasma density during the Cluster observations 

compared to Viking or FAST. It is also possible that the Cluster observations were not local to the source.

Although AKR is usually observed in space at great distances from the Earth, there have been some reports of 

emissions resembling AKR at low altitude and on the ground (for example LaBelle et al., 2015; Parrot & Bertheli-

er, 2012). To further explore this issue LaBelle et al. (2022) conducted a campaign of simultaneous observations 

on the Cluster spacecraft and on the ground at South Pole. They suggest that the key to explaining AKR observa-

tions at ground level is that Z-mode radiation generated in the source region can convert to the whistler (W) mode. 

This can occur through refraction on density and magnetic field gradients, via scattering on irregularities, or 

through nonlinear mechanisms. The whistler mode can propagate long distances and under favorable conditions 

through the ionosphere to be observed at ground level. They refer to AKR that reaches the ground in this way as 

"leaked”. While the escaping and leaked AKR originate in different modes (RX and Z) in the source region, it 

is expected that the two modes are generated at the same time by the same unstable electron distribution, both 

within a narrow band just below fce, so similar fine structure features should be observed in each mode. Observing 

this coincident fine structure is difficult in practice given that many AKR sources are active simultaneously, and 

different subsets of these are potentially visible to observers in space and on the ground.

Observations were targeted when AKR was most likely to be observed at both locations that is during the austral 

winter when the Cluster spacecraft were at high southern latitudes and around magnetic midnight at South Pole. 

More recently the tangent plane beaming model (Mutel et al., 2008) was used to further constrain observations to 

times when Cluster was most likely to observe AKR visible from South Pole. A total of 90 hr of coordinated ob-

servations were scheduled over the austral winters of 2018–2020. During these observations AKR was observed 

∼5% of this time at South Pole and ∼30% on Cluster. Cluster observations were made in a mix of wideband and 

narrow band modes, the former being most suitable for comparing the fine structure with that at South Pole, 

and the latter allowing AKR sources to be located using the method of Mutel et al. (2003). Observations at both 

locations often show qualitatively similar AKR fine structure.

More rarely, almost identical fine structure has been observed, comprising about 0.1%–0.3% of the AKR ob-

served on Cluster during the coordinated observations, and ∼2% of the AKR observed at South Pole when Cluster 

was observing the appropriate frequency range. For example, in the event shown in Figure 8 (reprinted from 

Labelle et al., 2022) on June 29, 2020, between 03:17:00 and 03:17:20 a rising frequency structure from 500 to 

580 kHz is seen. Although no such correlation is seen after 03:18, it is entirely possible that the AKR observed on 

Cluster at this time is from a different source, not visible from South Pole. Differential time delay measurements 

on Cluster put the footprint of the AKR source field line during this event at around 1,000 km from South Pole, 

within the range of sub-ionospheric propagation from the exit point to the receiver.

For this event, the power spectral density observed by cluster is 1 µV2m−2Hz−1 and (assuming emission into a 

20° beam width) the estimated radiated power of the AKR source is 170 kW, while that of the AKR observed at 

South Pole is just 35 mW assuming an illuminated region 1,000 km in diameter on the ground. This suggests that 

the generation of leaked AKR is a relatively inefficient process. This suggestion is also supported by observations 

from low altitude spacecraft. Parrot and Berthelier (2012) report leaked AKR maximum intensities of the order of 

1 µV2m−2Hz−1 on the Demeter spacecraft at 700 km altitude. Escaping AKR with similar intensities are observed 

on Cluster at around 30 times greater distance from the source, implying a much greater radiated power.

6. Conclusions and Suggestions for Future Work

Multi-point observations by the Cluster spacecraft using a differential time delay technique have allowed the 

source locations of 1,700 individual AKR bursts to be determined during six epochs in 2002 and 2003 (Mutel 

et al., 2003, 2004). The position uncertainties perpendicular to the line of sight are 380–1,400 km at the source 



Journal of Geophysical Research: Space Physics

YEARBY AND PICKETT

10.1029/2021JA029499

13 of 15

location, which is reduced by a factor of 2–3 when traced along the field line to 100 km altitude. Comparing 

the source to spacecraft direction with the magnetic field direction in the source region, Mutel et  al.  (2008) 

determined the angular beaming pattern of more than 12,000 individual AKR bursts. These observations show 

that AKR bursts are beamed in a narrow plane tangent to the magnetic field direction at the source, and that this 

beaming pattern is not consistent with filled or hollow cone models. This beaming pattern also implies that only 

a fraction of active AKR sources can be observed from one remote location.

The rare phenomenon of striated or pulsating AKR has been the subject of several Cluster studies (Hanasz 

et al., 2008, Menietti et al., 2006, and Mutel et al., 2006). All suggest that the AKR structure may result from 

modulation of the CMI by a disturbance (ion solitary structures, EMIC wave or Alfvén wave) traveling through 

the generation region. Mutel et al. (2006) suggest that observations of striated AKR could be used to infer char-

acteristics of ion solitary structures that cannot be measured in situ with a single spacecraft.

However, no direct simultaneous observations of the associated disturbances were made as part of these studies. 

This is not surprising as AKR is normally observed in a remote sensing mode where the spacecraft are at a con-

siderable distance from the source. An opportunity to perform such measurements may occur during the Cluster 

mission extension in 2023/2024 when Cluster 2 will pass through the auroral acceleration region while the other 

spacecraft are at higher altitudes. This configuration differs from the low altitude passes earlier in the mission 

when the spacecraft were close together.

By 2009, evolution of the Cluster orbit allowed observations within the AKR source region (the auroral accelera-

tion region). Mutel et al. (2011) report the first multi-point in-situ measurements of AKR in this region allowing 

the identification of the wave modes and plasma parameters. Again, the Cluster mission extension may allow an 

extension of this work by permitting simultaneous in situ and remote observations. As suggested by one of the 

referees, the work would be much enhanced by including measurements of parallel electric fields and electron 

distribution functions to characterize the AKR source.

LaBelle et al. (2022) report simultaneous observations of AKR on the Cluster spacecraft and on the ground at 

South Pole which, on rare occasions, show matching fine structure. It is suggested that escaping and leaked AKR 

originate in different modes (X and Z) in the source region, with the Z mode then converting to whistler mode 

which can under suitable conditions propagate to the ground.

Figure 8. “500–610 kHz spectrograms of escaping auroral kilometric radiation (AKR) observed with the Cluster C1 and C4 satellites (top panel) and leaked AKR 

observed at South Pole Station (bottom panel).” Reprinted from LaBelle et al. (2022), figure 6.
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An incidental feature in the spectrogram in Figure 7 suggests it may be possible to study wave propagation from 

the source region to the ground in reverse, with the advantage of a constant controlled source. At 300 and 305 kHz 

extending from the start to just before the dashed line marking the local electron cyclotron frequency are what 

appear to be signals from ground based LF transmitters (other horizontal lines, including at 262 and 327 kHz 

are local interference). Over the full duration of these low altitude observations (beyond that shown in Figure 7, 

but available from the data archives referenced below) signals from transmitters with frequencies ranging from 

24 kHz to over 500 kHz are seen. Whilst the Cluster WBD experiment uses only a single antenna, the variation of 

the signal amplitude and phase as a function of the spacecraft spin allow determination of the wave polarization 

ellipse projected onto the spacecraft spin plane, and hence some information on the wave mode.
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