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Receptor Activity Modifying Protein-3
as a Bone Anabolic Target
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Kathleen M. Caron2‡, Gareth O. Richards1‡ and Tim M. Skerry1*‡

1 Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom,
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Knockout technologies provide insights into physiological roles of genes. Studies initiated

into endocrinology of heteromeric G protein-coupled receptors included deletion of

receptor activity modifying protein-3, an accessory protein that alters ligand selectivity

of calcitonin and calcitonin-like receptors. Initially, deletion of Ramp3-/- appeared

phenotypically silent, but it has emerged that mice have a high bone mass phenotype,

and more subtle alterations to angiogenesis, amylin homeostasis, and a small proportion

of the effects of adrenomedullin on cardiovascular and lymphatic systems. Here we

explore in detail, effects of Ramp3-/- deletion on skeletal growth/development, bone mass

and response of bone to mechanical loading mimicking exercise. Mouse pups lacking

RAMP3 are healthy and viable, having accelerated development of the skeleton as

assessed by degree of mineralisation of specific bones, and by microCT

measurements. Specifically, we observed that neonates and young mice have

increased bone volume and mineralisation in hindlimbs and vertebrae and increased

thickness of bone trabeculae. These changes are associated with increased osteoblast

numbers and bone apposition rate in Ramp3-/- mice, and increased cell proliferation in

epiphyseal growth plates. Effects persist for some weeks after birth, but differences in

gross bone mass between RAMP3 and WT mice lose significance in older animals

although architectural differences persist. Responses of bones of 17-week old mice to

mechanical loading that mimics effects of vigorous exercise is increased significantly in

Ramp3-/- mice by 30% compared with WT control mice. Studies on cultured osteoblasts

from Ramp3-/- mice indicate interactions between mRNA expression of RAMPs1 and 3,

but not RAMP2 and 3. Our preliminary data shows that Ramp3-/- osteoblasts had

increased expression b-catenin, a component of the canonical Wnt signalling pathway

known to regulate skeletal homeostasis and mechanosensitivity. Given interactions of

RAMPs with both calcitonin and calcitonin-like receptors to alter ligand selectivity, and

with other GPCRs to change trafficking or ligand bias, it is not clear whether the bone
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phenotype of Ramp3-/- mice is due to alterations in signalling mediated by one or more

GPCRS. However, as antagonists of RAMP-interacting receptors are growing in

availability, there appears the likelihood that manipulation of the RAMP3 signalling

system could provide anabolic effects therapeutically.

Keywords: receptor activity modifying protein, bone, endocrinology, osteoporosis, ageing

INTRODUCTION

Increased lifespan poses new challenges for the population. The

larger numbers of older old people in societies have the potential

to increase those needing assistance with living. One major cause

of loss of ability to live independently is related to

musculoskeletal diseases where bone and joint problems

necessitate assisted living. Bone fractures due to osteoporosis
lead to hospitalisation (with its own morbidity) but also a failure

to return to previous physical ability to manage independent

living. Osteoporosis is a result of an imbalance between bone

resorption and bone formation. Therapeutic strategies have

traditionally been based on the success of antiresorptive agents

such as bisphosphonates (1–3), selective estrogen receptor
modulators (SERMs) and anti-RANKL monoclonal antibodies

(4–6), but there is strong interest in ways to increase skeletal

mass in patients who have already lost bone. Parathyroid

hormone and related peptides (PTH 1-34 -teriparatide and a

parathyroid hormone-related protein PTHrP 1-34 analogue

abaloparatide) (7–9) were among the first anabolic treatments

approved for osteoporosis and have proved successful in
reversing bone loss in many, but not all those suffering from

osteoporosis (8, 10, 11). However, due to a suggested risk of

developing osteosarcoma with teriparatide and abaloparatide, a

cumulative use of these drugs for more than 2 years is not

recommended (12–15). Despite the long development times and

costs for osteoporosis drugs, there is still scope for development
of novel basic scientific discoveries relating to bone homeostasis

that may be translated as targets for drug discovery, particularly

if they offer anabolic therapeutic opportunities.

Here we describe the phenotype of mice lacking the gene for

RAMP3, which have elevated bone mass and increased responses

to mechanical loading compared with WT controls. This

research arose from considerations of the roles of the
calcitonin family of peptides – calcitonin (CT), calcitonin

gene-related peptide (CGRP), Adrenomedullin (ADM) and

Amylin (AMY). Calcitonin (CT) is a well-established

physiological regulator of the skeleton, and receptors are

expressed on both osteoclasts and osteoblasts (16–18). CGRP,

ADM, AMY and intermedin (IMD/ADM2) also regulate skeletal
homeostasis. CGRP and AMY have been shown to inhibit

osteoclast activity and bone resorption in vitro (19–21). Several

studies have also demonstrated that AMY, ADM and CGRP

induce osteoblast proliferation and promote bone formation (18,

22–25). IMD/AM2 has been reported to inhibit bone resorption

in mouse calvarial bone and reduce osteoclast numbers and pit

formations in bone marrow macrophage cultures that were
stimulated with M-CSF and RANKL (26). Recently, ADM2 has

been reported to improve bone regeneration in type1 diabetic

rats (27). The receptors for the family are unusual because they

comprise not a single G protein-coupled receptor (GPCR) but

GPCRs associated with accessory proteins known as a receptor

activity modifying proteins (RAMPs), where the RAMPs

provides the ligand selectivity for the heteromeric receptor

complex. The mechanisms behind these effects are still not
fully understood, but detailed research on the structure and

function of the complexes is emerging with consequent impact

(28, 29).

Generally, the ligand properties of the CT peptides on their

receptors (calcitonin receptor - CTR and calcitonin like-receptor

- CLR), rely on their interactions with one of the three human
receptor activity modifying proteins (RAMPs) that affect their

trafficking to the cell surface (30), ligand binding and

intracellular second messenger activation pathways. The CTR

is an exception where RAMP interactions are not needed for cell

surface translocation, but it becomes one of 3 receptors for

amylin when interacting with the RAMPs (31–33). The CLR

has no known native ligand and does not traffic to the cell surface
alone, so requires an association with the RAMPs for cell surface

expression and function. CLR/RAMP1 heterodimers form

receptors for calcitonin gene-related peptide (CGRP), whereas

CLR and RAMPs 2 and 3 form pharmacologically and

functionally distinct adrenomedullin receptors (32–35). Studies

performed to investigate peptide-ligand interactions in the
absence and presence of each RAMPs, suggest a common

mode of peptide binding in the CLR-RAMP complexes and an

allosteric role of RAMPs driving the peptide selectivity via

increasing conformational flexibil ity in CTR-RAMP

complexes (35).

Genetic mouse models for individual Ramp genes have
revealed that perturbation from normal expression of

individual Ramp genes results in distinct phenotypes (30, 32,

33). In 2007, there were first reports of the Ramp1-/- (36) and

Ramp2-/-, Ramp2+/- and the Ramp3-/- mouse models (37) which

improved understanding of physiological relevance of the Ramp

genes. Ramp1-/- mice exhibit a phenotype characterised by

hypertension and increased serum pro-inflammatory cytokine
levels (TNF-a, IFN-g, IL-12, and IL-6) with increased serum

CGRP levels upon lipopolysaccharide (LPS) administration and

indications of disturbed metabolism (36). Ramp2-/- mice have an

embryonically lethal phenotype and die mid-gestation due to

hydrops fetalis, phenocopying AM and CLR null mice (38–40).

Even a single copy of the Ramp3 gene does not rescue these
effects as a haploid insufficiency phenotype includes reduced

litter size, increased serum calcium and prolactin levels, disorders

of mammary gland development and pituitary gland size
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(37, 41). Notably, Ramp2+/- neonates also exhibit a skeletal

phenotype characterised by reduced mineralization of the

epiphyseal plates of the vertebrae suggestive of delayed

development of the lumbar vertebrae (42). Interestingly, and in

direct contrast, Ramp3-/- mice are healthy and viable with a

phenotype similar to the WT mice except that these mice failed
to exhibit normal physiological age-related weight gain (37) as

they age. In this study, we analysed the skeletal phenotype of

Ramp3-/- mice, using microcomputed tomography and dynamic

histomorphometry to assess postnatal bone growth/development

and responses to mechanical loading in adulthood, and in vitro

PCR analysis of osteoblasts from Ramp3-/- and WT mice to
determine RAMP and b-catenin mRNA expression.

METHODS

Experimental Animals
Sex-matched WT 129/SvEv and Ramp3-/- mice were bred from
on the 129/SvEv null mice created previously (37). Skeletal

phenotype was studied at post-natal day 5 (PND5), and at 4

and 8 weeks of age. 17-week-old animals were used for

mechanical loading experiments. Whole mount skeletal

staining was performed for the PND5 age group, micro

computed tomography (mCT) analysis was performed for all
age groups, and histology and dynamic histomorphometry were

performed for the eight-week age group. All experimental

animals were housed in individually ventilated cages (IVC)

under 12-hour light/dark cycle with ab libitum access to water

and approved regular chow diet in pathogen free environment

specific to the animal house facility at University of Sheffield.

Each IVC housed a maximum 5 mice at a time. All procedures
were approved by a local ethical committee, and according to the

UK Home Office regulations under the authority of associated

project and personal licences for animal experiments.

Neonatal mice were euthanised by anaesthetic overdose of

sodium pentobarbitone solution – (0.2mg/g body weight - JM

Loveridge Ltd, UK). Adult mice were euthanised by
cervical dislocation.

Whole Mount Alcian Blue/Alzarin
Red Staining
PND5 skeletons were stained with Alcian Blue/Alzarin Red as
previously described previously (43). Briefly, the right hind limb

was separated before staining and fixed in 70% ethanol for mCT
analysis. After removing other soft tissue, the skeleton was fixed

and dehydrated in 90% ethanol for 7 days, with ethanol being

changed on the 3rd and 5th day. Following this the skeleton was

stained in freshly prepared Alcian blue solution (20mg Alcian

blue 8GX in 22ml distilled water, 160 ml 100% ethanol and 40ml
glacial acetic acid) for 3 days at room temperature. This was

followed by sequential rehydration that with 70% ethanol

treatment for 4-6 hours (ethanol change at 2-3 hours),

followed by 40% ethanol for 4-6 hours (ethanol change at 2-3

hours), followed by 15% ethanol for 4-6 hours (ethanol change at

2-3 hours) and finally in water until the skeleton sank to the

bottom of the staining container. After rehydration, skeletons

were treated with freshly prepared 1% KOH for 1-2 days at room

temperature until the remaining soft tissue became transparent.

Skeletons were then stained with freshly prepared Alzarin Red S

solution (1mg/100ml 1% KOH) for 3 days (staining solution

changed every day). Finally, the skeletons were again treated with
freshly prepared 1% KOH solution for 9hr hours at room

temperature (KOH solution changed at every third hour).

Skeletons were photographed and stored in 100% glycerol.

Micro Computed Tomography
(mCT) Analysis
mCT analysis was performed in a SkyScan 1172 Desktop X-ray

mCT system. Neonatal femurs and tibiae were scanned at a spatial

resolution of 10mm, whereas adult whole bones were scanned at a

resolution of 17mm. Adult cortical and trabecular bone regions in

the proximal tibiae were scanned at a resolution of 4.5mm. A
0.5mm aluminium filter and medium-pixel camera was used only

for adult bones. Scanned image datasets were then reconstructed

in NRecon® (Version 1.4.1.0). The grey scale image datasets

generated for individual bone was then analysed by interpolating

regions of interest in CTAnalyser (Version 1.7.0.5) software. 3D

skeletal models were rendered using Voxler 1.1, Golden

software™. mCT-derived bone morphometric measurement
symbols and units are presented in accordance with agreed

guidelines (28). For mCT analysis of the response of bones to

mechanical loading, we chose the same region of interest in the

proximal tibial cortex as has been described previously by

ourselves and others (29–31). Briefly the ROI was 1mm thick

and extended from 1mm below the proximal tibial growth plate
distally. We assessed the volume of new bone formed on the

periosteal cortex, expressed as a proportion of the total original

cortical volume.

Dynamic Histomorphometry
Eight-week-old WT and Ramp3-/- mice were injected with

calcein (100mg/kg) twice, one week apart before euthanasia.

Animals were killed the day after the second label had been
administered. Left tibiae were excised from mice and fixed in

70% ethanol prior to resin embedding and sectioning. Six

longitudinal midshaft sections, 3mm apart, were analysed per

specimen for each experiment. Quantification of the periosteal

bone apposition rate was performed in 12, 300mm x 300mm
regions (6 on the medial and 6 on the lateral side) per sample,
using the OsteoMeasure™ system (OsteoMetrics®) using a Leica

DMRB microscope. The detailed measurement protocol is

described in the Supplementary Methods document.

Haematoxylin and Eosin (H&E) and
Tartrate-Resistant Acid Phosphatase
(TRAP) Sample Processing
Right tibiae of eight-week-old WT and Ramp3-/- mice were fixed

in ice cold 4% paraformaldehyde immediately after killing the

animals. Bones were then decalcified and embedded in paraffin

wax blocks before sectioning and staining. Briefly bones were

decalcified in EDTA at room temperature for 4 weeks using 10-20
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times volume of EDTA to volume of bone. The EDTA solution

was changed each week. On completion of decalcification process,

bones were embedded in paraffin wax and sectioned. Out of the six

longitudinal mid sections 3µm apart, three alternate sections were

used for H&E staining and the other three sections were used for

TRAP staining. Haematoxylin and Eosin (H&E) (44) stained
sections were used to study the bone versus cartilage differences.

These sections were also used to determine the differences between

the ratio of proliferative to hypertrophic zones in the growth

plates. Tartrate-resistant acid phosphatase (TRAP) (45) stained

sections were used to determine the number of osteoblast and

osteoclasts and the osteoblast-osteoclast coverage. These
measurements were performed on both the endocortical and the

trabecular surface of tibia. The stained bone sections were scanned

in the ScanScope® (Aperio®) scanner. All histological analyses

were then performed manually on scanned electronic sections in

ImageScope™ (Aperio®), the e-slide ‘viewing’ software.

Osteoblast and Osteoclast Numbers
We measured the number of osteoblasts, osteoblast covered bone
surface, number of osteoclasts, osteoclast covered bone surface and

trabecular and endocortical bone perimeters on both the

endocortical and the trabecular bone surfaces in sections stained

with H&E as described previously (Supplementary Methods).

Cells and bone perimeters were manually marked on the

ImageScope™ viewing software. The endocortical measurements
were performed in 12 regions measuring 300mm x 300mm (6 on

the medial and 6 on the lateral side), whereas trabecular

measurements were performed in a 750mm x 750mm area. An

offset of 300mm from the growth-plate was maintained in both

endocortical and trabecular measurements. The detailed

measurement protocol is described in the Supplementary

Methods document.

Growth Plate Analysis
Scanned H&E stained tibia sections were used for growth plate

analysis. Number of proliferative cells, number of hypertrophic

cells and the ratio of proliferative zone to hypertrophic zone were

determined by manually marking the cells in an area of 1mm x

0.6mm mid growth plate region of each section. First, individual
chondrocyte columns were manually marked as each column

represents a clonal expansion of stem cells. Finally, the extent of

proliferative zone and hypertrophic zone within each column

was marked. The software then calculated the number of cells

and proliferative cells to hypertrophic cells (PC/HC) ratio.

The detailed measurement protocol is described in the

Supplementary Methods document.

Mechanical Loading
Groups of 6 male WT and 6 Ramp3-/- mice (17 weeks old at the

start of the experiment) were subjected to mechanical loading of

the left tibiae on 6 occasions over two weeks as previously

described (46). Briefly, the flexed stifle (knee) and hock (ankle)

joints were placed between domed cups of a mechanical loading
device (Model 8511, Instron High Wycombe, UK) and held in

place by a compressive force of 0.5N. The machine then applied

axial compressive force of 13N, sufficient to induce 2,000

microstrain at over 100,000 microstrain sec-1 (the equivalent of

human tibial bone strain on landing from a jump) (47). The load

was then reduced at the same rate to 0.5N after 0.2 seconds,

where it remained for 10 seconds before repeating. 40 of these

ramped square wave loading cycles were applied on each loading

day, occupying just over 6 minutes on each occasion. Bones were
loaded on successive Mondays, Wednesdays and Fridays of 2

weeks and the mice injected with the fluorochrome calcein green

(Sigma®) 10mgkg-1 on the first and last day of loading as

previously described (46, 47) and the animals were killed on 3

days later and the left and right tibiae collected for mCT analysis

and stored as before.
To analyse the amount of new bone formed in response to the

mechanical loading, we defined the boundaries of the original

periosteal cortex, which was composed of dense lamellar bone

and measured the amount of woven bone formed outside of that

margin. The position of the line determining the original

periosteal cortex was checked on every third slice through the
region of interest, and the volume of bone expressed in mm3.

Primary Osteoblast Cultures
Calvariae were excised immediately after culling the animals and

cells were collected from spun down fractions of sequential

digestions. Each of the primary osteoblast cultures was

established from three postnatal day 3 male mice. Excised

calvariae were washed in Hank’s balanced salt solution

containing calcium and magnesium without phenol red
(Lonza®) and digested 5ml Collagenase 1A (Sigma®) (1mg/ml

prepared in Hank’s solution) for 15 min digestion. Each cell

fraction was pelleted and re-suspended in fresh alpha Minimum

Essential Media (MEM) (Gibco®) and stored in ice. First fraction

of cells was collected from the supernatant of a 30 min

Collagenase 1A digestion at 37°C on a shaker at 200rpm. The

calvariae were washed in PBS before the digestion for second cell
fraction. The second cell fraction was obtained from the

supernatant of 4mM tetrasodium EDTA pH7.0 digestion at

37°C on a shaker at 200rpm for 15 min. The calvariae were

washed in Hank’s solution before the digestion for third cell

fraction. The second cell fraction was obtained from the

supernatant of a 30 min Collagenase 1A digestion at 37°C on a
shaker at 200rpm. Finally, all the three cell fractions were pooled

together and seeded in T75 culture flasks in alpha-MEM

containing 10% heat inactivated fetal calf serum (FCS)

(Gibco®) and 0.5% penicillin-streptomycin solution. On the

third day when the flasks reached 80% confluency, cells were

trypsinized (Trypsin-EDTA solution Gibco®) and re-seeded in

either in 6 well culture plates (Nunc™) or T25 culture flasks and
allowed to grow for three days prior to switching them to

differentiation medium containing 5mM/l b-Glycerophosphate,
10nM dexamethasone and 100mg/ml Ascorbic acid. Cells were

treated with DKK1 or Wnt3A or both on 20th day of

differentiation prior to being harvested.

Quantitative PCR (Q-PCR)
Double dye probe Q-PCR was performed with custom made

FAM labelled primers designed by Primerdesign® for each of the

mouse RAMP (1, 2 and 3) genes. Primer sequences used
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RAMP1f 5’ACCTGGGATTTATAAGCCTGTTTA3’, RAMP1r

3 ’CATTTTTCCTCTGTCTCTTCTTCAT5 ’ , RAMP2f

5 ’CCAACTGCTCCCTGGTGC3 ’ , RAMP2r 3 ’GGAA

GGGGATGAGGCAGATG5 ’ , RAMP3f 5 ’CCAACTG

CACCGAGATGGAG3’, and RAMP3r 3 ‘GGAGAAGAAC

TGCCTGTGGAT5’. Primers were validated, a copy number
positive control was provided for each assay by Primerdesign®.

Optimal number of reference genes and the most suitable

reference genes were identified using the mouse geNorm™.

The expression of each gene of interest was normalised to both

18s and b-actin (ACTB) in our assays. Each sample was run in

triplicates per gene, per time point, per assay, per reference gene.
Assays were run and analysed in Aplied Biosystems 7900 Real

Time PCR machine using the absorbance maximum of 492nm

and emission maximum of 517nm (for FAM detection).

Thermo-cycler conditions used: initial 95°C for 10 minutes

followed by 40 cycles of: ‘95°C for 15 seconds followed by

60°C for 60 seconds. Q-PCR reaction mix (final volume of
20mL):10mL Precision qPCR Mastermix (1X), 1mL primer/

probe mix (primer concentration: 6pmols and probe

concentration: 3pmols), 25ng cDNA template and RNAse/

DNAse free water. The delta-delta CT value was calculated

and normalised.

Western Blotting
All protein samples were denatured in 4X Laemmli sample
buffer, containing b-mercaptoethanol (Sigma®,Poole, UK), by

boiling at 100°C for 5 minutes prior to electrophoresis. 100mg of
protein per sample was electrophoresed on a 7% SDS

polyacrylamide gel, and electro-blotted over to a PVDF

membrane Hybond™. The membrane was incubated in

blocking buffer- tris buffered saline tween (TBST) containing

5% BSA, for 1hr at room temperature. After blocking, the
membranes were washed in TBST twice and incubated in

primary antibody against b-catenin (Abcam®, ab27798), at a

1:200 dilution and b-actin (Abcam®, ab16039-500) at a 1:5000

dilution made up in blocking solution at 40C overnight, on

rollers. The primary antibody was washed three times TBST and

the membrane was incubated with Anti-rabbit-HRP (DAKO® #
P04498) secondary antibody, at a 1:5000 dilution made-up in

blocking solution for 1 hour at room temperature. The

biotinylated markers were incubated in TBST containing HRP-

anti biotin for 1 hour at room temperature. The membranes were

washed again as above, and incubated with chemiluminescent

substrate, ECL Plus (Pierce®, Rockford Illinois, USA) for 5 min
before exposing to photographic film. Films were exposed for

1min before developing.

Statistical Analysis
Skeletal analysis: for comparisons between animals, mCT data was

analysed using an unpaired two tailed Student’s T- test with 95%

confidence interval and P value < 0.05 was considered significant.

For comparisons between the left (loaded) and the right (non-
loaded) tibia within each individual animal, a paired t-test was

used. Protein expression and qPCR: All the datasets were analysed

using two way-ANOVA test followed by Bonferroni’s post

multiple test correction in GraphPad Prism® 6. P value ≤ 0.05

was considered significant. For graphical representation we used

GraphPad Prism® 6.

RESULTS

Gross Enhanced Skeletal Phenotype in
Young Ramp3-/- Mice
Both µCT and skeletal staining suggested a consistent increase in

bone volume (p=0.044) in Ramp3-/- post-natal day-5 (Figure 1A
and Supplementary Table 1). The increase in the bone volume

was indeed due to the advanced bone formation in the Ramp3-/-

mice as revealed by densitometric three-dimensional models of

single bones rendered from µCT scans and skeletal staining the

extent of ossification in long bones and the vertebrae the post-

natal day-5 Ramp3-/- mice (Figure 1B). The enhanced femur
bone volume (BV) (p=0.02) and advanced ossification and

increased bone volume in the vertebrae (p=0.032) were

consistent in the Ramp3-/- mice even at 4 weeks of age

(Figure 1B, and Supplementary Table 1). Furthermore,

Ramp3-/- mice at 4 weeks of age also exhibited increased

trabecular thickness (Th) in both femurs and the tibiae

(p=0.02) which were remarkably evident in the three-
dimensional renderings generated from the scans (Figure 1B

and Supplementary Tables 1, 2). These profound differences in

the skeletal phenotype in the Ramp3-/- mice corroborated with

our observations in vitro, wherein, the reduced Ramp3 expression

associated with progression of osteoblast differentiation, further

providing evidence to the role of RAMP3 as a negative regulator of
skeletal bone mass.

Characteristic Age Dependent Skeletal
Phenotype in Ramp3-/- Mice
At eight weeks of age, we observed distinct structural changes in

the long bones of the Ramp3-/- mice. As expected, Ramp3-/- mice

maintained the increase in the trabecular thickness (Th) (p=0.04)

and a complementary bone volume to tissue volume ratio (BV/

TV) (p=0.005) (Figure 2A and Supplementary Tables 1, 2).

However, three-dimensional renderings of the µCT scans of
proximal tibiae revealed longer and thinner tibial crest in the

Ramp3-/- mice and there were no significantly quantifiable

differences in the bone volume (BV) and thickness (Th) of the

cortical bone by µCT (Figure 2B and Supplementary Tables 1, 2).

To verify if there was any difference in bone formation, we

performed dynamic histomorphometry. Indeed, the Ramp3-/-

mice had significant increases in bone apposition rate (p=0.023)
revealed by the increased inter-label distance (p=0.028) suggestive

of a higher rate of bone formation in periosteal tibia cortical bone

in these mice (Figure 2C).

Increase in the Bone Formation in
Response to Mechanical Loading in
Ramp3-/- Mice
The differences in architecture of the tibial crest at 8 weeks of age

were suggestive of altered mechanical load experienced by the
Ramp3-/- mice as the region is where the patellar ligament inserts,

Pacharne et al. High Bone Mass in Ramp3-/- Mice

Frontiers in Endocrinology | www.frontiersin.org January 2022 | Volume 12 | Article 8078825



providing for weight-bearing function by extension of the stifle

(knee) joint. Using µCT to measure the volume of new form bone

in response to loading regimen at 17 weeks of age, we determined
the differences within the WT and Ramp3-/- cohorts. Both the WT

and Ramp3-/- mice exhibited an adaptive response to the loading

in the loaded tibia. In WTs, the bone formed in response to

loading in the region of interest in the proximal tibia significantly

increased by 0.12mm3 ± SEM 0.015 (Figures 3A, B). However,

there was a greater bone formation in response to loading the
Ramp3-/-mice 0.16 mm3 ± SEM 0.01 which represents an increase

in the volume of bone formed as a result of the loading of nearly

30% providing a strong functional evidence of an advanced

skeletal phenotype in the Ramp3-/- mice (Figures 3A, B).

Increase in the Osteoblast Numbers and
Growth Plate Thickness in Ramp3-/- Mice
The subtle difference in the microarchitecture of the Ramp3-/-

skeleton, associated with more bone formation, prompted us to

perform histology to further examine the cell distribution in the

skeletal niche of these regions of interest. Histology on H&E-
stained longitudinal sections of the tibia revealed significant

increases in the trabecular bone surface concurrent with our

A

B

FIGURE 1 | (A) MicroCT and skeletal staining reveals an advanced skeletal phenotype in the post-natal day 5 Ramp3-/- mice. Significant increase in the femur BV

in Ramp3-/- mice (left) evidently observed in the 3D rendering of the femur bone (middle) (heat map scale: blue = low, red=high). Skeletal staining (right) reveals a

remarkable increase in the bone formation in the vertebrae and long-bones in Ramp3-/- mice. (B) MicroCT reveals increase in whole femur and caudal vertebral bone

volume in both the 3D bone renderings (top) and quantitative measurements (bottom) at 4 weeks of age. Trabecular analysis at a higher resolution identifies an

increase in the trabecular thickness in the tibiae in both, the 3D models (top) and quantifications (bottom) in the Ramp3-/- mice. (Heat map scales in 3D models:

Coloured scale- blue=low and red=high; Black and White scale – black = low and white= high).
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µCT data (Figures 4A, B). Ramp3-/- TRAP stained bone sections

revealed significantly higher osteoblast number and a higher

osteoblast covered bone surface in the trabecular bone compared
to WTs (Figure 4B). Notably, there were no difference in

osteoclast numbers or osteoclast covered bone surface

(Figure 4B). Furthermore, the growth plates in the sections of

Ramp3-/- tibiae presented larger chondrocyte columns with

larger proliferative chondrocyte zone (Figures 4C, D). On the

other hand, the hypertrophic zone was variable in both WT and
Ramp3-/- mice (Figure 4D). The larger proliferative chondrocyte

zone and inter-label distances (Figure 2C), not only reflect the

advanced ossification in these mice at younger age, but also give

insight into the skeletal niche accountable for an improved

microarchitecture in the Ramp3-/- mice.

Inverse Association Between the Ramp3
Gene Expression and Osteoblast
Differentiation In Vitro
Several systemic hormones and local factors within the skeletal

niche, induce/influence different signalling pathways within the

cells of osteoprogenitor lineage during osteoblast differentiation.

Since there was a specific influence on the osteoblasts and not

osteoclasts number and coverage in bone (Figures 4A, B), we
hypothesised that the expression of Ramp genes plays a crucial

A

B

C

FIGURE 2 | (A) Increase in the trabecular bone thickness and the bone volume/tissue volume ratio revealed through the 3D rendering of the microCT scan (left) and

quantitative analysis (right) in Ramp3-/- mice at 8 weeks of age. (B) Structural differences such as the thinner and more elongated tibial crest (red arrows) observed

in the tibia cortical bone in the Ramp3-/- mice at 8 weeks. Despite the thinner appearance of the cortical bone in the 3D model, the quantitative analysis does not

suggest a decrease in the overall cortical bone volume in the Ramp3-/- mice. (Black and white scale in the models: black =low, white=high). (C) Calcein-labelled tibia

sections demonstrating dynamic histomorphometry. Ramp3-/- bones have increased distance between the two successive calcein labels in the cortical bone (left).

Significant increase in the inter-label width and bone apposition rate in the Ramp3-/- mice detected from the dynamic histomorphometry quantifications (right).

ns, Not significant.
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role in osteoblast differentiation. We determined the expression

patterns of individual Ramp genes (Q-PCR), first and foremost

in calvarial osteoblast cultures established from post-natal day-3
WT (129/SvEv) mice. We then looked at the difference in the

expression patterns between the WT and the Ramp3-/-

osteoblasts to determine any linked expression profile. We

observed striking differences between the patterns of individual

Ramp gene expression, in that Ramp1/2 (Figures 5A, B)

expression steady increased from day-0 to day-15 of the
differentiation whist Ramp3 expression declined with the

progression of osteoblast differentiation (Figure 5C) in WT

osteoblast cultures. However, despite the same pattern of

expression, osteoblasts derived from Ramp3-/- mice had

significantly lower Ramp1 expression levels compared to the

WT osteoblasts throughout the differentiation (Figure 5A)

suggesting an association between Ramp1 and 3 in the
osteoblasts. Moreover, there were no differences in Ramp2

expression levels between WT and Ramp3-/- mice (Figure 1B),

which corroborates with reports by Dackor et al, that loss of

Ramp3 does not have a reciprocal effect on Ramp2 expression

(37). Indeed, Ramp3 expression in Ramp3-/- osteoblasts was not

quantifiable, hence verifying our model (Figure 5C). Given the
complex pharmacology of the RAMPs, the selective modulated

expression of Ramp3 in osteoblasts could influence other

signalling pathways fundamental to osteoblast differentiation

such as the Wnt pathway, which is yet to be studied

comprehensively. Our preliminary data on 3 independent

osteoblast cultures, show increased total b-catenin expression
in the Ramp3-/-s (Supplementary Figure 1). These findings

collectively suggest that reduced Ramp3 expression associates

with progression of osteoblast differentiation.

DISCUSSION

In this study we have shown that Ramp3-/- mice have a distinct

bone phenotype characterised by accelerated bone development

and growth and an increased response to mechanical loading

when compared with WT animals of the same background

strain. Specifically, we have established that in the WT

osteoblasts, Ramp3 expression is negatively associated with
advancement in differentiation in vitro so that absence of

RAMP3 accelerates osteoblast differentiation and consequently

bone apposition. With increasing age, the gross high bone

volume phenotype in the Ramp3-/- mice becomes less obvious

but more complex with structural changes in the

microarchitecture particularly in areas of the bone that could
be expected to experience high levels of mechanical loading in

life. This is exemplified in the tibial crest, whose proximal part is

the point of attachment of the patellar ligament and so

A

B

FIGURE 3 | (A) 3D renderings of a representative tibia cortical bone of a loaded Ramp3-/- and WT mice. The red dotted lines represent the original cortical

boundary between the dense lamellar cortical bone and the newly formed woven bone. The white arrows indicate the significantly increased adaptive bone formation

in the Ramp3-/- compared with the WT mice. Grey scale represents the size and bone density gradient. n=6 each group. (B) Micro-CT volumetric measurements

identify differences loaded and unloaded bones in the WT (left) and Ramp3-/- (middle) mice. Significant increase in the bone volume/tissue volume ratio of the loaded

Ramp3-/- bone suggest a significant increase in the new bone formation in the Ramp3-/- compared to the WT (right) in response to loading.
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responsible for extension of the stifle (knee) joint, and therefore

weight-bearing and propulsion in the hind limb. The increase in

bone apposition rate and the growth plate thickness
demonstrates the range of altered dynamic skeletal regulation

in these mice but appears to be involved in the rate of bone

lengthening rather than the amount, as Ramp3-/- mice did not

have longer bones than WTs as adults. This complexity in the

phenotype is consistent with complex RAMP pharmacology and

the overall explanation of the phenotype of these mice is not
simple. This is because RAMP3 governs ligand selectivity for

both the calcitonin-like receptor (CLR) and the calcitonin

receptor (CTR) (30, 32, 33, 48). For other receptors, RAMPs

alter the consequence of ligand binding without altering receptor

selectivity e.g. the glucagon receptor (RAMP3), vasoactive-

intestinal peptide/pituitary adenylate cyclase-activating peptide
1 (VIP/VPAC1) receptor (RAMP1 and 3) (32, 49), GPR30

(RAMP3) (50) and a GPCR class III receptor – the calcium

sensing receptor (CaSr) (RAMP1 and 3) (33, 51–53).

Furthermore, RAMP3 interacts with many members of the

chemokine/cytokine family of receptors, and in the context of

atypical chemokine receptor 3 and the CLR, RAMP3 regulates
the endosomal sorting and recycling of atypical chemokine

receptors (54). As well as roles in forming the functional high

affinity receptor for AM and AMY, RAMP3/CLR (AM2R)

A C

B D

FIGURE 4 | (A) Haematoxylin and eosin-stained tibia sections reveal increased trabecular bone (red arrows) in the Ramp3-/- mice at 8 weeks of age. (B) Histological

measurements identify increase in the bone surface, osteoblast number and osteoblast covered bone surface (top) in the Ramp3-/- mice. No differences in the

osteoclast numbers and osteoclast covered bone surface (bottom) identified. (C) Haematoxylin and eosin-stained tibia sections of the growth plate show increase in

the growth plate thickness (blue brace brackets). (D) Quantitative analysis of the growth plate reveals that the proliferative zone, but no the hypertrophic zone

contributes to the gross increase in the growth plate thickness.
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receptors also have appreciable affinity for CGRP which could

contribute to functional roles in exciting emerging research on

CGRP sensory nerves and the hematopoietic stem cell niche
(55–57).

As the number of GPCRs known to interact with RAMPs is

increasing, it becomes clear that the phenotype of these animals

may be due to alterations in more than one receptor’s signalling

pathways. It is certainly possible that Ramp3-/- mice have

alterations in signalling via ADM-2 and AMY-3 receptors, but
possibly other receptors, some which may remain to be

discovered as RAMP partners. The role of RAMPs in

regulating biasing of other GPCRs is poorly understood (32,

33, 58, 59). For example, the specific roles of the two ADM
receptor variants are only becoming clear as a result of recent

developments of useful tool compounds for the CLR/RAMP

heteromers (60–62) and there is little information on the roles of

the 3 separate AMY receptor types in physiology (30, 32, 33).

Paradoxically though, both amylin and adrenomedullin are

known to have positive effects on osteoblasts in culture and to
induce bone formation in vivo so the effect of Ramp3 deletion in

A

B

C

FIGURE 5 | Quantitative PCR expression of Ramp1 (A), Ramp2 (B) and Ramp3 (C) in Ramp3-/- and WT differentiating osteoblast cultures. Level of significance for the

difference in gene expression between the genotypes is indicated with the number of asterisks (adjusted p value 0.05=*, p value 0.001 = **, p value 0.0001 = ***, p value

0.00001 = ****). The tables adjacent to the plots summarise the mean differences, 95% confidence intervals and adjusted p value post ANOVA test and the post-hoc

Bonferroni’s correction. ns, Not significant.
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increasing bone mass and development is not easily explained

(25, 63–67) unless removal of RAMP3-mediated ADM and AMY

effects allow anabolic effects of ADM1 and AMY1&2 receptors

to dominate.

From the alterations in the cell populations in the

proliferative zone in the growth plate, it is reasonable to
assume that primitive stem cell populations such as the

osteochondroprogenitor cells and not just osteoblast lineage

committed stem cells could be influenced by Ramp3

expression, and that there is a plausible association between

Ramp3 and early osteoblast differentiation players such as Wnt.

In a study of chronological target gene expression, Ramp3 is
downregulated in the first 24 hours after Wnt3A stimulation,

indicating that it is one of the early response genes targeted by

Wnt (68). There is also evidence of phosphorylated b-catenin
induction selectively down-regulating Ramp3 but not Ramp1/2

expression (69, 70). If Ramp3 deficiency cooperates with the Wnt

pathway, it could provide context to the cellular mechanisms that
dictate the complex skeletal phenotype in the Ramp3-/-mice. Our

preliminary data, where we observe increase in the total b-
catenin expression in differentiating primary osteoblasts from

Ramp3-/- fetal calvaria (Supplementary Figure 1), supports the

association betweenWnt and Ramp3. Certainly, recent report on

enhanced osteogenic differentiation and pro-angiogenic

potential of the bone marrow mesenchymal stem cells
potential upon ADM2 treatment, via accumulation and

activation of b-catenin, further supports the association of the

Wnt signalling and the CT peptides (71). However, the specific

mechanisms through which the Ramp3-Wnt interaction

influence skeletal regulation require further research.

Taken together, there are clear implications of our findings.
The evidence for increased bone mass and its various markers

and the rate of bone development are consistent with increased

osteoblast numbers and activity. Interestingly the lack of a

parallel increase in osteoclasts and resorption indicates that the

effect of RAMP3 is at a controlling level of skeletal physiology.

Had the effects been due to focused stimulation of bone

formation through direct actions on osteoblasts, then it would
be expected that osteoclast numbers and activity would also

increase to maintain normal skeletal mass and architecture.

RAMP3 appears to affect some fundamental set point for

skeletal properties in an anabolic way. One limitation of this

study is that we did not have access to unlimited numbers of

mice and in a few cases group sizes are small. That has effects on
the strength that might be ascribed to the statistical analysis of

the data we present, but we believe that further studies by others

will increase our knowledge of the role of RAMP3 in the future.

The finding of this study raises other more general questions

such as what is the purpose of a gene whose expression slows

bone development and reduces bone mass? The answer is not

certain, but it is likely that it links back to the way the skeleton
evolved a homeostatic adaptive mechanism in the distant past.

During vertebrate evolution, when some animals existed with

very over-engineered skeletons, their individual resistance to

trauma would be great, but their ability to catch prey or evade

predators would be reduced, so that they would be outcompeted

by animals with more tuned lower skeletal mass. Under those

circumstances, management of optimum bone mass was

weighted in favour of efficient and speedy locomotion

(something that is almost entirely functionally irrelevant to

humans today). Whether this means that therapeutic blockade

of RAMP3 would have any consequence on bone mass is
currently unclear, but it is a possible inference from our data.
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Supplementary Figure 1 | Protein expression of total b-catenin in differentiating

primary osteoblasts. Representative western blot (top) showing increased beta-

catenin expression (92kD) in Ramp3-/- primary osteoblast lysates compared to WTs

at day 10,15 and 20 of differentiation. Western blotting was performed for each of

the 3 independent osteoblast differentiation experiments. Densitometric analysis

(bottom) of the western blots (n=3) confirmed the significance in differential

expression of beta-catenin. Level of significance for the difference in gene

expression between the genotypes was calculated using the ANOVA test and, is

indicated with the number of asterisks (adjusted p value 0.05=*, p value 0.001 = **

so on and so forth).

Supplementary Table 1 | Data from microCT analysis of Bones from WT and

RAMP3 null mice - post natal day 5 and 4 weeks of age.

Supplementary Table 2 | Data from microCT and histomorphometric analysis of

Bones from WT and RAMP3 null mice – 8 weeks of age.
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