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Iam hiQ—a novel pair of accuracy indices 
for imputed genotypes

Albert Rosenberger1,2* , Viola Tozzi1 and Heike Bickeböller1 on behalf of the INTEGRAL-ILCCO consortium 

Background

To date information of more than 660 million reference single nucleotide polymor-

phisms (refSNPs) and 5.9 million regions with structural variation (SV) on the human 

DNA are known and stored in the publicly available databases, like dbSNP [1]. To 

identify those genetic variants, that are associated with common human diseases, 

genome-wide association studies (GWAS) can be conducted. Usually, commercial single 

nucleotide polymorphism (SNP) microarrays are used to carry out genotyping of DNA 

samples for these studies. There are two predominant companies for high throughput 

genotyping arrays, Thermo Fisher Scientific Inc., Santa Clara, CA (Affymetrix™) and 
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Illumina Inc., San Diego, CA. The underlying chemistry differs but both array types can 

be used to ascertain genotypes in a similar fashion [2]. In contrast to the more expen-

sive and error prone new generation sequencing technologies, the number of genotyped 

variants ranges from 300,000 to 4 million. Array-based markers are supposed to tag the 

genomic region in their vicinity, but represent only a small proportion of all known DNA 

variants. Furthermore, these variants are not a random selection but have been chosen 

according to criteria such as minor allele frequency (MAF), location in exons or blocks 

of linkage disequilibrium or putative associations with certain disease.

Imputation methods and strategies have been developed and are now a standard tool 

in GWAS to close the gap between genotyped and existing DNA variants [3–5]. These 

methods transfer information of DNA structure from one or several reference panels 

with high marker density (e.g. 1000 Genomes Project phase 3 [6] or Haplotype Reference 

Consortium (HRC) [7]) to the genotyped study samples [4]. Most imputation methods 

estimate a-posteriori genotype probabilities (referred to as dosages, ranging from 0 to 

1) for each untyped variant and each individual in the sample of interest. The resulting 

increase of variant density in the study sample improves the genomic coverage and can 

increase the power to identify genomic variants associated with a trait [8]. Imputation 

further has the potential that an identified associated marker is located closer to a true 

risk locus; it facilitates fine mapping of causal variants and is essential for meta-analyses 

of GWAS, particularly when different genotyping arrays have been used for multiple 

studies [9]. However, imputation requires advanced statistical methods for data analysis 

and may introduce extra uncertainty in interpreting findings. Further, only DNA vari-

ants that have previously been genotyped in the used reference panel can be imputed [4, 

10].

Imputation methods based on linkage disequilibrium (LD) information (e.g. fast-

PHASE [11]; MaCH [12, 13]; Beagle [14]; IMPUTE2 [15]) and are suitable for samples 

of independent individuals, as in case–control studies. Other methods use pedigree and 

linkage information (e.g. F-Impute [16]; α-Impute [3, 17]), and are therefore suitable for 

related individuals.

Known accuracy measures

It is important to evaluate the quality of imputation, e.g. to exclude poorly imputed vari-

ants from statistical analysis. Several quality indices have been developed and are rou-

tinely applied [4, 5, 18]. These comprise inter alia the squared correlation r2 between the 

true and imputed dose of an allele across all imputed samples (MaCH r2, Minimac or 

Beagle r2) or IMPUTE2’s info.

All r2 measures can be derived from a-posteriori allele probabilities without knowl-

edge of the true allele dose, but only if the allele probabilities are well calibrated and 

MAF is not too low. The power of an allelic test with N samples and imputed alleles is 

approximately equal to the power of the same test with r2N samples and known alleles, 

in case of a binary trait. Differences among the known r2 measures are discussed else-

where [4]. The commonly used info is defined as the proportion of statistical informa-

tion on the population allele frequency in the imputed genotypes, relative to “known” 

genotypes [5]. If the Hardy–Weinberg disequilibrium (HWE) holds, info equalizes to 
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Minimacs r2. Hence, r2-based measures and info are directly related to the power of sta-

tistical test of a marker x trait association.

In general, both metrics have preferable characteristics if the a-posteriori genotype 

probabilities (dosages) are accurately calculated [18]. However, multiple factors can 

affect imputation accuracy, e.g. sample size, sequencing coverage and haplotype accu-

racy of the references panel(s), density of the genotyping array, allele frequency and 

poor LD between genotyped and imputed variants [4]. One can calculate these accuracy 

measures from dosage files. However, the standard outputs of common imputation pro-

grams (e.g. Beagle or IMPUTE2) contain different metrics. Hence, choosing an imputa-

tion program binds the user to the metrics provided, although the SNPTEST program 

offers the option of calculating a measure similar to that of info [19].

We propose a new pair of metrics to depict additional aspects of imputation accuracy 

also calculable from dosage files. First, we aim to quantify the amount of individual-spe-

cific versus population-specific genotype information in the imputed genotypes. Second, 

we aim to assess the heterogeneity between dosages of a marker across the sample at 

hand. Both measures can be used to identify markers or regions in which population-

specific genetic information conceal individual-specific information and are there-

fore less informative for e.g. association testing. These new metrics are not intended 

as a competitor to established scores, but are intended to support the making of well-

founded decisions in SNP filtering of imputed markers prior to an analysis or in inter-

pretation of results after an analysis.

We calculated this pair of accuracy measures on a series of 27,065 cases and controls 

gathered by the International Lung Cancer Consortium (ILCCO) to find meaningful 

thresholds for marker exclusion and compared it with info, because all of the ILCCO 

samples had previously been imputed with IMPUTE2 applied to a standard 1000 

Genomes referent panel. Further, we contrasted the usability of the new measures to info 

in some simulated data.

Results

Comparison of Iam and hiQ

When applying the novel indices Iam hiQ (as defined in the section Novel accuracy 

measures) to 517,482 SNPs types with the OncoArray, only a small portion (n = 40,678, 

4‰) can be considered as imputed without doubt (Iam = 1 and hiQ = 1). For the major-

ity of SNPs a value between 0.95 and < 1 was assigned for hiQ (9,760,392, ~ 94%), while 

only 30% (n = 3,243,272 markers) achieved such a large value with respect to Iam. It is 

worth to mention, that we assigned a reduced value for Iam (from 0.4 to 0.75) to about 

as many SNPs (n = 3,491,596, 33%). More details are given in Additional file 1: Table S1.

Both components of Iam hiQ, are contrasted in a bubble plot (Fig. 1). The oversized 

grey bubble in the top right corner represents the vast majority of almost fully-inform-

ative markers with Iam ≥ 0.99 and hiQ ≥ 0.99. It can easily be seen that the remaining 

small minority of not fully accurately imputed markers take advantage of the whole the-

oretical range for Iam (even negative values). In contrast, hiQ always exceeds 0.4 in the 

sample at hand, but seems to be sensitive in markers with low values for Iam, whereas 

lower values of hiQ are only assigned to common markers.
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Defining thresholds for marker filtering

In order to exclude less accurately imputed variants from further analysis, one needs 

to define a meaningful and applicable threshold for any accuracy index. For the meas-

ure info threshold values like 0.8 or 0.3 have been proposed, but without sound justi-

fication [5, 20, 21]. It was even proposed to lower the threshold for info in very large 

samples, as those of the UK Biobank, and still maintain a good ability to detect asso-

ciations [22].

We applied robust regression (PROG ROBUSTREG of SAS 9.4; cut-off-α =  10–6 for 

leverage points, cut-off-multiplier = 5 for outliers[23]) to estimate the expected value 

of Iam and hiQ and their variance–covariance matrix, assuming a hidden two-dimen-

sional normal distribution (ignoring the upper bounds of the indices). Based on this 

we derived the 99.9999999% (1–10−9) random region (dashed line in Fig. 1) to define, 

very conservative and data driven, lower bounds for the two indices, limiting the 

probability of a false-exclusion to ~ 1/(100∙10,439,017) (one hundredth under Bonfer-

roni correction assuming independent markers). The robust mean for Iam was 0.7409 

that for hiQ was 0.9885. Restricted to common markers (MAF ≥ 0.1) we achieved sim-

ilar mean values (Iam: 0.8101, hiQ: 0.9894). The lower bounds of the random region 

of hiQ were 0.9627 for all markers and 0.9673 for common markers, which is almost 

identical. In contrast, the lower bounds of the random region of Iam were 0.2553 for 

all markers and 0.4657 for common markers, demonstrating the influence of MAF, 

via HWE, on Iam. We decided to use the study specific thresholds of 0.47 for Iam 

and 0.97 for hiQ to further classify markers of poor accuracy. Because Iam ranges lin-

early from population informative dosages to fully individual informative dosages, the 

threshold of ~ 0.5 indicates markers with less than ~ 50% individual-specific genotype 

minor allele frequencyminor allele frequency

<1%

10%-30%

30%-50%

5%-10%

1%-5%

Fig. 1 Iam by hiQ. Main panel: all markers by Iam vs. hiQ; blue dots: variants with info < 0.5; red dots: variants 

with 0.5 ≤ info < 0.8; 8; green dots: variants with info ≥ 0.8; dotted line: robust 99.9999999% bivariate normal 

random interval (assuming a two-dimensional normal distribution). The oversized grey bubble in the top 

right corner represents the vast majority of almost fully-informative markers with Iam ≥ 0.99 and hiQ ≥ 0.99; 

inserted panel: like main panel, but marker are divided according to the minor allele frequency
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information (in average across all samples). Such an intuitive interpretation cannot be 

given for hiQ.

For the majority of 9,094,772 (87.2%) variants, sufficient imputation accuracy was 

achieved, according to our defined thresholds (see Table 1). Limiting the markers to 

those with 0.5 < info ≤ 0.8 and info ≥ 0.8, this fraction increases to 95.1% or 99.9%, 

respectively. In very rare genetic variants (MAF < 1%) the fraction drops to 76.5%. In 

contrast, only 0.6% of variants meet neither the Iam nor the hiQ criteria. Interest-

ingly, 1,214,620 variants (11.7%) missed only the Iam criteria. The fraction was larger 

in very rare variants (23.2%) and in variants with info < 0.5 (58.5%), while it was mod-

erate in variants with 0.5 < info ≤ 0.8 (2.5%).

Identifying markers and regions of low accuracy

Figure 2 presents the accuracy of imputed markers according to Iam hiQ in a Manhat-

tan-like plot, with Iam given in the lower part (blue) and hiQ given in the upper part 

(red). This plot contains all 10,427,599 SNPs. Regions with massively less accurate 

imputation can easily be identified, especially by hiQ (red needles). This is for instant 

the case close to the centromere of chromosomes 1, 2 and 9 (accuracy by chromo-

some 1 is presented in Additional file  1: Figure S1). However, variants with Iam or 

hiQ below the defined thresholds can be found in many regions across the whole 

genome. Massively less accurate imputation can be found upstream the centromere, 

less distinct downstream the centromere and close to the telomeres, as well as around 

position 50K (blue icicle). Nevertheless, it is still hard to visually find regions that are 

enriched with less accurately imputed markers.

To identify more genomic regions prone to host inaccurate markers we calculated 

the exponentially weighted moving averages (ewma) of Iam and hiQ (PROC EXPAND 

of SAS 9.4; smoothing factor 0.1) [23]. We consider variants with an ewma < thresh-

old (0.47 for Iam and 0.97 for hiQ) as belonging to a “hot region” and variants with an 

ewma < threshold/2 (0.23 for Iam and 0.48 for hiQ) as belonging to a “very hot region”. 

Across the whole genome, we were able to identify 4,603 “hot regions” and 171 “very 

hot regions” according to IamHWE, as well as 2,899 “hot regions” according to hiQ. These 

regions partially overlap or are interconnected. “Hot” and “very hot” Iam-regions con-

tain in total 85,790 variants, only about 8‰ of all variants. “Hot” hiQ-regions contain 

in total 53,590 variants, only about 5‰ of all variants. However, about 1 out of 3 “hot” 

or “very hot” regions is very small and contains only one variant. In contrast, 10% of 

the “hot” Iam-regions and about 20% of either the “very hot” Iam- or the “hot” hiQ-

regions contain more than 20 variants (see Additional file  1: Tables S2–S4). Some of 

these regions on chromosome 1 are indicated by flames in Fig. 3.

Comparing Iam hiQ with info and certainty

The missing rate for info was about 18% and 0.6% for certainty, in the data set at hand. 

Iam and hiQ could be determined for all markers (see Additional file 1: Table S5). The 

correlation between Iam and info was largest (r2 = 0.944), indicating that both represent 

comparable information on accuracy. hiQ and certainty correlate only moderate among 

themselves as do the other measures (r2 < 0.5) (see Table 2). However, only every second 
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Table 1 Classification of markers by IamHWE and hiQ 

Thresholds for IamHWE (0.47) and hiQ (0.97) were defined according to a robust 99.9999999% bivariate normal random 

interval (assuming a two-dimensional normal distribution)

a Proportion within tabulated subgroup of markers

hiQ IamHWE

< 0.47 ≥ 0.47

N %a N %a

All markers

< 0.97 59,077 0.6% 59,130 0.6%

≥ 0.97 1,214,620 11.7% 9,094,772 87.2%

Quality defined by info

 Low quality: info < 0.8 < 0.97 59,077 1.2% 58,592 1.1%

≥ 0.97 1,214,612 23.8% 3,777,566 73.9%

 High quality: info ≥ 0.8 < 0.97 – 538 < 0.1%

≥ 0.97 8 < 0.1% 5,317,206 99.9%

Minor allele frequency (MAF)

 < 1% < 0.97 15,366 0.3% 136 < 0.1%

≥ 0.97 1,210,505 23.2% 4,000,616 76.5%

 1% to < 5% < 0.97 13,448 0.9% 12,742 0.8%

≥ 0.97 2,317 0.2% 1,472,328 98.1%

 5% to < 10% < 0.97 4,007 0.6% 12,117 1.8%

≥ 0.97 7 < 0.1% 638,931 97.5%

 10% to < 30% < 0.97 8,441 0.6% 18,576 1.4%

≥ 0.97 10 < 0.1% 1,288,714 97.9%

 30% to 50% < 0.97 9,283 1.3% 4,188 0.6%

≥ 0.97 261 < 0.1% 721,679 98.1%

 > 50% < 0.97 8,532 0.9% 11,371 1.1%

≥ 0.97 1,520 0.2% 972,504 97.8%

position

(n
e
g
a
ti
ve
)
1
-I
a
m
*
/
1
-h
iQ

Iam cutoff

hiQ cutoff

Fig. 2 Manhattan-like-plot: Iam hiQ. Upper panel: hiQ (low Q.: hiQ = 0; high Q.: hiQ = 1; Thresholds 

hiQ (cutoff = 0.97); lower panel: IamHWE (low Q.: IamHWE = 0; high Q.: IamHWE = 1; Thresholds Iam cutoff = 0.47): 

Thresholds were defined according a robust 99.9999999% bivariate normal random interval (assuming a 

two-dimensional normal distribution)
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fully-informative SNP (Iam = 1 and hiQ = 1) was assigned a value ≥ 0.8 for info (see 

Additional file 1: Table S1, red shaded points in Fig. 1), whereas this was the case for less 

than 2‰ of variants with reduced Iam (0.4 to 0.75). This means that Iam and info never-

theless carry different information on imputation accuracy. 

Figures for a visual comparison of Iam and info are included in the Additional file 1: 

Figures  S2 and S3. These clearly show that info is less suitable for mapping regions 

enriched with less accurately imputed genotypes, genome-wide and chromosome-wide.

Usability

We also investigated the usability of the proposed indices in contrast to info by simula-

tion. Usability was considered in terms of discrimination between sufficient and insuf-

ficient imputation, rather than in terms of validity of imputation because validity is a 

characteristic of the imputation routine (e.g. IMPUTE2).

Eight scenarios consisting of two common genotyped tagSNPs flanking one inter-

mediate marker for imputation were defined, differing from each other by the underly-

ing haplotype structure, MAF and LD-patterns were defined. Two scenarios each form 

a pair (a scene), consisting of a scenario in which the missing marker can be imputed 

sufficiently/better and one scenario in which the missing marker can be imputed insuf-

ficiently/worse. Imputation was performed on 100 randomly drawn samples for each 

scenario, and accuracy measures were calculated. The ability of an index to discriminate 

a sufficient from an insufficient scenario (usability) was visually inspected plotting com-

parative receiver operation curves (one ROC per index) for each scene, and quantified 

as area under der curve (AUCs) of ROCs. Details on the simulation and the results are 

given in the Additional file 1.

Fig. 3 Manhattan-like-plot: Iam hiQ: chromosome 1. Upper panel: hiQ (low Q.: hiQ = 0; high Q.: hiQ = 1; 

Thresholds hiQ (cutoff = 0.97); lower panel: IamHWE (low Q.: IamHWE = 0; high Q.: IamHWE = 1; Thresholds 

Iam cutoff = 0.47): Thresholds were defined according a robust 99.9999999% bivariate normal random 

interval (assuming a two-dimensional normal distribution); red flames indicate “very hot” regions; orange 

flames indicate “hot” regions
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Info and Iam appear to be comparable usable in terms of discrimination between suffi-

cient and insufficient imputation for common SNPs. However, hiQ seems to be superior 

when MAF of the imputed marker is low.

Suggestion on how to use Iam hiQ

For general use, a threshold of 0.5 for Iam and 0.9 for hiQ seems reasonable to identify 

markers with low accuracy. However, we do not claim that this recommendation to gen-

erally optimal. All variants with values for Iam and e.g. info below the threshold value, 

as well as all variants with MAF < 1% and a hiQ below the threshold value should be 

excluded from a data analysis in order to ensure that all aspects of the imputation qual-

ity are met. This pre-analysis marker filtering can be extended to all variants in “hot” or 

“very hot” regions. If association results cannot be replicated across several studies, a 

low value of Iam indicates a reduced individual-specific information content, even if, for 

example, info and hiQ imply sufficient power and genotype heterogeneity.

Discussion

Imputation is a cost-effective tool for GWAS to fill gaps of non-genotyped variants 

instead of whole-genome sequencing for all recruited individuals, since global coverage 

in genomic information of available arrays with less than 1 million SNPs not exceeds 

25% [10, 24]. However, imputation accuracy matters. Several accuracy measures have 

been proposed and implemented in imputation software, unfortunately diverse across 

platforms. Das et  al. [4] favour r2, the squared correlation between true and imputed 

allele dose, because it is tightly related to the power of an allelic test. However, they also 

emphasized the importance of adequate imputed samples for the  r2accuracy.

We introduce Iam  hiQ, an independent and complementary pair of accuracy meas-

ures. Other than e.g. r2, Iam quantifies the amount of individual-specific versus pop-

ulation-specific genotype information in a linear manner for each individual before 

averaging, while hiQ addresses the inter-individual heterogeneity of dosages for a 

marker across the sample at hand. These new measures are not intended to compete 

with established scores, but should complement them. We derived meaningful, but 

study specific thresholds for variant filtering applying Iam hiQ to a large case–control 

sample at hand. We showed how regions enriched with less accurately imputed geno-

types can be identified (computationally and visually), and finally compared Iam hiQ to 

info, as provided by IMPUTE2. Iam hiQ is simple to interpret: Iamchance of 0 indicates a 

complete loss of genomic information for a variant. IamHWE of 0 indicates a reduction 

Table 2 Correlation between accuracy measures

Right upper triangle: Pearson’s correlation coefficient, left lower triangle: Spearman’ rank correlation coefficient

IamHWE hiQ info certainty

IamHWE – 0.684 0.944 0.484

hiQ 0.405 – 0.367 0.156

info 0.976 0.686 – 0.050

certainty 0.305 0.335 0.051 –
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to solely population-specific (not individual-specific) genomic information for a variant. 

Iamchance/HWE of 1 indicates variants for which complete individual-specific genomic 

information is available. hiQ of 0 indicates complete inter-individual homogeneity of 

dosages across the sample. hiQ of 1 indicates that statistical tests can derive all their 

power from heterogeneity between dosages.

However, it has been discussed that any imputation accuracy measures assuming 

HWE to calculate "expected" genotype counts can be confounded. This was demon-

strated for MaCH r2 [25]. For the proposed method, HWE is solely chosen as anchor 

point to define pure population informative dosages. One should keep in mind that 

Iam hiQ is just a tool for quality assurance and not a data analysis module. Thus, slight 

violations from HWE do not compromise their use, but in case of family data caution is 

advised. In such cases, one can either apply IamHWE to founders only, or use Iamchance.

Finally, accuracy measures with non-justified thresholds, as e.g. info, should be applied 

with caution. This in mind, we derived thresholds for Iam hiQ, in contrast to other meas-

ures, from observation on a large sample and follow a traceable logic. Because its direct 

and linear relationship to the average amount of individual-specific genomic informa-

tion contained in the dosages of a marker, Iam is easy to interpret. By this, it differs from 

r2, which is approximately equal to the power of the same test with r2N samples.

For the presented quality assurance, we calculated Iam  hiQ for autosomes only. 

Extending this to the X and Y chromosome is possible, but the sex of genotyped indi-

vidual and the position of the variant on the chromosome must be taken into account 

when calculating a correct HWE distribution. Even an ex post application of Iam hiQ 

can be useful, particular to explain whether missed replication of an observed marker-

phenotype association is due to inaccurate imputation. Since the imputation accuracy of 

particularly rare markers tend to be low, an improved imputation of the ILCCO samples 

is planned on newer panels that contain more SNPS with low MAF.

Conclusion

In summary, Iam hiQ is a newly proposed pair of accuracy measures for imputed gen-

otypes. In contrast to others, it addresses directly the contents of individual-specific 

genotype information and the heterogeneity between dosages. It is independent of the 

imputation platform and can be computed for all imputed variants. We recommend 

using Iam hiQ additional to other accuracy scores for variation filtering before stepping 

into the analysis of imputed GWAS data.

Availability of data and materials

A macro for SAS® 9.4 to calculate the measures IamHWE, Iamchance and hiQ for autoso-

mal markers based on the dosage-file as output of IMPUTE2 is provided with the Addi-

tional file 1.
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Materials and methods

Novel accuracy measure

In the following we will consider m = 1 toM markers with two alleles ( a and A ) and 

a MAF fA in the source population of the study sample consisting of N individuals. 

The three possible genotypes aa, aA, and AA are indicated by allele doses 0, 1 and 2 

(equal to the number of minor alleles A of a genotype). Imputation will result in tri-

plets of a-posteriori genotype probabilities 
[

p0 p1 p2
]

 , referred to as dosages, with 
∑

2

g=0
pg = 1 . We assume the whole uncertainty related to genotype imputation is con-

tained in these triplets. The allele dose of an individual i for an imputed marker will then 

be di,m =

∑2
i=0 i · pi and can take any value between 0 and 2. Multi-allelic markers are 

assumed to be split into pseudo-two-allele variants.

Index of individual‑specific versus population‑specific genotype information: Iam

To quantify the amount of individual-specific versus population-specific genotype infor-

mation in the dosages of the imputed single marker m for a single person i, we first con-

sider the following three marginal situations:

(1) The triplet of dosages takes on the values 
[

1 0 0
]

 , or in a different order, if imputa-

tion is fully sufficient, when the missing genotype is unambiguously derived from 

the reference panel. Thus, the dosages contain fully individual-specific genotype 

information.

(2) In contrast, if all genotypes are equally likely the dosages take on the values 
[

1/3 1/3 1/3
]

 and imputing of the missing genotype failed (choosing a best guess 

genotype would be completely due to chance). The dosages contain no individual-

specific genotype information at all.

(3) If the dosages take on the values 
[

f 2A 2fA
(

1 − fA
) (

1 − fA
)2

]

 and hence follow 

HWE, imputation used solely MAF in the reference population and thus the dos-

ages contain solely population-specific information.

To construct an index to distinguish dosages 
[

1 0 0
]

 from 
[

1/3 1/3 1/3
]

 , or 
[

f 2A 2fA
(

1 − fA
) (

1 − fA
)2

]

 respectively, we were guided by the well-established Her-

findahl–Hirschman Index (HHI) [26]. HHI is a concentration measure for distribu-

tions of discrete random variables with k possible realisations, defined as =
∑k

i=1
p2k . 

HHI ranges from 1 (if pj = 1 and pk  =j = 0 ; alike (i)) to 1/k (if all pk = 1/k ; alike [ii]). 

Because we are interested in anti-concentration, the opposite of HHI, we first define 

the quantity.

Qi,m =

∑3
g=1 pg ,i,m

(

1 − pg ,i,m
)

 for each marker m and each individual i. Qi,m takes 

the value 0 in case of [i]: 
[

1 0 0
]

 and the value 2/3 in case of [ii]: 
[

1/3 1/3 1/3
]

 . To 

achieve an imputation accuracy measure (Iam) for each marker m, we then rescaled 

the average across all individuals Qm =
1
N

N∑

i=1

Qi,m to

Iamchance,m = 1 −

Qm

2/3
.
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Iamchance ranges from 0 (in case of [ii]: non-informative dosages) to 1 (in case of [i]: 

fully individual genotype information).

Similarly, Qm can be rescaled to represent situation [iii]: 
[

f 2A 2fA
(

1 − fA
) (

1 − fA
)2

]

 

by the index value 0. In this case Qi,m takes the value

This alternative of the imputation accuracy measure (Iam) can be straightforwardly 

calculated by

Figure 4 visually presents these definitions of Iam.

Iamchance = 0 indicates that the 3 genotypes are equally likely, averaged over all indi-

viduals. Therefore, imputation did not contribute any information at all.

IamHWE = 0 indicates that the genotypes are just as likely as under the HWE, aver-

aged over all individuals. Therefore, imputation contributes only information of MAF in 

the population (respectively the reference sample), but not for further individual-specific 

information.

The computation of both Iam indices requires only the dosages provided by the impu-

tation program used. For case–control or cross-sectional studies MAF can by estimated 

by averaging the allele doses across all individuals, using the same data:

f̂A will be calculated fair enough for the outlined purpose even for markers that are 

associated to a trait and therefore have different MAFs between affected and unaf-

fected individuals. The same applies in the presence of low grade hidden relationships. 

QHWE,m = f 2A

(

1 − f 2A

)

+
[

2fA
(

1 − fA
)(

1 −
(

2fA
(

1 − fA
)))]

+
(

1 − fA
)2

(

1 −
(

1 − fA
)2

)

=
(

−2fA
)(

fA − 1
)

(

3f 2A − 3fA + 2

)

IamHWE,m = 1 −

Qm

QHWE,m

f̂A =

∑N
i=1 di,m

/

2N .

non-informative

dosages 

fully informative

dosages

0 1

0 1

genetic information

individual

population

population-informative

dosages

HWE (given MAF)

Fig. 4 From dosages to Iam-indices. MAF/fA minor allele frequency; HWE Hardy–Weinberg equilibrium; Iam 

imputation accuracy measure
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However, if the study sample consists of relatives, it is advisable to consider only unre-

lated founders for the estimation of f̂A.

QHWE,i,m depends on MAF. For rare markers QHWE,i,m is much closer to 0 than for 

common markers (see Table 3). In case all dosages correspond to HWE (as in situation 

[iii]) Iamchance for common markers is close to 0 (indicating inaccurate imputation), 

whereas for rare markers it is close to 1 (misleadingly indicating accurate imputation). 

This shows that it is fairly hard to determine the content of individual-specific informa-

tion in the triplet of dosages of rare markers.

It is possible that IamHWE,i,m takes negative values, if the majority of triplets of dos-

ages can be located between the non-informative and population-informative case. This 

might be caused by genotyping errors as well as by small deviations between sample and 

population MAF or locally increased inbreeding coefficients in the source population. 

Some values of Qi,m will then be between 2/3 and QHWE,i,m . Due to the upper mentioned 

shift of QHWE,i,m by MAF, this is more likely for rare than for common markers. How-

ever, small negative values should be regarded as occurred by pure chance.

Index of heterogeneity in quantities: hiQ

Inter-individual heterogeneity of dosages for a marker m is a second concern with 

respect to the usability of imputed genotypes. Consider the following example: Table 4 

gives two markers with average dosages 
[

0.6 0.3 0.1
]

 across 10 individuals. Marker 1 

is not suitable for any data analysis, because all dosages are identical. The best guess for 

all individuals is genotype aa. In contrast, marker 2 consists of three different dosages, 

leading to different best guess genotypes for the individuals. This heterogeneity serves 

power for statistical testing.

To construct an index of heterogeneity in quantities of dosages (hiQ) we compare 

“average dosages”(ad) across all individuals with “average of best guess dosages” (ab) 

applying the Hellinger H-distance. The H-distance quantifies the distance between two 

(trinomial) probability distributions, taking value H = 0 in case of coincident probability 

Table 3 Q and Iamchance by MAF

MAF: minor allele frequency ( fA ),  Qchance refers to a dosage of 
[

1/3 1/3 1/3
]

 ;  QHWE refers to a dosage of 
[

f
2

A
2f

2

A
(1 − fA)

2
1 − f

2

A

]

MAF Qchance QHWE Iamchance

based on  QHWE

50% 0.667 0.625 0.0625

40% 0.667 0.614 0.0784

30% 0.667 0.575 0.1369

20% 0.667 0.486 0.2704

10% 0.667 0.311 0.5329

5% 0.667 0.176 0.7353

1% 0.667 0.039 0.9415

0.1% 0.667 0.0040 0.9940

0.01% 0.667 0.0004 0.9994

0.001% 0.667 0.00004 0.9999

0.0001% 0.667 0.000004 1.0000
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distributions and H = 1 if the probability vectors are perpendicular [27, 28]. Therefore, 

we defined

In Table 4 the “average of best guess dosages” for marker 1 fbg
(

g
)

=

[

1 0 0
]

 compared 

to the average dosages ( fad
(

g
)

=

[

0.6 0.3 0.1
]

 ) yields an hiQ = 1 −

√

1 −
√
0.6 = 0.53 . 

This indicates a loss of heterogeneity between dosages and reduced power of a statisti-

cal test. For marker 2, where fad
(

g
)

= fbg
(

g
)

 , hiQ takes on the value 1, indicating fully 

achievable inter-individual heterogeneity and no reduced power of a statistical test.

A SAS® macro far calculating IamHWE, Iamchance and hiQ based on the dosage-file as 

output of IMPUTE2 is included in the Additional file 1.

Application to a sample of lung cancer patients and controls

We applied the novel indices to a dataset of the Integrative Analysis of Lung Cancer Eti-

ology and Risk program of the International Lung Cancer Consortium (INTEGRAL-

ILCCO) to examine the behaviour of Iam hiQ, to find appropriate thresholds for marker 

filtering and for comparison with an established accuracy measure. The sample com-

prises 14,803 lung cancer cases and 12,262 controls of European descent. They were gen-

otyped on the OncoArray, which queried 517,482 SNPs. The array is designed to cover 

the whole genome (with GWAS backbone) and for fine mapping of susceptibility to com-

mon cancers as well as for de novo discovery, and hence is enriched with low frequent 

and rare variants [29]. About 50% of markers are considered as GWAS backbone. Details 

of the sample, the genotyping and the quality control are given elsewhere [30]. The 

OncoArray whole-genome data were imputed in a two-stage procedure, using SHAPEIT 

to derive phased genotypes and IMPUTEv2 to infer additional genotypes for genetic 

variants included in the 1000 Genomes Project (phase 3 panel) [6, 15]. We restricted cal-

culations and comparisons to markers of the autosomes. A total of n = 10,427,599 SNPs 

hiQ = 1 −

√

√

√

√1 −

3
∑

g=1

√

fad
(

g
)

fbg
(

g
)

.

Table 4 Inter-individual heterogeneity of dosages: example

ID Marker 1 Marker 2

aa aA AA aa aA AA

1 0.6 0.3 0.1 1 0 0

2 0.6 0.3 0.1 1 0 0

3 0.6 0.3 0.1 1 0 0

4 0.6 0.3 0.1 1 0 0

5 0.6 0.3 0.1 1 0 0

6 0.6 0.3 0.1 1 0 0

7 0.6 0.3 0.1 0 1 0

8 0.6 0.3 0.1 0 1 0

9 0.6 0.3 0.1 0 1 0

10 0.6 0.3 0.1 0 0 1

Avg 0.6 0.3 0.1 0.6 0.3 0.1
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were finally included in this quality assessment. Presumably difficult to impute, due to 

their MAF, are 5,226,623 of these SNPs (50%) with a MAF lower than 1% and 1,500,835 

SNPs with a MAF between 1 and 5% (Additional file 2).
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