

This is a repository copy of Aldehyde-functional diblock copolymer nano-objects via RAFT aqueous dispersion polymerization.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/183028/</u>

Version: Supplemental Material

Article:

Brotherton, E.E., Smallridge, M.J. and Armes, S.P. orcid.org/0000-0002-8289-6351 (2021) Aldehyde-functional diblock copolymer nano-objects via RAFT aqueous dispersion polymerization. Biomacromolecules, 22 (12). pp. 5382-5389. ISSN 1525-7797

https://doi.org/10.1021/acs.biomac.1c01327

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Biomacromolecules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.biomac.1c01327.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting Information for:

Aldehyde-functional diblock copolymer nano-objects via RAFT aqueous dispersion polymerization

E. E. Brotherton, M. J. Smallridge and S. P. Armes*

Scheme S1. (a) Two-step synthesis of GEO5MA monomer starting from an isopropylidene glycerol precursor as a hydroxy-functional initiator. This precursor is then transesterified with methyl methacrylate to produce IPGEO5MA, before removing the ketal protecting group with acid to afford GEO5MA monomer. (b) Oxidation of GEO5MA in aqueous solution using sodium periodate at 22°C affords AGEO5MA with formaldehyde as a by-product. The same selective oxidation can be used to convert PGEO5MA homopolymer into PAGEO5MA homopolymer using identical reaction conditions.

Figure S1. DMF GPC curves recorded for PGEO5MA₂₆, PGEO5MA₂₆-PHPMA₁₇₀, PGEO5MA₂₆-PHPMA₂₄₀ and PGEO5MA₂₆-PHPMA₃₂₀ diblock copolymers calibrated against a series of near-monodisperse poly(methyl methacrylate) standards.

Figure S2. Transmission electron microscopy images recorded for (a) PGEO5MA₂₆-PHPMA₁₇₀, (b) PAGEO5MA₂₆-PHPMA₁₇₀, (c) PGlyGEO5MA₂₆-PHPMA₁₇₀, and (d) PHisGEO5MA₂₆-PHPMA₁₇₀ diblock copolymer spheres.

Figure S3. Transmission electron microscopy images recorded for (a) PGEO5MA₂₆-PHPMA₂₅₀, (b) PAGEO5MA₂₆-PHPMA₂₅₀, (c) PGlyGEO5MA₂₆-PHPMA₂₅₀, and (d) PHisGEO5MA₂₆-PHPMA₂₅₀ worms.

Figure S4. Transmission electron microscopy images recorded for (a) PGEO5MA₂₆-PHPMA₃₅₀ vesicles and (b) a binary mixture of PAGEO5MA₂₆-PHPMA₃₅₀ vesicles and worms.

Figure S5. DMF GPC curves recorded for (a) PGEO5MA₂₆, PGEO5MA₂₆-PHPMA₁₇₀ and PAGEO5MA₂₆-PHPMA₁₇₀ and (b) PGEO5MA₂₆, PGEO5MA₂₆-PHPMA₂₅₀ and PAGEO5MA₂₆-PHPMA₂₅₀ diblock copolymers calibrated against a series of near-monodisperse poly(methyl methacrylate) standards.

Scheme S2. Two-step, one-pot synthesis of membrane-crosslinked PGEO5MA₂₆-PHPMA₃₅₀-PEGDMA₂₀ diblock copolymer vesicles. The first step involves the chain extension of a PGEO5MA₂₆ precursor by RAFT aqueous dispersion polymerization of HPMA. The second step is the addition of EGDMA as a third block to crosslink the vesicle membrane.

Table S1. Summary of DLS data obtained for linear PGEO5MA₂₆-PHPMA₃₅₀ and membrane-crosslinked PGEO5MA₂₆-PHPMA₃₅₀-PEGDMA₂₀ diblock copolymer vesicles dispersed in either water or ethanol.

Polymer composition	Solvent	DLS diameter (nm)	DLS PDI	Derived count rate (kcps)
PGEO5MA ₂₆ -PHPMA ₃₅₀	Water	231	0.04	85976
PGEO5MA ₂₆ -PHPMA ₃₅₀ -PEGDMA ₂₀	Water	214	0.11	93896
PGEO5MA ₂₆ -PHPMA ₃₅₀	Ethanol	18	0.15	680
PGEO5MA ₂₆ -PHPMA ₃₅₀ -PEGDMA ₂₀	Ethanol	549	0.14	41095

Scheme S3. Schiff base reaction of PAGEO5MA₂₆-PHPMA_y with an amino acid (e.g. glycine or histidine) followed by reductive amination using excess aqueous NaCNBH₃ at 35 °C to afford new amino acid-based diblock copolymers *via* a two-step one-pot wholly aqueous protocol.

Figure S6. Assigned ¹H NMR spectra (D_2O) recorded for (a) PGEO5MA₂₆-PHPMA₂₅₀, (b) PAGEO5MA₂₆-PHPMA₂₅₀ and (c) PHisGEO5MA₂₆-PHPMA₂₅₀

Table S2. DLS diameters and polydispersities (PDIs) recorded for PGEO5MA ₂₆ -PHPMA ₁₇₀ , PAGEO5MA	26
PHPMA ₁₇₀ , PGlyGEO5MA ₂₆ -PHPMA ₁₇₀ and PHisGEO5MA ₂₆ -PHPMA ₁₇₀ spheres.	

Polymer composition	DLS diameter (nm)	DLS PDI
PGEO5MA ₂₆ -PHPMA ₁₇₀	31	0.02
PAGEO5MA ₂₆ -PHPMA ₁₇₀	32	0.08
PGlyGEO5MA ₂₆ -PHPMA ₁₇₀	26	0.08
PHisGEO5MA ₂₆ -PHPMA ₁₇₀	32	0.08

Table S3. DLS diameters and polydispersities (PDIs) recorded for PGEO5MA₂₆-PHPMA₂₅₀, PAGEO5MA₂₆-PHPMA₂₅₀, PGlyGEO5MA₂₆-PHPMA₂₅₀ and PHisGEO5MA₂₆-PHPMA₂₅₀ worms.

Polymer composition	DLS diameter (nm)	DLS PDI
PGEO5MA ₂₆ -PHPMA ₂₅₀	409	0.44
PAGEO5MA ₂₆ -PHPMA ₂₅₀	242	0.26
PGlyGEO5MA ₂₆ -PHPMA ₂₅₀	146	0.26
PHisGEO5MA ₂₆ -PHPMA ₂₅₀	320	0.48

Table S4. DLS diameters and polydispersities (PDIs) recorded for PGEO5MA₂₆-PHPMA₃₅₀-PEGDMA₂₀, PAGEO5MA₂₆-PHPMA₃₅₀-PEGDMA₂₀ and PHisGEO5MA₂₆-PHPMA₃₅₀-PEGDMA₂₀ and PHisGEO5MA₂₆-PHPMA₃₅₀-PEGDMA₂₀ vesicles.

Polymer composition	DLS diameter (nm)	DLS PDI
PGEO5MA ₂₆ -PHPMA ₃₅₀ -PEGDMA ₂₀	214	0.11
PAGEO5MA ₂₆ -PHPMA ₃₅₀ -PEGDMA ₂₀	210	0.10
$PGlyGEO5MA_{26}-PHPMA_{350}-PEGDMA_{20}$	216	0.08
PHisGEO5MA ₂₆ -PHPMA ₃₅₀ -PEGDMA ₂₀	212	0.10

Figure S8. Zeta potential vs. pH curves obtained for (a) PGEO5MA₂₆-PHPMA₁₇₀, (b) PAGEO5MA₂₆-PHPMA₁₇₀, (c) PGlyGEO5MA₂₆-PHPMA₁₇₀, and (d) PHisGEO5MA₂₆-PHPMA₁₇₀ spheres.

Figure S7. Zeta potential vs. pH curves obtained for (a) PGEO5MA₂₆-PHPMA₂₅₀, (b) PAGEO5MA₂₆-PHPMA₂₅₀, (c) PGlyGEO5MA₂₆-PHPMA₂₅₀, and (d) PHisGEO5MA₂₆-PHPMA₂₅₀ worms.

Figure S9. Transmission electron microscopy images obtained for (a) PGEO5MA₂₆-PHPMA₃₅₀-PEGDMA₂₀ vesicles before attempted reaction with BSA, (b) PGEO5MA₂₆-PHPMA₃₅₀-PEGDMA₂₀ vesicles directly after attempted reaction with BSA and (c) PGEO5MA₂₆-PHPMA₃₅₀-PEGDMA₂₀ vesicles after attempted reaction with BSA and subsequent purification via five centrifugation and redispersion cycles.

Figure S10. Zeta potential vs. pH curves obtained for membrane-crosslinked PGEO5MA₂₆-PHPMA₃₅₀-PEGDMA₂₀ vesicles, BSA protein alone and membrane-crosslinked PGEO5MA₂₆-PHPMA₃₅₀-PEGDMA₂₀ vesicles after exposure to BSA followed by six centrifugation and redispersion cycles. The unchanged electrophoretic data observed for the vesicles confirms that there is no BSA adsorption in this case.