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Abstract

Acoustic steady-state excitation spatial spectroscopy (ASSESS) is a full-field, ultrasonic non-destructive

evaluation (NDE) technique used to locate and characterize defects in plate-like structures. ASSESS gener-

ates a steady-state, single-tone ultrasonic excitation in a structure and a scanning laser Doppler Vibrometer

(LDV) measures the resulting full-field surface velocity response. Traditional processing techniques for AS-

SESS data rely on wavenumber domain analysis. This paper presents the alternative use of a convolutional

neural network (CNN), trained using simulated ASSESS data, to predict the local plate thickness at every

pixel in the wavefield measurement directly. The defect detection accuracy of CNN-based thickness predic-

tions are shown to improve for defects of greater size, and for defects with higher thickness reductions. The

CNN demonstrates the ability to predict thickness accurately in regions where Lamb wave dispersion rela-

tions are complex or unknown, such as near the boundaries of a test specimen, so long as the CNN is trained

on data that accounts for these regions. The CNN also shows generalizability to ASSESS experimental data,

despite an entirely simulated training dataset.

Keywords: acoustic steady-state excitation spatial spectroscopy, convolutional neural network, image

segmentation, ultrasonic measurement

1. Introduction

Ultrasonic full wavefield imaging provides a means of detecting defects over large inspection areas [1].
Laser Doppler vibrometers (LDVs) are often used to make these full-field ultrasonic measurements, and a
great deal of work has gone into developing processing techniques for the datasets they generate. For example,
Ruzzene presented a method for identifying damage in structures in a transient ultrasonic scanning LDV5

system by isolating the excitation of the structure from the response caused by reflections from defects in the
wavenumber domain [2]. Flynn and Jarmer successfully demonstrated the detection of hidden corrosion on
the backside of an aluminum plate and delaminations in several composite plates via wavenumber imaging [3].
Rogge and Leckey demonstrated the effectiveness of wavenumber analysis at revealing disbonds in aluminum
and composite plates when interrogated with transient ultrasonic signals and imaged via scanning LDV or10
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ultrasonic immersion C-scan [4]. Huthwaite and Simonetti described a transient laser ultrasonic iterative
tomography based thickness estimation approach that improved thickness estimation accuracy over more
traditional tomographic methods [5]. Aryan et al. described a system that used three LDVs to capture the
full 3D surface displacement in response to transient excitation, and utilized the root mean square (RMS)
amplitude of the excited waveform at each point as a feature to detect several kinds of damage [6].15

Acoustic steady-state excitation spatial spectroscopy (ASSESS) is an inspection technique in which the
test article is excited with a single ultrasonic tone and a scanning LDV records the full-field surface velocity
response of the test article. ASSESS was first described by Flynn and Jarmer [3], where their key insight
was exciting the structure using a single, steady-state ultrasonic tone. This allowed them to continuously
scan the structure without having to transiently pulse the structure for each measurement and wait for the20

excitation to die out before moving to the next measurement. Furthermore, the steady-state nature of the
excitation and the concentration of the amplifier power in a narrow frequency range significantly improved
the signal-to-noise ratio (SNR) of the ASSESS measurements over transient measurement techniques.

Several other ASSESS-related works have also exploited wavenumber analysis for defect detection [7, 8, 9].
O’Dowd et al. explored the limits of wavenumber estimation using simulated ASSESS data [10]. Mesnil et25

al. described transient and steady-state wavenumber and thickness estimation systems for composite plates
based on scanning LDVs [11] — the steady-state version was very similar to the one proposed in [3], except
that they used phase gradients to estimate the local wavenumber and related the estimated wavenumber
to thickness (composite ply count) via simulated Lamb wave dispersion curves. The thickness estimation
procedure reported in [11] also included a refinement step to improve the quality of their results based on30

the Smooth-Sparse Decomposition.
As mentioned above, one of the valuable data products that can be extracted from ASSESS datasets is

an estimated local thickness of the structure — enabling quantification of hidden corrosion and estimation
of the depth of delamination, among other possibilities. Stull et al. presented theoretical upper bounds
on thickness estimation performance in a number of ASSESS scenarios [12]. While the wavenumber and35

thickness estimation techniques described above appear to perform well in continuous regions of the plate,
their results are difficult to interpret near boundaries and transition regions, where the Lamb wave dispersion
relationships do not apply. This work presents a thickness estimation technique for ASSESS data based on a
convolutional neural network (CNN) that shows accurate thickness predictions without relying on the Lamb
wave dispersion relationships, potentially making it applicable to more complex geometric regions. This40

paper is an extension of Eckels et al. [13] to report new simulated and experimental results and performance
parameter studies.

A number of papers have been written on processing ultrasonic NDE data with deep learning techniques.
For example, Virkkunen et al. demonstrated crack detection in ultrasonic phased array data using deep CNNs
[14]. Li et al. described a method for estimating one-dimensional material thickness profiles from measured45

displacements by first reconstructing them with a wavenumber spatial transform and then improving those
estimates by processing them with a CNN [15]. Meng et al. successfully identified artificial delaminations and
voids in a composite panel by feeding wavelet coefficients from immersion C-scans using a CNN with a linear
support vector machine output layer that indicated the layer of the delamination/void or the absence of
defect at each scan point [16]. Ijjeh et al. demonstrated a full-wavefield delamination detection scheme based50

on a fully convolutional neural network (FCN) that input RMS wavefield amplitudes from LDV response
measurements from transient excitation and produced a binary mask indicating the presence or absence of
delaminations [17]. Song and Yang demonstrated a two-stage super-resolution technique for detecting and
quantifying the extent of subwavelength defects in aluminum plates [18]. The method created a virtual
phased array with a scanning LDV and transient pulse excitation of the plate with a piezoelectric transducer55

(PZT) patch. An initial image was formed using traditional delay-and-sum beamforming and was then
processed by a CNN to establish a probabilistic defect detection mask, which was overlaid on the original
image to isolate the defects from the noise. Small segments containing defects were then reanalyzed with a
second CNN to more accurately resolve the spatial extent of the defects.

The work presented in this paper differs in several important regards from the work mentioned above.
The ASSESS scan technique is inherently narrowband and uses a continuous excitation, making the scan rate
many times faster than typical transient ultrasonic LDV scans (i.e. seconds or minutes per scan instead of
hours). The decreased measurement time is caused by the continuous excitation significantly improving the
SNR of the scans through continuous energy transfer into the structure and avoiding the need for averaging
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several measurements at a given pixel. Our technique is designed to directly estimate plate thickness based
on wavefield images at the excitation frequency. The only pre-processing that is performed on the raw LDV
signal is what is necessary to convert it into the complex, out-of-plane, surface velocity response wavefield
of the test article. The ideal, harmonic steady state response to an excitation at frequency ωE at a spatial
coordinate (x, y) and time t, as measured using the LDV, takes the form

v (x, y, t) = a (x, y) cos (ωEt) + b (x, y) sin (ωEt). (1)

where a and b are the real and imaginary coefficients, respectively. During the ASSESS measurement process,
this measured response is converted to a compact, complex representation r using the Fourier transform at
the excitation frequency

r (x, y) =

∫
v (x, y, t) e−iωEtdt ≈ a (x, y) + ib (x, y) , (2)

where i is the complex unit. The real and imaginary parts can be thought of as two snapshots of the steady-
state response, which can be used to recreate the measured response at any point in the harmonic cycle,
θ ∈ [0, 2π], through

v (x, y, θ) = a (x, y) cos (θ) + b (x, y) sin (θ). (3)

It is important to note that the CNN model was trained using simulated data because gathering enough60

experimental data to train the model would be prohibitively expensive. We show that the model’s perfor-
mance generalizes reasonably well to experimental data.

The remaining sections of the paper are outlined as follows. Section 2 describes details of the CNN model,
parameters of the simulated data used to train and test the CNN model, and metrics used to evaluate the
model performance. New simulated test cases beyond those reported in [13] and an extension of the CNN65

model to thickness predictions of experimentally collected data sets are presented in Section 3. The results
of these cases demonstrate that the CNN has learned a generalized relationship between the raw wavefield
from an ASSESS measurement and the local thickness at each pixel in the inspected plate.

2. Materials and Methods

2.1. CNN architecture70

Image segmentation is a well-known task in computer vision where images are classified on a pixel level.
It can be thought of as an extension of typical object detection techniques, where instead of predicting
bounding boxes of objects in an image, it highlights filled regional boundaries of class instances in an image.
For more details on different deep learning frameworks used for image segmentation and object detection,
see the following surveys: [19], [20], and [21]. A popular CNN architecture used for image segmentation75

is the U-Net segmentation model, proposed by Ronneberger et al. [22]. The U-Net is a type of FCN that
uses a series of down-sampling convolutional layers in the encoder, followed by a series of up-sampling
deconvolutional layers in the decoder, with horizontal cross-connections to carry feature maps over from the
encoder to improve pixel-wise prediction in the output segmentation map. All network parameters in an
FCN can be learned through standard neural network training techniques. The CNN used in this study is80

a U-Net style FCN with an encoder based on the 34-layer ResNet model proposed by He et al. [23]. The
architecture implementation details are provided in the Fast.AI library [24].

The input to the CNN is a 400 × 400 pixel image of the real part of the full-field, steady-state com-
plex surface response of a plate-like structure to a single-tone ultrasonic excitation. The real part of the
complex response was arbitrarily chosen over the imaginary given that the two wavefield images are nearly85

indistinguishable. The expected output of the CNN is a 400 × 400 segmented image, where each pixel is a
prediction of the local thickness of the plate. The classification at each pixel will be a discrete integer value
from 1−10 mm, since this is a practical range for most industrial applications of thin aluminum plates. The
CNN is also provided ground truth segmentation images to use as labeled data during supervised learning.
After passing an input image through the network, it passes through a softmax function, where the CNN90

outputs a tensor of size 10 × 400 × 400. The first dimension of the tensor contains class probability values
at each pixel in the 400 × 400 output image; the size of this dimension is equal to the number of thickness
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classes (i.e. 10). The final predicted segmentation image is obtained by taking the maximum probability
along the first dimension of the raw output.

2.2. Simulation technique95

A persistent problem in the field of deep neural networks is access to substantial training datasets. Because
experimental ASSESS data is not readily available in sufficient quantities, a simulation procedure was used
instead to gather a large enough dataset. The simulation procedure outlined here follows a previous study
by O’Dowd et al., which used a three-dimensional finite element analysis (FEA) to simulate the ASSESS
experimental procedure in ANSYS [10]. A thin, 400 mm × 400 mm aluminum alloy plate was modeled in100

CAD software, loaded into a harmonic response analysis in ANSYS, and meshed using tetrahedrons. The
edges of the plate were set as free boundary conditions and to emulate PZT excitation, a small, 40 mm
diameter extrusion was placed on the surface of the plate and excited by a 0.1 MPa pressure at a frequency
of 80 kHz. Although a rectilinear mesh could have been used for the simple plate geometry, tetrahedrons
provided a better geometric representation for simulations containing curved defect shapes. This simulation105

procedure is a simplification of the true contact condition that exists between the plate and the PZT, but
was sufficient for the current study where capturing the wavefield in large areas of the plate was of primary
concern. O’Dowd et al. used the same simulation procedure and reported convergence for a mesh size of
2 mm, which was used in all simulations performed for this study.

The complex, steady-state, out-of-plane deformation response of the plate emulates the experimental data110

gathered by an LDV during ASSESS experiments (see Eq. (2)). The real component of the deformation
response of all external mesh nodes in the simulation was exported to MATLAB for further processing.
The response of the top surface nodes was linearly interpolated to a uniform 400× 400 grid and saved as a
grayscale wavefield image, with the amplitude scaled from zero to one and a resolution of 1 mm2 per pixel. As
the smallest expected wavelength was an order of magnitude greater than the mesh size, linear interpolation115

was deemed acceptable for use. The largest effect to the wavefield data from the linear interpolation was
possible flattening of the peaks for the thinnest simulated thickness of 1 mm. An example wavefield image
generated in this fashion is shown in Figure 1. Because only external nodes were exported from the ANSYS
simulation, no top surface node data was kept where the transducer was located during the simulation. The
interpolation of the response to a uniform grid had the effect of smoothing over the circular transducer region,120

as evident in the bottom left corner of Figure 1. Consequently, any thickness estimations performed in the
transducer region are disregarded. It is noted that LDV scans cannot measure the plate surface response
beneath the transducer during an experimental test, requiring movement of the transducer to a secondary
location if that region is of interest for inspection.

This grayscale image is an example of the input that may be given to the CNN for training or inference.125

Only the real component of the surface response was used in this study.

Figure 1: Example of the real-component surface response wavefield image used as input to the CNN
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After generating the wavefield image, MATLAB was used to filter and keep all mesh nodes on only the
bottom surface of the plate. The local thickness of the plate at each node was inferred from the nodes’
Cartesian coordinates and interpolated to the same 400×400 uniform grid as the wavefield image. The local
thickness grid was saved as a ground truth label image for the CNN.130

All simulation procedures described in this section were connected in a Python automation loop, allowing
the programmatic generation of hundreds of labeled wavefield images for training and testing the CNN.

2.3. Training

The Fast.AI (v 1.0.61) and PyTorch (v 1.5.0) machine-learning Python libraries were used in this study
for constructing and training the CNN [24], [25]. The ResNet encoder of the CNN was pre-trained on135

the ImageNet database [26] before being loaded into the wavefield CNN. The same dataset and training
procedures as outlined in [13] were used to train the CNN with the Fast.AI library. Namely, the dataset
consisted of 503 wavefield images of plates with varying defect sizes, locations, thicknesses, and shapes, as
well as varying transducer locations. The dataset was augmented to a size of 2012 images after applying
rotations and random white Gaussian noise with a variance of σ2 = 0.0009. The amount of noise artificially140

added to the simulations was representative of noise present in experimental data, e.g. the experimental data
in Section 3.3 had an average Gaussian noise variance of σ2 = 0.0004. The noise value of the experimental
data was calculated by first denoising the experimental dataset using a 2D Wiener filter and a kernel size of
5× 5 pixels, then subtracting the denoised image from the experimental image to create an estimated noise
image from which the experimental noise variance could be calculated.145

This combination of simulation parameters allowed the CNN to learn inherent features within the wave-
fields rather than the specific shape or size of the defects. Training was performed by minimizing the cross
entropy loss function of the model with mini-batch gradient descent. The learning rate optimization tool
within Fast.AI was used to smoothly transition the learning rate during training, allowing larger gradient
steps at the beginning and more refined steps at the end of training [24].150

Due to the programmatic nature of generating a dataset by moving small defects incrementally around
the large area of a plate structure, the CNN was trained on significantly more pixels belonging to the nominal
plate thickness class (10mm) than any of the other thickness classes. Table 1 shows the class imbalance in
the dataset, given in terms of the percentage of total pixels belonging to each class.

Table 1: Class imbalance in training dataset.

Class (mm) 1 2 3 4 5 6 7 8 9 10

No. Pixels (%) 1.1% 2.0% 3.0% 4.0% 5.0% 4.9% 4.9% 4.9% 4.9% 65.4%

The overarching goal of using the CNN to process ASSESS data is to identify regions in the plate that are155

smaller than the nominal thickness; however, the nominal plate thickness accounts for 65.4% of the available
training data. Future work would account for this imbalance by increasing the presence of non-nominal
thicknesses in the training dataset.

It is noted here that the size of the images the CNN was trained on aligned exactly with the size of
all plates in the simulated dataset, namely plates of size 400mm × 400mm, with a resolution of 1mm per160

pixel. A side effect of this approach is that the CNN was only exposed to the free boundary conditions of
the simulated plates along the edges of the image during training. Future work would expose the CNN to a
greater variety of real-world boundary conditions and scenarios in the training set.

2.4. Simulation test set

This study seeks to evaluate the performance of the CNN in characterizing wavefields from ASSESS165

data. Of particular interest is the performance of the CNN with respect to detecting defects of varying
sizes and material thickness. A collection of 10 mm thick, 400 mm × 400 mm aluminum alloy plates was
programmatically generated in Solidworks, where each plate contained one thinning defect near the center
of the plate. The harmonic responses of the plates were gathered according to the technique described in
section 2.2. The local percent reduction in plate thickness at the defect varied from 10% to 90% in 10%170

5



increments. The characteristic length (i.e. the largest dimension) of the defect varied from 10 mm to 100 mm
in 10 mm increments, for a total test set size of 90. Figure 2 shows an example of the test set geometry.

Figure 2: Test set plate geometry

It is noted that the dataset used to train the CNN did not contain a plate with the same defect shape
or location as in the test set. The training dataset also did not contain a plate with the transducer in the
same location as shown in Figure 2. The training dataset did contain plates with no defects, so the testset175

will exclude those cases here. All parameters other than defect thickness and size were kept constant in the
test set. All simulations in the fully independent test set contained the same boundary conditions along the
edges of the plate as was used in the training dataset.

2.5. Performance metrics

The intersection over union (IoU) value is the most commonly reported metric when evaluating the
performance of image segmentation models. The IoU value is a measure of how much overlap there is between
a predicted image and the ground truth image, with higher values tending to more accurate prediction results.
For binary images, the IoU value is defined as:

IoU =
TP

TP + FP + FN
(4)

where TP is true positive, FP is false positive, and FN is false negative. IoU provides a more reasonable180

metric of model accuracy compared to raw pixel accuracy, since false positives penalize the metric. An IoU
of 1 corresponds to a perfect prediction. For non-binary images with multiple class values possible for each
pixel, the IoU of each class is calculated with (4), and then averaged across all classes. For the purposes
of this study, the performance of the CNN in predicting the location and thickness of the defect will be
evaluated using only the IoU values of the classes present in the defect regions in every test image.185

3. Results

3.1. Simulation test set

This section presents the CNN thickness prediction results from the simulated test set described in Section
2.4. In each row of Table 2, the wavefield image for each test case is shown along with the ground truth
segmentation image and the CNN thickness prediction image. The left-most column identifies the test case190

by plate thickness at the defect t (mm) and defect characteristic length L (mm). The results are shown here
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for a defect of size 50mm for all thickness classes. The IoU value for each case is included. The full table of
all CNN prediction results is provided in Appendix A.

Table 2: CNN thickness prediction results on the test set (50mm only)

t L IoU Wavefield Ground Truth Prediction

1 50 90%

2 50 88%

3 50 88%

4 50 80%
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t L IoU Wavefield Ground Truth Prediction

5 50 73%

6 50 72%

7 50 66%

8 50 63%

9 50 51%
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Despite the high class imbalance in the training and test sets, the CNN still shows reasonable performance
in identifying non-nominal plate thickness regions. The normalized confusion matrix over the test set is shown195

in Figure 3.

Figure 3: Normalized confusion matrix over test set

The percentage of pixels predicted correctly for a given class are shown along the blue diagonal. All
percentages add up to 100% across the rows of the confusion matrix. When the CNN predicted a given pixel
incorrectly, it most commonly predicted it as belonging to the plate thickness class (10mm) or to one of the
directly adjacent thickness classes.200

Table 2 and the full results table in Appendix A characterize the performance of the CNN with respect
to thickness reduction and defect size. When the reduction in plate thickness at the defect is high, the
wavefield correspondingly exhibits sharper changes in wavenumber at the defect region. The high difference
in wavenumber between the defect region and the rest of the plate results in the defect being visually
distinctive within the wavefield, and the CNN predicts the boundaries of the defect more accurately. As the205

reduction in plate thickness decreases, the wavenumber in the defect region approaches the nominal plate
wavenumber and it becomes less visually distinct, tending to less accurate CNN predictions. The CNN also
shows increasing accuracy at a given defect thickness as the size of the defect increases. The accuracy of
the CNN in predicting defect thickness and location is evaluated by the IoU metric in (4) using only the
pixels belonging to the defect’s thickness class. The defect IoU for each of the test cases is presented in the210

chart in Figure 4. It is noted that the plate thickness at each defect is reported here as a percent thickness
reduction, given by

% thickness reduction =
tn − td

tn
× 100% (5)

for a nominal plate thickness tn and a plate thickness at the defect of td.
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Figure 4: Defect IoU for every test case. IoU ranges from 0 to 1.

The nominal wavelength in the 10mm thickness plate was O(10mm). As a result, defects with a 10mm
characteristic length go almost completely undetected by the CNN, while 100mm defects show IoUs over215

80%. Defects at 90% reduction are the easiest to detect, with IoUs over 80% across most defect sizes. Defects
at 10% reduction show the worst performance at around 50% IoU for most defect sizes. As the wavefield
measurements are dependent on both the local material thickness and the excitation frequency, it is possible
that higher excitation frequencies could improve these results, but such investigation was outside the scope
of this study.220

3.2. Additional simulation test cases

The previous test set showed a parameter study for a relatively simple defect geometry of varying thick-
nesses and sizes. This section highlights the generalizability of the CNN-based thickness estimation technique
to more complex geometries. A plate was modeled with multiple nested defects along the edges of the plate
and simulated according to the procedure in Section 2.2. One large defect in the bottom right corner of the225

plate had plate thicknesses ranging from 7 mm incrementally down to 2 mm near its center. The arbitrary
shape and distribution of thicknesses in the defect might be more representative of a real-world corrosion
or indentation in the back of the plate. A similar “corrosion” defect was applied to the top right corner of
the plate, with thicknesses ranging incrementally from 6 mm to 4 mm. The wavefield image, along with the
ground truth and CNN thickness prediction maps, are shown in Figure 5.230

10



(a) Wavefield (b) Ground Truth (c) Prediction

Figure 5: CNN performance on a complex geometry

For a test case with multiple thickness classes present in the image, the accuracy metric is reported by
calculating the IoU of each thickness class individually (Eq. (4)), and averaging over the number of thickness
classes present in the defect regions:

IOUavg =
1

n

n∑
i=1

IOUi (6)

where IOUi is the accuracy metric of the ith thickness class for n total thickness classes under consideration.
For this test case, the defect regions are composed of 6 classes, namely 2 − 7 mm. So n = 6 and IOUi is235

calculated at each incremental thickness class i from 2 to 7 mm. The average IoU for this test case is 79.9%.
The CNN demonstrates the ability to accurately predict multiple thicknesses in complex, nested regions, as
well as along the boundaries of the plate.

Next, a simple geometry, as described in Section 2.4, was created with a characteristic length of 90mm
and a defect thickness of 5.5mm. The CNN thickness prediction map was generated using only the real240

component of the wavefield. Due to the limitations of discrete classification, the CNN predicts the 5.5mm
defect thickness as primarily 5mm with several patches of 6mm. In order to resolve the sub-millimeter
thickness and to provide the CNN with information of the full wavefield, the following procedure was used:

1. The real-component wavefield image was treated as a single snapshot in the harmonic cycle, θ ∈ [0, 2π].
We treat this snapshot as the beginning of the cycle at θ = 0◦.245

2. A new snapshot of the harmonic cycle was generated by incrementing θ by 10◦. This new snapshot of
the wavefield velocity response follows from Eq. (3) at the new θ location.

3. A total of 36 wavefield images was gathered in this fashion, corresponding to snapshots at 10◦ incre-
ments across the 360◦ complex plane.

4. Each of the 36 images was fed through the CNN separately to generate 36 unique thickness predictions250

of the same plate. Each prediction image contained discrete integer class values at each pixel, as
described in section 2.

5. A simple arithmetic mean was taken across all 36 prediction images to obtain a single, averaged
thickness prediction map.

The single and phase-shift averaged CNN thickness predictions are shown in Figure 6.255
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(a) Wavefield (b) Single prediction (c) Phase-shifted average prediction

Figure 6: CNN performance on a sub-millimeter defect

The average plate thickness prediction in the defect region of the phase-shift average image was 5.7mm,
which is a 3.6% difference from the true value. The average thickness for the single prediction was 5.4mm,
(1.8% difference). Even though the CNN is limited to discrete classification, it shows reasonable performance
in locating and characterizing defects that do not align on integer thickness values. In addition, sub-millimeter
resolution can be approximated by averaging CNN inference over the full 360 degree complex wavefield.260

Insofar, all simulation test cases have been performed on 400 mm × 400 mm plates with free boundary
conditions that align along the edges of the wavefield image, as this was the condition of all images in the
CNN’s training dataset. A 0.91m× 0.91m aluminum plate with a 6mm thickness and a 3mm thick circular
defect at the center of the plate was modeled and simulated according to the procedure in Section 2.2. The
simulation results were cropped to a central 400mm × 400mm region, which included the circular defect.265

Another simulation was performed in exactly the same way, except the size of the plate was 400mm×400mm,
and no cropping was needed. Both simulations used free boundary conditions along the edges of the plate.
The CNN thickness prediction maps for both cases are shown in Figure 7.

(a) 0.91m × 0.91m (cropped) (b) 400mm × 400mm (no crop)

Figure 7: CNN thickness prediction maps for two 6mm plates of different sizes

The CNN accurately predicts the nominal plate thickness and the defect region in both cases; however,
the prediction on the cropped region of the larger plate shows false predictions along the edges of the image.270

The only difference between these two cases is the presence or absence of a physical plate boundary along the
edges of the image. The most likely cause of the false edge predictions in the cropped image is the absence of
the boundary effects seen in the un-cropped image, as well as those seen in the entire training dataset. The
CNN was only trained to expect physical plate boundaries along the edges of the image. When presented
with a cropped region of a much larger plate, the CNN loses generalizability.275

Despite the boundary condition limitation in the training dataset used in this study, the CNN has shown
the ability to generalize learned features in simulated wavefield measurements to a variety of defect sizes,
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thicknesses, and geometries. For test cases with the same boundary conditions as learned by the CNN during
training, the CNN has shown reasonable performance in predicting thickness in regions normally limited by
complex or unknown Lamb wave dispersion relationships, such as along the edges of the scan region.280

3.3. Experimental test set

This section will present the application of the CNN to an experimental test set to evaluate the gener-
alizability of the simulation-trained network to ASSESS experimental data. The test specimen consisted of
a large aluminum plate (6.35mm thick, 1.2m × 1.2m) with two elongated defect regions milled out on the
back surface with a 2.5 cm end-mill. The first defect, referred to as “deep cut”, was created by removing285

amounts of material ranging from 2.3mm to 4.2mm. The second defect, referred to as “shallow cut”, was
created in the same way with material removal ranging from 0.75mm to 1.2mm. The elongated shapes were
approximately 2.5 cm wide and 20.3 cm long. The aluminum test specimen is shown in Figure 8.

Figure 8: Aluminum test specimen with two milled out defects

Experimental data was collected using an ASSESS scanning system, which uses two steering mirrors and
an LDV to record the steady-state response of a structure excited by an ultrasonic transducer [3]. The290

ASSESS system recorded the steady-state velocity response of the top surface of the plate. The ultrasonic
transducer was clamped to the corner of the plate and excited at 80 kHz, which was the same excitation
frequency as all the simulations used to train the neural network. The data was collected in two regions – one
surrounding each defect – spanning across at least a 400mm× 400mm region with a 1mm2 pixel resolution.

Independent analysis of the collected data was performed using the original ASSESS wavenumber estima-295

tion algorithm [7, 8]. This algorithm passes the matrix of ASSESS results through narrow-band wavenumber
filters. Then, the spatial envelope of each wavenumber filter output is calculated and the wavenumber cor-
responding to the spatial envelope with the maximum amplitude at each point is selected as the estimated
wavenumber. Material-dependent dispersion curves were used to map wavenumber to thickness. In the
thickness and frequency ranges of interest, the specimen’s response was dominated by the zero-order anti-300

symmetric (A0) mode. Mapping between wavenumber and thickness was accomplished through interpolation
along the A0 mode.
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This wavenumber estimation tool was used to quantitatively evaluate the data for any environmental
discrepancies that are inherent to physical testing. These variabilities can include material property variation
within a structure, a spatial sample rate that slightly deviates from 1mm2, errors in physical distance and305

look angle of the ASSESS system, and other component-level discrepancies. A system-wide calibration
factor was derived by spatially resampling the experimental data to align the calculated wavenumber to the
healthy specimen’s expected wavenumber through interpolation on the A0 mode. This calibration factor
compensates for any of the measurement discrepancies listed above. The deep cut dataset required a scale
factor of 0.985 and the shallow cut required a scale factor of 0.963. The need for unique calibration factors310

may in part be caused by the fact that the ASSESS system was repositioned between measurements.
The CNN thickness prediction map was generated for both defects using just the real component of the

wavefield, as well as using a phase-shift average, as was described for the test case in Figure 6. Figure 9
shows the thickness prediction maps on the deep cut defect. The markings next to the defect in Figure 9a
indicate the amount of material removed at that location (in mm). The defect region shows a plate thickness315

of 4mm that gradually worsens to 2mm at the tip of the defect, corresponding to the 2.3mm of material
removed at the bottom of the defect and the 4.2mm of material removed at the top of the defect. Several
false predictions can be seen around the edges of the 400mm × 400mm cropped region, similarly to the
simulation results presented in Section 3.2. The average nominal plate thickness prediction in the healthy
region of the phase-shift average image was 6.45mm, which is a 1.6% difference from the true value. The320

average thickness in the healthy region of the single prediction image was 6.22mm, (2.0% difference).

(a) Ground truth image (b) Single CNN thickness prediction (c) Phase-shift averaged prediction

Figure 9: CNN thickness prediction map for deep cut defect

Figure 10 shows the CNN thickness prediction maps for the shallow cut defect.

(a) Ground truth image (b) Single CNN thickness prediction (c) Phase-shift averaged prediction

Figure 10: CNN thickness prediction map for shallow cut defect

The defect region is identified where the nominal plate thickness was reduced by 1mm to a thickness of
approximately 5mm. The average nominal plate thickness prediction in the healthy region of the phase-shift
average image was 6.55mm, which is a 3.1% difference from the true value. The average thickness in the325

14



healthy region of the single prediction image was 6.28mm, (1.1% difference). This test case shows the same
limitations in predicting the edges of the interrogation region.

Despite the boundary condition limitations described previously, the CNN has shown reasonable per-
formance in locating and characterizing defects from experimental ASSESS data using local plate thickness
estimation.330

4. Conclusions

This paper has presented a CNN model for semantic image segmentation trained to estimate plate thick-
ness from full-field, steady-state ultrasonic wavefield images. ASSESS data was simulated in FEA software
and processed by the CNN to produce plate thickness segmentation maps for defect localization and char-
acterization. The trained CNN has demonstrated accurate thickness prediction without reliance on the 2D335

FFT or Lamb wave dispersion relationships, and has shown a robust generalizability to experimental AS-
SESS data despite a fully-simulated training dataset. The performance limits of the CNN were explored
with respect to defect size and thickness reduction. The CNN showed greater accuracy for larger defects
with greater thickness reduction, and declining accuracy for smaller defects with smaller thickness reduc-
tions. A key limitation in the CNN is its confinement to discrete classification. Future work is needed to340

predict continuous thickness maps with greater class balance in the training dataset. Further studies should
also expand the training dataset to account for more real-world scenarios, including more complex plate
geometries and boundary conditions.
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Appendices

Appendix A. Full table of CNN prediction results on the simulation test set

t L IOU Wavefield Ground Truth Prediction

1 10 11%

2 10 0%

3 10 0%
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t L IOU Wavefield Ground Truth Prediction

4 10 0%

5 10 0%

6 10 0%

7 10 0%

8 10 0%
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t L IOU Wavefield Ground Truth Prediction

9 10 0%

1 20 79%

2 20 64%

3 20 37%

4 20 7%
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t L IOU Wavefield Ground Truth Prediction

5 20 0%

6 20 0%

7 20 0%

8 20 0%

9 20 0%
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t L IOU Wavefield Ground Truth Prediction

1 30 89%

2 30 83%

3 30 84%

4 30 78%

5 30 48%
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t L IOU Wavefield Ground Truth Prediction

6 30 69%

7 30 56%

8 30 29%

9 30 9%

1 40 87%
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t L IOU Wavefield Ground Truth Prediction

2 40 79%

3 40 85%

4 40 65%

5 40 71%

6 40 59%
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t L IOU Wavefield Ground Truth Prediction

7 40 81%

8 40 72%

9 40 43%

1 50 90%

2 50 88%
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t L IOU Wavefield Ground Truth Prediction

3 50 88%

4 50 80%

5 50 73%

6 50 72%

7 50 66%
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t L IOU Wavefield Ground Truth Prediction

8 50 63%

9 50 51%

1 60 94%

2 60 93%

3 60 89%
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t L IOU Wavefield Ground Truth Prediction

4 60 85%

5 60 85%

6 60 80%

7 60 70%

8 60 75%
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t L IOU Wavefield Ground Truth Prediction

9 60 50%

1 70 93%

2 70 91%

3 70 92%

4 70 87%
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t L IOU Wavefield Ground Truth Prediction

5 70 86%

6 70 75%

7 70 78%

8 70 63%

9 70 52%
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t L IOU Wavefield Ground Truth Prediction

1 80 95%

2 80 94%

3 80 90%

4 80 90%

5 80 88%

30



t L IOU Wavefield Ground Truth Prediction

6 80 73%

7 80 71%

8 80 67%

9 80 43%

1 90 96%
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t L IOU Wavefield Ground Truth Prediction

2 90 93%

3 90 94%

4 90 93%

5 90 91%

6 90 91%

32



t L IOU Wavefield Ground Truth Prediction

7 90 86%

8 90 78%

9 90 64%

1 100 96%

2 100 95%

33



t L IOU Wavefield Ground Truth Prediction

3 100 94%

4 100 93%

5 100 91%

6 100 91%

7 100 85%

34



t L IOU Wavefield Ground Truth Prediction

8 100 81%

9 100 84%
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