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Summary

This paper presents a novel optimal constraint-following controller for uncertain

mechanical systems (MSs). The MS’s uncertainty is unknown (possibly time-

varying) and bounded, but the bound is unspecified. Employing the frame of

Udwadia-Kalaba theory, we design a robust controller with two tunable control gains

for MSs, which guarantees some deterministic performances. Assuming the con-

straints to be holonomic and periodic, we transform the controlled MSs and introduce

an iterative feedback tuning (IFT) method for optimizing the proposed controller.

After optimization, the final control scheme can achieve the equilibrium between the

system performance and control cost for an arbitrary single constraint period. Sim-

ulations on a two-link rotational manipulator are provided at last to demonstrate the

proposed approach.

KEYWORDS:

Udwadia-Kalaba theory, iterative feedback tuning, uncertain mechanical systems, constraint following,
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1 INTRODUCTION

Constraint following, in connecting to industrial practices, is one of the most critical tasks for the motion control of mechanical

systems(MSs)1. While in practical engineering, most MSs perform repetitive tasks. In other words, the constraints a real MS

subjected to are usually periodic. Although various uncertainties like measurement noises, model simplifications, and vibration

noises, etc., may seriously affect the MS’s performance, the repetitive tasks provide an excellent resource for the self-learning of

the controller. This paper combines a model-based controller and a data-based learning scheme to design an efficient constraint-

following control approach for MSs considering uncertainties.

The constraints imposed on an MS generally fall into two categories: passive and servo constraints. The former are usually

satisfied by forces from the environment or the structure of the MS. While to meet servo constraints, a control engineer typi-

cally needs to work out a control scheme and input some extra energy. Research on the passive-constraint following problem

has made significant contributions. Readers could see Reference 1 for a survey. As control engineers usually address, the focus

of this paper is the servo constraint-following problem. There are already brilliant control strategies for the constraint following

of mechanical systems with or without uncertainties. In Reference 2, an adaptive tracking controller was proposed for Euler-

Lagrange systems. Addressing a planar underactuated vehicle’s trajectory-tracking problem, Reference 3 used nonholonomic

0Abbreviations: MS,mechanical system; IFT, iterative feedback tuning; ARC, adaptive robust controller; RHS, right hand side;MPC, model predictive control; UDS,

uncertain dynamic system; EL, Euler-Lagrange; UMS, uncertain mobile robot
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constraints to obtain feasible state trajectories first. The authors then adopted a transitional trajectory to build reduced-order

error dynamics. The trajectory tracking problem thus becomes a dynamic stabilization problem, and a slide mode control is

employed for the dynamical stabilization. As for uncertain underactuated Euler-Lagrange (EL) systems, References 4 presented

a robust adaptive control. Unlike other control strategies using segregated actuated or non-actuated dynamics, the method in

References 4 is structure-independent making it a more general control scheme for various EL systems5. A performance-based

iterative learning algorithm is proposed in Reference 6 for a bilateral upper limb robot, which quickly finds optimal patient-

orientated parameters for given training trajectories. And thus increase the efficient training time. By modeling aircraft engines

as an uncertain dynamic system (UDS), Reference 7 proposed a robust controller for the UDS considering both matched and

unmatched uncertainties. Using fuzzy sets to describe the uncertain parameters of the UDS, researchers then optimized a design

parameter by taking the control cost and the performance threshold into consideration7. Reference 8 combined a tube-based

model predictive control (MPC) and adaptive control for the trajectory tracking control of mobile robots, where the tube-based

MPC is designed for kinematic constraints, and the adaptive control is used to handle dynamic constraints. However, the above

control methods somehow use linearizations or nonlinear cancellations for the constrained dynamics of MSs.

Noticeably, a different control strategy named Udwadia-control was provided by Udwadia9 based on the Udwadia-Kalaba

theory10. Compared with extant control methods, the most significant advantage of Udwadia’s approach is that it can con-

trol general, nonlinear, structural MSs without linearization or nonlinear cancellation. Based on the Udwadia-control strategy,

many significant contributions have been made. In Reference 11, the authors adopted the Udwadia–Kalaba theory to study the

dynamics of flexible multibody systems and compared the numerical efficiency of their approach with the classical coordinate

partitioning scheme. Reference 13 used the Udwadia-control frame to build their trajectory-tracking controller for a nonholo-

nomic mobile robot. Combining the sliding mode control and Udwadia-control, Reference 14 designed a controller for nonlinear

multibody systems. Considering both equality and inequality constraints, Reference 15 proposed a constraint-following control

for active suspension systems. In Reference 16, the control of artificial swarm MSs is addressed by taking both agents’ behav-

iors and the desired trajectory-tracking of the swarm MSs into consideration. Then a swarm tracking controller based on the

Udwadia-Kalaba theory is proposed, which guarantees the controlled swarm system to obey the required motion. Among all the

applications and extensions using the Udwadia-control scheme, Chen proposed an adaptive robust controller (ARC) for approx-

imate constraint following of uncertain MSs17. Chen’s ARC takes advantage of the Udwadia-control for nonlinear MSs and can

guarantee deterministic control performances. Thus Chen’s controller is widely applied18−21. Reference 22 proposed a robust

control scheme for a 2-DOF lower-limb rehabilitation device, and a cooperative-game theory was used for the controller opti-

mization. In Reference 23, the motion control of the uncertain mobile robot (UMS) is explored. An adaptive robust controller

based on the Udwadia-Kalaba theory is then designed, with the trajectory being regarded as servo constraints and the prescribed

performance being transformed into inequality constraints. Both the Udwadia-control and Chen’s ARC are using pure rigid math

analysis for uncertain MSs24. While an explicit math model for uncertainties is functional, the experimental data of controlled

MSs also contains essential information for improving control performances. That is the reason for the rapid development of

data mining and machine learning. As far as the authors know, no research has been reported on introducing data-learning the-

ory into the Udwadia-control to design optimal constraint-following controllers for uncertain MSs.

Related work to this paper is References 25-28. In Reference 25, the authors presented an adaptive robust control strategy

for constraint following of underactuated MSs. The two tunable control parameters are optimized using a nash-game approach.

Reference 26 proposed an adaptive robust controller for the underactuated MSs. Modeling the uncertainty of the underactu-

ated MSs in a fuzzy method, the authors then optimize the tunable control gains using the nash-game theory. A high-order

robust control for uncertain MSs was designed in Reference 27. The tunable controller can guarantee some deterministic per-

formances. A Stackelberg game theory is then adopted for the optimization tuning of the controller. Researches above seldom

consider the following control of periodic constraints, and the 0 order constraint-following errors are hardly involved in the

control design when addressing holonomic constraints. Noticeably, Reference 28 presented a robust controller for a permanent

magnet linear motor. The robust controller is designed using the Udwadia-Kalaba theory and considers both 0 and 1st order

constraint-following errors. However, the tunable control gains in Reference 28 are not optimized. Despite brilliant controllers

and optimization algorithms that have been designed for the constraint-following control of uncertain MSs, there are still some

limitations to be further explored. First, former controllers based on the Udwadia-Kalaba theory are efficient to eliminate the 1st

order holonomic constraint-following errors. While they show low efficiency when addressing 0 order holonomic constraint-

following errors. Second, extant control optimization strategies like the fuzzy optimization18, the cooperative game theory22,

the nash game theory26, and the Stackelberg game theory27 are all model-based. When dealing with periodic constraints, the

repetitive tasks provide valuable input-output data for the self-learning of the controller, and thus a more practical perspective
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to optimize controllers. However, few works have been done on controlling uncertain MSs considering periodic constraints, and

using the repetitive input-output data for optimizing constraint-following controllers. Addressing the above two problems, the

main contributions of this paper are twofold. First, we design a robust constraint-following controller based on the Udwadia-

Kalaba theory, guaranteeing some deterministic performances for uncertain MSs. Second, the robust controller involves two

tunable control gains, and we use an IFT approach to optimize the controller after transforming the controlled systems.

The rest of this paper is as follows. Section 2 reviews some preliminaries on the Udwadia-Kalaba theory. In section 3, a robust

constraint-following controller for an uncertain MS is designed. A Lyapunov proof is provided to demonstrate the validity of

the proposed controller. Assuming the constraint to be periodic, section 4 transforms the controlled uncertain mechanical sys-

tem and presents an IFT-based algorithm for the control optimization. Section 5 provides a two-link rotational manipulator as

a simulation example to testify the robust control scheme and the IFT optimization strategy. Finally, in section 6, we conclude

this paper.

2 PRELIMINARIES ON UDWADIA-KALABA THEORY

Consider an MS whose dynamics is given by Lagrange or Newton-Euler method as:

M(q(t), t)q̈(t) = Q(q(t), q̇(t), t) + B�(t) (1)

where t ∈ R is the independent variable. q(t) ∈ Rn is the generalized coordinate describing the system, and q̇(t) ∈ Rn, q̈(t) ∈ Rn

are the corresponding velocity and acceleration. M(q(t), t) is the inertia matrix, Q(q(t), q̇(t), t) are the known forces acting on

the system (Coriolis/centrifugal force, gravitational force, friction force, etc.) whose constraints are released. B is the coefficient

matrix between actuators and the coordinate. �(t) is the control input from actuators. We assume that the functions M(⋅), Q(⋅),

and B are continuous (this can be generalized to be Lebesgue measurable in t) and are of appropriate dimensions. For the ease

of notation, we may rewrite M(q(t), t) as M(⋅) or M and make similar simplifications for the rest symbols.

Suppose the MS subjects to ℎ holonomic constraints:

fl(q, t) = 0, l = 1,⋯ , ℎ (2)

Equation (2) is the 0 order form of costraints. Differentiating (2) to t once results

n∑
i=1

Ali(q, t)q̇i = cl(q, t), l = 1,⋯ , ℎ (3)

where q̇i is the ith component of q̇, Ali(⋅) and cl(⋅) are continuously differentiable in q and t with

Ali(q, t) =
)fl(q, t)

)qi

cl(q, t) =
)fl(q, t)

)t

(4)

Rewrite (3) in matrix form as

A(q, t)q̇ = c(q, t) (5)

where A = [Ali]
ℎ×n, c = [c1 ⋯ cℎ]

T. Equation (5) is called the 1st order form of constraints.

Differentiate (3) to t once and write the final results in matrix form, we get

A(q, t)q̈ = b(q, q̇, t) (6)

where b = [b1 ⋯ bℎ]
T. And ∀l = 1,⋯ , ℎ,

bl(q, q̇, t) =
d

dt
cl(q, t) −

n∑
i=1

d

dt
Ali(q, t)q̇i (7)

where
d

dt
cl(q, t) =

n∑
k=1

)cl(q, t)

)qk
q̇k +

)cl(q, t)

)t
(8)

d

dt
Ali(q, t) =

n∑
k=1

)Ali(q, t)

)qk
q̇k +

)Ali(q, t)

)t
(9)
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Equation (6) is called the 2nd order form of constraints. The target of this paper is designing a controller � that renders the MS

to follow constraints (2), (5) and (6).

Assumption 1. For any (q, t) ∈ Rn × R, M(q, t) > 0.

Remark 1. The inertia matrix M(q, t) is always believed to be positive definite, however, there are counter examples where q is

not the generalized coordinate29.

Satisfying assumption 1, and according to the Udwadia-Kalaba theory10, the control force

Qc(q, q̇, t) = M1∕2(q, t)
(
A(q, t)M−1∕2(q, t)

)+
(b(q, q̇, t) −A(q, t)M−1(q, t)Q(q, q̇, t)

)
(10)

can make the system (1) to meet constraints (6) and minimize the control cost. Here, "+" stands for the Moore–Penrose gener-

alized inverse.30

Equation (10) provides an analytical method for calculating the constraint-following force of MSs. It shows a significant

advantage in simplicity compared with the classical Newton-Euler method or Lagrange’s multiplier approach. However, Qc is

determined based on precise models of MSs, which are practically infeasible. Given the dynamic model as (1), we can generally

get a reference value for each parameter while the actual value is unknown. The following section will present a robust control

scheme invoking (10) for the uncertain MS.

3 ROBUST CONTROL DESIGN

Assuming the uncertainty in model (1) to be bounded, while the bound is unknown. Let’s do a decomposition first

M(q, t) = M(q, t) + ΔM(q, t) (11)

Q(q, q̇, t) = Q(q, q̇, t) + ΔQ(q, q̇, t) (12)

where M(⋅) and Q(⋅) are the nominal parameters, and ΔM(⋅), ΔQ(⋅) are the corresponding uncertain portions.

Let

�1(q, t) =
[
f1(q, t) ⋯ fℎ(q, t)

]T
(13)

�2(q, q̇, t) = A(q, t)q̇ − c(q, t) (14)

According to equation (2) and (5), �1(q, t) and �2(q, q̇, t) can be interpreted as the 0 and 1st order constraint-following errors.

Assumption 2. For any (q, t) ∈ Rn × R, and a given H ∈ Rn×n,H > 0 and HT = H , there is AM
−1
BB+ = AM

−1
and

HAM
−1∕2

(AM
−1∕2

)+ = H .

Therefore, this paper proposes the controller (15) for the constraint following of uncertain MSs:

� = �1(q, q̇, t) + �2(q, q̇, t) (15)

where

�1(q, q̇, t) = B+M
1∕2

(q, t)
(
A(q, t)M

−1∕2
(q, t)

)+

(b(q, q̇, t) −A(q, t)M
−1
(q, t)Q(q, q̇, t)

)
(16)

�2(q, q̇, t) = −B+M
1∕2

(q, t)
(
A(q, t)M

−1∕2
(q, t)

)+ (
kP �1(q, t) + kD�2(q, q̇, t)

)
(17)

and kP , kD > 0 are tunable control gains. The controller (15) consists of two parts with �1 being used for the constraint following

of the nominal MS. �2 is designed to eliminate the constraint-following error due to the uncertainty.

Theorem 1. Let �(t) ∶=
[
�T
1
(q, t) �T

2
(q, q̇, t)

]T
, consider the system (1), the control (15) renders the following performance:

(i). Uniform stability: For each $ > 0, there exists a " > 0 such that for any solution �(⋅) with ‖�(t0)‖ < ", then ‖�(t)‖ < $

for all t ≥ t0.

(ii). Convergence to 0: For any given constraint �(⋅),

lim
t→∞

�1(q, t) = 0 (18)
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Proof of Theorem 1. Consider a Lyapunov function candidate

V (�1, �2) = kP �
T
1
H�1 + � T

2
H�2 (19)

The first derivative of V with respect to t is

V̇ = 2kP �
T
1
H�̇1 + 2� T

2
H�̇2 (20)

Recalling �̇1 = �2, �̇2 = Aq̈ − b, then

V̇ = 2kP �
T
1
H�2 + 2� T

2
H(Aq̈ − b) (21)

For the second term on the (RHS) of equation (21), there is

2� T
2
H(Aq̈ − b) = 2� T

2
H

[
AM

−1
(
Q + B�1 + B�2

)
− b

]

= 2� T
2
H

⎡
⎢⎢⎢⎢⎢⎣

Ã

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

AM
−1

(
Q + B�1

)
− b+

B̃

⏞⏞⏞⏞⏞⏞⏞⏞⏞

AM
−1
B�2

⎤
⎥⎥⎥⎥⎥⎦

(22)

Combining equation (16) and recalling assumption 2, we have

2� T
2
HÃ = 2� T

2
H

[
AM

−1
Q + AM

−1
BB+M

1∕2
(
AM

−1∕2
)+ (

b − AM
−1
Q
)
− b

]

= 2� T
2
H

(
AM

−1
Q − AM

−1
Q + b − b

)

= 0

(23)

Furthermore, according to equation (17),

2� T
2
HB̃ = −2� T

2
HAM

−1
BB+M

1∕2
(
AM

−1∕2
)+ (

kP �1 + kD�2
)

= −2kP �
T
2
H�1 − 2kD�

T
2
H�2

(24)

Therefore,

V̇ =

=0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

2kP �
T
1
H�2 − 2kP �

T
2
H�1 −2kD�

T
2
H�2

= −2kD�
T
2
H�2

(25)

Adopting the Rayleigh’s principle30, we have

�min(H) ‖‖�2‖‖2 ≤ � T
2
H�2 ≤ �max(H) ‖‖�2‖‖2 (26)

where �min(H), �max(H) > 0 are the minimum and maximum eigenvalues of H . As kD > 0, then

V̇ ≤ −2kD�min(H) ‖‖�2‖‖2 (27)

By (27), the Lyapunov derivative is non-positive and we can conclude the uniform stability. Besides, according to Barbalat’s

lemma31, we have the convergence of �1 → 0 as t → ∞.

4 CONTROL GAIN OPTIMIZATION BASED ON ITERATIVE FEEDBACK TUNING

4.1 Optimization procedure

The controller (15 ) involves two tunable control gains, and they directly affect the constraint-following performance and the

control cost. From an economic perspective, one may be interested in finding the optimal combination of [kP kD]
T that can

reach the equilibrium between the system performance and control cost. This section will adopt an IFT approach for optimiza-

tion.

For uncertain MSs under repetitive constraints, the constraint-following torque �1 is also periodic and shares the same period
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with constraints (2). Furthermore, �1 is determined given the nominal parameters of (1) and 2nd order constraint (6), the vary-

ing torque �2 is what should be optimized during the repetitive constraint-following experiment. Notice �2 is equivalent to a

proportional-differential(PD) control, of which kP is the proportional gain and kD is the differential gain. Therefore, we can

transform the system (1) under control (15) as Figure 1.

In Figure 1, P̃ is the uncertain plant (1) under the Udwadia-control �1. The input to plant system is the constraint-following

rC

yC

tr
tu tv

ty

Dk s

Pk

Dk s

Pk P

FIGURE 1 Transformed control system.

error r(t), u(t) is the control force �2 handling the uncertainty, v(t) is stochastic external noises, y(t) is the system output.

According to Reference 32, the PD control must be consider as a 2-DOF controller with common parameters Cr(�) = Cy(�),

� = [kP kD]
T.

From the control diagram in Figure 1, the system output can be elicited as

yt(�) =
Cr(�)P̃

1 + Cy(�)P̃
rt +

1

1 + Cy(�)P̃
vt ∶= T0rt + S0vt (28)

The target for the IFT optimization is to make the output yi+1(t) of the i + 1 iteration closer to the nominal constraint yd(t)

compared to the i iteration.

In order to reach the target, let’s define a tuning criterion first

J (�) =
1

2N

(
N∑
i=1

ỹt(�)
2 + �

N∑
i=1

ut(�)
2

)
(29)

where N is the number of samples for a single period, ỹt = yt(�) − yd(t) is the constraint-following error, � is a predefined

weight between the system performance and control cost. The optimization of the controller (15) is now equivalent to solve the

following minimization problem:

�∗ = arg min
�

J (�) (30)

As for (30), take the partial derivative of J (�) with respect to � results

)J

)�
(�) =

1

N

(
N∑
t=1

ỹt(�)
)ỹt
)�

(�) + �

N∑
t=1

ut(�)
)ut
)�

(�)

)
(31)

where )ỹt∕)� = )yt∕)�. And
)yt
)�

(�) =
1

Cr(�)

[
)Cr

)�
(�)T0rt −

)Cy

)�
(�)T0yt

]
(32)

)ut
)�

(�) = S0

[
)Cr

)�
(�)rt −

)Cy

)�
(�)yt

]
(33)
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Equation (32) and (33) can be approximately calculated using only the experimental data. Normally, three sets of experimental

data are necessary for an iteration32. The math forms for the input and output of experiments in the i-th iteration are

⎧⎪⎨⎪⎩

Input ∶ r1
i
= r Torque ∶ u1

t
= S0(Crr − Cyv

1
i
) Output ∶ y1

t
= T0r + S0v

1
i
←→ 1st experiment

Input ∶ r2
i
= y1 Torque ∶ u2

t
= S0(Cry

1 − Cyv
2
i
) Output ∶ y2

t
= T0y

1 + S0v
2
i
←→ 2nd experiment

Input ∶ r3
i
= r Torque ∶ u3

t
= S0(Crr − Cyv

3
i
) Output ∶ y3

t
= T0r + S0v

3
i
←→ 3rd experiment

(34)

where for rji , i represents the i th iteration, j = 1, 2, 3 represents the j th set of experiment, such notations also apply to u, y, and

v throughout this paper. The symbol ujt represents the control force at time t, the notation also applies to y.

By (34), a reference input is applied to the plant in the first experiment, and the output is recorded. The second experiment

takes the output of the first experiment as its reference input, and a third experiment sharing the same reference input of the first

experiment is designed as a reference. In addition, the last experiment is necessary for real devices, while it can be omitted in

simulations where the external noise vi does not exist.

The external noise vji , j = 1, 2, 3 are from different experiments of the same plant, and are thus mutually independent.

Therefore, we can approximately calculate )yt∕)� and )ut∕)� as

est

[
)yt
)�

(�)

]
=

1

Cr(�)

[
)Cr

)�
(�)y3

t
−

)Cy

)�
(�)y2

t

]
(35)

est

[
)ut
)�

(�)

]
=

1

Cr(�)

[
)Cr

)�
(�)u3

t
−

)Cy

)�
(�)u2

t

]
(36)

Recalling Cr(�) and Cy(�) are PD controllers sharing the same parameter vector � = [kP kD]
T, and the transfer function of

the PD controller is kP + kDs. As for the discrete system, we have

Cr(�) = Cy(�) =

(
kPT + kD

)
z2 −

(
kPT + 2kD

)
z + kD

T z2 − T z
(37)

where T and z denote the sampling time and unit delay operator, respectively. Then,

)Cr

)kP
=

)Cy

)kP
=

T z2 − T z

T z2 − T z
(38)

)Cr

)kD
=

)Cy

)kD
=

z2 − 2z + 1

T z2 − T z
(39)

Therefore, equation (35) and (36) can be rewritten as

est

[
)yt
)�

(�)

]
=

⎡
⎢⎢⎢⎣

)yt
)kP
)yt
)kD

⎤
⎥⎥⎥⎦
=

1

Cr(�)

⎡
⎢⎢⎢⎣

)Cr

)kP
(�)(y3

t
− y2

t
)

−
)Cr

)kD
(�)y2

t

⎤
⎥⎥⎥⎦

(40)

est

[
)ut
)�

(�)

]
=

⎡⎢⎢⎢⎣

)ut
)kP
)ut
)kD

⎤⎥⎥⎥⎦
=

1

Cr(�)

⎡⎢⎢⎢⎣

)Cr

)kP
(�)(u3

t
− u2

t
)

−
)Cr

)kD
(�)u2

t

⎤⎥⎥⎥⎦
(41)

For the i th iteration, )J (�i)∕)� is approximately obtained as

est

[
)J (�i)

)�

]
=

1

N

(
N∑
t=1

ỹt(�)est

[
)yt
)�

(�)

]
+ �

N∑
t=1

ut(�)est

[
)ut
)�

(�)

])
(42)

thus the new control gains �i+1 =
[
ki+1
P

ki+1
D

]T
for i + 1 iteration is

�i+1 = �i − �iR
−1
i

est

[
)J (�i)

)�

]
(43)

where �i > 0 is the step size, Ri is the Hessian matrix and can be calculated by

Ri =
1

N

(
N∑
t=1

est

[
)yt
)�

(�)

]
est

[
)yt
)�

(�)

]T

+ �

N∑
t=1

est

[
)ut
)�

(�)

]
est

[
)ut
)�

(�)

]T
)

(44)
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(43) gives the final step of an iteration, the key to the IFT method is obtaining est
[
)J (�i)∕)�

]
through experiments (34). To

summarize, Figure 2 shows the general procedure of the IFT-based control optimization.

M Q A c b

q q q

p

D

k

k

i tr q q

tq q

P

t t ty q q

t t

i tr q q

tq q

P

t t ty q q

i tr q q

tq q

P

t t ty q q

N N
i t i t i

t i t i

t t

J

N

y u
y u

N
t i t i t i t i

i

tN

y y u u
R

i

i i i i

J
R

iJ

FIGURE 2 IFT-based control optimization.

4.2 Convergence of the IFT algorithm

In order to reach the convergence of the IFT algorithm, two conditions must be satisfied32 ∶ 1) est
[
)J (�i)∕)�

]
is unbiased; 2)

The step size 
i converges to 0 with i → ∞ but not too fast.
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According to equation (32), est
[
)J (�)∕)�

]
is unbiased only if both est

[
)yt(�)∕)�

]
and est

[
)ut(�)∕)�

]
are unbiased. As

)yt
)�

(�) =
1

Cr(�)

[
)Cr

)�
(�)y3

t
−

)Cy

)�
(�)y2

t

]
+

S0

Cr(�)

[
)Cr

)�
(�)v3

i
−

)Cy

)�
(�)v2

i

]
(45)

)ut
)�

(�) =
1

Cr(�)

[
)Cr

)�
(�)u3

t
−

)Cy

)�
(�)u2

t

]
+

S0Cy(�)

Cr(�)

[
)Cr

)�
(�)v3

i
−

)Cy

)�
(�)v2

i

]
(46)

and v2
i
, v3i are independent stochastic noise of the same plant, thus (35) and (36) are unbiased estimation of )yt(�)∕)� and

)ut(�)∕)�, so is est
[
)J (�i)∕)�

]
. Thus we conclude the satisfaction of condition 1.

As for the condition 2, if 
i satisfy
∞∑
i=1


i = ∞,

∞∑
i=1


2
i
< ∞ (47)

then the control gain �i will converge to a steady vector. This paper chooses 
i = a∕i2, a > 0 as the step size, then (47) is

satisfied. Besides, we also choose the Newton-Gauss matrix Ri to speed up the convergence rate33. Thus condition 2 is satisfied.

By condition 1 and 2, we conclude the convergence of the IFT algorithm.

5 NUMERICAL EXAMPLE

This section provides a two-link manipulator as a simulation example to testify the proposed robust controller (15) and the IFT

optimization algorithm34. Figure 3 shows the model of the manipulator, and Table 1 lists the corresponding parameters.

m

m

l

l

X

Y

FIGURE 3 2-link rotational manipulator.

The dynamic model of the manipulator can be described in the form of (1), where

M(q, t) =

[
l2
2
m2 + 2l1l2m2 cos �2 + l2

1

(
m1 + m2

)
l2
2
m2 + l1l2m2 cos �2

l2
2
m2 + l1l2m2 cos �2 l2

2
m2

]
, q =

[
�1
�2

]
, � =

[
�1
�2

]

Q(q, q̇, t) =

[
m2l1l2�̇

2
2
sin �2 + 2m2l1l2�̇1�̇2 sin �2 − m2l2g cos

(
�1 + �2

)
−
(
m1 + m2

)
l1g cos �1

−m2l1l2�̇
2
1
sin �2 − m2l2g cos

(
�1 + �2

)
]
, B =

[
1 0

0 1

]
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TABLE 1 Parameters of 2-link manipulator.

Physical meaning and unit Parameter symbol Values

Mass of link 1 (kg) m1 m1 = 1

Mass of link 2 (kg) m2 m2 = 0.5

Length of link 1 (m) l1 l1 = 1

Length of link 2 (m) l2 l2 = 2

Joint angle of link 1 (rad) �1
Joint angle of link 2 (rad) �2
Actuating torque of joint 1 (N.m) �1
Actuating torque of joint 2 (N.m) �2
Gravity acceleration (m.s−2) g g = 9.8

As for simulations, we impose a simple periodic constraint for the manipulator as

�1 + �2 = 0 (48)

and the period is set to be 4� seconds. Constraint (48) can be transformed in the form of (5) and (6) with

A =
[
1 1

] T
, c = 0, b = 0

As q is the generalized coordinate in our case, assumption 1 is satisfied. Let H = 1, by direct algebra, assumption 2 can be

easily verified. Then the robust controller (15) is determined.

Assuming the masses of link 1 and link 2 are uncertain, and denote m1 = m1+Δm1, m2 = m2+Δm2. We execute simulations

using MATLAB, and the initial conditions are �1(0) = 0.15, �2(0) = −0.2, �̇1(0) = 0, �̇2(0) = 0. The uncertainties are set as

Δm1 = 0.1 sin(t∕2), Δm2 = 0.05 cos(t∕2), and the initial control gains are k0
P
= 40, k0

D
= 0.1. The first simulation consists

of 8 iterations. Figure 4(a) shows the tuning criterion J (�) during these iterations. J (�) decreases quickly from around 2.52

to about 0.75 in 8 iterations. Then the curve keeps steady. Therefore, the controller optimization is reached by eight iterations.

More experiments will not bring significant improvements on the control performance, only take more energy cost. Figure 4(b)

presents the proportional gain kP in 8 iterations, and Figure 4(c) shows the differential gain kD in 8 iterations. kP increases

from 40 to 40.32 after iterations. Then its variation begins to slow down. In Figure 4(c), kD increases from 0.1 to 1.2 after eight

iterations. The variation curve then comes to steady. From Figure 4, We can conclude the effectiveness of the IFT algorithm on

our robust controller in 8 iterations. To further demonstrate the proposed controller and the IFT optimization strategy, Figure 5

shows the system performance comparison before and after eight iterations. Despite the same initial constraint-following error,

the tuned controller can approximately eliminate errors in less than one period. However, the original controller shows a quite

slow speed in eliminating the error.

The curves in Figure 4 are not steady enough, we provide more iterations to depict variations of the tuning control gains and

the criterion. Figure 6(a) shows the tuning criterion during 50 iterations. No distinct variations on J (�) have emerged after the

first eight iterations. The proportional gain for 50 iterations is shown in Figure 6(b). From the 8th iteration to the 50th iteration,

kP increases about 0.04, while kP increases nearly 0.32 in the first eight iterations. The magnitude of variations for kP for the

first eight iterations is 8 times of it for the last 42 iterations. The differential gain for 50 iterations is shown in Figure 6(c). From

the 8th iteration to the 50th iteration, kD increases about 0.1, while kD increases nearly 1.1 in the first eight iterations. The

magnitude of variations for kD for the first eight iterations is 11 times of it for the last 42 iterations. Therefore, we conclude the

validity of 8 iterations of the IFT algorithm for our robust controller.

For comparison, the ARC method in Reference 17 is simulated, and the results are shown in Figures 7-9. Figure 7 compares the

constraint-following results among the proposed robust controller (after i = 8 iterations), the ARC, and the nominal trajectory.

The magnitude of the constraint-following error under our tuned robust controller is much smaller than the one under the ARC.

The tuned robust controller can eliminate the constraint-following error in about one period, while the ARC can not eliminate

the error in one period. The explanation for the inefficiency of the ARC in our case is that only 1st order constraint-following

error is considered when designing the ARC17. While both 0 and 1st order constraint-following errors are involved in our robust

controller as given in equation (17), we also considered the optimization of tunable control gains kP and kD. Figure 7 shows

the superiority of the robust controller and its IFT optimization algorithm over the ARC. For further comparison, Figure 8-9
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FIGURE 4 Parameter variations during 8 iterations.
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FIGURE 5 Trajectory tracking comparison: i = 0 vs i = 8 vs Nominal trajectory.
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FIGURE 6 Parameter variations during 50 iterations..

show the input torques for joint 1 and joint 2 among the robust controller without tuning (i = 0), the tuned robust controller

(after i = 8 iterations), and the ARC. The input torques for both joints under the ARC are larger than those under the robust

controller. Besides, larger peak values of the input torques can be seen for the robust controller without tuning than the one after

8 iterations. Therefore, we conclude the validity of the IFT optimization algorithm on the robust controller and the superiority

of the tuned robust controller over the ARC.

6 CONCLUSIONS

This paper presents a novel optimal robust constraint-following control scheme for uncertain mechanical systems (MSs) sub-

jected to periodic constraints. The robust controller is based on the Udwadia-Kalaba theory, which makes no linearization for

nonlinear systems. Under the proposed controller, the uncertain MS can guarantee some deterministic performances. Further-

more, an iterative feedback tuning approach is introduced to optimize the robust controller. After optimization, the uncertain

MS can reach the equilibrium between the system performance and the control cost. Simulation results on a classical 2-link

rotational manipulator demonstrated the optimal robust controller. This paper considers only the optimal control of holonomic

periodic constraints. Future work could focus on MSs with both holonomic and non-holonomic periodic constraints.
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