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Abstract

A green revolution has accelerated over the recent decades with a look to replace existing transportation power solutions 

through the adoption of greener electrical alternatives. In parallel the digitisation of manufacturing has enabled progress in 

the tracking and traceability of processes and improvements in fault detection and classification. This paper explores electrical 

machine manufacture and the challenges faced in identifying failures modes during this life cycle through the demonstra-

tion of state-of-the-art machine vision methods for the classification of electrical coil winding defects. We demonstrate how 

recent generative adversarial networks can be used to augment training of these models to further improve their accuracy for 

this challenging task. Our approach utilises pre-processing and dimensionality reduction to boost performance of the model 

from a standard convolutional neural network (CNN) leading to a significant increase in accuracy.

Keywords Electrical machines · Machine learning · Computer vision · Manufacturing · Coil winding

1 Introduction

The increasing focus on carbon emissions in recent years has 

had a profound impact on many areas of technology, includ-

ing a very rapid adoption of electrical propulsion systems 

for transportation. A key building block in the electrification 

of transport is cost-effective and reliable manufacture and 

integration of electrical machines (EM) as a replacement for 

more traditional sources of propulsion power, most notably 

internal combustion engines, in order to provide a competi-

tive alternative to the incumbent technologies. The move 

towards increased mass production of electrical machines, 

the search for greater reach into other applications or pro-

vide alternatives to existing ones brings with it pressure to 

increase productivity, and improve designs towards manu-

facturing boundaries (light-weighting, reduced footprint, 

robustness and active component performance). A result of 

this is a much tighter control on the tolerances needed to 

maintain the high standard and qualities required for per-

formance and safety of the electrical machine, particularly 

in safety critical applications such as those found within 

aerospace. The effect of this is a need for better systems to 

be in place for the tracking and traceability of the electri-

cal machine manufacturing process across all key areas that 

impact the boundaries we wish to advance through better 

design / materials.

In parallel to the adoption of electrical systems in 

transport, there has been something of a revolution in 

manufacturing in recent years, with the adoption of 

ever-more digital technologies under the broad head-

ing of ‘industrie 4.0’. This digital revolution is seeking 

to exploit recent advancements in electronic hardware, 

algorithms, data processing and machine intelligence, to 

extract information throughout the manufacturing lifecy-

cle and gain value from it. This ‘manufacturing digitisa-

tion’ process has seen notable success in a number of 

fields and applications, in particular by facilitating an 

improved understanding of the processes that are under-

taken during the manufacture of a particular product, the 

ability to inspect and detect any anomalous variation in 

these processes, and to identify when such processes or 

activities produce errors that may lead to failure. A sig-

nificant amount of this endeavour has been enabled by the 

recent advances in machine learning and computer vision, 

with deep learning and deep neural networks (DNN) fea-

turing prominently. Harnessing these powerful tools at 

various stages in the manufacturing process, offers the 

prospect of being able to identify errors including the 
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underlying causes, improve condition monitoring of tools 

and systems, provide real-time and reactive guidance to 

workers, and collect insight into the influence of design 

features on the manufacturing process and final outcomes.

There are a number of failure modes that can arise 

in electrical machine over their lifecycle, from bearing 

failure, increased electrical resistance, insulation failure, 

and short-circuits that can lead to catastrophic failure dur-

ing operation. Although the operating environment and 

duty can play a significant role in the initiation of these 

faults, many can be traced back to the manufacturing pro-

cess in which they were constructed and assembled. One 

such area of concern in relation to process control is the 

winding of coils and their subsequent insertion into the 

stator core. Close tolerances and high repeatability are 

needed to ensure that both quality outcomes (fill factor, 

electrical resistance) are maintained and the introduction 

of faults (insulation damage, wire crossing and geometry 

errors) do not go undetected. This paper investigates the 

scope for how machine vision, particularly drawing on 

DNNs, can be used to aid in fault classification of errors 

within the coil winding manufacturing process of electri-

cal machines.

The main contributions of this paper include:

• A demonstration of coil winding defect classification 

for electric motor production using state of the art 

residual network convolutional models trained on a 

three-class problem image dataset.

• We develop a methodology for the dimension reduc-

tion of coil windings to improve further the classifica-

tion performance.

• We explore the role generative models can have in 

augmenting training data to further improve accuracy 

over a base model trained using limited data. Apply-

ing StyleGAN2 trained on our original coil defect 

dataset we are able to generate novel instance of coil 

windings to boost training size and overall perfor-

mance.

This paper begins with an overview of electrical machine 

manufacture and some of the key process control chal-

lenges before a look into recent applications of manufac-

turing digitisation and machine learning to solve some of 

these challenges. Section 3 presents a brief outline of the 

field of few-shot learning and generative data models and 

their applicability to this research of coil winding fault 

classification. Section 4 presents the coil winding failure 

use-case and discusses the methodology used to under-

take the coil winding failure classification task, followed 

by section 5 presenting and discussing the experimental 

results, before ending with conclusions of this work.

2  Electrical machine manufacture 
and quality assurance

The review presented in [1] gives a wide-ranging overview 

of some of the key areas in which digitisation, IoT and 

Industry 4.0 (I4.0) can impact the manufacture of elec-

tric machines. This includes a discussion on the funda-

mentals of I4.0 as it relates to data acquisition, storage, 

processing and visualisation and associated technologies 

(sensors, data analysis, machine learning and modelling 

and simulation). This review included a discussion of 

how the integration of these tools can impact or enable 

more advanced shop floor interactions such as machine 

to machine communications (M2M), human-machine 

interaction or knowledge-based systems, and finally how 

cyber-physical systems and the move towards more robotic 

or automated systems can be aided through further manu-

facturing digitisation.

A number of papers also exist [1, 2] that outline a num-

ber of major steps for the manufacture and assembly of an 

electrical machine and the variants therein (asynchronous, 

permanent magnet, etc), each containing common and 

unique processes and challenges. The core components of 

any electrical machine however consist of the stator and 

rotor cores, windings, slot and additional insulation, all 

encased within a housing. The steps, activities and pro-

cesses associated with the manufacture of these core com-

ponents and their assembly can vary, however a typical 

example begins with production of laminated steel sheets, 

cut into the desired shape for both the stator and rotor core 

and then stacked / sandwiched together and bonded into 

a whole. This can be achieved through a number of meth-

ods, such as standard cutting, electro discharge machining 

(EDM) or laser-based methods. After the stacking process, 

further bonding can occur, i.e. through welding and then 

the winding or coil insertion process can begin. The major 

manufacturing and assembly for electrical machines and 

the variants therein (asynchronous, permanent magnet, 

etc), were outlined in [1] and [2].

2.1  Electrical machine manufacture and process 
control

A wide variety of processes and material transforma-

tions are employed during the manufacture of electrical 

machines and therefore contribute to the final product 

quality. Establishing close control on any process vari-

ation, is therefore highly important as is tracking these 

tolerances over time. Of the many steps involved in manu-

facturing an electrical machine, arguably the most impor-

tant step which has the greatest propensity for part-to-part 
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variation is the winding and insertion into the core of 

the stator coils. Coil winding refers to various processes 

involved in forming a continuous copper wire (usually 

circular in cross-section) into a complete coil or series 

of connected coils for integration into a machine stator or 

rotor. Traditional winding processes can be categorised 

into linear winding, needle winding, flyer winding, or pull-

in winding [3]. All of these methods involve the seam-

less forming of an individual coil from single continuous 

strand of wire, although the individual coils which are 

combined to form a particular phase winding are often 

joined to each other with some form of electrical joint. In 

contrast, so-called hairpin windings involve pre-forming 

of short sections of each coil by bending into a hairpin-

like shaped components which are inserted into the stator 

slots, with each individual section then being connected to 

adjacent coils sections by welding or crimping to form a 

complete winding [4]. Although this type of winding can 

involve hundreds of individual in-situ welding operations 

it is attracting significant interest as a route to achieving 

a high slot fill factor, particularly for automotive traction 

machines [5].

In conventional coils wound with continuous wire, argu-

ably the key target of the winding process is maximizing the 

slot fill factor, i.e. the proportion of the slot cross-section 

which is occupied by copper as opposed to insulation and 

inter-turn gaps, as this has a very significant bearing on the 

power density and efficiency of the machine. This high slot-

fill factor must be achieved without compromising the integ-

rity of the wire insulation coating.

In forming successive individual turns within the coil, 

which may number many hundreds in some cases, it is 

important to control the position and geometry of each and 

every individual turn, Typical errors in the coil geometry 

which arise during winding are crossover, gap, loose wire, 

and double winding, along with more aggregate faults such 

as bulging, convex or concave winding. These faults mainly 

result from the incorrect wire feeder turning point, improper 

wire tension, residual strain as well as the stochastic nature 

of wire motion during winding [6]. In addition to discrepan-

cies in the layout of the coil geometry, is it also important 

to monitor the condition of wire insulation coating to detect 

damage and excessive residual tension. The main process 

parameters in an automated winding include, spindle speed 

ramp up, winding speed, machine stiffness, damping castor 

angle, wire feed rate, turning point, exit angle, wire tension, 

wire oscillation, and free wire length [7].

2.2  Machine learning for fault detection in EM 
manufacture

Over recent decades, the field of manufacturing has wit-

nessed a seemingly inexorable growth in the availability of 

data captured throughout the manufacturing lifecycle [8, 9]. 

This trend has accelerated of late with the advent of ‘Big 

Data’ and the Internet of Things (IoT) . The benefits from 

exploiting this resource ultimately relies on a capability to 

understand any underlying causal relationships that occur 

during manufacture and the anticipated aim or goals over 

which control is to be exercised, e.g quality outcomes, cost 

estimations, process optimisation and customer requirements 

[10]. However, there are several challenges in this endeav-

our, as the data can fall into many different formats and cat-

egories, semantics and quality. Moreover, the data is often 

also high dimensional, dynamic, temporal and fragmented, 

and in the most challenging processes, also difficult to obtain 

[10]. As a consequence, there is a pursuit to incorporate 

more powerful data analytics and machine learning algo-

rithms into the manufacturing lifecycle to address some of 

these manufacturing aims . Although data analytics, artificial 

intelligence and machine learning covers a broad spectrum 

of techniques, one such technique has caught the imagina-

tion of researchers over the recent years, that of deep learn-

ing through the use of deep neural networks. These data 

driven techniques are advantageous given that they are capa-

ble of finding highly complex and non-linear patterns and 

relationships in a wide variety of data and source modali-

ties, extracting important features, obviating the need for 

hand-crafted, engineered methods, towards applications for 

prediction, classification, regression and anomaly detection 

to name a few [10].

Examples can be found across many applications and 

systems within manufacturing, whether it is in attempts to 

automate or improve anomaly detection within industrial 

processes or provide feedback for corrective measures within 

these processes. The production and assembly of an elec-

trical machine across the life-cycle of its manufacture pre-

sents many challenges for a fault detection system capable of 

tracking and identifying failure across a number of interde-

pendent activities and tasks [11]. These activities are often 

spread across multiple manufacturing cells each performing 

a range of assembly operations and functional tests, possibly 

interspersed with manual activities undertaken by human 

operators [12]. The following section highlights recent work 

in the area of electrical machine manufacture and some of 

the challenges and solutions created through the use of 

machine learning and, in particular, machine vision.

2.2.1  Fault detection in electrical machines manufacture

Traditionally, the detection of processing faults or com-

ponent failure in the manufacturing of electrical machines 

has been reliant on targeted inspection or end-of-line tests 

(resistance testing, partial discharge testing, vibration 

analysis etc). To complement this approach, a number of 

life-cycle analysis and fault detection methods have been 
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employed to track and monitor the health of the machine 

during operation. The operating environment and duty of 

the machines can lead to the eventual accumulation of dam-

age and faults, through either contamination of the system, 

humidity ingress, elevated temperature cycling, vibration 

and partial discharge high-frequency inverter voltages [6]. 

Though this accumulation and damage occurs over the dura-

tion of the machine service lifetime, the component failure 

(winding short circuit, insulation failure, etc) and its cause 

can, in some cases be linked backed to its original manu-

facture and assembly. This has motivated many research-

ers and practitioners to develop in-process monitoring and 

fault detection methods as the electrical machine is being 

produced.

The processing of materials during the manufacture of 

electric machines can introduce a number of factors that 

influence the overall quality of the machine. By way of 

example, the stamping of the electric steel and its subsequent 

assembly into a stator or rotor core can cause the character-

istic magnetic properties of the electrical steel to change. To 

address this well recognized behaviour, work by [13] sought 

to develop a method for incorporating these process changes 

into a model for providing more accurate estimates of losses 

within the electric steel at the end of manufacture. Work by 

Meyer et al. [14] looked to develop a calibrated 64-pole hall 

sensor line array for the measurement of the magnetic field 

of an operating electric motor rotor during test at manu-

facture. By measuring this property, they hoped to be able 

to identify causal variations in cogging torque or targeted 

harmonics as a result of dislocated magnets, dimensional 

variation of individual magnets and varying remanence flux 

density.

2.2.2  Vision systems for fault inspection

An approach that employs a vision system to inspect the 

thermal expansion of the electric steel in stator core lami-

nations was developed by [15] to allow for tighter quality 

control and measurement of tolerances in stamping tool 

wear effect. Typically, stator parts are measured manually 

with both outer and inner diameters checked. As a means to 

avoid expensive coordinate measuring machines, useful for 

alignment of stator core laminations, this work developed a 

machine vision system that catalogues the stator sheet lami-

nation dimensions and uses this information across multi-

ple stator cores to establish a relationship between thermal 

expansion of the material and the measured shape, allowing 

it over time to identify where undesired sizing anomalies 

may occur due to this effect.

A common processing step that is a target for monitoring 

is the process of coil winding, assembly and terminations 

step of electrical machine manufacture. Early work by [16] 

considered the application of vision systems for stator faults 

(lamination gaps, mechanical damage etc), with a focus on 

the effect of illumination on detection and how it influ-

ences the practical introduction of the technology for this 

processing step. Similar work by [17] looked to combine 

more traditional computer vision methods with a deep con-

volutional neural network (CNN) for the automatic detec-

tion of defects within micro-motor armatures during their 

manufacture. Focusing on detecting regions of copper wire 

crossing, initially undertaken by operators through the use 

of microscopes, this approach is capable of rapidly iden-

tifying the region of interest, and classifying the category 

of failure to an accuracy of over 90%. The application of 

a machine vision system for the detection of copper wire 

insulation degradation for low-voltage electromagnetic coils 

has also been undertaken by [18] using an ensemble method 

to achieve respectable accuracy across six different degrada-

tion states.

One of the challenges when looking to apply machine 

vision methods is the need for data, often images from which 

a model can be trained to accurately detect or quantify a 

particular error or fault during a manufacturing process. The 

use of data augmentation is one such approach, capable of 

increasing the amount of available data. In one example of 

such an approach demonstrated by [19], was the application 

of a multitask convolutional neural network solution was 

used for the detection of wire defects within the inner sleeve 

of a spring-wire socket. Here, data augmentation is also 

explored to boost the training data available and increase 

classification accuracy. This multi-task solution is able to 

classify a number of different defects on data gathered from 

a real industrial setting achieving over 95% accuracy.

The introduction of automated and visual inspection 

systems capable of undertaking tasks often conducted by 

human operators has been of keen interest to researchers 

within electrical machine manufacture [16]. In many assem-

bly tasks the control process is still done by operators on 

the shop floor where the final outcome is dependent on user 

skill, experience and decision making capabilities. In addi-

tion to assembly tasks a number of inspections are required 

to check the process has been completed satisfactorily and 

that the electric machine meets certification or test require-

ments at that stage of assembly.

The use of human operators throughout the electrical 

machine process to undertake quality control tests during the 

process of manufacture is prevalent. This can often introduce 

a degree of variability in how each test is run or assessed, 

particularly if the requirements include visual inspections. 

As a result, a number of researchers have put forward solu-

tions that look to machine vision systems to perform these 

tasks. Work performed by [20] investigated a number of 

vison-based inspection systems for different steps of elec-

trical machine manufacture. These include the inspection 

of stator windings during motor assembly for faults missed 
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in standard electrical testing, where the coil is in contact or 

imminent contact with the rotor core. During the lifecycle 

of the machine this contact can lead to short circuit, and/or 

eventual conductor break. The vision-based system looks to 

characterize the coil and lacing cords of the windings and 

determine whether a contact has taken place, showing a high 

percentage accuracy in determining coil contact failure. Pre-

vious work [21] had investigated vision systems for detect-

ing contacts before insertion of the rotor before moving to 

inspection after insertion. Similar work on tracking rotor 

assembly includes work by [22] who investigated a means 

to extract texture-based features from images through the 

use of a Local Binary Pattern (LBP) method before using 

this information to feed into a convolutional neural network 

(CNN) model for final classification of rotor parts to detect 

missing or broken wire windings.

Beyond coils and lacing cords, work in [23] investigated 

the detection of defects and anomalies in electrical con-

nectors, in particular incomplete disconnection of the sta-

tor power cables during operation or manufacture, a defect 

that can be missed by human operators. A vision-based sys-

tem which utilizes a thresholding algorithm to enhance the 

region of interest was used to characterize the connector 

surface area / circumference and perform and assessment 

based on any deviation from expectations.

Electric contacts are another component within electri-

cal machines that have been targeted for machine vision-

based quality assurance. Work by [24] looked to develop 

a three-subsystem machine vision approach for detecting 

a number of defects (burrs, scratches, cracks and breaks) 

that can reside on the surface of electric contacts. Such 

defects can reduce the life-time of the product, causing 

diminished electric conductivity and heat conduction of 

contacts. Over the life-time of an electrical machine these 

defects can lead to premature failure of the machine dur-

ing operation. The proposed system consisted of three sub-

systems, which inspect the top, side, and bottom surfaces of 

electric contact for different types of defects respectively. 

Utilizing classical machine vision methods (edge detection, 

blob detection, component labelling, gamma transforma-

tions etc), the authors were able to develop an approach that 

produced accuracies of over 95% accuracy, albeit within a 

limited dataset. Some early work on cables and connections 

within manufacturing and processes within assembly have 

looked to develop systems for identifying the order of col-

our electrical wires for an industrial connector cable process 

[25]. A vision system was used to detect for displacement 

or deformation of any wires within the connector, providing 

positional information on the centre of each wire along with 

colour matching for determining wire order. As mentioned 

previously, one of the challenges in applying machine vision 

systems, particularly from the field of deep learning lie in the 

need for large amounts of data. The next section discusses 

recent work suitable to overcome this challenge by remov-

ing the need for large amounts of collected data, or allowing 

methods to generate new data for training.

3  Few shot learning & generative data 
models

Within the realm of manufacturing there are many examples 

where it is not possible to obtain sufficient training samples 

in which to provide suitable data for the development and 

application of machine learning methods, in particular those 

which require large amounts of data, ie DNNs. These exam-

ples include, obtaining anomaly data on disparate events 

that occur infrequently, quality assurance related data, such 

as images or videos tied to material or product failure, or 

process data tied to the lifecycle of a tool or machine that 

degrades over lengthy time periods (tool wear). Given, that 

this is not an uncommon feature of the challenges faced 

in environments and fields outside manufacturing where 

machine learning is also applied, then it is unsurprising to 

find that solutions to this constraint of limited data have been 

put forward and developed.

The two main approaches can be divided into either one 

of an algorithmic approach or data sampling approach. The 

first mainly looks to the development of new algorithms 

designed specifically for the task at hand (classification, 

prediction, regression etc) but under conditions of limited 

data, ignoring perhaps the most common methods for data 

augmentation (scaling, cropping, rotation, colour shift, etc) 

which are often introduced as a means to aid in generalisa-

tion as much as to increase the data sample size. For example 

the approach outlined by Yang et al. [26] looked at rotating 

machinery fault diagnosis using limited raw time-domain 

vibration signals. Here the authors introduce a convolutional 

autoencoder layer for feature extraction that is capable of 

working under limited data regimes. The second approach 

looks at generating new data (or augmenting available data) 

to facilitate training.

Deep neural networks that are trained on limited (few-

shot) or single (one-shot) samples have become more preva-

lent as a means to overcome the challenge of limited data in 

certain fields or applications. Wolf et al. [27] investigated the 

use of a bag of features representation to learn a similarity 

kernel for image classification of insects. Fei-Fei et al. [28] 

developed a variational Bayesian framework for one-shot 

image classification, while Qiao et al. [29] investigated the 

scenario where a large number of categories exist but the 

number of examples is limited. Here they propose a novel 

method that can adapt a pre-trained neural network to novel 

categories by directly predicting the parameters from the 

activations.
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Few-shot learning can cover a range of typical machine 

learning applications, from image classification, video clas-

sification, sentiment classification, object recognition [28], 

along with regression and reinforcement learning domains.

There are a host of techniques within the realm of few 

shot learning and they are listed below:

• Semi-supervised learning [30] which learns from a small 

number of labelled samples in conjunction with a large 

number of unlabelled samples.

• Weakly supervised learning [31] which broadly learns 

from data or experience that is incomplete, inexact, inac-

curate or noisy [32].

• Transfer learning [33], here often a pre-trained model 

on a relevant or similar problem domain (image classifi-

cation, regression), but cross domain application exists. 

The goal is to transfer knowledge from a domain with 

abundant data to a task or domain that has very little data.

• Imbalanced learning [34] involves the training of a 

model with an dataset of samples where the categories 

are skewed, either as a result of the problem (anomaly 

or fraud detection) or lack of data through other means 

(cost, time, accessibility).

• Meta-learning [35] Attempts to learn meta knowledge 

across a number of tasks as a form of generalization, 

before generalizing the meta-learner again for a new task 

using task-specific information / data.

Their application to the field of manufacturing and engineer-

ing has also been recently undertaken.

Authors in [36] have investigated how to use a ‘few-shot’ 

learning DNN algorithm for the diagnosis of rolling bearing 

failure. Fault diagnosis as a whole is a challenging task as 

the degree of variation within a working environment can be 

high, with the signals of the same faults often very different 

as a result of different working conditions and interdepend-

encies [36]. The authors were able to demonstrate for the 

first time that a few-shot learning-based diagnosis model 

can boost the performance of fault diagnosis by making use 

of the same or different class sample pairs. A survey of the 

field of few shot learning can be found in [32].

One shot learning takes the previous approach to the 

extreme. Here a single instance of a dataset set, for example 

an image of a particular class is presented to a network for 

inference, with the goal of recognizing whether it belongs 

within a specific class when paired with other samples.

Work undertaken by Deshpande et al. [37] demonstrated 

the use of one-shot learning for quality control in detect-

ing surface defects found on steel. Using a Siamese Deep 

Neural Network (DNN) approach and a limited dataset of 

hot rolled steel trip containing six classes of varying sur-

face defects they were able to show a high degree of predic-

tive accuracy given the limited available image data. The 

Siamese architecture can also be used for time-series data, 

in particular condition monitoring or predictive analytics 

within manufacturing [38] by exploiting their capabilities for 

differentiating between data instances for anomaly detection.

Generative models are a class of deep neural networks 

built to produce novel samples of high-dimensional data 

distributions, for example images, from a target data dis-

tribution. There exist many forms in which such generative 

models exist, such as the common autoregressive models 

[39], or variational autoencoders (VAEs) [40]. Another such 

method that has seen significant growth and application by 

exploiting adversarial learning are the class of models called 

Generative Adversarial Networks (GANs) [41].

Consisting of two networks, a generator network is 

trained to generate a new sample from a latent code that 

is hopefully indistinguishable from the target data distribu-

tion it is being trained on. Secondly, a discriminator network 

than looks to assess or act as a ‘critic’ of the produced data, 

trying to determine if it is from the original training data, 

i.e ‘real’, or from the generator model, i.e ‘fake’. Both the 

generator and discriminator are trained in parallel, compet-

ing against each other in order to improve themselves and 

‘outdo’ the other.

The general field of GANs has over the recent years found 

itself being applied to a number of interesting applications, 

from standard image synthesis [41], to image-to-image 

translation, semantic-image-to-photo translation, human face 

generation, and many more. The domain of manufacturing is 

one such area which has recently taken up the application of 

GANs to solve a number of challenging problems, whether 

it is to augment or generate new training data, or utilise the 

discriminator component for anomaly detection.

Surface inspection is one such example, here recent work 

by Liu et al. [42] utilized GANs to generate novel exam-

ples of defective errors on the target surface (button surface 

defect) which were later refined by wavelet fusion to improve 

pixel-wise accuracy. A surface defect segmentation method 

was proposed by Wei et al. [43] through the use of a defect 

sample simulation method, here a two stage simulation 

algorithm based on a GAN and a neural style transfer net-

work work to create a local defect and then blend it into the 

background to improve accuracy. A surface defect and crack 

detection framework was developed by Wang et al. 2019 

[44] to detect various cracks of scale and type found within 

inspection of rail lines through the use of acoustic emission 

technology. Here a Least-Square GAN is trained to improve 

‘burst-type’ crack signal denoising, preserving more detail 

of the event (crack waveform) and allow for improved clas-

sification / detection.

Further research into data augmentation techniques 

through application of GANs have been applied in a num-

ber of processing steps, for example, a critical step in the 

semi-conductor manufacturing process is defect detection 
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and classification. Examples of defects can be limited and 

are often created manually to aid in developing models for 

their detection. Work by Singh et al. [45] looked to utilize 

GANS for the synthetic generation of a defects to be used 

to augment the training of a CNN-based machine vision 

model for failure / defect classification. An automatic sur-

face abnormality detection and identification pipeline was 

developed by [46]. Here a GAN is used to generate exag-

gerated defect samples, which were used to enhance the 

accuracy of various classifiers to detect surface defects on 

steel and ceramic. The need for domain specific datasets 

within industrial settings for the creation of anomaly detec-

tion models, in particular those based around machine vision 

and images is a challenge. To overcome this, researchers 

[47], looked towards the creation of a GAN model for the 

automatic annotation and insertion of visual anomalies on 

existing industrial datasets (industrial reactor images) to aid 

in classifier model development and testing.

Beyond image generation, a number of other applications 

have been trailed within manufacturing, varying across sim-

ple anomaly detection, to manufacturability and design. For 

example, to overcome the limited and unbalanced data of 

real-world examples for mechanical faults within manufac-

turing systems, the development of a conditional GAN for 

the generation of failure signals from operating machines 

(electric machine) was proposed [48]. By augmenting the 

available data, the researchers were able to improve the clas-

sification of mechanical failures (bearing, gearbox) through 

the use of a CNN-based classifier using the additional GAN 

generated samples. Machinery plays a significant role in 

manufacturing systems, with even small deviations or dete-

rioration machinery components leading to product quality 

variation or even halting the process altogether. The limited 

availability of data pertaining to machinery failure makes the 

development of systems for fault detection difficult. Work 

by Dai et al. [49] use a GAN model trained on samples of 

normal operation of manufacturing machinery, before the 

discriminator is extracted and used as a means to detect 

anomalies that deviate from the expected normal operator 

frequencies. This work, applied to three different use-cases 

(bearing, gearbox or rotor operation) showcased the benefits 

that GANs can bring to fault diagnosis and generalisation 

to a number of different applications over more traditional 

methods.

Manufacturability is an important constraint for any given 

product or component design. The use of GANs for the gen-

eration of synthetic 3D voxel that lie within the distribu-

tion of the training data, in this instance real manufactured 

designs has also been researched [50]. The model is then 

able to output new 3D voxel design from the latent space, 

allowing optimization for manufacturability to occur within 

the latent vector space. By way of example, the manufac-

ture of semiconductors requires the use of extremely precise 

lithography processes to build the desired mask pattern. One 

step in this process is the use of lithography simulation, a 

means to avoid costly experimental verification, simulation 

is used as a faster replacement, however the steady decrease 

of feature sizes means model complexity is on the increase. 

To overcome this challenge Ye et al. [51] investigated the 

use of a GAN-based approach, coined LithoGAN, for the 

generation of the required output resist patterns from the 

supplied input masks. They were capable of demonstrating 

the capability to produce accurate resist patterns with an 

order of magnitude increase in speed.

4  Methodology

Electrical machine failure as a result of defects within the 

enamel copper wire coils or supporting bobbin / stator tooth 

can arise as a result of many factors. Careful consideration 

has to be given to the tooth design, including in some cases, 

the inclusion of a suitable inner groove geometry to aid in 

alignment of the first layer of copper wire. Manufacturing 

tolerances must also be tight, as the presence of a burr or 

other shape deviations can lead to errors in the alignment or 

geometry of the wires during the coil winding process [7]. 

There are also a number of possible geometrical and struc-

tural defects that can arise in the manufacture of electrical 

coils as shown in Fig. 1. An interval of low wire tension can 

lead to loose wire ends in the winding or errors in individual 

layer structure, which can then give rise to further sources 

of defects, such as reduced thermal characteristics due to 

loss in thermal conduction between the wiring and stator 

tooth / bobbin.

A process error at a particular layer may give rise to a 

gap or wire crossing, or double winding, whilst errors in 

tension may result in development of a loose winding [7]. 

These defects can give rise to increased electrical resistance, 

increasing temperature and creating internal ‘hot-spots’ that 

may that eventually cause catastrophic failure of the coil 

insulation. Changes in wire / coil geometry, for example a 

bulging, convex or concave winding, can also lead to simi-

lar failure through poor thermal conductance, or loss of fill 

Fig. 1  Typical coil winding failures
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factor. Variation in stresses applied to coil winding process 

can also often be identified through wire damage or tears [7].

Taking into consideration the possible defects that can 

occur during the coil winding process, a number of defect 

failures were considered, developed and then used for the 

investigation into the application of machine vision for qual-

ity inspection. Three classes of coil winding quality were 

chosen, two failure classes (gap and crossover as shown in 

Fig. 1), and a single pass class which contained not defects. 

Each coil was hand wound, using the available 1mm diam-

eter circular enamelled copper wire onto a mock-up of a 

simplified stator tooth (produced by 3D printing). Each coil 

consisted of two layers of winding, sufficient to demonstrate 

each class. The gap failure is derived through a single or 

double width gap in turn spacing, whilst the crossover fail-

ure involves a single wire crossing situated on the top most 

layer, both can be seen in Fig. 1. Following the creation of 

a number of examples of coil winding failure, an imaging 

dataset was developed through an imaging apparatus.

The imaging apparatus used to create the coil failure 

dataset shown in Fig. 2 is composed of two main compo-

nents, the first a test bed built to house a FLIR Blackfly 

S camera directly above the test plate, and the second a 

set of 3D printed single tooth ‘stator’ bobbins used as a 

core for the winding of 1mm enamelled copper wire as 

discussed previously. In addition to the FLIR Blackfly S 

camera, an Intel RealSense D435i depth imaging camera 

was incorporated into the test bed. The camera will be 

used for future experiments. For every image created, the 

wound tooth module is placed in the centre of the imaging 

apparatus, and in order to increase the number of images 

generated there are number of operations applied. These 

are two different levels of camera lens zoom (close and 

far), three different orientations (90◦ , 180◦ and 270◦ ), 

and two different light source directions (left side, right 

side). A total of 683 images were created across the three 

classes and split into training (crossover: 196, gap: 419, 

pass: 23) and validation (crossover: 20, gap: 20, pass: 5) 

sets. Armed with this image dataset, it is possible to train 

a machine vision model for fault classification of the coil 

winding process.

Machine vision methods for the classification of images 

can come in many forms for example the more traditional 

feature descriptors such as SIFT methods can be used to cre-

ate a’ bag of features’ that characterise the image or object 

class. These are often combined with K-Means, or Support 

Vector Machines to partition or cluster these features to spe-

cific classes of object. An alternative and currently popular 

approach is the use of DNN methods such as convolutional 

neural networks. As described in section 2B, the range of 

application and its success within manufacturing is undeni-

able however there are some limitations to the use of this 

approach. In some cases, DNN methods for machine vision 

require priors or embedded knowledge in the model archi-

tecture in order to work well, evidence by the success of 

convolutional neural networks and their convolutional ker-

nels and pooling layers derived from biological processes. 

There is also the challenge of learning relationships between 

objects in an image, and their order, for example when a 

scene contains multiple objects that need to be identified. 

Finally, CNN methods are not as overly generalizable as 

some traditional methods, and reliant on training data, if 

this is limited the model can overfit and will fail outside of 

the original distribution it is trained on. However, even with 

these constraints the applicability and success of modern 

CNN models makes it an ideal choice for this class of manu-

facturing problem.

In this instance the Residual Network architecture with 

50 layers or ResNet-50 [52] is used, shown in Fig. 3. The 

ResNet-50 model was pre-trained on the classic ImageNet 

[53] benchmark dataset, before being retrained again through 

transfer learning by adapting the last softmax layer for our 

specific coil winding failure dataset.

Fig. 2  Test rig used to build dataset for coil winding failure

Fig. 3  ResNet50 Architecture
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The ResNet50 network is a deep convolutional network 

which utilizes skip convolutional layer blocks with short 

connections as shown in Fig. 4. These basic blocks, named 

‘bottleneck’ blocks follow two simple design rules. Firstly, 

for similar sizes of output feature maps, the same filter num-

bers were applied to layers, and secondly, if the feature map 

is halved, the number of filters is doubled, this is shown 

in Fig. 3, with each set of coloured blocks / layers. Down 

sampling is performed directly by convolutional layers that 

have a stride of 2 and batch normalisation is carried out 

immediately after each convolution and before the activation 

of ReLU. When the input and output are of the same dimen-

sions, the identity shortcut is used. When the dimension’s 

increase, the projection shortcut is used to match dimen-

sions through 1 x 1 convolutions. In both cases, when short-

cuts passed through feature maps with two different sizes, 

they are performed with a stride of 2. The network ends 

with a 1,000 fully connected layer with softmax activation. 

The total number of weighted layers is 50, containing over 

23,534,592 trainable parameters.

The pre-trained ResNet50 network is then frozen for the 

first 49 layers, leaving the final 1,000 fully connected layer to 

be replaced with 3 fully connected layer tied to the specific 

classes for which an accurate identification is sought.

4.1  Proposed experimental method

The proposed set of experiments and methodology can be 

broken down into a number of steps:

• An image dataset for the 3 classes to be classified was 

created using the test apparatus (crossover, gap and pass). 

This will form the base dataset for all future experiments 

in this research.

• Convert each RGB image to be fed into the chosen 

ResNet50 architecture by rescaling to 224 x 224 dimen-

sion and subtracting the mean RGB value computed on 

the ImageNet dataset from each pixel, as proposed by 

Krizhevsky et al. [54].

• Build a deep convolutional neural network (CNN) based 

on the ResNet50 architecture, replacing the final layer 

with a 3 fully connected softmax layer and using the pre-

trained weights for the initial 49 layers.

• Undertake three separate experiments using this base 

ResNet50 model:

– Original Dataset: Through transfer learning, freeze 

the preceding layers of the ResNet50 model, whilst 

allowing the new 3 fully connected softmax layer to 

retrain.

– Augmented Dataset: Incorporate a new pre-processing 

step to extract the region-of-interest (ROI) and dimen-

sion reduction for each image through the use of the 

GrabCut algorithm [55].

– Generative Dataset: Expand the original dataset 

through the use of a Generative Adversarial Network 

(GAN) model to create new images and investigate 

whether such newly generated can boost accuracy of 

the ResNet50 model through increased data.

The augmented dataset was developed in order to pre-

process the original images so as to reduce the complexity 

of the classification task. To begin with the dimensions of 

the image were reduced by flattening the colour channels so 

as to only keep the blue values within the RGB image. The 

next step was to apply the GrabCut [55] algorithm to further 

process the region of interest (ROI), focusing around the 

actual coil and removing any additional structures (bobbin, 

background scene) that might affect the training and over-

all performance of the ResNet50 model. The segmentation 

of foreground from background has a number of alterna-

tives, most recently the use of state-of-the-art DNN meth-

ods trained to segment out the object of interest. Though 

supervised DNN methods can achieve very high accuracy 

they require significant amounts of labelled data to train 

Fig. 4  Residual block



 The International Journal of Advanced Manufacturing Technology

1 3

effectively. Traditional image processing methods such as 

the watershed algorithm can also be applied, based upon 

the analogy of a topographic surface, where hills and valleys 

denote background and foreground for segmentation, and the 

algorithm slowly defines each over a series of iterations. For 

clearly defined objects this approach can work well, however 

often noise or complex scenes lead to over segmentation. 

Alpha mapping methods are supervised methods that require 

a labelled ’trimap’ and uses a linear colour model to predict 

the likelihood of a pixel being a foreground or background. 

One problem with alpha mapping is the requirement for an 

error free mapping, otherwise distortions of the mask can 

occur.

Methods developed around the Gaussian Mixture 

Model (GMM) have also shown impressive performance, 

utilising a probability density function for each pixel, new 

pixels from new images can be separated into background 

and foreground using this model, and also updated based 

upon recent information. It is here we look for fast and 

accurate separation. The GrabCut algorithm, developed 

by Rother and Kolmogorov [55], takes as input a ROI suit-

able enough that it separates both the foreground to be 

extracted and the background pixels we wish to remove. 

A k-mean clustering algorithm is then applied to cluster 

the pixels of the foreground and background respectively. 

Once the pixels have been clustered, GMM is used to 

model the foreground and background pixels. As a result, 

the probability that each pixel belongs to the foreground or 

background can be calculated. A final energy minimisation 

step is used to extract the foreground pixels of interest. 

The overall process of the GrabCut algorithm can be seen 

in Algorithm 1.

The generative dataset was developed as a means to 

expand the availability of training data, with the hope of 

increasing the accuracy of the trained ResNet50 model by 

increasing generalisation. The limited size and imbalanced 

nature of the original dataset, means that there is a risk of 

overfitting and skewing to particular classes of failure is a 

risk. To overcome this, we utilized a generative adversarial 

network or GAN was used to provide additional training 

samples to boost the imbalanced datasets and negate any 

skewing, and overall improve model accuracy.

To this end, a number of GANs exist within the literature 

that are applicable to learning the data distribution of the 

original dataset and capable of generating new image sam-

ples that lie across our three classes. One such popular GAN 

for natural image synthesis is the StyleGAN [56] model, 

in particular the most recent incarnation StyleGAN2 [57]. 

This particular class of generative model incorporates new 

changes such as weight demodulation along with a progres-

sive training regime that starts with low resolution images 

and gradually shifts focus to higher resolutions and its archi-

tecture can be found in Fig. 5. The approach adopted seeks to 

take a pre-trained StyleGAN2 model, originally for the gen-

eration of high definition faces, and through transfer learning, 

re-train the model using the original coil dataset. Over time 

the GAN learns to output images from the target dataset dis-

tribution as shown in Fig. 6. Once trained the models latent 

space can be sampled to generate new images and for each of 

the classes increase the available number of images to train 

on. Some examples of the output of the trained model can be 

found in Fig. 7. The StyleGAN2 model was then trained on 

the original dataset of 683 images, over 100 epochs until the 

model had converged and no further improvement in image 

quality could be discerned. This model was then used to gen-

erate 130 new coil image samples that did not exhibit any 

defects and could be used to overcome the imbalance with the 

pass class by boosting the numbers available for training from 

23 images to 153, now more in line with the other classes.

Experimentation involved training an instance of the 

ResNet50 model over 100 epochs using a batch size of 20. 

The optimizer used was ADAM, with a learning rate of 1e−3 . 

During the training process, standard augmentation tech-

niques are applied to improve generalisation of the model. 

These are random resize and crop, random rotation, and ran-

dom horizontal flip using default settings. For each of the 

three datasets, an instance of the ResNet50 model is trained 

five times in order to gauge their mean performance.

For all experiments the performance was evaluated using 

accuracy, f1-score, recall and precision as a means of perfor-

mance evaluation. These evaluation metrics have been used 
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extensively in the research community to provide detailed 

assessments of methods.

• True Positive (TP): The true category is positive, pre-

dicted category is positive.

• True Negative (TN): The true category is negative, pre-

dicted category is negative.

• False Positive (FP): The true category is negative, pre-

dicted category is positive.

• False Negative (FN): The true category is positive, pre-

dicted category is negative.

Using the above factors, each of the metrics mentioned 

can be calculated.

Accuracy is defined as the ratio of correctly predicted 

outcomes to the sum of all predictions:

Precision is defined as the proportion of positive predic-

tions that are actually correct:

Recall is defined as the models ability to correctly 

detect all potential classes:

F1-score is defined as the weighted average of recall 

and precision:

The next section provides and analysis and discussion 

of the results for each approach, looking at their benefits 

and drawbacks to coil winding failure classification.

(1)Accuracy =
TN + TP

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1 − score =
Precision × Recall

Precision + Recall

5  Coil winding failure classification

The focus in this paper is an approach for classifying coil 

winding failures that lead to structural / geometric defects 

in the coil layout rather than, for example, very localized 

defects in the integrity of the insulation coating.

Beginning with simply the original dataset, which stands 

as imbalanced due to the lack of examples within the ‘pass’ 

class it can be seen that the model itself is able to train up 

to an accuracy of just over 65% as seen in Fig. 8 (mean 

across all five runs). The shortfall in performance is as a 

consequence of the model being incapable of discerning the 

‘gap’ failure class images, instead classifying them as ‘pass’ 

class images instead as shown in Fig. 10 and Table 1. In this 

case, the model has a strong recall for the ‘pass’ class while 

exhibiting poor precision, indicating that it has, at least in 

this instance, simply learnt to overclassify the ‘pass’ class set 

of images in relation to the ‘gap’ class. Where the ‘crosso-

ver’ class of images often exhibit a more defined structural 

change, i.e. two wires overlapping and the resulting visual 

Fig. 6  Generative Adversarial Network (GAN) training process

Fig. 7  GAN generated examples
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features that brings, the ‘pass’ and ‘gap’ are quite similar, 

with only the edge of the wound bobbin an indicator between 

the two as a visible characteristic.

There is some improvement through the bolstered and 

more balanced generative dataset results. Here the model, 

trained on the additional GAN generated pass images sees 

a modest increase in accuracy to just over 70%, though both 

do track relatively the same across training and validation 

accuracy as shown in Fig. 8. There is a distinct change as a 

result of the additional images in both training and validation 

loss over the course of the 100 epochs between the original 

and generative datasets. In Fig. 9, the original dataset model 

is able to improve its loss over the course of training, but 

is unable to exhibit this improvement transfer over to the 

validation set, oscillating around its starting loss until the 

end. This is not found within the generative dataset, which 

is capable of improving its accuracy on the validation over 

time. Ultimately the introduction of new GAN generated 

images within the generative dataset has had some positive 

impact, showing some modest improvement in both preci-

sion and recall when compared against the original dataset. 

The model is now more capable of differentiating between 

the ‘gap’ and ‘pass’ image classes, showing higher precision 

and recall as shown in Table 1.

Finally, the approach to include some pre-processing of 

the images in the augmented dataset has had a significant 

impact on performance, in relation to the original data-

set. To begin with, the overall accuracy of the model has 

increased to around 87%, a significant boost to performance. 

Interestingly, there is also a marked change in the mod-

els training and validation accuracy and loss during the 

process. The training loss is much higher, though with a 

similar shallow and gradual improvement over time, when 

compared with the other models. The accuracy follows a 

similar pattern, gradually increasing to around 89% accu-

racy over time, a large shortfall under the 95% found by the 

other models. It is only in the validation set that it can be 

observed how the marked difference in accuracy is played 

out, showing a much greater reduction in loss over time, and 

a consistent improvement in accuracy that matches the lev-

els found within the training set. This is echoed in Table 1, 

where the augmented dataset model has a marked improve-

ment in precision and recall across the three classes.

The models ability to better generalise, and it would seem, 

not over fit on the training data is one possible explanation for 

the improvement. The reduction in the complexity of the input 

space through lowering the colour channels and removing of 

background features also seems to have played a role. One of 

the key characteristics of the ‘gap’ class is its distinguishable 

deviation in the surface edge as shown originally in Fig. 10. 

Under the lighting and zoom conditions it would seem that 

the original dataset was still a challenge in trying to capture 

these details. However, the application of the GrabCut algo-

rithm means that such features are somewhat exacerbated, 

through the removal of any background noise and extenuat-

ing the foreground coil shape itself. Samples of images and 

the models predictions can be observed in both Figs. 11 and  

12 for the original and augmented datasets.

Fig. 8  Mean training (a) and validation (b) accuracy for original, GAN and processed dataset ResNet-50 model
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5.1  Future directions and challenges

Several pointers to the overall picture of in-process moni-

toring of coil winding within the manufacture of electrical 

machines can be garnered from these findings. Firstly, the 

challenge is non-trivial, even when simplified to the use case 

presented in this paper, it requires additional processing to 

achieve anything remotely useful in the domain of deep neu-

ral network-based machine vision. The conditions in which 

the images are generated in-situ of an industrial process can 

for the most part be controlled, and this paper demonstrates 

that it is possible to classify coil failures of a structural 

(gap, crossover) form. Naturally there are questions about 

the generalizability of such an approach, and whether CNN 

models such as ResNet50 can be applied into production, or 

whether the noise and variability of such processes is too 

much for it to handle. It would be expected that adapting the 

process to different light conditions, image capture angle or 

material changes to the copper wire (changes in thickness) 

would lead to a drop in accuracy, though not in so much 

that such models could be quickly re-trained back to their 

base performance. One challenge when it comes to out of 

distribution shift may arise when transferring to a whole 

new process, for example from linear winding to concen-

trated needle winding methods. The lay up of the copper 

wire material and its geometrical shape may ultimately be 

too great a change from the original that performance would 

never be recoverable, though perhaps one-shot or few-shot 

Fig. 9  Mean training (a) and validation (b) loss for original, GAN and processed dataset ResNet-50 model

Fig. 10  Mean confusion matrix for original (a), GAN (b) and processed (c) dataset ResNet-50 model
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methods as discussed earlier could provide a solution. The 

next challenge is in adapting such a framework for detec-

tion to one that can work in real-time. Coil winding is a 

dynamic and real-time process, whether the coil winding 

is performed at high speed with a variety of winding meth-

ods and resulting coil geometries, e.g. pre-formed or needle 

wound, distributed or concentrated. As discussed previously 

the task of classification should be undertaken continuously 

throughout the process as successive layers are built-up. To 

the deeper question that threads through this work, viz. the 

challenge of limited data and how to overcome it to meet the 

aims of researchers or industrial practitioners, the answer is 

mixed. As discussed in depth at the beginning, it has been 

shown that there currently exist a number of strategies for 

aiding the training of machine learning models with limited 

or imbalanced data. The choice taken here was to explore 

the role GANs could play in generating new samples that 

might enhance classification and generalisation. To this end, 

it was a mixed success, in that it was demonstrated that it 

is certainly possible to incorporate such generated images, 

however it proved to be a challenging task in its own right 

to do so. The actual training process for GANs ironically 

suffer the same fate in that they require large amounts of 

data to evolve a model that accurately captures the data dis-

tribution you want. In the case considered in this paper, it 

was the distribution of images across the three classes of 

coil winding failure. In addition, GANs can also suffer from 

mode collapse, where the diversity of images found within 

the distribution becomes non-existent as the model collapses 

to a particular style or image. Thankfully, this was not the 

case here, though not withstanding the need to adapt the 

StyleGAN2 hyper-parameters and incorporate recent tech-

niques (differential augmentation, self-attention) to ensure 

any prospect of converging to a model that output images of 

reasonable quality. This is arguably a challenge that will be 

faced by many going forward, however data limited GANs 

are a vibrant current research topic, so solutions to this end 

will hopefully be forthcoming.

6  Conclusions

Industrial production and manufacturing require tight con-

trol of their underlying processes with the aim of maintain-

ing strict tolerances and avoid variation as a product is being 

manufactured or assembled. When these processes begin to 

deviate from their respective targets, errors and defects can 

begin to accumulate, leading to downtime, repair, scrappage, 

or even in-service failure. Monitoring of these processes and 

their outcomes is therefore crucial to maintain the standards 

required at each step. The manufacture of high-value safety 

critical assets such as those found within electrical machine 

manufacture of the aerospace and automotive sector neces-

sitates such actions.

Fig. 11  Example validation classifications for original model

Fig. 12  Example validation classifications for augmented model

Table 1  Classifier Metrics

Precision Recall F1-Score

Original Crossover 1.0 1.0 1.0

Gap 0.15 0.06 0.086

Pass 0.196 0.92 0.318

Original GAN Crossover 1.0 0.99 0.994

Gap 0.88 0.26 0.36

Pass 0.208 0.8 0.328

Processed Crossover 0.982 1.0 0.99

Gap 0.894 0.9 0.894

Pass 0.668 0.56 0.572
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This paper began with an overview of the process for 

electrical machine manufacture and quality assurance meth-

ods along with recent solutions to improve these processes 

through data analytics and machine learning, with a particu-

lar focus on fault detection. Modern methods such as those 

found within machine learning require large amounts of data 

in order to effectively model and detect errors that can occur 

during these processes. Unfortunately, access to such data is 

often limited, with examples of failure or defects, particu-

larly when encapsulated through imaging, often scarce and 

hard to obtain. This paper explores this challenging problem 

within manufacturing through an investigation into available 

methods for handling sparse or unbalanced datasets for the 

training of machine learning models, particularly from the 

field of deep neural networks (DNNs).

This was followed by an investigation into the application 

of a Generative Adversarial Network (GAN) architecture that 

can be utilised to augment a limited and unbalanced dataset 

in order to better aid in the training of a state of the art convo-

lutional neural network (CNN) architecture for coil winding 

failure classification. In addition, an approach was proposed 

which utilised pre-processing to reduce the dimensionality 

and complexity of the source images as a means to aid over-

all performance and accuracy of the trained models. In both 

instances there are clear benefits when it comes to model 

accuracy for the fault detection of coil winding failure through 

the use of a deep convolutional neural network architecture. 

The ability to generate new samples from the data distribu-

tion of our targeted classes of coil winding failure provide 

additional images in which to train on and help overcome any 

imbalances in the original dataset, whilst the pre-processing 

and dimensionality reduction method outlined was able to 

further increase accuracy of the trained models. Overall the 

proposed solution is able to detect faults within coil windings 

for our three classes (gap failure, crossover failure and pass) 

with a mean accuracy of 87% compared with our standard 

CNN approach of 65%. This work presents a first look into 

attempts to characterise and classify coil windings and associ-

ated failure types during the electrical machine manufacturing 

process. The next steps are to investigate how we can perform 

such classification and quality measurement of the coil can be 

performed as it is being generated in real-time as a means to 

try and hopefully identify causal factors and apply corrective 

measures to reduce the need for scrappage or repair.

Acknowledgements This project was supported by the Engineering 

and Physical Sciences Research Council of the UK through the Future 

Electrical Machines Manufacturing Hub (EP/S018034/1), and the 

Royal Academy of Engineering under the Research Chairs and Senior 

Research Fellowships scheme (RCSRF1718\5\41).

Funding This project was supported by the Engineering and Physi-

cal Sciences Research Council of the UK through the Future Elec-

trical Machines Manufacturing Hub (EP/S018034/1), and the Royal 

Academy of Engineering under the Research Chairs and Senior 

Research Fellowships scheme. No additioanl funding was received to 

assist with the preparation of this manuscript.

Data Availability Data associated with this article will be made avail-

able, either through repository or external service (kaggle)

Code Availability The code and models used for this article will be 

made available, either through repository or external service (kaggle)

Declarations 

Ethics approval Not applicable

Consent to participate Not applicable

Consent for publication Not applicable

Conflicts of interest/Competing interests There are no conflicts of in-

terest / competing interests. The authors have no relevant financial or 

non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, 

provide a link to the Creative Commons licence, and indicate if changes 

were made. The images or other third party material in this article are 

included in the article's Creative Commons licence, unless indicated 

otherwise in a credit line to the material. If material is not included in 

the article's Creative Commons licence and your intended use is not 

permitted by statutory regulation or exceeds the permitted use, you will 

need to obtain permission directly from the copyright holder. To view a 

copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Mayr A, Weigelt M, von Lindenfels J, Seefried J, Ziegler M, Mahr 

A, Urban N, Kuhl A, Huttel F, Franke J (2018) Electric Motor 

Production 4.0 - Application Potentials of Industry 4.0 Technolo-

gies in the Manufacturing of Electric Motors

 2. Kißkalt D, Mayr A, von Lindenfels J, Franke J (2018) Towards a 

data-driven process monitoring for machining operations using 

the example of electric drive production. 8th International Elec-

tric Drives Production Conference (EDPC), Schweinfurt, Ger-

many, pp. 1–6. https:// doi. org/ 10. 1109/ EDPC. 2018. 86582 93

 3. Meyer A, Von Lindenfels J, Mayr A, Franke J (2019) Manufactur-

ing imperfections in electric motor production with focus on hal-

bach array permanent magnet rotor assembly. 2018 8th Int Electr 

Drives Prod Conf EDPC 2018 - Proc, pp. 0–6

 4. Riedel A et al. (2018) Challenges of the hairpin technology for 

production techniques. ICEMS 2018 - 2018 21st Int Conf Electr 

Mach Syst, pp. 2471–2476

 5. Hagedorn J, Sell-Le-Blanc F, Fleishe J (2018) Handbook of coil 

winding – technologies for efficient electrical wound products and 

their automated production. Springer-Verlag GmbH Germany

 6. Chand S, Davis JF (2010) What is smart manufacturing? Time 

Magazine

 7. Davis J, Edgar T, Graybill R, Korambath P, Schott B, Swink D, Wetzel 

J (2015) Smart manufacturing. Annu Rev Chem Biomol Eng 6:141–

160. http:// dx. doi. org/ 10. 1146a nnurev- chemb ioeng- 061114- 123255

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/EDPC.2018.8658293
http://dx.doi.org/10.1146annurev-chembioeng-061114-123255


 The International Journal of Advanced Manufacturing Technology

1 3

 8. Wuest T, Weimer D, Irgens C, Thoben K-D (2016) Machine 

learning in manufacturing: advantages, challenges, and applica-

tions. Product Manuf Res 4(1):23–45. https:// doi. org/ 10. 1080/ 

21693 277. 2016. 11925 17

 9. Dai X, Gao Z (2013) From Model, Signal to Knowledge: A Data-

Driven Perspective of Fault Detection and Diagnosis. IEEE Trans 

Ind Inf 9(4):2226–2238

 10. Iqbal R, Maniak T, Doctor F, Karyotis C (2019) IEEE transactions 

on industrial informatics fault detection and isolation in industrial 

processes using deep learning approaches

 11. Zafarani M, Bostanci E, Qi Y, Goktas T, Akin B (2018) Inter-turn 

short circuit faults in permanent magnet synchronous machines: 

an extended review and comprehensive analysis. IEEE J Emerg 

Sel Top Power Electron 6:2173–2191

 12. El-Kharahi E, El-Dessouki M, Lindh P, Pyrhonen J (2015) Toward 

including the effect of manufacturing processes in the pre-estimated 

losses of the switched reluctance motor

 13. Meyer A, Heyder A, Brela M, Urban N, Sparrer J, Franke J (2015) 

Fully automated rotor inspection apparatus with high flexibility 

for permanent magnet synchronous motors using an improved hall 

sensor line array 2015 5th International Electric Drives Produc-

tion Conference (EDPC)

 14. Roosileht I, Lentsius M, Mets O, Heering S, Hiiemaa M, Tamre 

M (2014) Automated inspection system of electric motor stator 

and rotor sheets 9th International DAAAM Baltic Conference 

Industrial Engineering 24–26 April 2014. Tallinn, Estonia

 15. Herakovic N, Noe D (2007) Experimental analysis of conditions 

for machine vision control in EM stator assembly process. IFAC 

International Workshop on Intelligent Assembly and Disassembly 

5(1):96–101

 16. Liu J, Feng T, Fang X, Huang S, Wang J (2019) An Intelligent 

Vision System for Detecting Defects in Micro-Armatures for 

Smartphones, Applied Sciences

 17. Li C, Kong F, Wang K, Xu A, Zhang G, Xu N, Liu Z, Guo H, 

Wang X, Liang K, Yuan J, Qi S, Jiang T (2019) Microscopic 

Machine Vision Based Degradation Monitoring of Low-Voltage 

Electromagnetic Coil Insulation Using Ensemble Learning in a 

Membrane Computing Framework, IEEE Access

 18. Tao X, Wang Z, Zhang Z, Zhang D, Xu D, Gong X, Zhang L 

(2018) Wire Defect Recognition of Spring-Wire Socket Using 

Multitask Convolutional Neural Networks. IEEE Transactions, 

Components, Packaging and Manufacturing Technology vol. 8, 

no. 4

 19. de Oliveira BCF, Flesch RCC, Demay MB (2018) Development 

and experimental evaluation of a vision system for detecting 

defects of stator windings in induction motor assembly lines. 13th 

IEEE International Conference on Industry Applications

 20. de Oliveira BCF, Flesch RCC, Demay MB (2017) Development 

and experimental evaluation of a vision system for detecting faults 

of induction motor stator windings in stator assembly lines, XIII 

Simposio Brasileiro de Automacao Inteligente, pp. 911–916

 21. de Oliveira BCF, Pacheco ALS, Flesch RCC, Demay MB (2016) 

Detection of defects in the manufacturing of electric motor stators 

using vision systems: Electrical connectors. 12th IEEE Interna-

tional Conference on Industry Applications (INDUSCON)

 22. Sun T, Tseng C, Chen M (2010) Electric contacts inspection using 

machine vision, Image and Vi-sion Computing, 28:890–901

 23. Le MH, Hoang VD, Ngo VT (2016) Electrical colored wires 

inspection algorithm for automatic connector producing 

machines. International Conference on System Science and Engi-

neering, p. 1-4

 24. Wolf L, Hassner T, Taigman Y (2009) The one-shot similarity 

kernel. In Proc 12th Int Conf Comput Vis pp. 897–902

 25. Fei-Fei L, Fergus R, Perona P (2006) One-shot learning of object 

categories. IEEE Trans Pattern Anal Mach Intell 28(4):594–611

 26. Qiao S, Liu C, Shen W, Yuille AL (2018) Few-shot image recogni-

tion by predicting parameters from activations. In Proc IEEE Conf 

Comput Vis Pattern Recognit (CVPR) pp. 7229–7238

 27. Zhu XJ (2005) Semi-supervised learning literature survey. Tech-

nical Report. University of Wisconsin-Madison Department of 

Computer Sciences

 28. Zhou ZH (2017) A brief introduction to weakly supervised learn-

ing. National Science Review 5(1):44–53

 29. Wang Y, Yao Q, Kwok JT, Ni LM (2020) Generalizing from a 

few examples: a survey on few-shot learning. ACM Comput Surv 

1(1):34. https:// doi. org/ 10. 1145/ 33862 52

 30. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans 

Knowl Data Eng 10(22):1345–1359

 31. He H, Garcia EA (2008) Learning from imbalanced data. IEEE 

Trans Knowl Data Eng 9(2008):1263–1284

 32. Hochreiter S, Younger AS, Conwell PR (2001) Learning to learn 

using gradient descent. In International Conference on Artificial 

Neural Networks pp. 87–94

 33. Zhang A, Li S, Cui Y, Yang W, Dong R, Hu J (2019) Limited data 

rolling bearing fault diagnosis with few-shot learning. IEEE Access

 34. Deshpande AM, Minai AA, Kumar M (2020) One-shot recogni-

tion of manufacturing defects in steel surfaces procedia manufac-

turing 48:1064–1071

 35. Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX (2019) Deep 

learning and its applications to machine health monitoring. Mech 

Syst Signal Process 115:213–237

 36. He KM, Zhang XY, Ren SQ, Sun J (2016) Deep Residual Learn-

ing for Image Recognition. In Proceedings of the 2016 IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), Las 

Vegas, NV, USA, pp. 770–778

 37. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Ima-

geNet: A Large-Scale Hierarchical Image Database. In CVPR09

 38. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifi-

cation with deep convolutional neural networks. Adv Neural Inf 

Proces Syst 2012:1097–1105

 39. Rother C, Kolomogorov V, Blake A (2004) GrabCut: interactive 

foreground extraction using iterated graph cuts, SIGGRAPH ’04: 

ACM SIGGRAPH pp. 309–314. https:// doi. org/ 10. 1145/ 11865 62. 

10157 20

 40. van den Oord A, Kalchbrenner N, Kavukcuoglu K (2016) Pixel 

recurrent neural networks. In ICML, pp. 1747–1756

 41. Kingma DP, Salimans T, Jozefowicz R, Chen X, Sutskever I, 

Welling M (2016) Improved variational inference with inverse 

autoregressive flow. In NIPS 29:4743–4751

 42. Goodfellow I, Pouget-Abadie J, Mirza M, Bing X, Warde-Farley 

D, Courville A, Bengio Y (2014) Generative Adversarial Net-

works. In NIPS, Sherjil Ozair

 43. Liu L, Cao D, Wu Y, Wei T (2019) Defective samples simula-

tion through adversarial training for automatic surface inspection. 

Neurocomputing. https:// doi. org/ 10. 1016/j. neucom. 2019. 05. 080

 44. Wei T, Cao D, Zheng C, Yang Q (2020) A simulation-based few 

samples learning method for surface defect segmentation. Neu-

rocomputing 412:461–476

 45. Wang K, Zhang X, Hao Q, Wang Y, Shen Y (2019) Application 

of improved least-square generative adversarial networks for rail 

crack detection by AE technique. Neurocomputing 332:236–248

 46. Singh R, Garg R, Patel NS, Braun MW (2020) Generative Adver-

sarial Networks for Synthetic Defect Generation in Assembly and 

Test Manufacturing, 2020 31st Annual SEMI Advanced Semicon-

ductor Manufacturing Conference (ASMC), Saratoga Springs, NY, 

USA, pp. 1–5. https:// doi. org/ 10. 1109/ ASMC4 9169. 2020. 91852 42

 47. Lian J et al (2020) Deep-learning-based small surface defect 

detection via an exaggerated local variation-based generative 

adversarial network. IEEE Trans Ind Inf 16(2):1343–1351. https:// 

doi. org/ 10. 1109/ TII. 2019. 29454 03

https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1145/3386252
https://doi.org/10.1145/1186562.1015720
https://doi.org/10.1145/1186562.1015720
https://doi.org/10.1016/j.neucom.2019.05.080
https://doi.org/10.1109/ASMC49169.2020.9185242
https://doi.org/10.1109/TII.2019.2945403
https://doi.org/10.1109/TII.2019.2945403


The International Journal of Advanced Manufacturing Technology 

1 3

 48. Skilton R, Gao Y (2019) Visual Detection of Generic Defects in 

Industrial Components using Generative Adversarial Networks, 

Proceedings of the 2019 IEEE/ASME International Conference 

on Advanced Intelligent Mechatronics, Hong Kong, China

 49. Luo J, Huang J, Li H (2020) A case study of conditional deep convo-

lutional generative adversarial networks in machine fault diagnosis. 

J Intell Manuf. https:// doi. org/ 10. 1007/ s10845- 020- 01579-w

 50. Dai J, Wang J, Huang W, Shi J, Zhu Z (2020) Machinery health 

monitoring based on unsupervised feature learning via generative 

adversarial networks. IEEE/ASME Trans Mechatron 25(5):2252–

2263. https:// doi. org/ 10. 1109/ TMECH. 2020. 30121 79

 51. Greminger M (2020) Generative adversarial networks with syn-

thetic training data for enforcing manufacturing constraints on 

topology optimization. Proceedings of the ASME 2020 Interna-

tional Design Engineering Technical Conferences and Computers 

and Information in Engineering Conference IDETC/CIE

 52. Ye W, Alawieh MB, Lin Y, Pan DZ (2019) LithoGAN: End-to-

End Lithography Modeling with Generative Adversarial Net-

works, 2019 56th ACM/IEEE Design Automation Conference 

(DAC), Las Vegas, NV, USA, pp. 1–6

 53. Karras T, Laine S, Aila T (2019) A style-based generator archi-

tecture for generative adversarial networks. In Proceedings of the 

IEEE conference on computer vision and pattern recognition pp. 

4401–4410

 54. Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T (2020) 

Analyzing and improving the image quality of stylegan. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition pp. 8110–8119

 55. Yan S, Zhang X-G, He R-K (2018) Research on Rotor Wind-

ing Detection Based on Texture Information and Convolution 

Neural Network 2018 2nd International Conference on Applied 

Mathematics, Modeling and Simulation (AMMS 2018) ISBN: 

978-1-60595-580-3

 56. Bianchi N, Berardi G (2018) Analytical Approach to Design Hair-

pin Windings in High Performance Electric Vehicle Motors. IEEE 

Energy Conversion Congress and Exposition (ECCE), Portland, 

OR, USA, pp. 4398–4405. https:// doi. org/ 10. 1109/ ECCE. 2018. 

85583 83

 57. Yang D, Karimi HR, Sun K (2021) Residual wide-kernel deep 

convolutional auto-encoder for intelligent rotating machinery fault 

diagnosis with limited samples. Neural Networks 141:133–144

Publisher’s Note Springer Nature remains neutral with regard to 

jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s10845-020-01579-w
https://doi.org/10.1109/TMECH.2020.3012179
https://doi.org/10.1109/ECCE.2018.8558383
https://doi.org/10.1109/ECCE.2018.8558383

	Augmented classification for electrical coil winding defects
	Abstract
	1 Introduction
	2 Electrical machine manufacture and quality assurance
	2.1 Electrical machine manufacture and process control
	2.2 Machine learning for fault detection in EM manufacture
	2.2.1 Fault detection in electrical machines manufacture
	2.2.2 Vision systems for fault inspection


	3 Few shot learning & generative data models
	4 Methodology
	4.1 Proposed experimental method

	5 Coil winding failure classification
	5.1 Future directions and challenges

	6 Conclusions
	Acknowledgements 
	References


