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A B S T R A C T

Background: Acute myeloid leukemia (AML) can be diagnosed at
any age and treatment, which can be given with supportive and/or
curative intent, is considered expensive compared with that for
other cancers. Despite this, no long-term predictive models have
been developed for AML, mainly because of the complexities asso-
ciated with this disease. Objective: The objective of the current study
was to develop a model (based on a UK cohort) to predict cost and life
expectancy at a population level. Methods: The model developed in
this study combined a decision tree with several Markov models to
reflect the complexity of the prognostic factors and treatments of
AML. The model was simulated with a cycle length of 1 month for a
time period of 5 years and further simulated until age 100 years
or death. Results were compared for two age groups and five differ-
ent initial treatment intents and responses. Transition probabilities,
life expectancies, and costs were derived from a UK population-based
specialist registry—the Haematological Malignancy Research
Network (www.hmrn.org). Results: Overall, expected 5-year medical

costs and life expectancy ranged from £8,170 to £81,636 and 3.03
to 34.74 months, respectively. The economic and health outcomes
varied with initial treatment intent, age at diagnosis, trial participa-
tion, and study time horizon. The model was validated by using face,
internal, and external validation methods. The results show that the
model captured more than 90% of the empirical costs, and it
demonstrated good fit with the empirical overall survival. Conclu-
sions: Costs and life expectancy of AML varied with patient charac-
teristics and initial treatment intent. The robust AML model
developed in this study could be used to evaluate new diagnostic
tools/treatments, as well as enable policy makers to make informed
decisions.
Keywords: acute myeloid lymphoma, costs, decision analytic model,
life expectancy.

Copyright & 2014, International Society for Pharmacoeconomics and
Outcomes Research (ISPOR). Published by Elsevier Inc.

Introduction

With an annual incidence of approximately 4.0 per 100,000 and a
median diagnostic age in the late 60s, acute myeloid leukemia
(AML) is a comparatively aggressive cancer that is rapidly fatal if
left untreated [1]. There are several different types of AML, with
treatment decisions being guided by immunophenotype, cytoge-
netic, and molecular markers, as well as other prognostic infor-
mation, including patient’s age and presence of existing
comorbidities. Many patients are treated with curative intent,
receiving intensive induction chemotherapy followed by consol-
idation chemotherapy (with or without allograft) and additional
chemotherapy if relapse occurs. Others are treated with an
approach to care that is nonintensive and also noncurative; in
this situation, the focus of care is supportive and palliative, with
patients receiving blood transfusions and nonintensive chemo-
therapy to provide both symptom relief and disease control. The
decision to adopt this approach may be taken after intensive
induction chemotherapy has been given if there has been no
response, or at diagnosis if the patient’s age or comorbidities

mean that they would be unlikely to tolerate such intensive
treatment. Overall, patient’s age, general fitness, time to remis-
sion, and time in remission are considered to be related to
prognosis [2–11].

Although AML is not one of the most common cancers, it is
often considered to be one of the most expensive to treat,
reflecting costly medical interventions (e.g., transplantation),
lengthy periods of hospitalization required for the delivery of
therapy (curative and supportive), and the treatment of therapy/
disease-related complications (e.g., infections) [12,13]. Over the
past two decades, however, only a few published studies have
attempted to estimate the “long-term economic burden” of
treating this complex heterogeneous group of diseases. Further-
more, these studies did not examine cost differences by patient
characteristics and/or prognostic factors, and because most of
these studies were based on data from a single institution, a
clinical trial, or a specific age group, their findings are difficult to
extrapolate to the general population [14–20].

With the aim of developing a long-term population-based
model for AML, the present study was initiated to predict
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long-term life expectancy and medical costs within a framework
reflecting clinical practice, rather than within the predefined and
restricted setting of a randomized controlled trial. It was expected
that the model could provide an important baseline for evaluat-
ing new interventions and diagnostic tools in the future, as well
as enable policymakers to make informed decisions. Such pre-
dictive models are particularly important for evaluating the cost-
effectiveness of new interventions and for allocating health
resources efficiently, and as far as we know, no long-term
predictive models have previously been developed for AML.

Methods

Study Population

The model was based on data from a specialist UK population-
based registry, the Haematological Malignancy Research Network
(HMRN; www.HMRN.org), the methods of which have previously
been described [21]. Briefly, since September 1, 2004, all patients
newly diagnosed with a hematological malignancy (leukemias,
lymphomas, and myeloma) in an area with a population of 3.6
million have been prospectively followed. Information is
abstracted to clinical trial standards, with details of all treat-
ments, including start dates, end dates, and responses, being
accurately recorded. All patients are also linked to data from
routine national sources including the National Health Service
(NHS) Central Register for death certification and Hospital Epi-
sodes Statistics. The HMRN has full ethical approval and Section
251 exemption to collect data for audit and research purposes.

The current study includes all adult (Z18 years) patients
newly diagnosed with AML (International Classification of
Diseases for Oncology, 3rd edition: 9861/3, 9895/3, 9920/3, 9897/
3) between September 1, 2004, and August 31, 2007, within the
HMRN region (N ¼ 352). These patients were followed from the
date of diagnosis onwards either to death or to the end of the
study period (August 1, 2010); their treatment pathways were
individually mapped, and lifetime medical costs were calculated
by using a bottom-up costing approach. It is worth noting that in
line with national figures, approximately 35% of the patients were
enrolled onto one of the national trials open at the time (Medical
Research Council 14, 15, 16) [22–24], and the treatment pathways
for these patients were mapped according to the chemotherapy
they had received. Furthermore, only 50 patients (14.2%) were still
alive at the end of the study period (follow-up time range 3–6
years). A more detailed summary of patient characteristics is
presented in Table 1 in Supplemental Materials found at http://
dx.doi.org/10.1016/j.jval.2013.12.007.

Overview of Model Structure

The structure of the model was designed to reflect the complex-
ities of treatment strategies, prognosis, and progression of AML
based on treatment protocols, relevant literature, and empirical
data from HMRN. A decision-analytic model was developed to
evaluate the long-term medical costs and life expectancy of AML.
This combined a decision tree with eight Markov modes and used
a simulated cycle length of 1 month for the time-horizon of 5
years. The model was developed in Microsoft Excel (Microsoft
Office Professional Plus 2010 © 2010 Microsoft Corporation).

As shown in Figure 1, the AML model was divided into two
parts: a decision tree and a group of Markov models. A hybrid
model was selected to capture short-term and long-term effects
of both costs and survival [25]. A decision tree structure was used
to simulate short-term survival and medical costs until remission
was achieved, whereas a number of Markov models were used to
simulate long-term and/or postremission outcomes.

Decision Tree

The decision tree structure was built with the following three
purposes. First, to allow short-term medical costs and health out-
comes to be estimated; second, to allow consideration of prognostic
factors (such as age); and third, to allow patients to pass through
different treatment pathways and enter different Markov models.

The decision tree structure (Fig. 1) begins with two branches
divided according to age (18–59 vs.Z60 years), with each having a
further split categorizing the main initial treatment decision,
namely: received or did not receive intensive induction treatment
[2,3,10,11]. Within the branches involving the “received induction
treatment,” the decision tree is further divided into several
branches according to chemotherapy regimens, including cytar-
abine, daunorubicin, and etoposide (ADE) and daunorubicin and
cytarabine (DA). This design was used to allow the model to
capture the differences in “costs” and “time to remission/
response” between alternative regimens before first remission.
It was beyond the scope of the present study, however, to
compare the economic impact of different induction regimens.

Time to response is a critical factor that correlates with
subsequent outcome, and four types of responses were modeled
after each branch of chemotherapy regimens (Fig. 1): early
response (achieved remission within 50 days), late response
(achieved remission after 50 days), no response (did not achieve
remission, including patients who had reinduction but still failed
to achieve remission), and early death (died within 3 months
from the start of induction treatment) [2,4–8]. This design was
important for the purpose of the current work because “time to
remission” has a significant impact both on costs and on survival
before and after first remission [2,4–8]. Finally, patients classified
as “did not receive intensive induction treatment” (i.e., those
receiving nonintensive/noncurative treatments only) were
assumed to have entered the Markov model directly.

Markov Models

A series of Markov models was developed to estimate long-term
medical costs and life expectancy. The rationale behind the
development of each Markov model is described below.

Model A and Model B, which could also be considered as
“postremission models,” were constructed to simulate outcomes
following first remission. Based on disease progression and the
response of patients to treatment, Models A and B involve six
possible health state scenarios: patients being given intensive
treatment with curative intent and achieving remission (First
Remission); patients being given treatment and achieving remis-
sion followed by relapse of the disease (First Relapse); patients
being given second line of treatment and achieving second
remission (Second Remission); patients relapsing following their
second remission (Second Relapse); patients being given third
line of treatment and achieving third remission (Third Remis-
sion); patients relapsing and dying (Death). While the structure of
Models A and B was the same, the transition probabilities and
cost parameters were different. This was because the evidence
indicated that patients entering Model A (early response to
induction treatment) had different/better prognoses than those
entering Model B (late response to induction treatment)
[2,3,8,9,26,27]. Although several patients reached a third relapse
and/or survived beyond this (based on empirical data), it was
decided that third remission would be considered the last health
state of AML progression due to limited data. Furthermore, the
“tunnel state” structure and an add-on Markov Model E for
transplantation were integrated into Model A and Model B
(details below). Model A and Model B were further stratified by
age groups, A1 and B1 (18–59 years) and A2 and B2 (Z60 years).

Models C and D simulated patients receiving noncurative
treatments. Model C modeled patients who received intensive

V A L U E I N H E A L T H 1 7 ( 2 0 1 4 ) 2 0 5 – 2 1 4206



induction treatment but failed to respond (i.e., had treatment-
resistant disease). Based on empirical data and clinical guidelines
[28,29], it was assumed that these patients would subsequently
go on to receive nonintensive/noncurative treatment and sup-
portive/palliative care. In contrast, Model D modeled patients
who did not receive any induction treatment but solely non-
intensive/noncurative and supportive/palliative care. The simu-
lations in both models commenced at the time of diagnosis and
continued for 5 years or until death. Both models involved two
health states: receiving care and death. This was because the
disease (AML) cannot be cured if patients are left untreated or
treated with noncurative intent [28,29]. The “tunnel” state struc-
ture was also integrated into both models to capture their time-
dependent characteristics (details below).

Model E was designed for patients who received bone marrow
transplantation and was considered as an add-on Markov model
to Models A and B. The rationale behind this was that survival
and treatment costs after transplantation differ significantly from
those of patients receiving induction and consolidation chemo-
therapy only. To reflect the actual patient flow, in line with
clinical guidelines [28,29], a number of assumptions were made.
First, because an individual could receive transplantation at any
point in time during remission, it was assumed that for every
cycle in remission, there was a likelihood of entering Model E
(transplantation model). Second, it was assumed that only those
patients who were younger than 60 years were eligible for trans-
plantation. Last, it was assumed that Model E should include the

following four health states: transplantation, remission, relapse,
and death.

Because the probability of relapse decreases the longer a patient
remains in remission [2,4–7], all models that contained remission
states were further fine-tuned to capture this “time-dependency”
feature. Specifically, “tunnel” states were incorporated into all the
“remission” states or related states within Models A and B (post-
remission models), C and D (noncurative models), and E (trans-
plantationmodel) [25,30], resulting in 12 tunnels in total. Finally, the
time frame for each cycle in all Markov models was fixed and set to
a period of 1 month to capture the rapid progression of AML. After
each Markov cycle, patients could either move to a different health
state or remain in the same health state, with the exception of the
tunnel states in which a patient had to exit the current tunnel state,
either to enter the next tunnel state or to exit the tunnel.

Model Inputs: Transition Probabilities

To yield a model that reflected the population level, all transition
probabilities were derived from empirical HMRN data. Transition
probabilities were derived depending on treatments received and
outcomes, while the time-dependency transition probabilities
were derived from the disease-free survival (DFS) and the time
to relapse in remission (TTR) by using the Weibull survival model,
defined as follows:

SðtÞ ¼ eð�λitÞ
p

1. ADE: cytarabine, daunorubicin, and etoposide
2. DA: daunorubicinand cytarabine
3. FLAG-Ida: fludarabine, cytarabine, G-CSF and idarubicin
4. Dclo: Daunorubicin and Clofarabine
5. AraC (LD): low dose cytarabine

# Early response: achieved remission within 50 days
$ Late response: achieved remission after 50 days 
§ No response: did not achieve remission 

¶ Early death: died within 3 months

Fig. 1 – Model structure. *Early response: achieved remission within 50 days. †Late response: achieved remission after 50 days.
‡No response: did not achieve remission. §Early death: died within 3 months. ADE, cytarabine, daunorubicin, and etoposide;
AML, acute myeloid leukemia; AraC(LD), low-dose cytarabine; DA, daunorubicin and cytarabine; Dclo, daunorubicin and
clofarabine; FLAG-Ida, fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin.
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Where λi¼eXiβ, t is time, λi is the scale of the distribution, p is the
shape of the distribution, Xi is a vector of individual character-
istics (age, age-squared, and sex), and β is a coefficient. The
detailed calculation processes are described below:

Probability of staying in remission ¼ DFS ¼ 1 � probability of
failure (death, relapse, or transplantation)

Probability of relapse in remission ¼ TTR
Probability of receiving transplantation in remission ¼ Time-

To-(possible) Transplantation (TTT) in remission
Probability of death in remission ¼ 1 – DFS – TTR � TTT in

remission
Several simplifications, however, were required for certain

scenarios. First, when the number of patients was insufficient to
estimate the transition probability in a specific health state (such
as the small number of patients who achieved a third remission),
it was assumed that the transition probability was the same as
the previous identical health state (e.g., third remission ¼ second
remission). Second, it was assumed that transition probabilities in
the remission tunnel states remained constant after 18 months
(from cycle 19) because the empirical data suggested that the
Kaplan-Meier curve plateaued within 18 months of remission.

The key parameters used in the model are summarized in
Tables 1 and 2 and illustrated in Figure 2.

Model Inputs: Medical Costs

The model was built from an NHS perspective, including medical
cost only. All cost parameters were calculated by using a bottom-

up costing (microcosting) approach within the health care system
framework. Unit costs were derived from the British National
Formulary, the Personal Social Services Research Unit, and the cost
lists of both the NHS Blood and Transplant and Leeds Teaching
Hospitals NHS Trust. The NHS Reference Cost 2007 was used only
when bottom-up costing was not possible. Therefore, cost param-
eters used in the current study represent the true costs and
include costs for treatments, hospitalizations, diagnostic tests,
transfusions, and associated complications. All cost information
was further stratified by age group, type of treatment, and health
state, so that it could be integrated into the models. For purposes
of comparison, all cost results were expressed in 2007 UK sterling.

The key cost inputs used in the model are summarized in
Tables 1 and 2.

Outputs

In the model, the health outcome measured was life expect-
ancy, while the economic outcomes were captured by medical
costs. Both health and economic outcomes were discounted by
using a 3.5% annual discount rate, based on UK guidance
recommended by the National Institute for Health and Clinical
Excellence [31].

Assessing Uncertainty

A probabilistic model was implemented to explore the effect
of cumulative uncertainty. Each parameter (both transition

Table 1 – Non–time-dependent transition probabilities and mean costs for individuals during induction
(decision tree) conditioned on “received induction treatment” and being aged 18 to 59 years or 60 years or older
(in parentheses).

Induction phase (nodes and pathways in
the decision tree)

Transition probability Mean costs

Per month Distribution £ Distribution

18–59 y 0.2869 Beta

Received induction treatment on 18–59 y (Z60 y) 0.9307 (0.5060) Beta

ADE 0.2234 (N/A) Dirichlet

DA 0.4681 (0.4567) Dirichlet

FLAG-Ida 0.3085 (0.0866) Dirichlet

DClo N/A(0.0630) Dirichlet

AraC(LD) N/A(0.3937) Dirichlet

ADE and early death 0.0476 (N/A) Dirichlet 7,843 (N/A) Gamma

ADE and early response 0.8095 (N/A) Dirichlet 16,623 (N/A) Gamma

ADE and late response 0.0952 (N/A) Dirichlet 32,953 (N/A) Gamma

ADE and no response 0.0476 (N/A) Dirichlet 46,426 (N/A) Gamma

DA and early death 0.1364 (0.1552) Dirichlet 10,856 (11,913) Gamma

DA and early response 0.6364 (0.4310) Dirichlet 15,297 (16,145) Gamma

DA and slow response 0.1591 (0.2586) Dirichlet 37,415 (26,686) Gamma

DA and no response 0.0682 (0.1552) Dirichlet 44,228 (38,369) Gamma

FLAG-Ida and early death 0.0690 (0.1818) Dirichlet 17,928 (27,825) Gamma

FLAG-Ida and early response 0.7241 (0.6364) Dirichlet 16,738 (18,707) Gamma

FLAG-Ida and late response 0.1724 (0.0909) Dirichlet 26,569 (18,766) Gamma

FLAG-Ida and no response 0.0345 (0.0909) Dirichlet 13,018 (35,804) Gamma

DClo and early death N/A(0.1321) Dirichlet N/A(27,825) Gamma

DClo and early response N/A(0.4503) Dirichlet N/A(37,711) Gamma

DClo and late response N/A(0.0614) Dirichlet N/A(56,652) Gamma

DClo and no response N/A(0.3562) Dirichlet N/A(77,953) Gamma

AraC(LD) and early death N/A(0.3600) Dirichlet N/A(9,683) Gamma

AraC(LD) and early response N/A(0.0800) Dirichlet N/A(14,527) Gamma

AraC(LD) and late response N/A(0.1600) Dirichlet N/A(15,674) Gamma

AraC(LD) and no response N/A(0.4000) Dirichlet N/A(26,257) Gamma

ADE, cytarabine, daunorubicin, and etoposide; AraC(LD), low-dose cytarabine; DA, daunorubicin and cytarabine; Dclo, daunorubicin and

clofarabine; FLAG-Ida, fludarabine, cytarabine; G-CSF, (granulocyte colony-stimulating factor), and idarubicin; N/A, not available.
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probabilities and cost inputs) was assigned a distribution to
reflect sample variability (e.g., beta distributions were used for
transition probabilities of binominal events, and gamma distri-
butions were used for medical costs). Then, Monte Carlo simu-
lation was carried out by resampling all distributions
simultaneously 500 times. This process was conducted in Excel
by using Visual Basic for Applications programming to run the
Monte Carlo simulation. All outputs from the iterations were
summarized in plots to illustrate the overall uncertainty through-
out the current complex model [25].

Analyses

Cohort life expectancy and costs were derived by model simu-
lation. For comparative purposes, three subgroup analyses were
also carried out to investigate the effects of first-line treatment
and response, age, and trial participation. In particular, for
subgroup analyses of trial and nontrial patients, a subsimulation
in the preremission phase and a subanalysis in the postremission
phase were conducted to capture differences between these two
groups. For exploratory purposes, the model further simulated

Table 2 – Non–time-dependent transition probabilities and mean costs for individuals in postremission phases
(Markov models) conditioned on being aged 18 to 59 years or 60 years or older (in parentheses).

Postremission phase (transition
probabilities in Markov models)

Transition probability Mean cost

Per month Distribution Month 1 (£) Month 2þ (£) Distribution

Models A1 and A2

First relapse to death 0.2903 (0.8261) Beta – – –

Second relapse to death 0.4286 (0.5000) Beta – – –

Staying in first relapse 0.2963 (0.1739) Beta 7,380 (5,002) 1,589 (885) Gamma

Staying in second relapse 0.4286 (0.5000) Beta 11,698 (5,002) 5,850 (885) Gamma

Staying in first remission after month 18 0.9856 (0.9457) Weibull 40 (65) 40 (65) Gamma

Staying in second remission after month 18 0.9552 (0.4595) Weibull 68 (280) 68 (280) Gamma

Models B1 and B2

First relapse to death 0.8333 (0.3750) Beta – – –

Second relapse to death 0.8333 (0.9375) Beta – – –

Staying in first relapse 0.1429 (0.3750) Beta 3,450 (2,562) 1,401 (762) Gamma

Staying in second relapse 0.1667 (0.0625) Beta 3,450 (2,562) 1,401 (762) Gamma

Staying in first and second remission after

month 18

0.9319 (0.957) Weibull 615 (457) 615 (457) Gamma

Fig. 2 – Time-dependent transition probabilities in the postremission phase (survival curves based on Weibull).
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life expectancy and costs probabilistically until 100 years of age or
death to obtain predictions beyond the 5-year period. The results
generated provided a preliminary overview of lifetime medical
costs and survival outcomes for treating AML.

The model was validated by means of standard methods,
including face, internal, and external validations [32]. Face valida-
tion was conducted by consulting clinical experts on the following
aspects: model structure, data sources, and results. Internal vali-
dation was assessed by comparing predicted costs and survival
with empirical estimates obtained from HMRN registry data, and
external validation was assessed by comparing predicted results
from the model with relevant literature.

Results

Based on simulation results of the probabilistic model, the
expected 5-year medical cost and life expectancy per patient
ranged from £8,170 to £81,636 and 3.03 to 34.74 months, respec-
tively, depending on treatment intent and response (Table 3).
This demonstrates the heterogeneity of the AML population. The
total economic and health impact of AML across the UK as a
whole was also estimated by extrapolation (the expected number
of UK AML diagnoses being around 2000 per year), and the results
are shown in Table 3.

Subgroup Analyses

The effect of initial treatment intent is also demonstrated in
Table 3 by breaking down expected medical costs and life expect-
ancy based on initial treatment and response. The expected 5-
year medical costs and life expectancy varied widely, from £8,170
(Model D) to £82,281 (Model A) for costs and 0.73 (no response,
early death) to 36.81 months (Model A) for life expectancy. The
results for Models A and B are, however, relatively similar
(£82,281 vs. £79,975 and 36.81 vs. 29.43 months, respectively). A
possible explanation for this could be that differences before and
after remission even out the overall differences: patients with
late response (Model B) take a longer time and incur more costs to
achieve remission (£27,367 vs. £17,261), but they have poor
prognosis after remission, resulting in shorter survival (26.66 vs.
35.58 months) and less medical costs (£52,609 vs. £65,020) than do
patients in Model A.

Figure 3A to D demonstrates the effect of age among the
subgroups of different initial treatment intents and responses. As
expected, patients younger than 60 years had better survival but
incurred more medical costs than did those aged 60 years or
older. An exception to this was the subgroup of patients who had
no response to induction treatments and died early (Fig. 3C). In
this subgroup, expected medical costs and life expectancy were
similar between the two age groups, suggesting that the age
effect was limited here. It is also worth noting that patients in the
same subgroup (Model C and early death) incurred much higher
costs but achieved similar survival compared with the subgroup
of patients receiving nonintensive/noncurative care (Model D)
(Fig. 3C).

Tables 4 and 5 show the trial effect by comparing different
features in the phases before and after the first remission.
Compared with nontrial patients, trial patients had higher
remission rates, shorter time to remission, and significantly
higher medical costs in the preremission phase. After achieving
remission, the relapse rates were similar in both groups of
patients, but the life expectancy was higher among patients
younger than 60 years. These results demonstrate that there
are significant differences in expected costs and life expectancy
between trial and nontrial patients. A detailed comparison,
however, could not be carried out because this was outside the
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scope of the current study and the developed model was not
designed for this purpose.

Exploratory Analysis

To investigate both costs and survival beyond the 5-year time
horizon and to test the predictive ability of the model, a lifetime
model simulation was conducted probabilistically and is reported
in Table 6. Overall, there was no significant difference in expected
costs and life expectancy between the 5-year and lifetime
horizons. Age at diagnosis, however, played an important role
beyond the 5-year time frame. For patients younger than 60
years, life expectancy increased by 69% (from 34.18 to 57.83
months), while the expected medical costs increased by 34%
(from £79,483 to £106,814). In contrast, among patients aged 60
years or older, expected medical costs and life expectancy
increased only by a small amount beyond the 5-year time frame.

Model Validation

Results of the standard model validations are presented below.
With respect to face validity, the model structure, data sources,
and results were corroborated by clinical experts. For internal
validity, the predicted outcomes were compared with empirical
estimations derived from HMRN. Results of the survival curves
over 5 years are compared in Figure 4. As shown, the model
demonstrated good fit with empirical evidence, the predicted
survival curve matching the empirical survival curve closely, but
dipping slightly beneath it after 20 months, before meeting again
at 55 months. With regard to the comparison of medical costs,

the 5-years expected cost was £38,720 in the deterministic model
and £41,109 in the probabilistic model, the predicted results
capturing between 92% and 99% of the empirical estimated cost
(£42,307) derived from the study population. Regarding external
validity, the cost results predicted by the model were relatively
consistent with findings in the relevant literature [19,20]. Overall,
the model demonstrated a good capability of predicting both AML
medical costs and life expectancy.

Discussion

The objective of the current study was to construct an economic
baseline model for AML from the UK NHS perspective. This is the
first study to develop a model that can simulate and predict life
expectancy and long-term medical costs associated with treating
patients with AML. Estimations of the 5-year expected medical
costs and life expectancy were £41,109 and 16.56 months,
respectively. Both expected medical costs and health outcomes
varied according to initial treatment intent, age at diagnosis, and
trial participation. These results confirmed that AML treatment is
resource demanding and that there is considerable variation with
respect to patient characteristics, treatments, and prognoses.

In a broader context, the model was found to be reliable, with
good predicting ability. More specifically, because the model was
predicated on population-based registry data (HMRN), the main
treatment pathways and their effects in a real-world clinical
setting could be identified and integrated into the model. As
a result, the model predictions provide an overview for the
general patient population, rather than a restricted trial-based

Fig. 3 – Expected costs and survival between two age groups for four groups: (A) patients who had induction treatments with
early response, (B) patients who had induction treatments with late response, (C) patients who had no response to induction
treatments or had no induction treatments, and (D) overall.
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perspective. Second, several techniques were incorporated into
the model, such as hybrid model structure and tunnel state,
allowing key aspects of clinical practice and factors associated
with AML prognosis to be properly integrated. Third, results of
the subgroup and exploratory analyses conducted in the current
study matched initial expectations, implying that the model
successfully captured the heterogeneity of AML treatment path-
ways and disease progression. For instance, the subanalysis
results confirmed the effect of initial treatment intent and
response, with patients responding to induction treatments
(Models A and B) having a longer life expectancy and incurring
higher costs than other patient groups (Table 3). The subanalysis
results also confirmed the age effect, with patients aged 60 years
or older having a lower life expectancy and lower medical costs
than patients younger than 60 years (Fig. 3). Finally, internal and
external validation of the model demonstrated the reliability and
robustness of the results generated by the model. The results
were not only close to the empirical data (Fig. 4) but also in line
with findings of other relevant studies [19,20].

Although the model appears to be reliable and to reflect the
heterogeneity of AML, it is nonetheless subject to some limitations.
First, although “minimal residual disease (MRD) level in remission”
is an important prognostic factor [2,3,33,34], it was not included in
the present model. This was because although MRD results are
available for the majority of HMRN patients, they are not univer-
sally assessed elsewhere. Incorporation of MRD into the model at
this stage would mean that it could not be used in areas where
MRD is not routinely assessed. This field can, however, be added at
a later date, if appropriate. Second, because of limited data, the
third remission was the last health state in the Markov models.
This limitation, however, is not likely to undermine the model
results because only a small number of patients reached third
relapse and beyond. Despite this, the model will be updated with
more health states as the overall number of patients, and con-
sequently those with third remission and/or beyond, increases.
Third, the cost inputs in the current model were mainly confined
to the inpatient and day-case settings due to data constraints. The
reliability of cost results, however, was expected to be unaffected
because the majority (�85%) of cancer spend is incurred in acute/
secondary care setting based on the NHS program budgeting data
[35]. Finally, the quality-adjusted life-year (QALY) information was
not included in the present model because these data were not
collected for patients in our cohort and estimates of relevant
preference-based utility information were not available in the
existing literature. The introduction of QALY data into the model,
however, may have shown a reduction in the quality of life of
patients with AML, and because we have not included these, we
may have overestimated the effectiveness of some of the health
states. Thus, before performing a cost-utility analysis based on this
model, QALY data need to be collected. With a view to incorporat-
ing this into future models, we are currently undertaking this work
by using European Quality of Life - 5 Dimensions questionnaires
(EQ-5D) questionnaires.

During the study, three intriguing areas for future research
were identified. The first addresses the issue that a large number
of patients (especially those aged 60 years or older) tend not to be
recruited to clinical trials. Patients outside trials often receive less
intensive treatment, such as noncurative care, something that
incurs poorer survival and less medical costs compared with trial
patients, and this was confirmed by our subgroup analysis
(Tables 4 and 5). Taken at face value, this result conflicts with
Berman et al.’s study [12], which reported that median costs for
nontrial patients were higher than those for trial patients. A
possible explanation for this difference is that Berman et al.
based their study on data from a single hospital, which excluded
patients who were treated with noncurative care at outside
institutions; thus, the study did not take into account patients
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who incurred lower costs because of shorter survival. This, again,
demonstrates the importance of population-based data and the
need to interpret findings based solely on clinical trials, or from a
single institution, with caution because the generalizability of
such results to patients with AML as a whole may be inappro-
priate. Unfortunately, a detailed comparison between trial and
nontrial patients could not be carried out in our present study
because the model we developed was not designed for this
purpose; this is, however, an area that could be explored further
in the future. The second area is related to the time horizon. In
the current study, a difference between results derived from the
5-year and lifetime horizon simulations was observed, even
though most patients with AML would not survive more than 5
years (median survival of 5.2 months). Thus, further explorations
of the time horizon effect on expected costs and survival would
be an interesting subject for future research. It is worth noting
that some parameters of the lifetime model in the current study
would need further refinement when more empirical data are
observed. This is because only a few cases survived beyond 5

years in our source data, which might have an impact on the
accuracy of the model predictions.

Finally, as shown in Table 3 and Figure 3, patients receiving
induction treatment with no response had poorer survival and
incurred higher costs than did those receiving noncurative treat-
ments (supportive/palliative care) only. If a well-developed prog-
nostic tool/test was available that could predict the likelihood of
response before giving induction chemotherapy, it could not only
help to prolong the life expectancy of patients but may also have
the potential to reduce medical expenses by up to £10,000. In
order not to initiate induction treatment, however, the prognostic
tool/test would need to have extremely high sensitivity and
specificity to enable patients and clinicians to make the decision
not to undergo intensive treatment with confidence.

Conclusions

AML life expectancy and costs vary according to patient character-
istics and treatment pathways. The population-based model devel-
oped in this study, however, demonstrated a good capability of
capturing true costs and survival in a real-world clinical setting.
Also, it showed a long-term applicability of being able to provide
predictions over a 5-year period, and even over the remaining
lifetime. We presume that this AML model could be used not only
as a baseline for evaluating new diagnostic tools and treatments but
also for enabling policymakers to make informed decisions.

Source of financial support: HMRN is funded by Leukaemia &
Lymphoma Research. The authors confirm that no additional
support was received from any other organization, or activities
undertaken that could have influenced the submitted work in
any way in the 3 years preceding the study.
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journal.com/issues (select volume, issue, and article).

Table 5 – Comparisons in percentage of staying in remission and time from remission to death in the
postremission phase among trial and nontrial patients between two age groups (subanalysis)

Age group
(y)

MRC trial (AML 14, AML 15, and AML 16) Nontrial*

N Staying in
remission (%)

Median remission to
death (mo)

N Staying in
remission (%)

Median remission to
death (mo)

Total 80 55 37.77 70 34 of 70 ¼ 49 20.13

18–59 45 56 48.73 51 18 of 35 ¼ 51 22.41

Z60 35 54 23.13 46 16 of 35 ¼ 46 15.27

AML, acute myeloid leukemia; MRC, Medical Research Council.

* Including the patients receiving no induction treatment.

Table 6 – Comparison in expected medical costs and survivals between two age groups from 5-y time horizon
and lifetime horizon (probabilistic model)

Age
group
(y)

Five-year time horizon Lifetime horizon

Survival (mo),
mean � SD

Costs (£),
mean � SD

Cost per
month (£)

Survival (mo),
mean � SD

Costs (£),
mean � SD

Cost per
month (£)

Total 16.56 � 2.95 41,109 � 6,977 2,641 22.93 � 7.08 46,572 � 13,947 2,031

18–59 34.18 � 9.46 79,483 � 23,880 2,325 57.83 � 23.01 106,814 � 44,616 1,847

Z60 8.56 � 1.08 22,318 � 1,531 2,607 8.98 � (1.23) 22,632 � 1,480 2,520

Fig. 4 – Five-year survival curves of empirical, deterministic,
and probabilistic models.
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