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ABSTRACT

Bipolar disorder (BD) and borderline personality disorder

(BPD) are two chronic mental health conditions that clin-

icians find challenging to distinguish based on clinical in-

terviews, due to their overlapping symptoms. In this work,

we investigate the automatic detection of these two condi-

tions by modelling both verbal and non-verbal cues in a set

of interviews. We propose a new approach of modelling

short-term features with visibility-signature transform, and

compare it with widely used high-level statistical functions.

We demonstrate the superior performance of our proposed

signature-based model. Furthermore, we show the role of

different sets of features in characterising BD and BPD.

Index Terms— bipolar disorder, borderline personality

disorder, speech analysis, paralinguistic modelling, path sig-

nature

1. INTRODUCTION

Bipolar disorder (BD) is a mood disorder characterised by ex-

treme mood swings between manic highs and depressive lows

that can last from days to weeks each. Borderline personal-

ity disorder (BPD) is a type of personality disorder marked

by a long-term pattern of varying moods, self-image and be-

haviour. They both can seriously affect the patients’ ability to

function in work and social activities [1, 2, 3]. They also can

co-occur in 10%-20% of the cases and since the symptoma-

tology of these two disorders is very similar, differentiating

between them poses a diagnostic challenge for the clinicians

[4, 5]. However, accurate diagnosis is crucial, as the most

effective treatment for BD being pharmacological while for

BPD psychotherapeutic. Standard diagnostic assessment for

BD and BPD rely primarily on clinical interviews where the

patients have to describe their accounts of symptoms. As a re-

sult it can be potentially influenced by patients’ retrospective

recall biases and cognitive limitations [6].

In recent years a number of machine learning based stud-

ies have investigated the use of acoustic features from speech

for automated assessment across several psychiatric disorders

showing diagnostic potentials [6, 7, 8]. Existing work on

bipolar disorder showed mood episodes affecting patients’

speech and in turn acoustic and dialogue features extracted

from speech can be used in detecting mood states [9, 10, 11].

In this work, we aim to model both verbal and non-verbal cues

in non-clinical interviews for the distinction between BD and

BPD, which remains understudied.

One key step of dialogue-based automated assessment

system is modelling a series of conversational utterances

and aggregate features from each segment to a fixed-size

representation for down-stream classification or regression.

Traditionally, a very popular approach has been to apply a set

of high-level statistical functions (e.g. mean, max, variance,

linear regression coefficients, etc.) for feature aggregation

[9, 10, 11, 12], where the role of these aggregation functions

is to describe the global characteristics of given spoken con-

versation. However, the conversational dynamics is not effec-

tively modelled during this process and important sequential

information may be ignored as a result. Recurrent neural

networks (RNN) are designed to explicitly model sequential

data, however, they are prone to overfit on small datasets.

Signature transform, initially introduced in stochastic analy-

sis, is a non-parametric approach of encoding sequential data

and capturing the order information in the data. It has been

proven effective in a range of machine learning tasks involv-

ing sequential modelling [13, 14, 15]. A recent study [16]

proposed summarising linguistic and turn-taking behaviour

features from recorded interviews using signature. However,

minimal description of its working was provided, and no

comparative evaluation was given.

The contributions of this work are as follows: (1) We

study three types of acoustic features for the classification

of BD and BPD patients; (2), We propose using visibility

transform to enhance the signature representation of con-

versational speech; (3), We evaluate and compare between

high-level statistical functions (HSF) and signature transform

(SIG) based models, and show the superiority of SIG.



2. AMOSS-I DATASET

The Automated Monitoring of Symptoms Severity Interview

(AMoSS-I) dataset [16] contains 50 participants, who were

interviewed and transcribed to gather qualitative feedback of

the original AMoSS study. Among these participants, 21 had

a BD diagnosis, 17 had been diagnosed with BPD and 12 were

healthy controls. Each participant was interviewed only once.

Among the 50 one-on-one qualitative interviews in AMoSS-

I, 32 were recorded in the meeting room while the remaining

18 were phone interviews. As summarised in Table 1, the

phone interviews are more likely to be shorter than the ones

conducted in the meeting room. We also take the difference

of the peak and trough values for Root-mean-square (RMS)

level measured over a 10 ms window, showing the difference

of loudness within each audio recording. Comparing to the

meeting room interviews, on average the phone interviews

are shown to have significant larger difference of loudness

within each one, mainly due to the way of recording. Ad-

ditionally, we find the noise level in the room interviews to

be higher as seen in their much lower signal-to-noise ratio

of 21.16 dB, computed by Waveform Amplitude Distribution

Analysis (WADA-SNR) [17].

Table 1. Differences in sample size and acoustics between

the room and phone interviews. N is the number of the inter-

views. Audio length in minutes summarised in the form of the

median +/- the interquartile range. The percentages of clipped

samples are averaged over each set of interviews. RMS diff

is the difference between the peak and trough values for RMS

level measured over a 10 ms window, in dBFS. Signal-to-

noise ratio (SNR) measures the amount of non-speech in a

speech signal in decibels (dB).

Env N Length %Clipped RMS diff SNR

Room 32 23± 12 10.28% 64.91 21.16

Phone 18 19± 10 3.48% 83.10 95.30

Both 50 22± 11 7.83% 71.46 47.85

2.1. Data Preprocessing

The two different recording environments also resulted in dif-

ferent levels of clipping. As shown in Table 1, clipping oc-

curs much more often in the meeting room interview record-

ings than the phone interviews, with an average of 10.28% of

the audio signals being clipped from their maximum range.

We have reduced the level of clipping by extrapolating the

clipped parts of the audio using an open-source digital audio

editor Audacity1. In order to alleviate the effect of loudness

difference shown in Table 1, we scale the audio signal for

each speaker turn separately, and make sure each turn is in

1https://www.audacityteam.org/

the range of -1 and 1. We apply a domain-adversarial neural

network based voice activity detection model [18] for intra-

speaker-turn segmentation. We also exclude speaker turns

that are shorter than 2 seconds to extract robust acoustic fea-

tures.

3. FEATURE EXTRACTION

Instead of using more complex features such as mel frequency

cepstral coefficients (MFCCs) or high-dimensional embed-

dings from pretrained speech encoders, we identify a set of

acoustic and (non-verbal) turn-taking behaviour related fea-

tures for their interpretability.

Prosodic features: During these dyadic interviews, par-

ticipants often exhibited changes in prosodic variables such

as the tone and intonation of their speech when they are rec-

ollecting their experience especially from the intensive week

of the study. We compute Legendre polynomial coefficients

for fundamental frequency (F0) and energy contours. To-

gether with segment duration they form 13 dynamic features

to capture the prosodic variations. Prosodic features have

been proven effective in identifying mood states in BD [6, 9].

Rhythm features: We also extract 7 rhythm features from

each speaker-turn using algorithm proposed by Tilsen and Ar-

vaniti [19] that is based on empirical mode decomposition

of the vocalic energy amplitude envelope. The envelope is

decomposed into two intrinsic mode functions (IMF). They

show the IMF-based rhythm features can capture information

about periodicities that likely correspond to different linguis-

tic constructs, and thus are useful for examining rhythmicity

in speech. Previous studies also used them for mood state

detection [10, 11].

Phonation features: Voice quality has an important role

in signalling paralinguistic information [20], and previous

study showed significant difference in the speaker’s voice

quality when comparing people who suffer from psycho-

logical disorder to healthy controls [21]. We compute 7

phonation-based dynamic features from sustained vowels and

continuous speech utterances, including jitter, shimmer, am-

plitude perturbation quotient and pitch perturbation quotient.

Dialogue features: To model high-level interactive pat-

terns in the dialogue, we extract the set of 13 turn-taking be-

haviour related features following the work in [11, 16], in-

cluding relative floor control, turn hold offset, number of con-

secutive turns, turn switch offset, speech overlaps and number

of words per second, per turn.

All acoustic and dialogue features are Z-normalised ei-

ther: 1) using the mean and standard deviation of each in-

terview respectively, denoted as “Person”, or 2) using the

mean and standard deviation of all training samples, denoted

as “Global”. Previous studies [10, 22] suggest normalisation

by “Person” focuses on each individual baseline and can re-

duce the potential extraneous effect, for example, caused by

different recording environment.



4. FEATURE AGGREGATION

The paralinguistic properties drawn from a patient’s response

in an interview, represented by the features described in Sec-

tion 3, can be indicative of the state of the patient at the time

of speaking. However, the state of the patient also evolves

while being affected by the highly dynamic nature of a dyadic

conversation. The common approach of applying high-level

statistical functions (HSFs) does not effectively capture this

dynamics. In this section we describe the method of signa-

ture transform (SIG), which we use to aggregate frame-level

acoustic or turn-level dialogue features and encode nonlinear

time-dependent interactions in the feature set, S(X).
A sequentially ordered data stream may be thought of

as a discretisation of a path of finite length X : [a, b] →

R
d, where a ≤ b and d ∈ N. For example, a speech se-

quence represented by its phonation-based dynamic features

can be thought of as a path of d = 7. Signature transform,

also known as path signature, describes a graded sequence

of statistics characterising the underlying path [23, 24], and

thus provides an effective feature set for capturing its total or-

dering (i.e., incremental effect) while ignoring the positional

effect. More specifically, consider a d-dimensional path X

over the time interval [a, b], the signature S(X) of this path is

the infinite collection of statistics2:

S(X)a,b =

(

{

S(X)i1a,b

}

1≤i1≤d
,
{

S(X)i1,i2a,b

}

1≤i1,i2≤d
, . . .

)

where each term is a n-fold iterated integral of x with multi-

index i1, . . . , ik:

S(X)i1,...,ika,b =

∫

· · ·

∫

t1<···<tk
t1,...,tk∈[a,b]

dXi1
t1

⊗ · · · ⊗ dXik
tk

where k ∈ N. S(X)i1,...,ika,b is termed as the kth level of the

signature. In practice we truncate the signature to order n to

have a finite dimensional representation. Note the positional

information in the data stream can be informative in many

applications. For example, it’s useful to know the beginning

and end of each speaker turn when modelling the conversa-

tion. The visibility transform, initially introduced in [26], is

able to embed the effect of the absolute positions of the in-

put sequence into signature transform, which is otherwise not

included in the signature as it is translation-invariant map3.

Consider a d-dimensional data sequence of length n, i.e.,

x = (x1, . . . , xn). The visibility transform in prior to com-

puting signature, adds two time steps and a binary coordinate

to the input sequence x that is equal to 1 until the second-to-

last time step:

φ (x) = (ap1(x1), . . . , ap1(xn−1), ap1(xn), ap0(xn),0) ,

2We refer the readers to [15] Appendix A for a formal definition of signa-

ture transform, and [25] for a primer on its use in machine learning.
3The mathematical definition of the visibility transform can be found in

[27].

where apc : R
d → R

d+1 is an operator expanding a d-

dimensional vector to d + 1 dimensions by appending scalar

c at the end, and 0 ∈ R
d+1. The resulting sequence φ (x) is

d + 1-dimensional and of length n + 2. We apply visibility

transform to our frame-level acoustic features per speaker-

turn before feature aggregation. This way the start and end

positions of each turn can be embedded in the interview-level

signature representation. We name this approach as VT-SIG.

5. EXPERIMENTS AND ANALYSIS

Following previous work we choose nested leave-one-subject-

out as the evaluation scheme, and logistic regression with L2

regularisation for classification. For each fold, we first apply

VT-SIG to each feature type, and keep only the first three

levels of the path signature4. We conduct feature selection

on signature-transformed interview-level features through

computing Pearson Correlation Coefficients (PCC) with the

IPDE scores5 on the training data and retain the features with

p-values less than 0.001. This results in a small number of

features. The selected features are then fed to the classifier

for 3 separate binary tasks: (1), BD vs. healthy controls, (2),

BPD vs. healthy controls, and (3), BD vs. BPD patients.

5.1. Analysis of the selected features

Five most significant and commonly selected features from

each task are briefly summarised in Table 2 as examples. Each

interview-level feature (a signature term) is represented as a

linear combination of the original frame-level or turn-level

features. We see almost all of the selected features are vol-

ume integrals, i.e., they are triple integrals of three acous-

tic/dialogue features. We notice the importance of the binary

coordinate (i.e., c in Table 2) from visibility transform, to the

task of H vs. BD. For example, (c, apq, logE) represents the

nonlinear effect between apq and logE only at the last frame

of each turn of speech6 while its feature values before the

last frame are shown to be unimportant. (IMF1 m, c, c) and

(c, IMF1 m), which represent the linear incremental effect of

IMF1 m and the linear effect of IMF1 m at the last frame (of

each turn) respectively, are also among the selected features.

While most of the important features for H vs. BD repre-

sent either purely incremental or (last-)positional effects, the

selected signature terms for the other two tasks are of nonlin-

ear mixed effects from both aspects. Overall, we notice the

importance of the phonation features in two tasks involving

BD and in particular, BD vs BPD. Rhythm features, which

4We use iisignature Python library, https://pypi.org/project/

iisignature/.
5The International Personality Disorder Examination (IPDE) [28] is a

semi-structured clinical interview designed to assess major categories of per-

sonality disorders.
6If c is indexed first in the signature term, then this term only captures the

effect from the coordinates of the following indices at the last time step. This

is proved in Theorem 5 of [27].



have previously used for mood state detection, are selected

in distinguishing between the BD/BPD patients and healthy

controls. For each acoustic/dialogue feature, we also anal-

yse its potential interaction effect with the recording environ-

ment, who the interviewer is and the gender of the partici-

pant, which we treat as control variables, by fitting a linear

model with diagnosis as response. We find the ‘recording en-

vironment’ variable significantly changed the effect of (apq,

c, logE) (p < 0.05). As a result we remove it from the final

feature set for classification, this way we only model effects

that are not systematically variable across situational factors.

Table 2. Top-5 most significant and commonly selected fea-

tures during LOOCV. Features belong to the dialogue cat-

egory are colored in red; rhythm features are in green and

phonation features are in blue.7

H vs BD H vs BPD BD vs BPD

(c, apq, logE) (SPBr, IMF12, IMF2 m) (DF0, Jitter, logE)

(c, logE, apq) (CNTR, IMF12, IMF2 m) (logE, DDF0, Jitter)

(apq, c, logE) (TL, n OVL, TSO) (logE, DF0, Jitter)

(c, IMF1 m) (n OVL, RFC t, SP m) (logE, Jitter, DDF0)

(IMF1 m, c, c) (n OVL, RFC t, n LP) (ppq, logE, DF0)

5.2. Results and Discussion

We first summarise the classification results obtained by using

visibility transform enhanced signature (VT-SIG) in Table 3.

With the (late) fusion of acoustic and dialogue features ex-

tracted from participants’ speech only, we obtain a AUROC

of 0.717 in H/BD, 0.841 in H/BPD and 0.716 in BD/BPD.

The classification performance drop sharply when we switch

to interviewers’ speech instead, due to the non-clinical nature

of the interviews. Modelling the interviews as a sequence of

turns from both speakers (named “Both”) also result in worse

performance than learning from only the participants.

Table 3. Classification results for three binary tasks: H vs.

BD, H vs. BPD and BD vs. BDP, using logistic regression.

Results shown are macro-averaged F1 and AUROC scores

across all interviews. p-value used for feature selection: ‘*’<

0.005, or else < 0.001 is used.

H/BD H/BPD BD/BPD

Subject F1 AUC F1 AUC F1 AUC

Participant 0.738 0.738 0.827 0.841 0.710 0.716

Interviewer 0.581 0.583 0.102* 0.100* 0.552* 0.556*

Both 0.477 0.488 0.512* 0.515* 0.683 0.686

7c: binary coordinate added during visibility transform; apq: ampli-

tude perturbation quotient, logE: logaritmic energy; DF0/DDF0: first/second

derivative of the fundamental Frequency; IMF1 m: mean within-utterance

instantaneous freq. of IMF1; IMF12: ratio between IMF2 and IMF1; SPBr:

ratio between power in envelope spectrum bands (1/3.5/10 Hz); CNTR: enve-

lope spectrum centroid computed over 1-10 Hz band; TL: duration of each

speaker turn; n OVL: number of speech overlaps; TSO: latency between

speaker turn transitions; RFC t: relative floor control (time); SP m: average

length of short pauses; n LP: number of long pauses (>500 ms).

We also compare results obtained by using different fea-

ture normalisation and aggregation methods described in Sec-

tion 3 and 4. First, we notice VT-SIG in general has the better

performance and is more reliable across all three tasks. As

for HSF though we have to increase the p-value feature selec-

tion threshold from 0.001 to 0.005 or even 0.01 to have any

feature for H/BD and H/BPD, it still obtains relatively poor

performance. Secondly, it is also shown normalising features

per interview (“Person”) has led to increased performance for

signature-based models with and without the use of visibility

transform (namely, VT-SIG and SIG). Different feature nor-

malisation methods have not made any significant impact on

the overall performance of the HSF-based models.

Table 4. Performance comparison among different feature

aggregation (Aggr)8 and normalisation methods (Norm). Re-

sults shown are average AUROCs across all interviews. p-

value codes: ‘**’<0.001; ‘*’<0.005; ‘†’<0.01.

Aggr Norm H/BD H/BPD BD/BPD

HSF None 0.381† 0.544† 0.681**

HSF Global 0.405† 0.515† 0.686**

HSF Person 0.575* 0.556* 0.543**

SIG None 0.554* 0.699** 0.644**

SIG Global 0.435* 0.699** 0.662**

SIG Person 0.661* 0.686** 0.716**

VT-SIG None 0.608** 0.728** 0.710**

VT-SIG Global 0.554** 0.811** 0.633**

VT-SIG Person 0.738** 0.841** 0.716**

6. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrate the potential of using speech

from non-clinical interviews for detecting BD and BPD. Mod-

elling short-term features and generating final representation

is key for any machine learning based mental health assess-

ment model. We propose the use of visibility-signature trans-

form that embeds sequential ordering for feature aggregation.

We show the better performance obtained by the proposed

approach comparing with widely used high-level statistical

functions. For future work, we plan for new data collection

with more participants and multiple interviews per subject,

from two different locations, which will allow for longitudi-

nal studies and cross-site validation.
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